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Abstract

Internet data has surfaced as a primary source for investigation of different aspects of human behavior.
A crucial step in such studies is finding a suitable cohort (i.e., a set of users) that shares a common trait
of interest to researchers. However, direct identification of users sharing this trait is often impossible, as
the data available to researchers is usually anonymized to preserve user privacy. To facilitate research on
specific topics of interest, especially in medicine, we introduce an algorithm for identifying a trait of interest
in anonymous users. We illustrate how a small set of labeled examples, together with statistical information
about the entire population, can be aggregated to obtain labels on unseen examples. We validate our approach
using labeled data from the political domain.

We provide two applications of the proposed algorithm to the medical domain. In the first, we demonstrate
how to identify users whose search patterns indicate they might be suffering from certain types of cancer. In
the second, we detail an algorithm to predict the distribution of diseases given their incidence in a subset of
the population at study, making it possible to predict disease spread from partial epidemiological data.

I. Introduction

Identifying people with specific demographics,
interests, or traits is a topic long of interest for
researchers interested in online behavior and
communities [12, 14]. The ability to identify a
cohort—that is, a group of people with a com-
mon defining characteristic—is a critical phase
of the research process. For example, when
studying how the internet is used to seek med-
ical advice, researchers have employed diverse
heuristics to identify medical queries [20, 32]
or health information seekers [24, 37]. Such
heuristics are usually sufficient at identifying
common queries and conditions, but fail to cap-
ture small cohorts, such as users suffering from
an uncommon disease. While such groups
could be identified using personal information,

∗Work carried out during internship at Microsoft Re-
search.

demographic data, or health records, much of
the data available to researchers is anonymous,
in an effort to preserve the privacy of individu-
als.

In this paper, we introduce an algorithm for
inferring individual attributes of a population
of users by relying on a small set of examples
with known labels and statistical information
about the entire population. In other words,
we show how to identify a cohort of interest by
learning from a small set of users—which we
identified using a very effective yet low-recall
heuristic—and information about the distribu-
tion of the cohort of users in the entire popula-
tion.

We validate the proposed algorithm by iden-
tifying the political affiliation of Twitter users:
given a set of users and their tweets, we pre-
dict their political affiliation using a small set
of users with known political orientation and
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statistics about the outcome of the elections.
Our algorithm determines the affiliation of
such users more effectively than other methods
when the fraction of known users is small.

Finally, we present two applications of the
proposed algorithm. Both use the proposed
system to create a cohort of users whose search
patterns indicate they might be suffering from
specific forms of cancer. No personal data or
patient history is used; rather, we combine a
low recall, high precision heuristic with epi-
demiological data about incidence of the cancer.
Once the cohort has been determined, we show
how to use it to train and evaluate a classifier to
pre-screen for users who suffer from the cancer
at study. This shows how search queries can
be used as a screening device for diseases that
are often discovered too late, because no early
screening tests currently exists. Furthermore,
we present a classifier that uses the cohort iden-
tified by the algorithm to predict the incidence
of disease in regions where it is not known.
Such application could be useful to estimate
the spread of a disease in regions where the
number of reported cases is not sufficient to
carry out a statistical analysis.

In summary, our contribution is threefold:
• We study the problem of identifying co-

horts of users who share a common trait
(e.g., they suffer from the same medical con-
dition) from a population;

• We proposed and evaluate an algorithm
that couples fine-grained data on users with
coarse-grained population statistics to iden-
tify cohorts for research purposes;

• We describe and solve two possible appli-
cations of the proposed algorithm: identifi-
cation of users who might suffer from certain
types of rare cancers and predicting the dis-
tribution of a disease in regions where it is
unknown.

II. Related Works

Traditionally, most of the medical research
exploiting internet data has focused on
population-level disease incidence. The ques-
tion therein are of the form “how many people

in a given area are currently suffering from in-
fluenza?” [11]. Because of the large number of
people involved, it is superfluous to identify
each individual with the condition. Instead, it
is sufficient to find correlations between dis-
ease incidence and specific keywords [23, 25]
or even website visits [18].

More recently, researchers have begun at-
tempting to identify anonymous search engine
users suffering from conditions of interest, ei-
ther to provide individual level predictions or
to learn from individual behaviors. For ex-
ample, Yom-Tov et al. [37] identified people
suffering from mood disorders according to
their queries of drugs used to treat the disor-
der, as well as changes in their behavior near
the time of mood disorder events. In other
work, Ofran et al. [19] used a threshold on the
number of cancer-specific queries to identify
people who were likely diagnosed with cancer
and then track their information needs over
time. Good correlation was found between the
number of people searching for cancer and dis-
ease incidence (but not prevalence) in the USA.
A more fine-grained approach was taken in
Yom-Tov et al. [35] where a small subset of
users was found to have identified themselves
as suffering from a condition of interest. The
queries of this population were used to con-
struct a classifier that predicted whether the
condition a user was asking about most often
was one they were suffering from. The ability
to identify users with specific conditions was
then used to analyze their search histories for
precursors of disease. More recently, Paparri-
zos et al. [21] used people who self-identified
as suffering from pancreatic cancer to predict
their diagnosis ahead of time.

The task of determining labels for individ-
uals from population statistics relates to the
ecological inference problem. Ecological in-
ference aims at inferring characteristics about
individuals from ecological data (i.e., of the
entire population). As an example, it might be
used to answer the following question: “Given
the number of votes for political parties A and B
in a precinct and the number of men and women
in the precinct, how many women voted for party
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A?” Ecological inference has a long history in
the fields of statistics and social studies [16].
Recently, Flaxman, et al. [10] used kernel em-
beddings of distributions to predict which de-
mographics groups supported Barack Obama
in the 2012 US Presidential Election. Park and
Gosh [22] introduced LUDIA, a low-level rank
approximation algorithm designed that lever-
ages ecological inference to predict hospital
spending for individuals based on their length
of stay. Culotta, et al. [6] used website traffic
data to predict demographics of Twitter user.
Ultimately, our problem differs from ecological
inference in that we are interested in identify-
ing individuals whose distribution is known
rather than inferring behaviors at an individual
level from population data.

Another area of study that bears a similarity
with our proposed algorithm is Learning with
Label Proportions (LLP). In LLP, the training
data is provided to the classifier in groups on
which only the distribution of classes in each
group is known. Many solutions have been
proposed for the problem [17, 27]; yet—to the
best of our knowledge—none of them is de-
signed to bias the learning process by incorpo-
rating individuals with known labels. Keerthi,
et al. [30] introduced a semi-supervised SVM
classifier that uses a small labeled dataset in
conjunction to class proportion on the train-
ing data to predict labels on test data. While
sharing some similarity with our algorithm,
their method is less generalizable, as it does
not handle learning from training data drawn
from sets with different class distributions. In-
stead, our proposed approach solves this issue
by conjunctively optimizing correlation with
all sets the training data is drawn from.

Finally, many have studied semi-supervised
learning (SSL), the problem of learning when
a combination of labeled and unlabeled exam-
ples are available [4]. For example, Druck, et
al. [7] proposed a framework that leverages la-
beled features—that is, features that are highly
representative for a class—to learn constrains
for a multinomial logistic regression. More
recently, Ravi and Diao [28] have proposed a
graph model to efficiently use SSL on large

datasets. Compared to a classic SSL model, we
not only leverage individual level features, but
also take advantage of population data.

III. Methodology

i. Notation

Throughout this paper, we will adhere to the
following notation: scalars are identified by
lowercase italic letters (e.g., s), vectors by low-
ercase bold letters (e.g., v), and matrices by
uppercase italic letters (e.g., M). Calligraphy
uppercase letters (e.g., X ) are used to denote
sets.

Let X be a population of size n = |X |. To
each element of X , we associate the following:
a features vector xi =

{
xij

}m
j=1, a label yi ∈

{0, 1}, and a property vector pi = {pik}t
k=1. yi

has value “1” if the i-th example belongs to
the cohort of interest, “0” if its membership
is unknown. We refer to the n×m matrix of
all features vector as X. A feature could be,
for example, the use of a certain phrase by a
user. pi represent a set of properties for an
individual we directly take advantage in the
proposed method. For example, a property
of an individual could be the US state where
they are located; in this case, pi would be a
1× 51 vector whose k-th position equals to “1”
if the i-th individual is located in the k-th state,
“0” otherwise. While a property vector pi is
a feature vector for the i-th element of X , it
is convenient to consider it separately from xi,
as it simplifies the definition of the algorithm
introduced in Section ii.

We denote by y a n × 1 vector holding all
labels, while P is a n× t matrix whose element
(i, k) represent the value of the k-th property
for the i-th element of the population.

We encode the known statistical information
as a 1× t vector π containing statistical infor-
mation about the property of individuals in X .
For example, given a disease and a population
of users located in the USA, π could be a vec-
tor containing the incidence of the disease in
each state.

Finally, we establish the notation for func-
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tions that will be used extensively in the re-
minder of the paper. H(a, b) indicates the
harmonic mean between the values a and b.
We represent Spearman’s rank correlation co-
efficient between values of vectors r and s as
ρs(r, s). Perc(r, α) returns the value in r cor-
responding to the αth percentile; building on
the previous notation, we define the following
operator:

PercSel(r, α) = {i | ri ≥ Perc(r, α) ∀ri ∈ r}
(1)

PercSel selects the set of indices of r whose
corresponding values are in the αth percentile.
The result of such function can be used to ex-
tract the matching components of any vector s:

dser,α = {si | i ∈ PercSel(r, α)} (2)

We will take advantage of the notation dser,α
to identify the αth percentile of vector s with
respect to weight vector r throughout the
manuscript.

ii. Proposed Algorithm

Recall that, given a population X , we wish to
identify a subset of X—i.e., a cohort—such that
all members of the cohort share a property of
interest. A solution for such problem should
return a vector l of real values between 0 and
1 expressing the likelihood of each individual
in X of being part of the cohort of interest.
A naïve solution consists of using a classifier
trained on the set of known members in the co-
hort. However, as we will describe in Section ii
and Table 1, this approach does not work well
when the size of the set of users with known
labels is small.

The algorithm we propose in this paper ad-
dresses this issue by conjunctively maximiz-
ing two quantities: (i) the correlation between
the counts of properties in the δth percentile
of users and the statistical information vector
π (e.g., the correlation between the number of
users in the δth percentile for each state and the
incidence of the disease in each state), and (ii)
the fraction of known positive users (i.e., users
whose label is “1”) in the δth percentile. By op-

Algorithm 1: The proposed SGD algorithm.

Data: Features matrix X, labels vector y,
property matrix P, statistical
information function π, number of
iteration η, and learning percentile δ.

Result: Vector l = {li} of confidence
values of element in X to be in the
cohort of interest.

begin
w← initializeHyperplane( );
o∗ ← 0
for j = 1, . . . , η do

i← randomSample({1, . . . , n});
xi ← X[i]
c+ ← (w + xi)/||w + xi||
c− ← (w− xi)/||w− xi||
d+ ← X· c+; d− ← X· c−
o+ ←
H

(
Corr(π, P, d+, δ), Recall(y, d+, δ)

)
o− ←
H

(
Corr(π, P, d−, δ), Recall(y, d−, δ)

)
if o+ > o− and o+ > o∗ then

w← c+; o∗ ← o+

else if o− > o∗ then
w← c−; o∗ ← o−

d∗ ← X·w
l ← SoftmaxNormalize(d∗)

timizing for both quantities at the same time,
we exploit the individual features of users that
whose label is known, as well as statistical in-
formation about the distribution of the cohort
of interest.

The algorithm works by finding a linear sepa-
rating hyperplane which assigns a predicted la-
bel to each user given the features thereof. We
formally define the two aforementioned quan-
tities as follows: Let d = X·w be the vector of
signed distances of elements from the decision
hyperplane w; then, dPed,δ is the n′ × t prop-
erty matrix associated with elements whose dis-
tances from w are in the δth percentile. In other
words, dPed,δ contains the property vectors of
those elements with distance from the decision
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hyperplane greater or equal than Perc(d, δ).
Thus, we can define quantity (i) as:

Corr(π, P, d, δ) := ρs

(
π, 11×n′ · dPed,δ

)
(3)

where 11×n′ is the unit vector of size 1× n′.
The fraction of known positive users (ii) is

the recall of the algorithm on known users; that
is, the fraction of positive users whose distance
from w is in the δth percentile:

Recall(y, d, δ) :=

∣∣∣{yi | yi = 1 ∀yi ∈ dyed,δ}
∣∣∣

|{yi | yi = 1 ∀yi ∈ y}|
(4)

The two quantities determined by functions
“Corr” and “Recall” are combined by consid-
ering the harmonic mean of the two as the
objective function. We chose this mean as it
penalizes the algorithm if the two quantities
diverge significantly.

We used a modification of the Perceptron
algorithm [29] in which a stochastic gradient
descent learns the hyperplane w separating
elements of the positive and negative classes
that maximizes the objective function described
previously.

The details of the procedure are shown in Al-
gorithm 1. The algorithm iterates η times over
all elements in the population; at each iteration,
it randomly samples an element i; then, it gen-
erates two candidate hyperplanes c+ and c−

by respectively adding and subtracting xi from
w. If any of the two candidate hyperplanes
increases the value of the objective function, it
then replaces w. Finally, the confidence vec-
tor d∗ is calculated by multiplying the feature
matrix X with w, and normalized by apply-
ing a Softmax normalization [26] to obtain the
likelihood vector l.

IV. Validation

We validate the proposed algorithm on a
dataset containing US Twitter users with
known political affiliation. This task has been
studied in the past (e.g., [1, 5, 6]); in this pa-
per, we use it as a benchmark for the proposed

algorithm.
We show how the algorithm introduced in

Section ii, when combined with statistical data
on the outcome of the 2012 US presidential
election, can be used to infer the political af-
filiation of users. To do so, we hide a fraction
γ of users with known political affiliation by
assigning them the label “0”; then, we measure
the ability of the stochastic gradient descent in
identifying these hidden users.

i. Data Description

Similarly to [8], we took advantage of a set of
Twitter users with known political affiliation
to evaluate our system. Our dataset contains
372,769 users who explicitly expressed support
for Barack Obama and 22,902 users who ex-
pressed preference for Mitt Romney during the
2012 US presidential election. For the reminder
of the paper, we will refer to the two groups as
“Democrats” and “Republicans”, while the set
of all users will be identified as U .

The political affiliation of members of U was
determined by two sets of hashtags used by the
supporters of the two parties during the elec-
tion (e.g. “#romenyryan2012”, “#voteobama”; the
complete list is available in [8]). This heuristic
was found to have over 95% accuracy [8].

The set T of all tweets generated by users
in U between August 1st, 2012 and Novem-
ber 15th, 2012 was extracted. We discarded
all users for whom no location data was avail-
able (i.e., none of their tweets was geotagged),
tweeted from two or more US states, or less
than 30 times. We identify the set of the 15, 472
remaining users (900 Republicans and 14, 572
Democrats) as X .

We use the set TX of tweets associated with
users in X to construct the feature matrix X.
For each user, we extracted the following fea-
tures from their tweets: hashtags, mentions,
domain name of URLs, and words occurring
10 or more times in the corpus (except stop-
words). Prior works found such features to be
effective at predicting the political affiliation
of users [1, 5, 6, 8]; in this work, we investi-
gate their effectiveness when paired with the
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Figure 1: ROC curve of the stochastic gradient descent
algorithm. The fraction of “hidden” Republi-
cans is kept constant at γ = 0.75, while the
learning percentile δ is varied.

proposed algorithm.
We represent the state each user in X be-

longs to through property matrix P; in other
words, P is a 15, 472× 51 matrix where posi-
tion (i, k) is equal to 1 if the i-th user tweets
from the k-th state (according to geo-tagging),
0 otherwise.

The population statistic vector π was de-
rived from the total count of votes casted for
the Republican and Democrat candidates in
each US state as disclosed by the official Fed-
eral Election Commission report [9]. Specifi-
cally, the k-th value of π represents the number
of Republican voters for each inhabitant in the
k-th state. We normalized π by the number of
active users in each state within the time frame
of data collection; this gave us the expected
number of Republican Twitter users in each
state.

ii. Results

In this section, we illustrate the performance
of the proposed algorithm in identifying Re-
publican users whose label have been hidden.
Recall that, in order to quantify the ability of
Algorithm 1 to correctly label users in X , we
remove the label of a fraction γ of republican
users; that is, we assign them the label “0”.
Therefore, we tested the algorithm for various
values of γ, as well as multiple values of learn-
ing percentile δ. The exploration of different
parameters allows us to test how the algorithm
behaves when number of users in the cohort
is not known (if available, such number could
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γ= 0. 25,AUC = 0. 880

γ= 0. 10,AUC = 0. 864

Figure 2: ROC curve of the stochastic gradient descent
algorithm. The learning percentile is kept con-
stant at δ = 0.9, while the fraction of “hidden”
Republicans γ is varied.

be used to tune δ). All the experiments were
executed under five-fold stratified cross vali-
dation; the number of iterations η was set to
30, 000 to ensure reaching a stable point.

We report the results of our experiments in
Figures 1 and 2, as well as in Tables 1 and 2.
Specifically, Figure 1 shows the Receiver Oper-
ating Characteristic (ROC) curves produced by
varying values of the learning percentile δ. For
this experiment, γ is fixed at 0.75.

Two observations can be made about the re-
sults. First, we note that the performance of
the classifier, as measured by the Area Under
the Curve (AUC), increases as δ approaches 0.9;
then it starts declining. We explain this behav-
ior by observing that the number of elements
in the 10th percentile is close to the number of
Republican in X ; therefore, as δ approaches
this value, the performance of the proposed
algorithm increase. Past the 10th percentile,
more noise is introduced, thus affecting the
quality of classification outcome. We remark
that the decline in performance is not abrupt;
this characteristic is desirable, as in applica-
tions of the proposed algorithm (such as those
shown in Section V) the exact size of the cohort
of interest is often unknown.

Second, we observe that classifiers with
larger values of δ (e.g., δ = 0.95) have a higher
true positive rate associated with lower false
positive rate (bottom left of Figure 1). This
is likely due to the fact that such classifiers
make fewer mistakes on elements they have
high confidence in (i.e., the values in l for with
high-confidence elements are close to 1).
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For the second experiment (Figure 2) we var-
ied the fraction of hidden users γ between 0.9
(i.e., only 10% of Republicans are disclosed)
and 0.1 (90% of Republicans are disclosed). We
observe the AUC increases as γ decreases; that
is to be expected, as less hidden republicans
equals a more diverse pool of training exam-
ples. However, to our initial surprise, we also
noticed that the performance of the classifier
show little improvement for values of γ < 0.75.
Such behavior is beneficial for the applications
where this algorithm will be used, where typi-
cally only a small set of users of the cohort of
interest is known.

We compared the proposed system with
a simple Linear Stocastic Gradient Descent
(LSGD), as well as with the Support Vector
Machine (SVM) classifier proposed by Conover,
et al. in [5]. For all three systems, we kept
the ratio of hidden Republican users set to
γ = 0.75, as we were interested in studying
how the proposed algorithm compares to other
algorithms when only a small set of users in the
cohort is known. As shown in Table 1, the pro-
posed algorithm outperforms both baselines,
confirming that combining statistical informa-
tion about the distribution of the cohort in the
population with weights learned from individ-
ual features is an effective strategy to solve
the task introduced in this paper. For the two
baselines, we experimented with using just the
features in X to train the classifiers, as well as
concatenating P ·π with the features matrix X.
Interestingly, the performance of the two base-
lines decrease when augmenting X with P ·π,
suggesting that the naïve approach of expand-
ing the feature set with population statistics is
not effective at identifying the cohort of users.

The features that were assigned the highest
weights are the most indicative phrases used by
positive (Republican) users. We report features
with the highest weight in w for the classifier
δ = 0.9, γ = 0.75 in Table 2. We note that
the hashtags ranked in 1st, 3rd, 4th, 5th, 6th,
9th places are typically used in right-wing cir-
cles; the remaining hashtag (“#landslide”) while
related to the election, is not unique to the
rhetoric on any of the two political parties. Fi-

Classifier AUC
Linear Stochastic Gradient Descent (LSGD) 0.667

LSGD + property vectors as features 0.614
Support Vector Machine (SVM) from [5] 0.703
SVM [5] + property vectors as features 0.629

Proposed SGD (δ = 0.9) 0.875
Table 1: Comparison of the proposed algorithm to

previously-proposed baselines. When a small
fraction of Republican users is used for train-
ing (γ = 0.75), the algorithm outperforms a
linear SGD baseline and the system from [5]
(difference is statistically significant, Wilcoxon
signed-rank test, p < 0.05).

Rank Feature Weight
1 #4moredays 0.0517
2 #landslide 0.0490
3 #loveofcountry 0.0377
4 #whyiamnotvotingforobama 0.0244
5 #whyimnotvotingforobama 0.0229
6 #bengahzi 0.0148
7 anncoulter.com 0.0129
8 searchnc.com 0.0112
9 #bengha 0.0111
10 personalliberty.com 0.0110

Table 2: Top ten features for classifier δ = 0.9, γ = 0.75.
Websites ranked 7, 8, and 10 are right-leaning
publications.

nally, we note that the all URLs shown in Table
2 are of websites leaning on the right side of
the political spectrum.

V. Applications

We present two applications of the algorithm
introduced in the previous sections. The first
(Section ii) deals with identifying users of a
search engine whose search patterns suggest
a higher risk of developing a certain type of
cancer; the second (Section iii) is concerned
with predicting the incidence of two forms of
cancer in regions of the USA.

We focus on ovarian cancer and cervical can-
cer. These relatively rare cancers (affecting ap-
proximately 12 and 10, respectively of 100, 000
women in the USA), are also quite deadly: In-
deed, though ovarian cancer accounts for only
3% of all cancers in women, it is the deadli-
est cancer of the female reproductive system

7
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Features in X Features in Z
list of ovar-
ian/cervical
cancer symptoms∗

list of ovar-
ian/cervical
cancer symptoms∗

q most common
terms
in queries Q after
disease mention

q most common
terms
in queries Q before
disease mention

list of symptoms∗ list of symptoms∗

list of diseases∗

list of names of
drugs
list of names of US
hospitals

Table 3: Features used to construct matrices X and Z.
Features in X are extracted from queries is-
sued after the first query mentioning the dis-
ease, while features in Z are extracted from
queries issued before the first query mentioning
the disease. q was set to 2, 000 after empirical
evaluation.

[13]. One reason for this is that symptoms
of these cancers are relatively benign, which
means that many women are diagnosed at late
stages of the cancer, though treatment is most
effective in early stages. Additionally, no sim-
ple screening test is available for these cancers
[3]. Thus, the ability to pre-screen for these can-
cers using Internet data could be of significant
importance.

i. Data Description

Two sets of Bing users were considered to eval-
uate the applications introduced in this section.
The first population, which we identify as X ov,
consists of users who are likely to be suffering
from ovarian cancer. The second population of
users is of users who are potentially suffering
from cervical cancer. We refer to this group as
X cr.

We stress that it is traditionally very chal-
lenging to identify those users in X ov or X cr

who are affected by the aforementioned con-
ditions using Internet data, because both dis-
eases have a low incidence rate, thus causing
any heuristic—such as extracting all users who
issue a specific query—to retrieve too few in-
dividuals. Thus, we apply the algorithm intro-

duced in Section III to obtain an estimate of
the probability of each user of suffering from
cancer.

For the reminder of the paper, we will refer
to the set of users X to describe all procedures
that are common to both X ov and X cr; differ-
ences will be pointed out when necessary.

To obtain X , we proceed as follows: First,
using the websites of the Center for Diseases
Control (CDC) and the American Cancer So-
ciety, we produced a list of symptoms and
drugs commonly associated with the each of
the two diseases. The two lists were expanded
using two experts-to-laypeople synonym map-
pings, MedSyn [34] and Behavioral [36]. This
expansion was made so as to bridge the gap
between the vocabulary used by health experts
and expressions preferred by laypeople [31].
We extracted all Bing users in the United States
who have queried in English in a span of five
months: Ovarian cancer from April to August
2015 and cervical cancer from June 2015 to Oc-
tober 2015, for any of the symptoms or drugs
associated with the cancer and the name of
the cancer itself. Finally, we extracted the US
state of origin of each user through reverse IP
address lookup to take advantage of the state-
level incidence statistics for the two types of
cancer. Users who were associated with two
or more US states were discarded. This heuris-
tic identified 3, 167 users who potentially have
ovarian cancer and 9, 327 users who might have
been diagnosed with cervical cancer. Not all
users in the two sets are affected by the respec-
tive diseases; rather, the heuristic was used to
reduce class imbalance before using the pro-
posed algorithm to derive their likelihood of
having the condition. We refer to the set of all
queries issued by all users in X as Q.

For both conditions, we identify a set of users
who are known (by their own admission) to be
affected by cancer, as in [35]. This was done by
finding all users who issued a query starting
with “i have <condition>” or “i was diagnosed
with <condition>”, where <condition> is ei-
ther “ovarian cancer” or “cervical cancer”. We
will refer to these users as “self-identified users”
or SIUs. Through this heuristic, we extracted

8
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Figure 3: pROC curves for ovarian cancer (Figure 3a, top) and cervical cancer (Figure 3b, bottom). The values of the
learning percentile δ are reported above each figure. The AUC of C1 under multiple values of θ are shown
alongside the optimal and baseline classifiers. Values of θ maked as * are statistically different from the best
runs (Wilcoxon signed-rank test, p < 0.05).

140 users for ovarian cancer, and 41 users for
cervical cancer. We assigned the label “1” to
this subset of X , while the rest of the users
were labeled as “0”.

We define two features matrix X and Z us-
ing the queries in Q. For each user, X contains
features extracted from queries issued after
the first query mentioning the disease. For ex-
ample, the i-th row of Xov contains features
extracted from all queries submitted by the
i-th user in X ov after searching for “ovarian
cancer” for the first time. Conversely, Z con-
tains features extracted from all queries issued
before the first query mentioning the disease.
A full list of features used in X and Z is re-
ported in Table 3. The features matrix Z is
used by the classifiers introduced in Sections
ii and iii. Matrix Z is comprised of queries
mentioning symptoms and most common to-
kens, excluding stopwords, numbers, or names
of the top one hundred websites in the US
as ranked by Alexa (http://alexa.com). The
latter was used so as to remove navigational
queries. The number of tokens in Z exceeded,

for both datasets, fifty thousand. In an effort
to remove noise, we decided to keep only the
top q tokens; q was set to 2, 000 after empirical
evaluation. The feature matrix X is used by the
stochastic gradient descent to infer, for each
user, their likelihood of being affected by can-
cer; therefore, we also consider names of dis-
eases, drugs, and US hospital as features. Upon
completion of the feature extraction phase, ma-
trices Xov, Xcr, Zov, and Zcr contain 7605, 8766,
2176, and 2170 features respectively.

As in Section i, we represent the state each
user in X belongs to through the property ma-
trix P. The population statistic vector π was
obtained from the CDC [33]. Similarly to Sec-
tion i, the vector was normalized by the num-
ber of active Bing users in each state during
the data period.

ii. Suggesting Medical Pre-Screening
to Users

Here, we introduce a classifier designed to
identify search engine users who show signs of

9
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being potentially affected by cancer. The clas-
sifier is designed to assess, for each searcher,
their risk of developing cancer based on their
query logs. The classifier is based on the labels
inferred using the proposed algorithm, and
uses past queries to assess if users will later
be classified as suffering from the cancer of
interest.

A logistic classifier C1 is trained to achieve
the desired goal. The classifier uses the feature
matrix Z; to obtain labels to train the system on,
we proceed as follows: first, we run the stochas-
tic gradient descent on input (X, P, y, π, η, δ),
where X, P, and y are as defined in Section i, η
is set to 10, 000 for ovarian cancer and to 30, 000
for cervical cancer, and δ is varied between 0.95
and 0.80. Then, once obtained the confidence
vector l for elements in X , we extract users
whose risk factor is in the θth percentile of l,
as well as those users whose risk factor is in
the λth percentile of l. The former are used as
positive training examples, while the latter are
used as negative training examples.

Since we expect the number of users with
no cancer to be greater than the number of
users with cancer, we fix λ = 3(1− θ). There-
fore, the training set contains three negative
examples for each positive example, somewhat
mitigating the class imbalance probelm. The
weighting of each class was adjusted accord-
ingly when training the classifier.

As a baseline, we consider a linear SVM
trained solely on self-identified users. This
baseline was adapted from the classifier in-
troduced by Yom Tov, et al. [35] to identify
search engine users who have specific medical
issues. Specifically, we use SIUs as positive
training examples and a sample of users from
the reminder of the population as negative ex-
amples. Similarly to C1, we sample three times
the number of SIUs as negative examples.

ii.1 Results

Standard ROC methodology plots the fraction
of correctly classified positive instances as a
function of the fraction of incorrectly classi-
fied negative instances; however, in this setting,
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(b) Cervical cancer users

Figure 4: In green, Spearman’s rank correlation coeffi-
cient ρs between the users identified by clas-
sifier C2 and disease incidence as a function
of users identified by C2. p-values are shown
in purple. For ovarian cancer, C2 achieve a
statistically significant correlation (ρs = 0.35,
p < 0.05) when 963 users in Xov are classi-
fied as positive (for cervical cancer: ρs = 0.35,
1, 483 individuals).

such technique cannot be applied, as the true
labels of the examples are not known. Instead,
only a probability of the labels’ correctness is
known.

Techniques to adapt ROC analysis to proba-
bilistic labels have been proposed in the liter-
ature; in this work, we take advantage of the
methodology introduced by Burl, et al. in [2].
Let c be the probabilistic output of classifier
C1, c = {c1, . . . , cn}. Recall that l = {li}n

i=1
(where li ∈ [0, 1] for all i) is the likelihood of
each element in the population of being in the
cohort of interest, i.e., for this application, of
suffering from cancer. Then, for each decision
threshold τi of classifier C1, the following two
quantities can be defined:

pTPR(τi) = (Σi
j=1lj)/(Σn

j=1lj) (5)

pFPR(τi) = (Σi
j=1(1− lj))/(Σn

j=1(1− lj)) (6)

The set of points (pTPR(τi), pFPR(τi)) for all
values of τi define a curve in the ROC plane,
which we refer to as probabilistic Receiving
Operating Curve, or pROC.
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A few observations can be made regarding
any pROC curve. First, we point out that, un-
like in standard ROC analysis, the maximum
AUC achievable by any C1 is less than one.
This is due to the fact that, even in case of
perfect classification, the true and false posi-
tive rate are bounded by the probabilistic la-
bels in l. A corollary is that for any value of
the false positive rate, the probabilistic true
positive rate of the classifier is a lower bound
on the actual true positive rate. This explains
why, in Figures 3, the optimal pROC curve—
which is obtained when the labels are known
with complete accuracy—is described by a
curve rather than the segments [(0, 0), (0, 1)]
and [(0, 1), (1, 1)].

Results of classifier C1 on the dataset of
ovarian cancer and cervical cancer users are
reported in Figures 3a and 3b. Each run is
evaluated using five-fold stratified cross val-
idation. For both dataset, we present three
groups of pROC curves, each one associated
with a different value of the learning percentile
δ. Each group consists of the optimal classifica-
tion pROC curve, four curves associated with
four values of training percentile θ, and the
pROC curve of the baseline classifier.

First, we note that all configuration of the
classifier perform substantially better than the
baseline. This is to be expected, as the base-
line classifier is trained on very few examples.
Furthermore, we observe that the baseline clas-
sifier for cervical cancer is decisively worse
than the baseline classifier for ovarian cancer.
We believe that the phenomenon is due to the
fact that the number of self-identified cervical
cancer users is substantially smaller than the
number of self-identified ovarian cancer users.
Thus, both a small number of SIUs and the
population-level data are needed to correctly
identify users.

Third, we note that, for all values of δ, not
all classifiers are significantly different from
each other (Wilcoxon signed-rank test, p <
0.05) with the exception of θ = 0.80. This is a
desirable outcome: since the size of users in the
cohort of interest is unknown, a classifier that
is resistant to small variations of the tuning

parameters is beneficial.
Lastly, we study the differences in classifica-

tion outcomes for fixed values of θ. We notice
that, once again, there are no significant dif-
ferences between θ = 0.99 and θ = 0.95. For
the cervical cancer dataset, this is the case for
θ = 0.90 as well. However, we observe that, as
θ decreases, the performance of the classifier
becomes less stable. In particular, the classifica-
tion outcomes associated with different values
of δ significantly differ (Wilcoxon signed-rank
test, p > 0.05). This event is likely to be caused
by that fact that, as δ and γ decrease, users who
are not affected by cancer might be part of the
learning or training percentile, which naturally
decreases the accuracy of the classifier.

iii. Predicting Disease Distribution

In this section we show how the probabilistic
labels computed by the proposed algorithm
can be exploited to predict the incidence of
diseases in areas for which it is not known.
Specifically, we introduce a logistic classifier
C2 that identifies search engine users affected
by the disease of interest in states with un-
known incidence. The incidence in each region
can then be determined by dividing the num-
ber of users identified by the number of active
search engine users. Thus, we can infer disease
incidence in areas where it is unknown, which
is an important utility for epidemiologists in-
terested in the spread of a disease.

The procedure to train C2 is not dissimi-
lar from the one used to train C1 (Section ii).
However, unlike C1, matrices X and Z were
combined to train the system.The learning per-
centile δ and the training percentile θ were set
to 0.90 and 0.95, respectively; these value were
chosen based on the results described in Sec-
tion ii.1. The classifier is evaluated using the
dataset introduced in Section i under five-fold
cross validation.

iii.1 Results

The results of the classifier C2 on the ovarian
and cervical cancer datasets are shown in Fig-
ure 4. We report Spearman’s rank correlation
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coefficient ρs between the number of users iden-
tified by classifier C2 and disease incidence as
reported by the Center of Disease Control as a
function of the percentage of users identified as
positive by C2. Before calculating the correla-
tion, counts of users identified by the classifier
in each state were normalized by the number
of total search engine users in the state.

For both datasets, the classifier is able to ob-
tain a statistically significant correlation (Spear-
man’s rank correlation test, p < 0.05) between
the normalized number of users identified and
the incidence of the disease. C2 reaches the
highest correlation of ρs = 0.35 when 30% of
users are labeled as positive on the ovarian can-
cer dataset (Figure 4a); similarly, it obtains a
correlation of ρs = 0.30 when 16% of users are
label as positive on the ovarian cancer dataset
(Figure 4b). We note that the large difference
in percentage of positively label users between
the two datasets is mostly due to the fact that
X ov and X cr are of different sizes; in fact, C2
classifies a similar number of users as posi-
tive at the at the point of maximum correlation:
963 for ovarian cancer dataset and 1, 483 for the
cervical cancer dataset. The smaller difference
in terms of individuals classified as positive
is more consistent with the US incidence pro-
vided by the CDC, which is similar for the two
diseases.

We also point out that, for both datasets, cor-
relation follows a similar pattern: when C2
labels very few users (left side of Figures 4a
and 4b) the correlation with CDC data is low
and not significant; then, as the number of
positively classified users increases the correla-
tion value improves up to reaching statistical
significance. However, it declines and looses
significance as the number of users classified as
positive approaches the size of the population
(right side of Figures 4a and 4b).

Finally we note that, while the correla-
tion values are modest, previous research [35]
that used only SIUs found a correlation of
0.45 between HIV incidence and number of
users. Thus, our correlations are close to those
achieved using only users who are known to
be suffering from a condition.

SIUs non-SIUs SIUs
to non-
SIUs

Cervical 0.942 0.918 0.934
Ovarian 0.938 0.926 0.936

Table 4: Average cosine similarities among SIUs, among
non-SIUs identified as suffering from the con-
dition of interest, and between SIUs and non-
SIUs.

VI. Additional observations

i. Stability of the Algorithm

As the stochastic gradient descent algorithm
attempts at separating positive and negative
users in X with hyperplane w, it is natural
to ask whether the solution it identifies for a
given dataset is stable. To answer this question,
we ran Algorithm 1 ten times and measured (i)
the rank correlation between the scores of users
from any two runs and (ii) the inter-run agree-
ment between all runs. Results show that, for
the dataset introduced in Section i, the Spear-
man’s rank correlation between any two runs
is at least 0.8 (statistically significant, p < 0.05);
furthermore, the inter-run agreement is 0.73,
which suggests high agreement among runs.
Similar results are obtained for the datasets
introduced in Section i. This shows that the
stochastic gradient descent achieves very sim-
ilar prediction despite the sampling process
in Algorithm 1, lending additional credence
to the hypothesis that users identified by the
algorithm do indeed share the trait of interest.

ii. The Similarity of SIUs to Other Pa-
tients

Previous work [21, 35] used anonymous self-
identified users (SIUs) to identify behaviors
associated with other users suffering from the
condition of interest. Having noted the poor
performance of predicting diseases using only
SIUs, in this section we ask whether this perfor-
mance could be because the behavior of SIUs
is not representative of other users suffering
from the condition of interest.

We compared all SIUs of a condition (ovarian

12



Running title • May 2016 • Vol. XXI, No. 1

-0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
Silhouette Value

0

1

Cl
us

te
r

(a) Ovarian cancer users

-0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
Silhouette Value

0

1

Cl
us

te
r

(b) Cervical cancer users

Figure 5: Silouette charts for the similarity between
SIUs (denoted by “1”) and non-SIUs iden-
tified as patients (denoted by “0”). Negative
values imply similarity between classes and
positive values dissimilarity.

or cervical cancer) with non-SIUs in the top
10% of users found by the Perceptron run at a
95% threshold (i.e., δ = 0.95).

Table 4 shows the average cosine similar-
ity (computed from X) between users within
the two classes and between users of differ-
ent classes. As the table demonstrates, SIUs
are most similar among themselves. Non-SIUs
are least similar, and the similarity between
non-SIUs and SIUs is in between the two user
classes. A different way to observe these sim-
ilarities is through the silhouette graphs [15]
shown in Figure 5. As the graphs show, there
are some similarities between groups (SIUs
vs. non-SIUs), as demonstrated by the neg-
ative values on the charts, but also significant
amounts of dissimilarities (positive values on
the graphs).

These results imply that SIUs are different
from other users identified as suffering from
the conditions of interest. This lends additional
support to the importance of using the pro-
posed algorithm to identify additional users be-
yond the small number of self-identified users.

VII. Conclusion

In this paper, we introduced a novel algorithm
for identifying cohorts of interest among in-
ternet users. Our approach exploits a small
set of users whose membership to the cohort

of interest is known (e.g., they self identified
themselves) alongside statistics on the entire
population. The algorithm was validated on a
political dataset of tweets in Section IV. Then,
in Section V, we introduced two applications
of the proposed algorithm. First, we discussed
a classifier designed to pre-screen for specific
forms of cancer using search engine queries.
This system could be of great help in detecting
diseases that have a set of nonspecific symp-
toms, no screening test, or may have increased
risk if not diagnosed early. The second applica-
tion we investigated dealt with predicting the
incidence of a disease in regions in which it is
not known. The proposed classifier would be
of high value in cases where the incidence of a
disease is too low to be measured in a specific
region by traditional surveillance methods, or
when a disease is spreading within a popula-
tion. Alternatively, such system could also be
helpful in those cases where, for technical rea-
sons, incidence of a disease was not reported.

An important observation stemming from
our work is that, when studying anonymous
users, SIUs are insufficiently representative of
the population. This is both because of the
dearth of SIUs, but also, possibly, because there
is something unique in the behavior of those
users who self-identify. However, SIUs are
crucial for identifying the cohort. This obser-
vation means that algorithms such as the one
proposed herein are needed for the study of
anonymous users.
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