
3DGates: An Instruction-Level Energy

Analysis and Optimization of 3D Printers

Jerry Ajay Chen Song Aditya Singh Rathore Chi Zhou Wenyao Xu∗

University at Buffalo, the State University of New York

{jerryant,csong5,asrathor,chizhou,wenyaoxu}@buffalo.edu

Abstract

As the next-generation manufacturing driven force, 3D

printing technology is having a transformative effect on var-

ious industrial domains and has been widely applied in a

broad spectrum of applications. It also progresses towards

other versatile fields with portable battery-powered 3D print-

ers working on a limited energy budget. While reducing

manufacturing energy is an essential challenge in industrial

sustainability and national economics, this growing trend

motivates us to explore the energy consumption of the 3D

printer for the purpose of energy efficiency. To this end, we

perform an in-depth analysis of energy consumption in com-

mercial, off-the-shelf 3D printers from an instruction-level

perspective. We build an instruction-level energy model and

an energy profiler to analyze the energy cost during the

fabrication process. From the insights obtained by the en-

ergy profiler, we propose and implement a cross-layer en-

ergy optimization solution, called 3DGates, which spans the

instruction-set, the compiler and the firmware. We evaluate

3DGates over 338 benchmarks on a 3D printer and achieve

an overall energy reduction of 25%.

CCS Concepts •Computer systems organization →
Embedded and cyber-physical systems; Special purpose

systems; Sensors and actuators; Firmware; •General and

reference→ Cross-computing tools and techniques

Keywords 3D Printers; Energy Characterization and Opti-

mization; G-code Instruction rofiling

1. Introduction

3D printing, also known as additive manufacturing, is a rev-

olutionary manufacturing technology which allows complex

∗ Address comments to wenyaoxu@buffalo.edu or +1 (716)-645-4748.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice

and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to

lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

ASPLOS’17 April 08–12, 2017, Xi’an, China.

c© Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4465-4/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3037697.3037752

objects to be created in a single piece, layer by layer, bypass-

ing traditional steps of design and production. Due to its el-

egant concept, 3D printing has become the next-generation

manufacturing driving force, bringing a transformative ef-

fect across a broad spectrum of industries, including automo-

tive, aerospace, retail and biomedicine. Also, it can be even

more versatile as this technology progresses towards being

lightweight and low cost for individual use. The global mar-

ket of 3D-printing-related industries is estimated to reach

20.2 billion by 2021 [64].

Along with rapid market growth, the global energy de-

mand also keeps increasing. According to the report by Inter-

national Energy Outlook (IEO) in 2016, the manufacturing

industry consumes about 54% of the world’s total delivered

energy [3]. While reducing the energy use in manufactur-

ing is a core problem in industrial sustainability and national

economics, we raise a critical concern: How to optimize

the energy consumption of 3D printers? With the increas-

ing demands towards portable battery-powered 3D printing

[4, 5, 2], this challenge becomes more critical.

There is, however, limited work on characterizing and op-

timizing the energy consumption of 3D printers. Walls et al.

[61] compared the power consumption among a few low-

cost 3D printers. Peng et al. [47] quantified the energy con-

sumption of 3D printers by only considering the heating pro-

cess, leaving other aspects under-explored. Recently, Ajay et

al. [8] discovered that the energy consumption can account

for 32% of the overall 3D printing cost, which emphasizes

the urgent demand of an energy optimization solution for 3D

printers.

Motivated by the above, we carry out an in-depth instruction-

level analysis of the energy consumption in the 3D print-

ing process. There are two main reasons that we choose an

instruction-level approach. First, it is independent of lower-

level hardware specifications - an important factor when

considering the hardware diversity among different 3D print-

ers. Second, it is useful in assigning an accurate power cost

to the higher-level system software that generates and sched-

ules these instructions - an important factor when consider-

ing reduced generation of power-hungry instruction [55].

419

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3093336.3037752&domain=pdf&date_stamp=2017-04-04

This work attempts to address two fundamental questions

regarding energy-efficiency of 3D printers: (1) How much

energy does one printing instruction consume? and (2) How

to optimize the energy consumption of an instruction? To

this end, we first investigate the energy consumption of the

most commonly used 3D printing instructions. Second, we

develop an instruction-level energy model and an energy

profiler to accurately simulate the energy usage of a par-

ticular printing process. Third, from the insights obtained

by the energy profiler, we propose 3DGates, a cross-layer

solution which spans the instruction set, the firmware and

the compiler to reduce the energy consumption of the print-

ing process. Additionally, 3DGates takes into consideration

the unique properties of mechatronic cyber-physical sys-

tems, such as instruction-inertia and instruction-delay (see

Section 4.4), to ensure the operation correctness. Our inten-

sive experimental evaluation shows that 3DGates can reduce

25% of the total energy consumption in the 3D printing pro-

cess. More importantly, it ensures no defects or structural

compromises to the product quality and no changes in the

printing duration.

In summary, this work has three contributions as follows:

• Instruction-level energy model and energy character-

ization: We build an instruction-level energy model and

thereby understand the energy behavior of the typical 3D

printing instructions. Based on this model, we develop an

energy profiler which simulates the energy consumption

for a printing task.

• Cross-layer energy optimizations: We propose and im-

plement 3DGates, a cross-layer solution spanning the

instruction-set, the compiler, and the firmware. 3DGates

is an immediately deployable solution that can be applied

on commercially off-the-shelf 3D printers without induc-

ing any alteration to the hardware.

• Real-world evaluations: We simulate 3DGates on 338
benchmarks and observe an average reduction in energy

consumption by 25%. We implement 3DGates on real

3D printers (e.g., Ultimaker 2 Go [56]) and evaluate

the performance of energy reduction over real-world 3D

designs.

The remaining of this paper is organized as follows. In

Section 2, we introduce the background of the 3D printing

process and its associated instruction-set. In Section 3, we

investigate the instruction-level energy model, develop an

instruction-level energy profiler, and obtain the insights of

the energy consumption of real 3D printers. In Section 4,

we elucidate the implementation of 3DGates for reducing

the energy consumption. In Section 5, we evaluate 3DGates

against 338 benchmarks on a software simulator and vali-

date the simulator’s results on a real 3D printer. We discuss

potential enhancements and other related works in Section 6

and Section 7, respectively. The paper is concluded in Sec-

tion 8.

2. Background

2.1 3D Printing Process

Application

Layer

Application

Layer

Object

File (STL)

Compiler
Layer

G-code

File

G-code

File

Hardware

Layer

Hardware

Layer

Cyber Domain Physical DomainPhysical Domain

Firmware

Layer

Firmware

Layer

Unit
Control

Signal

Figure 1: End-to-end flowchart of 3D printing

3D printing refers to a process where the digital design

is converted to a 3D physical object. Figure 1 depicts the

end-to-end flowchart between the cyber and the physical

domains. Each domain involves different functional entities

as noted below:

• Application: The design is created in the Stereolithogra-

phy (STL) format by applications belonging to this layer.

A computer-aided design (CAD) software qualifies as an

example.

• Compiler: The compiler processes the STL file and gen-

erates a tool path file, called G-code file in most cases.

The G-code file contains a series of instructions to direct

the printing process.

• Firmware: The firmware on the 3D printer interprets the

G-code file and generates corresponding control signals

to the hardware.

• Hardware: The physical units of a 3D printer (e.g., the

stepper motors, the heater and the cooling fans) operate

according to the control signals.

Heater

FDM 3D Printer

G-code File Z Stepper

Motor

Printing Platform

NozzleNozzle

Cooling

Fan

X Stepper

Motor

Extrusion

Motor

LCD

Screen

Motor

Control

Display

Control

Heater and Cooling Fan

Control

Heater and Cooling Fan

Control

Y Stepper

Motor

3
D

 P
rin

ter F
irm

w
a
re

Figure 2: 3D printer hardware architecture.

2.2 3D Printer Architecture

In this study, we investigate 3D printers based on the Fused

Deposition Modeling (FDM) technology because it is the

most commonly used type in the commodity 3D printers [6].

Figure 2 shows the hardware architecture of an FDM

printer. The X, Y and Z stepper motors control the nozzle

movement. The extrusion motor (E motor) governs the ex-

trusion of the material. The heater (on the print header) melts

420

the material and lays it down on the printing platform layer-

by-layer. The cooling fan is employed to prevent the print

header from overheating.

2.3 G-code

G-code, also called RS-274 [63], is the numerical control

instruction set employed to control the 3D printing process.

Although the G-code standard defines many types of G-

codes [17], only a subset is used in 3D printing [7]. G-codes

are imperative directives generated as a result of slicing

and path planning on the STL file by the G-code compiler.

The firmware interprets these G-codes sequentially and then

actuates the physical units accordingly.

3. Instruction-Level Energy Model and

Profiler

In this section, we present an instruction-level energy model

and an instruction-level energy profiler for 3D printers. First,

we investigate the energy consumed by different G-code in-

structions. Second, we formulate an energy model based on

the instruction-level energy consumption and the 3D print-

ing operating mechanism. Lastly, we present an energy pro-

filer based on the energy model to accurately simulate the

printing energy consumption.

3.1 Instruction-Level Energy Model

3.1.1 G-code Instruction Types

Based on functionality, G-code instructions can be generally

classified into three types:

• Alignment Instruction (G0-Type): This type of instruc-

tion is executed to swiftly align the nozzle from the cur-

rent location to a specific X-Y coordinate. The format of

G0-Type is as follows:

G0 F 〈speedrate〉 X〈coordinate〉 Y 〈coordinate〉,

where F is the linear speed of the motors. Usually, F is

set to a high speed (e.g., 7200 mm/min) to save printing

time as well as to avoid the stringing effect [1]. Particu-

larly, there is no material extrusion during the operation.

• Movement Instruction (G1-Type): These instructions

control the movement of the nozzle during the printing

process. The format of G1-Type instructions is similar to

G0 as follows:

G1 F 〈speedrate〉 X〈coordinate〉 Y 〈coordinate〉

In the case of G1, F is often empirically set between

30 ∼ 7200 mm/min, depending on print-resolution and

design-intricacies.

• Control Instruction (C-Type): These instructions of-

fer primitives to configure the printing environment. The

functional scope of these instructions include settings

such as the unit of measurement (mm or inches), the rep-

resentation in absolute or incremental X-Y coordinates,

the heater threshold temperature, etc. C-Type instructions

attribute is perpetual and can only be altered after reset.

Instruction Category Count %

G0-Type: Align Instruction 36184 13.86%

G1-Type: Movement Instruction 224837 86.13%

C-Type: Control Instruction 5 0.001%

Total 261026 100%

Table 1: Instruction Distribution in a typical G-code file.
Table 1 shows an example of the instruction distributions

of a typical G-code file. We can observe that the majority

instructions are G1-Type.

3.1.2 Instruction-Based Energy Cost

To build an instruction-level energy model, the knowledge

of the instruction-based energy cost is fundamental and nec-

essary. Quantifying the instruction-based cost helps to find

the printing phenomenon that causes the power consumption

and further identify the power-hungry instructions.

Figure 3: Experimental setup for power measurement. A

Wattsup power meter connected in series to a power line and

a 3D printer.
Our experimental setup is shown in Figure 3. Specifically,

we adopt Ultimaker 2 Go [56] because its firmware and

hardware component specifications are open-source [57].

A WattsUp power meter [40] is connected in series with

the power supply to measure the power consumption dur-

ing the 3D printing process. PronterFace [48] software is

used to generate specific G-code(s) for instruction-level and

component-level (motor, heater and fans) energy characteri-

zation.

The firmware executes the G-code instruction in the order

of milliseconds. However, the sampling rate of the WattsUp

meter is 1s, which is very coarse to measure the energy

consumption of a single G-code instruction. To overcome

this defect, we put every instruction in an infinite loop to

generate a steady reading on the power meter. We remove the

421

Instruction Category Avg. Power (W)

Alignment Instruction (G0-Type)

G0 F7200 X Y 21.30

Movement Instruction (G1-Type)

G1 F1800 X Y 39.90

G1 F2400 X Y 40.03

G1 F3600 X Y 39.94

G1 F4800 X Y 39.81

G1 F5200 X Y 40.38

G1 F5400 X Y 39.85

G1 F7200 X Y 40.06

Control Instruction (C-Type)

G4: Pause 2.41

G20: Units to Inches 2.40

G21: Units to mm 2.43

G28: Move to origin 20.84

G90: Absolute Co-ordinates 2.41

G92: Set Position 2.39

M84: Disable Motors 2.40

M106: Fan on 3.61

M107: Fan off 4.44

M82: Extruder Position 2.43

M104: Set Temperature 3.50

M109: Attain Temperature 31.19

Table 2: Base energy cost of typical G-code instructions in

the 3D printing process.

outliers and report the average power consumption in Table

2.

G0-Type Energy Cost During the execution of G0 instruc-

tions, the material extrusion mechanism is dis-functional and

the speedrate is set at 7200mm/min. The average power con-

sumption is 21.3W.

G1-Type Energy Cost G1 instructions move the nozzle to

a specific position at different speeds. Particularly, we ex-

plore how the energy cost varies with the speed (1800 ∼
7200mm/min). As shown in the table, we only observe a

marginal change in power consumption with a standard devi-

ation of 0.19W. Therefore, we infer that the power consump-

tion of G1 instructions is not sensitive to the speedrate. Also,

G1 instructions consume more energy than G0 because ex-

tra physical components are activated, i.e, the heater and the

fans.

C-Type Energy Cost The energy consumption of C-Type

instructions differs a lot according to the specific operation

they refer to. For instance, G28 is responsible for aligning

the nozzle to the original point. Therefore, it has a similar

power consumption as the G0-type. Another control instruc-

tion, M109, consumes high power (31.19W) since it turns

on the heating process.

3.2 Instruction-Level Energy Model

We develop an instruction-level energy model for the 3D

printing process. Let Xi denote the ith instruction in the

G-code file. The corresponding current Ii is the sum of

the current drawn by the various components of the printer

during Xi. Specifically, Ii is given by:

Ii = Imotors
i + Iheateri + I

fans
i , (1)

where Imotors
i , Iheateri and I

fans
i are the current consump-

tion of the motors, the heater and the fans.

Assume the X and Y coordinates of the instruction Xi−1

and Xi are 〈Xi−1, Yi−1〉 and 〈Xi, Yi〉. Let Li denote the

distance movement of the nozzle during execution of Xi.

Based on Eucledian principle, the length of traversal, Li is

given by:

Li =
√

(Xi −Xi−1)2 + (Yi − Yi−1)2.

The time duration of Xi is given by: Ti = Li

Fi

, where

Fi is the speedrate of instruction Xi. Therefore, the power

consumption of Xi is given by: Pi = Ii × Vcc. The corre-

sponding energy consumption is:

Ei = Pi × Ti =
Ii × Vcc × Li

Fi

. (2)

From Equation (2), the energy consumption for the entire

printing process is formulated as:

E =

T
∑

t=1

Ei =

T
∑

i=1

Ii × Vcc × Li

Fi

, (3)

where T is the total number of instructions under considera-

tion. In practice, the supply voltage Vcc is regarded as a con-

stant (119.5V) with a minor variation of ±0.5V. Eventually,

Equation (3) accurately accounts for the energy consumption

of all G0-, G1- and C-Type instructions.

For simplicity, we did not take into account instruction

inter-dependency in building the energy model. It is because

the instruction execution in the 3D printing architecture con-

tains limited hardware sharing and dependency [43], which

is different from the traditional micro-process architecture.

Our evaluation results in the following section also confirm

this assumption.

Note that our contribution in this section is the method-

ology of building the instruction-level power model for the

3D printing process. Besides the FDM-type 3D printers,

the same methodology can be applied to other types of 3D

printers working on different technologies, such as Selective

Laser Sintering (SLS) and Digital Light Processing (DLP).

3.3 Instruction-Level Energy Profiler

Based on the energy model established above, we develop

a profiler that simulates the energy consumption of the 3D

printing process at the instruction-level granularity.

422

Figure 4: The real measurement and the result of the energy

profiler in the 3D printing process.

Figure 5: An energy sector diagram denoting the energy con-

sumption of different physical components in a 3D printer.

3.3.1 Model Validation

To prove its correctness, we simulate a sample print on

this profiler and validate the result with the ground truth

measured by Wattsup power meter. The sample printing task

is an artifact that takes 15 minutes, containing three types of

instructions.

As depicted in Figure 4, the simulated results and the

ground-truth measurements fit close to each other. Overall,

the energy profiler achieves an error of 3.0%. The result

shows that the empirically derived instruction-level energy

model can precisely simulate the real power consumption of

the 3D printing process.

3.3.2 Energy-Sector Diagram

There are three energy-hungry physical units: the stepper

motors, the heater and the fans. We account for the energy

consumption of the heater and the fans by considering M109

and M106 for the entire duration of the print. Likewise, we

account for the energy consumption of the stepper motors by

considering G0- and G1-Type instructions alone (subtracting

Iheateri and I
fans
i from Equation 1) in the observed read-

ings.

Figure 5 shows the distribution of energy consumption

among the physical components over 338 benchmarks (de-

tails in Section 5.1). Instead of the heater, we notice that

the motors are the dominant energy consuming components.

Motors contribute 51.7% of the overall power consumption

in the 3D printing process. Therefore, we focus on optimiz-

ing the power consumption of the motors, not the heater.

Heater power optimization is an orthogonal research prob-

lem.

3.3.3 Substantial Amount of Straight-Line Movements

After the in-depth analysis of the instruction movement

pattern over 338 benchmark G-code files, we find that the

straight line movements along the X-Y axis are dominant.

The reason for such an observation is because the G-code

compiler slices the CAD design into geometric patterns.

These geometric patterns usually align along the axes when

oriented correctly: at least 95.0% for “triangles” in-fill pat-

tern and at most 98.7% for “lines” in-fill pattern (explained

in Figure 12) - a significant percentage. Based on this obser-

vation, we hypothesize that the energy consumption of a 3D

printer can be heavily reduced by dynamically power-gating

the X and Y motors.

Insights

We obtain three important insights from the above energy

characterization study:

• Reducing the motor functioning time has the potential

to significantly cut the energy consumption in the 3D

printing process.

• The instruction-level simulator provides an accurate ac-

count of the energy consumed in the 3D printing process.

• Energy optimization strategies (such as energy-efficient

orientation of the design, etc.) can be tested on the sim-

ulator rather than conducting time consuming prints on a

real 3D printer.

4. A Cross-Layer Energy Reduction

Approach for 3D Printers

In this section, we describe 3DGates: a cross-layer power-

gating strategy to reduce energy consumption in 3D printers.

3DGates extends the G-code standards, the firmware and the

G-code compiler to facilitate energy reduction.

4.1 Approach Overview

(A) Design Considerations As discussed in Section 3, mo-

tors constitute the dominating factor in the overall energy

consumption in 3D printers. For the sake of feasibility and

423

effectiveness on real 3D printers, we list the design consid-

erations as follows:

• Integrity (No changes to original CAD Design): Our ap-

proach intends to keep the original STL file intact be-

cause any potential alteration to the design might either

not result in a correct printing or affect fabrication quality

such as mechanical strength.

• Robustness (No changes in Hardware): Hardware sup-

port, such as adding more energy-efficient controllers,

might improve the power management of 3D printers.

However, we aim to propose a practical and robust solu-

tion that is hardware-nonspecific and can cooperate with

any controllers. Therefore, the design considerations of

our approach specifically ensures no changes in the 3D

printer’s hardware.

• Comprehensiveness (Cross-layered Design): Referring

to the current 3D printing process flow, the compiler

should first access the digital design and generate energy-

efficient G-code instructions. The firmware then parses

these new G-code instructions and controls the physical

components accordingly. Therefore, the modifications in

different layers constitute a comprehensive approach to

reduce energy consumption.

(B) Design Framework An overview of our framework is

shown in Figure 6. Specifically, the left part is the existing

3D printing flow and the red circle on the right illustrates our

implementation, including new G-code instruction support,

firmware support and compiler support.

We first design a set of extended instructions to allow ad-

vanced control over the motor. The re-compiler takes the

original G-code instructions from the compiler and inserts

the new power-gating instructions at proper positions. Note

that the re-compiler only inserts instructions without delet-

ing any entries from the G-code file, thus ensuring integrity.

Afterwards, we develop the firmware support interface to

enable parsing of the new instructions.

Note that our approach can be integrated into the existing

3D printing flow. Also, the new G-code file still holds back-

ward compatibility towards other non-upgraded 3D printers.

The non-upgraded firmware on these printers would just skip

parsing the new instructions.

Object Design

(STL File)

Compiler

G-code

Standard Re-Compiler

Firmware

Re-compiler

Algorithm
Firmware

Support Interface

G0 Type

G1 Type

Hardware Units

C Type

Extended

S Type

Instruction-based Cross-layer

Power Optimization Approach

Figure 6: 3DGates Architecture: The instruction-based

cross-layer motor power-gating strategy for 3D printers.

S-series Function Hardware Control Pwr.(W)

S X on X-motor on GPIO Pin18 High 2.39

S X off X-motor off GPIO Pin18 Low 2.38

S Y on Y-motor on GPIO Pin17 High 2.40

S Y off Y-motor off GPIO Pin17 Low 2.42

Table 3: S-series instructions to support motor power-gating.

4.2 Instruction Support

Instruction support for the fine-grained motor control is crit-

ical for 3DGates. The G-code standard defines M84 to con-

trol the motor power supply. However, M84 is only capable

of turning on/off all motors together. Therefore, an extension

to the G-code standard is required for dynamic power-gating

of individual motors at run-time. Note that we define new

G-code instructions rather than altering existing ones for the

sake of compatibility on different 3D printers.

ENABLE

PWM

INV

STEPPER

MOTOR

DRIVER

PWM

INV

STEPPER

MOTOR

DRIVER

PWM

INV

STEPPER

MOTOR

DRIVER

PWM

INV

STEPPER

MOTOR

DRIVER

ENABLE

ENABLE

ENABLE

CONTROL

UNIT

GPIO 14

GPIO 15

GPIO 21

GPIO 22

GPIO 08

GPIO 07

GPIO 09
GPIO 11

X-MOTOR

GPIO 18

GPIO 17

GPIO 25

GPIO 10

Y-MOTOR

EXTRUDE-MOTOR

Z-MOTOR

Figure 7: Stepper motor control mechanism - the firmware

perspective.

S-Series Instruction Implementation We introduce new

G-code instructions, called S-series1 instructions, to achieve

the fine-grained control over the motor. As listed in Table 3,

the S-series instruction is able to turn on/off a specific motor.

Figure 7 shows the connection graph between the control

unit and the stepper motor. Specifically, the control unit is

a microcontroller which has multiple GPIO pins for data

communication. Each motor has a Power-Enable (PEN) pin

to gate the input power. For the Ultimaker 3D printer, GPIO

10, 17, 18 and 25 are connected to PEN pins of the motors.

Therefore, based on the S-series instructions, we can alter

the voltage on the GPIO pin to control the motor operation.

Feasibility of S-Series Energy Savings S-series instruc-

tions enable dynamic power control of the stepper motors

at run-time. Preliminarily, we examine the S-series instruc-

tion’s effectiveness by comparing the power consumption

over the instructions listed in Table 2. We consider the in-

struction along a single axis after alignment. As shown in

Table 4, for a specific instruction, the new power column

refers the power consumption when the S-series instruction

is applied.

1 S denotes saving of power in motor controls.

424

Instr. New Pwr(W) Old Pwr(W) % Reduction

Align Instr.

G0 12.53 21.3 41.17%

Movement Instr.

G1 25.81 39.9 35.3%

25.06 40.03 37.4%

24.69 39.94 38.2%

24.50 39.81 38.4%

24.54 40.38 39.2%

24.90 39.85 37.5%

25.30 40.06 36.8%

Control Instr.

G4 2.41 2.41 -

G20 2.40 2.40 -

G21 2.43 2.43 -

G28 20.84 20.84 -

G90 2.41 2.41 -

G92 2.39 2.39 -

M84 2.40 2.40 -

M106 3.61 3.61 -

M107 4.44 4.44 -

M82 2.43 2.43 -

M104 3.50 3.50 -

M109 31.19 31.19 -

Table 4: Reduction in G-code power consumption with new

S-series instruction support.

We can observe that a significant portion of power con-

sumption is reduced for G0 and G1 instructions by dynam-

ically power-gating the motors. The control instructions are

not affected because the motors are not involved (G28 ac-

tivates the motor but we do not consider it along one axis).

Because the power consumption is not sensitive to speedrate,

the power reduction of S-series instructions across different

speedrates is also consistent, with a standard deviation of

1.26%. The average power savings is 38.0% across G0 and

G1 instructions. Therefore, the motor power-gating strategy

can effectively reduce the power cost. We further explain the

necessary firmware support and compiler support for imple-

mentation.

4.3 Firmware Support

Firmware Extension to S-Series Instructions To facili-

tate the interpretation of the new S-series instructions on 3D

printers, it is necessary to upgrade the 3D printer firmware

with an extended module to interpret the new instructions.

As shown in Figure 8, this module processes S-series in-

structions and governs the functioning of the motors through

the GPIO pins. Specifically, the extended module provides

Figure 8: Upgraded firmware: interface to new instructions

and the INV STATE data structure.

interfaces to enable (HIGH) and disable (LOW) the GPIO

pins.

State Backup The stepper motor driver on the micro-

controller board has three output pins that send commands to

the stepper motors, i.e., Power-Enable (PEN), Invert (INV)

and Pulse-Width-Modulation (PWM). During our experi-

ments, we notice that when an enable signal (HIGH) is ap-

plied to PEN, the state of INV assumes a random value - ei-

ther HIGH or LOW. This behavior usually leads to the incor-

rect printing direction when the NEMA17 motors are cold-

started because the INV state exists as a register-like imple-

mentation in the firmware. Therefore, it is necessary to back

up the INV state before turning off the motors and restore

the state before turning them back on again. The extended

firmware module defines a new structure, INV STATE, to

backup the INV pin state to avoid the incorrect direction

error.

4.4 Compiler Support

With the extended instruction and firmware support, 3D

printers are capable of fine-grained motor power control.

However, the firmware cannot identify when to power-gate

the motors because it has no access to the entire design.

Therefore, we develop a re-compiler engine to insert the

power-gating instructions into the original G-codes file. Fig-

ure 9 demonstrates an output of the re-compiling process.

425

ORIGINAL G-CODE FILE ENERGY-AWARE G-CODE FILE

S INSTRUCTIONS

S INSTRUCTIONS

Figure 9: Re-compiler example: inserting power-gating in-

structions.

Heat Head

X-off Y-on

A

B

X-axis

X-on

(a) Start-ahead

Heat Head

X-off Y-on

A

B

Y
-a

x
is

C

Y-off

(b) End-late

Figure 10: Control mechanism to account for instruction-

inertia and instruction-delay.

Instruction-Delay and Instruction-Inertia The 3D Printer

is a cyber-physical system: the cyber part processes the in-

structions, and the physical part executes the instructions.

Due to the intrinsic disparity of response time between cy-

ber (usually in MHz or GHz) and physical (usually in Hz)

domains, there is a delay between the instruction interpreta-

tion and execution. It is critical to incorporate this delay in

the system manipulation to avoid the possible timing error

and the printing misbehavior.

To ensure the correctness, we formulate two properties

with regard to this time disparity: Instruction-inertia and

Instruction-delay. Instruction-inertia is the extra time to ac-

tually start the motor from the time the S-on instruction is

executed; Instruction-delay is the extra time required to ac-

tually stop the motors from the time the S-off instruction is

executed. These two properties lead to special considerations

in designing the re-compiler.

1. Start-Ahead (To account for instruction-inertia): Be-

cause of the delay from instruction parsing to execu-

tion, the S-on instructions need to Start-ahead before ac-

tual usage. Figure 10(a) shows an example of instruction

start-ahead. X-motor needs to be switched on before the

nozzle reaches the turning corner B. In other words, both

X-motor and Y-motor are switched on when the nozzle

moves from Position A to B, even though there is no

X-axis movement yet. In this study, Ultimaker 3D print-

ers use NEMA 17 stepper motors with a startup delay of

1.8ms [56]. Hence, we set our Start-ahead time as 1.8ms.

2. End-Late (To account for instruction-delay): The iner-

tial property of the motors demands that the instruction

under execution needs extra time, called End-late, to ac-

tually finish the execution. As shown in Figure 10(b), the

Y-motor should stay switched on until the nozzle reaches

Position C. In other words, both X-motor and Y-motor

are switched on when the nozzle moves from Position B

to C, even though there is no Y-movement. If the Y-motor

was turned off exactly at B, motor wiggling might occur

due to the inertia of the motor. End-late avoids the mis-

alignment caused by motor wiggling and ensures no print

defects when power-gating. Compared to Start-ahead,

End-late is empirical value and we set it as 1.0ms in this

study.

Re-compiling Algorithm The goal of the re-compiler en-

gine is to populate the G-code files with S-series instruc-

tions. There are two guarantees when re-compiling the G-

code files. First, minimum quantity of S-series instructions

are inserted. Second, no explicit pause or latency is intro-

duced. These two guarantees are achieved as follows:

• Instruction Grouping: The first phase of the re-compiling

algorithm is to find consecutive instructions with similar

motor movements. Given a raw G-code file, we group

the instructions, layer-by-layer, that can be power-gated

by the same axis motor. We use a labeled-weight ap-

proach to group the instructions [53]. In the first step,

based on the motor movements in the G-code file, we

assign an index to each instruction with a weighted la-

bel. The label annotates the path taken by the motors,

and the weight indicates the number of active motors for

that path. Instruction movements within 0.5mm are as-

signed the same weight. In the second step, we search

the longest common subsequence [44] among the labels

with the same weight. The instructions within each com-

mon subsequence are grouped as one block. This phase

ends when all instructions are grouped.

• Model Rotation in the X-Y Plane: The second phase of

the re-compiling process rotates the entire model in the

X-Y plane to align the grouped instructions to either

the X or Y axis. The model is rotated in 30◦ increment

on the X-Y plane. The orientation containing the maxi-

mum quantity of the total straight X and Y movements

is selected. Phase two ensures minimum insertion of S-

series instructions at the right places, thereby guarantee-

ing maximum energy-efficiency. Note that we do not ro-

tate the model in 3D-space since it would lead to addi-

tional support material generation.

• S-Series Instruction Insertion: The third phase of the re-

compiler inserts S-series instructions to power-gate the

motors. The re-compiler will go through the instruction

groups produced by the second phase and then sandwich

them between S-ON and S-Off instructions. The design

considerations of Start-ahead and End-late are applied

426

here by appropriately splitting up the instruction if re-

quired. In cases where some instruction groups have the

same label weight, the re-compiler processes the group

with more instructions first.

The re-compiler algorithm is listed in Algorithm 1. The

re-compiler is efficient, and its time complexity is polyno-

mial. Note that the re-compiler algorithm is implemented to-

wards three degrees-of-freedom (DOF), and can be applied

to additive manufacturing processes with a higher DOF [36].

Algorithm 1 Re-compiler Algorithm

1: procedure RE-COMPILING ALGORITHM(naive Gcodes)

2: neight ← 0.5 ⊲ Neighborhood Threshold = 0.5mm

3: X clusters← φ

4: X grp naive ←
Group X terms(naive Gcodes)

5: Y grp naive← Group Y terms(naive Gcodes)
6: for all deg in 30◦ increments do ⊲ X-Y Rotation

7: (X groups, Y groups) ←
axes align(X grp naive, Y grp naive)

8: end for

9: for all X in X groups do

10: if |(Xprev+neight)| ≤ X ≤ |(Xnext−neight)|
then

11: X cluster ← X cluster +X

12: else if Xnext = Y term then ⊲ Instr. delay

13: X ← X1 + S Y on+X2

14: X cluster ← X

15: else if Xprev = Y term then ⊲ Instr. inertia

16: X ← X1 + S Y off +X2

17: X cluster ← X

18: end if

19: end for

20: for all cluster in X cluster do

21: clusterfront ← S X on

22: clusterback ← S X off ⊲ X power-gating

23: end for

24: repeat 9 : 23 for Y clusters

25: return energyOptimized Gcodes

26: end procedure

5. Evaluation

In the section, we comprehensively evaluate the perfor-

mance of 3DGates. First, we investigate the energy reduction

through both a simulated study and a real-world experiment.

Second, we explore the possible process factors to impact

the system performance. Lastly, we examine the impact of

3DGates on printing duration and printing quality.

5.1 Evaluation Setup

Benchmark Preparation: To comprehensively evaluate

3DGates, we select 338 benchmark designs from Thing-

verse [54]. All benchmarks are real printable products and

0 5 10 15 20 25 30 35 40

Energy Reduction (%)

0

20

40

60

80

100

120

#
 o

f
G

-c
o

d
e

F
il

es

Figure 11: Histogram of energy reduction after applying

power-gating on 338 G-code benchmark files.

cover domains ranging from daily household replacements

to specialized industrial components. The benchmarks com-

prise about 71 million lines of G-code instructions, and the

total estimated fabrication time is around one year on one

3D printer.

Specifically, we adopt the developed energy profiler to

simulate the energy consumption of 338 benchmarks for

practical concern. The simulator is implemented in Python

with 487 LoC. The experiment tests are performed on a

desktop with a quad-core Intel CPU, 4GB RAM, 2TB SSD

Hard Disk. For the experiments with acceptable printing

time, we conduct the real measurement with the designs

on Ultimaker 2 Go [56] to explore the characteristic of

3DGates. The firmware upgrade patch is implemented in

the C language, and the re-compiler algorithm is integrated

into the Cura [19] engine, a publicly available 3D printing

compiler.

5.2 Performance Evaluation

We evaluate 3DGates by employing power-gating strategy to

338 benchmark G-code files and simulating the power con-

sumption by the energy profiler. For each file, we compare

the energy consumption before and after the power optimiza-

tion. Figure 11 shows the distribution of the power savings

over 338 G-code files. On average, 3DGates offers an energy

reduction of 25%. Specifically, 180 (53.2%) of the bench-

mark achieve the energy reduction above 20%. The largest

energy saving reaches up to 37.9%.

SQUARE CIRCLES LINES GRID TRIANGLES

Figure 12: Different object in-fill patterns.

5.3 Sensitivity Analysis

There is a large configuration space in the 3D printing pro-

cess. For the sake of comprehensiveness, we study the per-

427

Figure 13: Sensitivity of different infill patterns on different designs. The colored bars refer to the energy consumption with the

power-gating strategy. The dotted bars on the top denote the energy savings compared to the cases without energy optimization.

The percentage numbers above the dotted bars is the absolute energy reduction by our approach.

formance sensitivity to 3D printing process configurations.

Considering that the power-gating strategy is highly related

to the nozzle movement style, we specifically explore two

aspects in this study, i.e., in-fill pattern and object orienta-

tion.

In-Fill Pattern: The in-fill pattern specifies the toolpath pat-

tern the nozzle follows when it fills the interior of the de-

sign in each layer. There are four typical in-fill patterns: (1)

square-circle, (2) line, (3) grid and (4) triangle, in 3D print-

ing. Figure 12 demonstrates the trajectory of each type. Note

that no specific in-fill pattern requires a significantly less en-

ergy consumption than others due to that the total volume

of filament use, i.e., the length of the tool path, is the same

among different in-fill patterns. Nevertheless, the in-fill pat-

tern will affect the performance of 3DGates because differ-

ent patterns might provide distinct opportunities to power-

gate motors and reduce the energy consumption during the

3D printing process.

We evaluate the energy impact of four in-fill patterns on

six designs: hinge, 3D-puzzle, cup-holder, whistle, iphone5-

cover and gear. The designs are printed by the printer and

the power consumption in each case is measured. Figure

13 shows the energy comparison results after implement-

ing 3DGates with different in-fill patterns. We observe that

the performance varies with different in-fill patterns. The av-

erage energy reductions are 18.67%, 23.50%, 12.00% and

17.00% for line, square-circle, triangle and grid, respec-

tively.

Square-circle pattern achieves the best performance with

respect to energy efficiency because it consists of orthogonal

movements which can be aligned along the X and Y axes

with a proper orientation adjustment. It indicates that there

is a higher probability to switch off one motor during the

entire process. The case study also confirms that about half

of the motor energy is saved during the printing process in

the square-circle pattern.

Line pattern also consists of orthogonal movements. Dif-

ferent from the square-circle pattern, the majority of the

movements fill along one direction only. Therefore, the short

segments on the other direction cannot take advantage of

power-gating motors due to the constraints from instruction

inertial/delay. Note that this is one exceptional case, i.e., cup-

holder, where the design is round shape, line out-performs

square-circle by 7% due to reduction of non-extrusion move-

ments.

The in-fill patterns of grid and triangle can make the

printed object with a better mechanic strength. Due to or-

thogonal segments, grid pattern achieves similar perfor-

mance as square-circle in certain situations. Triangle pat-

tern, on the other hand, comprises non-orthogonal segments

operated by both X and Y motors. As a result, power-gating

is not activated most of the time. Therefore, the average

energy reduction of triangles is the lowest among the four

in-fill patterns.

0

30

60

90

120

150

180

210

240

270

300

330

0

0.5

1

(a) Gear

0

30

60
90

120

150

180

210

240
270

300

330

0

1

2

3

(b) IPhone5-cover

Figure 14: Energy consumption with power-gating strategy

under different orientations. The markers represent the nor-

malized energy consumption.

Object Orientation: In the re-compiler algorithm, we brute-

force the orientation angle of the design by assuming that it

will affect the efficiency of power-gating. For the purpose of

428

demonstration, we select gear and iphone5-cover as exam-

ples and measure the optimized power consumption under

different orientation angles in the 2D X-Y plane. To mini-

mize the effect of the in-fill pattern on our orientation results,

we select the triangle in-fill pattern. Specifically, we increase

the angle from 0◦ to 360◦ with an increment of 30◦.

Figure 14 depicts the optimized power consumption with

different orientations for each design. Note that the data is

normalized that the result at 90◦ equals to 1. We observe that

the optimized power consumption doesn’t vary too much

with the orientation (the standard deviation is only 0.14).

This is because gear is very symmetric in shape and hence

the power-gating results are quite the same with all angles.

However, for the asymmetric designs such as the iphone5-

cover, the power consumption results in a larger variation,

obtaining maximum at 150◦ and minimum at 0◦. Therefore,

the orientation bruteforce is necessary to achieve the largest

energy reduction.

5.4 G-code File Size

0 0.5 1 1.5 2

G-code File Size Increase (%)

0

20

40

60

80

100

#
 o

f
B

en
ch

m
a
rk

 F
il

es

Figure 15: Impact on G-code file size.

Our S-series instruction addition has negligible impact on

the G-code file size. We summarize a file size increase on

all 338 benchmarks after applying 3DGates. As shown in

Figure 15, the maximal increase of file size is less than 2%,

and the average is only around 0.5%. Therefore, our solution

doesn’t introduce overhead in data storage or transmission.

Figure 16: Comparison of printing-efficiency. There is no

observable change of printing time in the 3DGates solution.

Figure 17: Comparison of printing quality. No any signifi-

cant visual differences can be observed.

5.5 Impact on Real-world Printing

We employ six 3D designs mentioned above to examine the

impact of 3DGates on the real-world printing performance

from two aspects: printing duration and printing quality.

Impact on Printing Duration: For each design, we print it

twice by Ultimaker 2 Go with the G-code files with and with-

out power-gating. We record and compare the printing dura-

tion in each case. As shown in Figure 16, there is negligible

difference in printing time across all cases (less than 1% on

average). Therefore, 3DGates is fully compatible with cur-

rent printing practices without slowing the process.

Impact on Printing Quality: We also examine whether

3DGates will affect the printing quality. Figure 17 depicts

one pair of examples from printed designs. The left one is

the original process, and the right one is the power-optimized

process. We observe there is no noticeable differences in

quality. The structure and the texture from two processes are

almost identical.

Summary: The aforementioned results show that 3DGates

is effective and practical to reduce the power consumption

of 3D printers. Moreover, 3DGates has no noticeable effects

on printing duration and quality.

6. Discussion

Finer Stepper Motor Power Control: Instruction-level

power optimization can be further enhanced with fine-

grained motor power control. For example, DVFS mecha-

nisms [26, 31, 60, 62] can offer more aggressive controls

over the stepper motor to improve energy-efficiency with

respect to different speeds. Dynamic voltage scaling of the

motors, however, requires extra hardware support (e.g., con-

figurable voltage regulator [35]) and might affect the print-

ing quality [12]. Our proposed instruction-level solution will

neither affect the printing quality nor need any additional

hardware support.

3D Orientation Optimization: Figure 14 implies that the

efficiency of power reduction varies with the design rota-

tion in the 2D plane. We anticipate that the power reduction

429

can be further improved by altering the object orientation in

the 3D space. Principle component analysis (PCA) [29] on

path directions can adjust the orientation to maximize the

opportunity of power-gating the motors. However, 3D orien-

tation will also affect other aspects, such as structure support

generation [50]. In this work, we focus on power reduction

without generating any additional structure support.

Interdisciplinary Methods in Energy Reduction: As an

emerging cyber-physical system, the 3D printer [58] is a

holistic design of mechanical engineering, electrical engi-

neering, material science and computer science. The energy

reduction on 3D printers demands an interdisciplinary effort.

For example, low melting-temperature materials can reduce

heating power consumption [21] and better mechanical de-

sign of the motor can improve motion energy efficiency [22].

This work only concentrates on power optimization from the

system design perspective. Methods of altering electrical,

mechanical or material behaviors of 3D printing are beyond

our consideration.

7. Related Work

Energy-Efficiency in 3D Printers: There has been some

preliminary work on better path planning and G-code gener-

ation strategies to reduce energy consumption. These works

can be classified into two categories. The first category fo-

cuses on minimizing the printing time to reduce energy con-

sumption. For example, Jin et al. investigated an adaptive

path planning algorithm to decrease nozzle travel distance

for energy savings [28]. The second category is to avoid un-

necessary motions to cut energy consumption. Volpato et al.

proposed an optimization algorithm to reduce repositioning

distances in FDM 3D printers [59]. Lensgraf et al. presented

a new path planning algorithm to minimize “untrutionless”

movement in a single layer by printing nearest neighbors

[37]. Existing approaches, however, require a recompilation

of the entire design and generation of completely new path

planning results (i.e., G-codes), which might affect the de-

sign and mechanical properties of the fabricated objects. To

the best of our knowledge, 3DGates is the first study to re-

duce energy consumption without changing the path plan-

ning in 3D printers.

System Power Modeling: Power modeling has a long and

rich research history and is a core research topic in com-

puter systems. There are many research works on model-

ing micro-processor systems (e.g., CPU [13, 30] embedded

platforms [18]) to end-user systems (e.g., smartphones [67,

15]). For example, Tiwari et al. developed an instruction-

level power model of a micro-processor and studied software

optimizations for power reduction [55]. Pathak et al. pro-

posed a system-call-based power modeling approach [46]

and profiled energy consumption of smartphone apps [45].

These works on power models provide excellent references

to study the instruction-level power model of 3D printers.

As a mechatronic cyber-physical system, the power model

of 3D printers also includes mechanical motion and heating,

which is beyond computing power models.

System Power Optimizations: In general, power manage-

ment and optimization include both online and offline ap-

proaches. Online approaches are applicable to applications

where inputs and use-conditions are unpredictable. Related

system techniques include device driver control [66, 32], de-

vice interface design [9] and run-time system configuration

[25]. Offline power optimization is used for predictable ap-

plication tasks. Related work includes task scheduling [52],

partitioning [10], configuration [20], and resource manage-

ment [11]. In this study, we choose offline power optimiza-

tion, which can reach the global optimality and usually pro-

vide better results. Binary instrumentation in compiler [42,

49] has the analogous concept to our re-compiler approach.

However, our approach to mechatronic cyber-physical sys-

tems takes into consideration properties such as instruction-

inertia and instruction-delay.

Better Material Design: One benefit of 3D printing is that

a wide range of materials can be used to acquire a product

[24]. Polymers [16, 34, 51], metals [23, 38] and ceramics

[39, 41] are the common materials in use. Using better ma-

terials with lower melting temperatures is an active area of

research to reduce energy consumption by the heater in 3D

printers. However, most existing solutions come with trade-

offs such as incorporating specific hardware [33], compro-

mising printing time [14], reducing product life-time [27],

and even lowering product quality [65]. 3DGates does not

affect the printing time or the printing quality. Moreover, it

does not propose any hardware changes or new material us-

age.

8. Conclusion

This paper conducts an instruction-level power analysis on

FDM 3D printers. Specifically, we present a unified cross-

layer power optimizing approach encompassing instruction,

hardware, firmware and compiler layers. Leveraging the

knowledge of the 3D printing mechanism, we power-gate

the motors and achieve 25% energy reduction in 3D print-

ers. More importantly, it is accomplished without any mod-

ification in hardware, increase in printing time or defect in

printing quality. To further reduce the energy consumption,

we envision solutions across domains including material,

industrial and electrical sciences.

9. Acknowledgments

We thank Dr. Felix Xiaozhu Lin at Purdue University for

constructive suggestions in this work. We thank the anony-

mous reviewers and their paper shepherd, Dr. Xipeng Shen,

for providing insightful feedback. This work was in part

supported by a National Science Foundation grant CNS-

1547167 and a seed grant from the UB Sustainable Manu-

facturing and Advanced Robotics Technologies Community

of Excellence (SMART CoE).

430

References

[1] 3D Printing Stringing. https://www.matterhackers.

com/articles/retraction-just-say-no-to-oozing.

Accessed: 2016-11-8.

[2] Currently available Portable 3D Printers. https://3dprint.

com/tag/portable-3d-printer/. Accessed: 2016-10-

22.

[3] International Energy Outlook 2016. http://www.eia.gov/

outlooks/ieo/. Accessed: 2016-05-11.

[4] ONO 3D Printers. http://www.ono3d.net/. Accessed:

2016-10-22.

[5] TekBot Portable 3D Printers. https://3dprint.com/

107375/tek-bot-portable-printer/. Accessed: 2016-

10-22.

[6] 3D Hubs. 3D Printig Industry Trends Q3-2016. https:

//www.3dhubs.com/trends. Accessed: 2016-11-8.

[7] Adrian Bowyer. G-code. http://reprap.org/wiki/

G-code. Accessed: 2016-05-22.

[8] J. Ajay, A. S. Rathore, C. Song, C. Zhou, and W. Xu. Don’t

Forget Your Electricity Bills! An Empirical Study of Char-

acterizing Energy Consumption of 3D Printers. In ACM

SIGOPS Asia-Pacific Workshop on Systems (APSys), pages

1 – 8, Hong Kong, China, August 2016.

[9] M. Anand, E. B. Nightingale, and J. Flinn. Ghosts in the ma-

chine: Interfaces for better power management. In Proceed-

ings of the 2nd international conference on Mobile systems,

applications, and services, pages 23–35. ACM, 2004.

[10] H. Aydin and Q. Yang. Energy-aware partitioning for multi-

processor real-time systems. In Parallel and Distributed Pro-

cessing Symposium, 2003. Proceedings. International, pages

9–pp. IEEE, 2003.

[11] E. Bini, G. Buttazzo, J. Eker, S. Schorr, R. Guerra, G. Fohler,

K.-E. Årzén, V. Romero, and C. Scordino. Resource man-

agement on multicore systems: The actors approach. IEEE

Micro, 31(3):72–81, 2011.

[12] T. Brajlih, B. Valentan, J. Balic, and I. Drstvensek. Speed

and accuracy evaluation of additive manufacturing machines.

Rapid prototyping journal, 17(1):64–75, 2011.

[13] J. A. Butts and G. S. Sohi. A static power model for ar-

chitects. In Proceedings of the 33rd annual ACM/IEEE in-

ternational symposium on Microarchitecture, pages 191–201.

ACM, 2000.

[14] T. Campbell, C. Williams, O. Ivanova, and B. Garrett. Could

3d printing change the world. Technologies, Potential, and

Implications of Additive Manufacturing, Atlantic Council,

Washington, DC, 2011.

[15] A. Carroll and G. Heiser. An analysis of power consumption

in a smartphone. In USENIX annual technical conference,

volume 14. Boston, MA, 2010.

[16] L. G. Cima and M. J. Cima. Preparation of medical devices by

solid free-form fabrication methods. Robotics and Computer

Integrated Manufacturing, 4(12):371, 1996.

[17] CNC Cookbook. CNC-code. http://www.cnccookbook.

com/CCCNCGCodeRef.html. Accessed: 2016-05-22.

[18] G. Contreras and M. Martonosi. Power prediction for in-

tel xscale R© processors using performance monitoring unit

events. In ISLPED’05. Proceedings of the 2005 International

Symposium on Low Power Electronics and Design, 2005.,

pages 221–226. IEEE, 2005.

[19] Cura. 3D Printing Slicing Software. https://ultimaker.

com/en/products/cura-software. Accessed: 2016-05-

22.

[20] A. Emadi, K. Rajashekara, S. S. Williamson, and S. M. Lu-

kic. Topological overview of hybrid electric and fuel cell ve-

hicular power system architectures and configurations. IEEE

Transactions on Vehicular Technology, 54(3):763–770, 2005.

[21] D. Frear and P. Vianco. Intermetallic growth and mechanical

behavior of low and high melting temperature solder alloys.

Metallurgical and Materials Transactions A, 25(7):1509–

1523, 1994.

[22] J. F. Gieras. Permanent magnet motor technology: design and

applications. CRC press, 2002.

[23] D. Godlinski and S. Morvan. Steel parts with tailored ma-

terial gradients by 3d-printing using nano-particulate ink. In

Materials Science Forum, volume 492, pages 679–684. Trans

Tech Publ, 2005.

[24] M. Greulich, M. Greul, and T. Pintat. Fast, functional pro-

totypes via multiphase jet solidification. Rapid Prototyping

Journal, 1(1):20–25, 1995.

[25] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agar-

wal, and M. Rinard. Dynamic knobs for responsive power-

aware computing. In ACM SIGPLAN Notices, volume 46,

pages 199–212. ACM, 2011.

[26] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan,

G. Ruhl, D. Jenkins, H. Wilson, N. Borkar, G. Schrom,

et al. A 48-core ia-32 message-passing processor with dvfs in

45nm cmos. In 2010 IEEE International Solid-State Circuits

Conference-(ISSCC), pages 108–109. IEEE, 2010.

[27] S. E. Hudson. Printing teddy bears: A technique for 3d print-

ing of soft interactive objects. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, CHI

’14, pages 459–468, New York, NY, USA, 2014. ACM.

[28] G. Jin, W. Li, C. Tsai, and L. Wang. Adaptive tool-path

generation of rapid prototyping for complex product models.

Journal of manufacturing systems, 30(3):154–164, 2011.

[29] I. Jolliffe. Principal component analysis. Wiley Online

Library, 2002.

[30] R. Joseph and M. Martonosi. Run-time power estimation

in high performance microprocessors. In Proceedings of the

2001 international symposium on Low power electronics and

design, pages 135–140. ACM, 2001.

[31] W. Kim, M. S. Gupta, G.-Y. Wei, and D. Brooks. System

level analysis of fast, per-core dvfs using on-chip switching

regulators. In 2008 IEEE 14th International Symposium on

High Performance Computer Architecture, pages 123–134.

IEEE, 2008.

431

[32] K. Klues, V. Handziski, C. Lu, A. Wolisz, D. Culler, D. Gay,

and P. Levis. Integrating concurrency control and energy

management in device drivers. In ACM SIGOPS Operating

Systems Review, volume 41, pages 251–264. ACM, 2007.

[33] S. H. Ko, J. Chung, N. Hotz, K. H. Nam, and C. P. Grig-

oropoulos. Metal nanoparticle direct inkjet printing for low-

temperature 3d micro metal structure fabrication. Journal

of Micromechanics and Microengineering, 20(12):125010,

2010.

[34] C. X. F. Lam, X. Mo, S.-H. Teoh, and D. Hutmacher. Scaffold

development using 3d printing with a starch-based polymer.

Materials Science and Engineering: C, 20(1):49–56, 2002.

[35] H.-P. Le, J. Crossley, S. R. Sanders, and E. Alon. A sub-ns re-

sponse fully integrated battery-connected switched-capacitor

voltage regulator delivering 0.19 w/mm 2 at 73% efficiency.

In 2013 IEEE International Solid-State Circuits Conference

Digest of Technical Papers, pages 372–373. IEEE, 2013.

[36] W. Lei and Y. Hsu. Accuracy test of five-axis cnc ma-

chine tool with 3d probe–ball. part i: design and modeling.

International Journal of Machine Tools and Manufacture,

42(10):1153–1162, 2002.

[37] S. Lensgraf and R. R. Mettu. Beyond layers: A 3d-aware

toolpath algorithm for fused filament fabrication. In 2016

IEEE International Conference on Robotics and Automation

(ICRA), pages 3625–3631, May 2016.

[38] J. Liu and M. Rynerson. Method for article fabrication using

carbohydrate binder, July 1 2003. US Patent 6,585,930.

[39] M. C. Melican, M. C. Zimmerman, M. S. Dhillon, A. R.

Ponnambalam, A. Curodeau, and J. R. Parsons. Three-

dimensional printing and porous metallic surfaces: A new

orthopedic application. Journal of biomedical materials re-

search, 55(2):194–202, 2001.

[40] W. U. P. Meters. Watts up? .Net Power Meter Specifications.

https://www.wattsupmeters.com/secure/products.

php?pn=0&wai=0&spec=2. Accessed: 2016-05-22.

[41] J. Moon, A. C. Caballero, L. Hozer, Y.-M. Chiang, and M. J.

Cima. Fabrication of functionally graded reaction infiltrated

sic–si composite by three-dimensional printing (3dpTM) pro-

cess. Materials Science and Engineering: A, 298(1):110–119,

2001.

[42] N. Nethercote and J. Seward. Valgrind: a framework for

heavyweight dynamic binary instrumentation. In ACM Sig-

plan notices, volume 42, pages 89–100. ACM, 2007.

[43] OhmEye. Print fans and hotend heaters. http://ohmeye.

com/2015/print-fans-and-hotend-heaters/. Ac-

cessed: 2016-11-8.

[44] M. Paterson and V. Dančı́k. Longest common subsequences.

In International Symposium on Mathematical Foundations of

Computer Science, pages 127–142. Springer, 1994.

[45] A. Pathak, Y. C. Hu, and M. Zhang. Where is the energy

spent inside my app?: fine grained energy accounting on

smartphones with eprof. In Proceedings of the 7th ACM

european conference on Computer Systems, pages 29–42.

ACM, 2012.

[46] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang.

Fine-grained power modeling for smartphones using system

call tracing. In Proceedings of the sixth conference on Com-

puter systems, pages 153–168. ACM, 2011.

[47] T. Peng. Analysis of energy utilization in 3d printing pro-

cesses. Procedia CIRP, 40:62–67, 2016.

[48] Pronterface. Pronterface Website. http://www.pronterface.

com/. Accessed: 2016-11-8.

[49] V. J. Reddi, A. Settle, D. A. Connors, and R. S. Cohn. Pin:

a binary instrumentation tool for computer architecture re-

search and education. In Proceedings of the 2004 workshop

on Computer architecture education: held in conjunction with

the 31st International Symposium on Computer Architecture,

page 22. ACM, 2004.

[50] G. Strano, L. Hao, R. Everson, and K. Evans. A new approach

to the design and optimisation of support structures in addi-

tive manufacturing. The International Journal of Advanced

Manufacturing Technology, 66(9-12):1247–1254, 2013.

[51] J. Suwanprateeb. Improvement in mechanical properties of

three-dimensional printing parts made from natural poly-

mers reinforced by acrylate resin for biomedical applica-

tions: a double infiltration approach. Polymer international,

55(1):57–62, 2006.

[52] Q. Tang, S. K. S. Gupta, and G. Varsamopoulos. Energy-

efficient thermal-aware task scheduling for homogeneous

high-performance computing data centers: A cyber-physical

approach. IEEE Transactions on Parallel and Distributed

Systems, 19(11):1458–1472, 2008.

[53] F. A. Thabtah, P. Cowling, and Y. Peng. Mmac: A new

multi-class, multi-label associative classification approach. In

Data Mining, 2004. ICDM’04. Fourth IEEE International

Conference on, pages 217–224. IEEE, 2004.

[54] Thingverse. Digital Designs for Physical Objects. http:

//www.thingiverse.com/. Accessed: 2016-05-22.

[55] V. Tiwari, S. Malik, A. Wolfe, and M. T.-C. Lee. Instruction

level power analysis and optimization of software. In Tech-

nologies for wireless computing, pages 139–154. Springer,

1996.

[56] Ultimaker Inc. Ultimaker 2 Go. https://ultimaker.com/

en/products/ultimaker-2-go. Accessed: 2016-05-22.

[57] Ultimaker Inc. Ultimaker 2 Go Components Specifica-

tion. https://github.com/Ultimaker/Ultimaker2.

Accessed: 2016-05-22.

[58] S. Vinodh, G. Sundararaj, S. Devadasan, D. Kuttalingam, and

D. Rajanayagam. Agility through rapid prototyping technol-

ogy in a manufacturing environment using a 3d printer. Jour-

nal of Manufacturing Technology Management, 20(7):1023–

1041, 2009.

432

[59] N. Volpato, R. Nakashima, L. Galvão, A. Barboza, P. Benev-

ides, and L. Nunes. Reducing repositioning distances in fused

deposition-based processes using optimization algorithms. In

High Value Manufacturing: Advanced Research in Virtual

and Rapid Prototyping: Proceedings of the 6th International

Conference on Advanced Research in Virtual and Rapid Pro-

totyping, Leiria, Portugal, 1-5 October, 2013, page 417. CRC

Press, 2013.

[60] G. Von Laszewski, L. Wang, A. J. Younge, and X. He. Power-

aware scheduling of virtual machines in dvfs-enabled clus-

ters. In 2009 IEEE International Conference on Cluster Com-

puting and Workshops, pages 1–10. IEEE, 2009.

[61] S. Walls, J. Corney, A. Vasantha, and G. Vijayumar. Relative

energy consumption of low-cost 3d printers. In 12th Interna-

tional Conference on Manufacturing Research, 2014.

[62] L. Wang, G. Von Laszewski, J. Dayal, and F. Wang. Towards

energy aware scheduling for precedence constrained parallel

tasks in a cluster with dvfs. In Cluster, Cloud and Grid

Computing (CCGrid), 2010 10th IEEE/ACM International

Conference on, pages 368–377. IEEE, 2010.

[63] Wikipedia. G-code. https://en.wikipedia.org/wiki/

G-code. Accessed: 2016-11-8.

[64] T. Wohlers. Wohlers report 2016. Wohlers Associates, Inc,

2016.

[65] C. Wright, A. Buchan, B. Brown, J. Geist, M. Schwerin,

D. Rollinson, M. Tesch, and H. Choset. Design and archi-

tecture of the unified modular snake robot. In Robotics and

Automation (ICRA), 2012 IEEE International Conference on,

pages 4347–4354. IEEE, 2012.

[66] C. Xu, F. X. Lin, Y. Wang, and L. Zhong. Automated os-

level device runtime power management. ACM SIGARCH

Computer Architecture News, 43(1):239–252, 2015.

[67] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M.

Mao, and L. Yang. Accurate online power estimation and

automatic battery behavior based power model generation for

smartphones. In Proceedings of the eighth IEEE/ACM/IFIP

international conference on Hardware/software codesign and

system synthesis, pages 105–114. ACM, 2010.

433

