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ABSTRACT
Finding similar user pairs is a fundamental task in social
networks, with numerous applications in ranking and per-
sonalization tasks such as link prediction and tie strength
detection. A common manifestation of user similarity is
based upon network structure: each user is represented by a
vector that represents the user’s network connections, where
pairwise cosine similarity among these vectors defines user
similarity. The predominant task for user similarity appli-
cations is to discover all similar pairs that have a pairwise
cosine similarity value larger than a given threshold τ . In
contrast to previous work where τ is assumed to be quite
close to 1, we focus on recommendation applications where
τ is small, but still meaningful. The all pairs cosine similar-
ity problem is computationally challenging on networks with
billions of edges, and especially so for settings with small τ .
To the best of our knowledge, there is no practical solution
for computing all user pairs with, say τ = 0.2 on large social
networks, even using the power of distributed algorithms.

Our work directly addresses this challenge by introduc-
ing a new algorithm — WHIMP — that solves this prob-
lem efficiently in the MapReduce model. The key insight
in WHIMP is to combine the “wedge-sampling” approach
of Cohen-Lewis for approximate matrix multiplication with
the SimHash random projection techniques of Charikar. We
provide a theoretical analysis of WHIMP, proving that it has
near optimal communication costs while maintaining com-
putation cost comparable with the state of the art. We also
empirically demonstrate WHIMP’s scalability by computing
all highly similar pairs on four massive data sets, and show
that it accurately finds high similarity pairs. In particu-
lar, we note that WHIMP successfully processes the entire
Twitter network, which has tens of billions of edges.
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1. INTRODUCTION
Similarity search among a collection of objects is one of

the oldest and most fundamental operations in social net-
works, web mining, data analysis and machine learning. It
is hard to overstate the importance of this problem: it is a
basic building block of personalization and recommendation
systems [12, 21], link prediction [1, 30], and is found to be
immensely useful in many personalization and mining tasks
on social networks and databases [41, 33, 42, 35]. Indeed,
the list of applications is so broad that we do not attempt
to survey them here and instead refer to recommender sys-
tems and data mining textbooks that cover applications in
diverse areas such as collaborative filtering [35, 29].

Given the vast amount of literature on similarity search,
many forms of the problem have been studied in various
applications. In this work we focus on the social and infor-
mation networks setting where we can define pairwise sim-
ilarity among users on the network based on having com-
mon connections. This definition of similarity is particu-
larly relevant in the context of information networks where
users generate and consume content (Twitter, blogging net-
works, web networks, etc.). In particular, the directionality
of these information networks provides a natural measure
that is sometimes called “production” similarity: two users
are defined to be similar to each other if they are followed
by a common set of users. Thus, “closeness” is based on
common followers, indicating that users who consume con-
tent from one of these users may be interested in the other
“producer” as well.1 The most common measure of closeness
or similarity here is cosine similarity. This notion of cosine
similarity is widely used for applications [1, 26, 5, 30] and
is in particular a fundamental component of the Who To
Follow recommendation system at Twitter [20, 21].

Our focus in this work is on the computational aspect of
this widely important and well studied problem. In par-
ticular, despite the large amount of attention given to the
problem, there remain significant scalability challenges with
computing all-pairs similarity on massive size information
networks. A unique aspect of this problem on these large
networks is that cosine similarity values that are tradition-
ally considered “small” can be quite meaningful for social

1One can also define “consumption” similarity, where users
are similar if they follow the same set of users.
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and information network applications — it may be quite
useful and indicative to find users sharing a cosine similar-
ity value of 0.2, as we will illustrate in our experimental
results. With this particular note in mind, we move on to
describing our problem formally and discuss the challenges
involved in solving it at scale.

1.1 Problem Statement
As mentioned earlier, the similarity search problem is rel-

evant to a wide variety of areas, and hence there are several
languages for describing similarity: on sets, on a graph, and
also on matrix columns. We’ll attempt to provide the differ-
ent views where possible, but we largely stick to the matrix
notation in our work. Given two sets S and T , their cosine
similarity is |S ∩ T |/

√
|S| · |T |, which is a normalized inter-

section size. It is instructive to define this geometrically, by
representing a set as an incidence vector. Given two (typi-
cally non-negative) vectors ~v1 and ~v2, the cosine similarity is
~v1 ·~v2/(‖~v1‖2‖~v2‖2). This is the cosine of the angle between
the vectors; hence the name.

In our context, the corresponding ~v for some user is the
incidence vector of followers. In other words, the ith coor-
dinate of ~v is 1 if user i follows the user, and 0 otherwise.
Abusing notation, let us denote the users by their corre-
sponding vectors, and we use the terms “user” and “vector”
interchangably. Thus, we can define our problem as follows.

Problem 1.1. Given a sets of vectors ~v1, ~v2, . . . , ~vm in
(R+)d, and threshold τ > 0: determine all pairs (i, j) such
that ~vi · ~vj ≥ τ .

Equivalently, call ~vj τ -similar to ~vi if ~vi · ~vj ≥ τ . For
every vector ~vi, find all vectors τ -similar to ~vj.

In terms of (approximate) information retrieval, the latter
formulation represents a more stringent criterion. Instead of
good accuracy in find similar pairs overall, we demand high
accuracy for most (if not all) users. This is crucial for any
recommendation system, since we need good results for most
users. More generally, we want good results at all “scales”,
meaning accurate results for users with small followings as
well as big followings. Observe that the sparsity of ~v is
inversely related to the indegree (following size) of the user,
and represents their popularity. Recommendation needs to
be of high quality both for newer users (high sparsity ~v) and
celebrities (low sparsity ~v).

We can mathematically express Problem 1.1 in matrix
terms as follows. Let A be the d × n matrix where the
ith column is ~vi/‖~vi‖2. We wish to find all large entries
in the Gramian matrix ATA (the matrix of all similarities).
It is convenient to think of the input as A. Note that the
non-zeros of A correspond exactly to the underlying social
network edges.

1.2 Challenges
Scale: The most obvious challenge for practical applica-

tions is the sheer size of the matrix A. For example, the
Twitter recommendation systems deal with a matrix with
hundreds of millions of dimensions, and the number of non-
zeros is in many tens of billions. Partitioning techniques
become extremely challenging for these sizes and clearly we
need distributed algorithms for Problem 1.1.

The similarity value τ : An equally important (but less
discussed) problem is the relevant setting of threshold τ in
Problem 1.1. In large similarity search applications, a cosine

similarity (between users) of, say, 0.2 is highly significant.
Roughly speaking, if user u is 0.2-similar to v, then 20% of
u’s followers also follow v. For recommendation, this is an
immensely strong signal. But for many similarity techniques
based on hashing/projection, this is too small [24, 3, 37, 39,
38, 4]. Techniques based on LSH and projection usually de-
tect similarities above 0.8 or higher. Mathematically, these
methods have storage complexities that scale as 1/τ2, and
are simply infeasible when τ is (say) 0.2.

We stress that this point does not receive much attention.
But in our view, it is the primary bottleneck behind the lack
of methods to solve Problem 1.1 for many real applications.

The practical challenge: This leads us to main impetus
behind our work.

For the matrix A corresponding to the Twitter network
with O(100B) edges, find (as many as possible) entries in
ATA above 0.2. For a majority of users, reliably find many
0.2-similar users.

1.3 Why previous approaches fail
The challenge described above exemplifies where big data

forces an algorithmic rethink. Matrix multiplication and
variants thereof have been well-studied in the literature, but
no solution works for such a large matrix. If a matrix A
has a 100 billion non-zeroes, it takes upwards of 1TB just to
store the entries. This is more than an order of magnitude
of the storage of a commodity machine in a cluster. Any
approach of partitioning A into submatrices cannot scale.

There are highly tuned libraries like Intel MKL’s BLAS [25]
and CSparse [13]. But any sparse matrix multiplication
routine [22, 2] will generate all triples (i, i′, j) such that
Ai,jAi′,j 6= 0. In our example, this turns out to be more
than 100 trillion triples. This is infeasible even for a large
industrial-strength cluster.

Starting from the work of Drineas, Kannan, and Mahoney,
there is rich line of results on approximate matrix multiplica-
tion by subsampling rows of the matrix [15, 17, 16, 36, 7, 32,
34, 23]. These methods generate approximate products ac-
cording to Frobenius norm using outer products of columns.
This would result in dense matrices, which is clearly infea-
sible at our scale. In any case, the large entries (of interest)
contribute to a small part of the output.

Why communication matters: There are upper bounds
on the total communication even in industrial-strength Hadoop
clusters, and in this work we consider our upper bound to
be about 100TB2. A promising approach for Problem 1.1 is
the wedge sampling method of Cohen-Lewis [11], which was
further developed in the diamond sampling work of Ballard
et al [6]. The idea is to set up a linear-sized data structure
that can sample indices of entries proportional to value (or
values squared in [6]). One then generates many samples,
and picks the index pairs that occur most frequently. These
samples can be generated in a distributed manner, as shown
by Zadeh and Goel [43].

The problem is in the final communication. The sampling
calculations show that about 10τ−1∑

i,j ~ai · ~aj samples are
required to get all entries above τ with high probability.
These samples must be collected/shuffled to actually find
the large entries. In our setting, this is upwards of 1000TB
of communication.

2Note that if a reducer were to process 5GB of data each,
processing 100TB would require 20,000 reducers.



Figure 1: Result on WHIMP for τ = 0.2: the left plot the precision-recall curves for finding all entries in ATA above 0.2
(with respect to a sampled evaluation set). The other plots give the cumulative distribution, over all sampled users, of the
minimum of precision and recall. We observe that for an overwhelming majority of users, WHIMP reliably finds more than
70% of 0.2-similar users.

Locality Sensitive Hashing: In the normalized set-
ting, maximizing dot product is equivalent to minimizing
distance. Thus, Problem 1.1 can be cast in terms of finding
all pairs of points within some distance threshold. A power-
ful technique for this problem is Locality Sensitive Hashing
(LSH) [24, 18, 3]. Recent results by Shrivastava and Li use
LSH ideas for the MIPS problem [37, 39, 38]. This essen-
tially involves carefully chosen low dimensional projections
with a reverse index for fast lookup. It is well-known that
LSH requires building hashes that are a few orders of mag-
nitude more than the data size. Furthermore, in our setting,
we need to make hundreds of millions of queries, which in-
volve constructing all the hashes, and shuffling them to find
the near neighbors. Again, this hits the communication bot-
tleneck.

1.4 Results
We design WHIMP, a distributed algorithm to solve Prob-

lem 1.1. We specifically describe and implement WHIMP in
the MapReduce model, since it is the most appropriate for
our applications.

Theoretical analysis: WHIMP is a novel combination
of wedge sampling ideas from Cohen-Lewis [11] with random
projection-based hashes first described by Charikar [10]. We
give a detailed theoretical analysis of WHIMP and prove
that it has near optimal communication/shuffle cost, with a
computation cost comparable to the state-of-the-art. To the
best of our knowledge, it is the first algorithm to have such
strong guarentees on the communication cost. WHIMP has
a provable precision and recall guarantee, in that it outputs
all large entries, and does not output small entries.

Empirical demonstration: We implement WHIMP on
Hadoop and test it on a collection of large networks. Our
largest network is flock, the Twitter network with tens of
billions of non-zeroes. We present results in Fig. 1. For
evaluation, we compute ground truth for a stratified sample
of users (details in §7). All empirical results are with respect
to this evaluation. Observe the high quality of precision and
recall for τ = 0.2. For all instances other than flock (all
have non-zeros between 1B to 100B), the accuracy is near
perfect. For flock, WHIMP dominates a precision-recall
over (0.7, 0.7), a significant advance for Problem 1.1 at this
scale.

Even more impressive are the distribution of precision-
recall values. For each user in the evaluation sample (and

for a specific setting of parameters in WHIMP), we com-
pute the precision and recall 0.2-similar vectors. We plot
the cumulative histogram of the minimum of the precision
and recall (a lower bound on any F-score) for two of the
largest datasets, eu (a web network) and flock. For more
than 75% of the users, we get a precision and recall of more
than 0.7 (for eu, the results are even better). Thus, we are
able to meet our challenge of getting accurate results on an
overwhelming majority of users. (We note that in recent
advances in using hashing techniques [37, 39, 38], precision-
recall curves rarely dominate the point (0.4, 0.4).)

2. PROBLEM FORMULATION
Recall that the problem of finding similar users is a special

case of Problem 1.1. Since our results extend to the more
general setting, in our presentation we focus on the ATB
formulation for given matrices A and B. The set of columns
of A is the index set [m], denoted by CA. Similarly, the set
of columns of B, indexed by [n], is denoted by CB . The
dimensions of the underlying space are indexed by D = [d].
We use a1, . . . to denote columns of A, b1, . . . for columns
in B, and r1, r2, . . . for dimensions. For convenience, we
assume wlog that n ≥ m.

We denote rows and columns of A by Ad,∗ and A∗,a re-
spectively. And similar notation is used for B. We also use
nnz(·) to denote the number of non-zeroes in a matrix. For
any matrix M and σ ∈ R, the thresholded matrix [M ]≥σ
keeps all values in M that are at least σ. In other words,
([M ]≥σ)i,j = Mi,j if Mi,j ≥ σ and zero otherwise. We use
‖M‖1 to be the entrywise 1-norm. We will assume that
‖ATB‖1 ≥ 1. This is a minor technical assumption, and
one that always holds in matrix products of interest.

We can naturally represent A as a (weighted) bipartite
graph GA = (CA, D,EA), where an edge (a, d) is present iff
Ad,a 6= 0. Analogously, we can define the bipartite graph
GB . Their union GA ∪ GB is a tripartite graph denoted
by GA,B . For any vertex v in GA,B , we use N(v) for the
neighborhood of v.

Finally, we will assume the existence of a Gaussian ran-
dom number generator g. Given a binary string x as input,
g(x) ∼ N (0, 1). We assume that all values of g are indepen-
dent.

The computational model: While our implementation
(and focus) is on MapReduce, it is convenient to think of



an abstract distributed computational model that is also a
close proxy for MapReduce in our setting [19]. This allows
for a transparent explanation of the computation and com-
munication cost.

Let each vertex in GA,B be associated with a different
processor. Communication only occurs along edges of GA,B ,
and occurs synchronously. Each round of communication
involves a single communication over all edges of GA,B .

3. HIGH LEVEL DESCRIPTION
The starting point of our WHIMP algorithm (Wedges and

Hashes in Matrix Product) is the wedge sampling method
of Cohen-Lewis. A distributed MapReduce implementation
of wedge sampling (for the special case of A = B) was given
by Zadeh-Goel [43]. In effect, the main distributed step in
wedge sampling is the following. For each dimension r ∈ [d]
(independently and in parallel), we construct two distribu-
tions on the index sets of vectors in A and B. We then
choose a set of independent samples for each of these distri-
butions, to get pairs (a, b), where a indexes a vector in A,
and b indexes a vector in B. These are the “candidates” for
high similarity. If enough candidates are generated, we are
guaranteed that the candidates that occur with high enough
frequency are exactly the large entries of ATB.

The primary bottleneck with this approach is that the vast
majority of pairs generated occur infrequently, but dominate
the total shuffle cost. In particular, most non-zero entries
in ATB are very small, but in total, these entries account
for most of ‖ATB‖1. Thus, these low similarity value pairs
dominate the output of wedge sampling.

Our main idea is to construct an efficient, local “approxi-
mate oracle” for deciding if A∗,a ·B∗,b ≥ τ . This is achieved
by adapting the well-known SimHash projection scheme of
Charikar [10]. For every vector ~v in our input, we construct
a compact logarithmic sized hash h(~v). By the properties
of SimHash, it is (approximately) possible to determine if
~u ·~v ≥ τ only given the hashes h(~u) and h(~v). These hashes
can be constructed by random projections using near-linear
communication. Now, each machine that processes dimen-
sion r (of the wedge sampling algorithm) collects every hash
h(A∗,a) for each a such that Ar,a 6= 0 (similarly for B). This
adds an extra near-linear communication step, but all these
hashes can now be stored locally in the machine comput-
ing wedge samples for dimension r. This machines runs the
same wedge sampling procedure as before, but now when it
generates a candidate (a, b), it first checks if A∗,a ·B∗,b ≥ τ
using the SimHash oracle. And this pair is emitted iff this
condition passes. Thus, the communication of this step is
just the desired output, since very few low similarity pairs
are emitted. The total CPU/computation cost remains the
same as the Cohen-Lewis algorithm.

4. THE SIGNIFICANCE OF THE MAIN THE-
OREM

Before describing the actual algorithm, we state the main
theorem and briefly describe its significance.

Theorem 4.1. Given input matrices A,B and threshold
τ , denote the set of index pairs output by WHIMP algo-
rithm by S. Then, fixing parameters ` = dcτ−2 logne, s =
(c(logn)/τ), and σ = τ/2 for a sufficiently large constant
c, the WHIMP algorithm has the following properties with
probability at least 1− 1/n2:

• [Recall:] If (ATB)a,b ≥ τ , (a, b) is output.
• [Precision:] If (a, b) is output, (ATB)a,b ≥ τ/4.
• The total computation cost is O(τ−1‖ATB‖1 logn +τ−2

(nnz(A) +nnz(B)) logn).
• The total communication cost is O((τ−1 logn)‖[ATB]≥τ/4‖1

+nnz(A) + nnz(B) + τ−2(m+ n) logn).

As labeled above, the first two items above are recall and
precision. The first term in the total computation cost is
exactly that of vanilla wedge sampling, τ−1‖ATB‖1 logn,
while the second is an extra near-linear term. The total
communication of wedge sampling is also τ−1‖ATB‖1 logn.
Note that WHIMP has a communication of
τ−1‖[ATB]≥τ/4‖1 logn. Since all entries in ATB are at most

1, ‖[ATB]≥τ/4‖1 ≤ nnz([ATB]≥τ/4). Thus, the communi-

cation of WHIMP is at most (τ−1 logn)nnz([ATB]≥τ/4 plus

an additional linear term. The former is (up to the τ−1 logn
term) simply the size of the output, and must be paid by
any algorithm that outputs all entries above τ/4. Finally,
we emphasize that the constant of 4 is merely a matter of
convenience, and can be replaced with any constant (1 + δ).

In summary, Theorem 4.1 asserts that WHIMP has (bar-
ring additional near-linear terms) the same computation cost
as wedge sampling, with nearly optimal communication cost.

5. THE WHIMP ALGORITHM
The WHIMP algorithm goes through three rounds of com-

munication, each of which are described in detail in Figure 2.
The output of WHIMP is a list of triples ((a, b), esta,b),
where esta,b is an estimate for (ATB)a,b. Abusing nota-
tion, we say a pair (a, b) is output, if it is part of some triple
that is output.

In each round, we have a step “Gather”. The last round
has an output operation. These are the communication op-
eration. All other steps are compute operations that are
local to the processor involved.

Lemma 5.1. With probability at least 1 − 1/n6 over the
randomness of WHIMP, for all pairs (a, b), |esta,b − A∗,a ·
B∗,b| ≤ τ/4.

Proof. First fix a pair (a, b). We have esta,b = ‖A∗,a‖2‖B∗,b‖2
cos(π∆/`), where ∆ is the Hamming distance between ha
and hb. Note that ha[i] = sgn(

∑
r∈[d] g(〈r, i〉)Ar,a). Let ~v

be the d-dimension unit vector with rth entry proportional
to g(〈r, i〉). Thus, the rth component is a random (scaled)
Gaussian, and ~v is a uniform (Gaussian) random vector in
the unit sphere. We can write ha[i] = sgn(~v · A∗,a) and
hb[i] = sgn(~v · B∗,b). The probability that ha[i] 6= hb[i] is
exactly the probability that the vectors A∗,a and B∗,b are on
different sides of a randomly chosen hyperplane. By a stan-
dard geometric argument [10], if θa,b is the angle between
the vectors A∗,a and B∗,b, then this probability is θa,b/π.

Define Xi to be the indicator random variable for ha[i] 6=
hb[i]. Note that the Hamming distance ∆ =

∑
i≤`Xi and

E[∆] = `θa,b/π. Applying Hoeffding’s inequality,

Pr[|∆−E[∆]| ≥ `τ/(4π‖A∗,a‖2‖B∗,b‖2)]

< exp[−(`2τ2/16π2‖A∗,a‖22‖B∗,b‖22)/2`]

= exp(−(c/τ2)(logn)τ2/(32π2‖A∗,a‖22‖B∗,b‖22)) < n−8

Thus, with probability > 1− n−8,
|π∆/` − θa,b| ≤ τ/(4‖A∗,a‖2‖B∗,b‖2). By the Mean Value
Theorem, | cos(π∆/`) − cos(θa,b)| ≤ τ/(4‖A∗,a‖2‖B∗,b‖2).



WHIMP Round 1 (Hash Computation):

1. For each a ∈ CA:
(a) Gather column A∗,a.
(b) Compute ‖A∗,a‖2.
(c) Compute bit array ha of length ` as follows:

ha[i] = sgn
(∑

r∈[d] g(〈r, i〉)Ar,a
)

.

2. Perform all the above operations for all b ∈ CB .

WHIMP Round 2 (Weight Computation):

1. For all r ∈ [d]:
(a) Gather rows Ar,∗ and Br,∗.
(b) Compute ‖Ar,∗‖1 and construct a data struc-

ture that samples a ∈ CA proportional to
Ar,a/‖Ar,∗‖1. Call this distribution Ar.

(c) Similarly compute ‖Br,∗‖1 and sampling data
structure for Br.

WHIMP Round 3 (Candidate Generation):

1. For all r ∈ [d]:
(a) Gather: For all a, b ∈ N(r),

ha, hb, ‖A∗,a‖2, ‖B∗,b‖2.
(b) Repeat s‖Ar,∗‖1‖Br,∗‖1/ (s set to c(logn)/τ)

times:
i. Generate a ∼ Ar.
ii. Generate b ∼ Br.
iii. Denote the Hamming distance between

bit arrays ha and hb by ∆.
iv. Compute esta,b =
‖A∗,a‖2‖B∗,b‖2 cos(π∆/`).

v. If est ≥ σ, emit ((a, b), esta,b).

Figure 2: The WHIMP (Wedges And Hashes In Matrix
Product) algorithm

Multiplying by ‖A∗,a‖2‖B∗,b‖2, we get |esta,b−A∗,a ·B∗,b| ≤
τ/4. We take a union bound over all Θ(mn) pairs (a, b) to
complete the proof.

We denote a pair (a, b) as generated if it is generated in
Steps 1(b)i and 1(b)ii during some iteration. Note that such
a pair is actually output iff esta,b is sufficiently large.

Lemma 5.2. With probability at least 1 − 1/n3 over the
randomness of WHIMP, the following hold. The total num-
ber of triples output is O((τ−1 logn) max(‖[ATB ]≥τ/4‖1, 1)).
Furthermore, if A∗,a ·B∗,b ≥ τ , (a, b) is output.

Proof. Let Xa,b,r,i be the indicator random variable for
(a, b) being output in the i iteration for dimension r. The
total number of times that (a, b) is output is exactly Xa,b =∑
r,iXa,b,r,i. By the definition of the distributions Ar and

Br, E[Xa,b,r,i] =
Ar,a

‖Ar,∗‖1
· Br,b

‖Br,∗‖1
. Denote c(logn)‖Ar,∗‖1‖Br,∗‖1/τ

by kr, the number of samples at dimension r. By linearity
of expectation,

E[Xa,b] =
∑
r≤d

∑
i≤kr

Ar,aBr,b
‖Ar,∗‖1‖Br,∗‖1

=
∑
r≤d

c(logn)‖Ar,∗‖1‖Br,∗‖1
τ

· Ar,aBr,b
‖Ar,∗‖1‖Br,∗‖1

= cτ−1 logn
∑
r≤d

Ar,aBr,b = cA∗,a ·B∗,bτ−1 logn

Note that the random choices in creating the hashes is inde-
pendent of those generating the candidates. By Lemma 5.1,
with probability > 1 − n−6, the following event (call it E)
holds: ∀(a, b), |esta,b−A∗,a ·B∗,b| ≤ τ/4. Conditioned on E ,
if A∗,a · B∗,b < τ/4, then esta,b < τ/2 and (a, b) is not out-
put. Let S = {(a, b)|A∗,a · B∗,b ≥ τ/4}. Let the number of
triples output be Y . Conditioned in E , Y ≥

∑
(a,b)∈S [Xa,b].

Denote the latter random variable as Z. By linearity of
expectation and independence of Xa,b from E ,

EE [Z] =
∑

(a,b)∈S

EE [Xa,b]

= cτ−1 logn
∑

(a,b)∈S

A∗,a ·B∗,b

= cτ−1 logn‖[ATB]≥τ/4‖1
Furthermore, Z is the sum of Bernoulli random variables.
Thus, we can apply a standard upper-Chernoff bound to
the sum above, and deduce that

Pr
E

[Z ≥ 4cτ−1 lognmax(‖[ATB]≥τ/4‖1, 1)]

≤ exp(−4cτ−1 logn) ≤ n−10

Thus, conditioned on E , the probability that Y is greater
than 4cτ−1 lognmax(‖[ATB]≥τ/4‖1, 1) is at most n−10. Since

Pr[E ] ≤ n−6, with probability at least 1 − n−5, the num-
ber of triples output is O((τ−1 logn) max(‖[ATB ]≥τ/4‖1, 1)).
This proves the first part.

For the second part now. Fix a pair (a, b) such that
A∗,a · B∗,b ≥ τ . We have E[Xa,b] ≥ c logn. By a standard
lower tail Chernoff bound, Pr[Xa,b ≥ (c/2) logn] ≤ n−10.
Thus, (a, b) is guaranteed to be generated. If event E hap-
pens, then esta,b ≥ 3τ/4. By a union bound over the com-
plement events, with probability at least 1− n−5, (a, b) will
be generated and output. We complete the proof by taking
a union bound over all mn pairs (a, b).

The first two statements of Theorem 4.1 hold by Lemma 5.1
and Lemma 5.2, and the remaining two statements follow by
a straightforward calculation. Hence we skip the remainder
of the proof.

6. IMPLEMENTING WHIMP
We implement and deploy WHIMP in Hadoop [40], which

is an open source implementation of MapReduce [14]. Our
experiments were run on Twitter’s production Hadoop clus-
ter, aspects of which have been described before in [31, 27,
20]. In this section, we discuss our WHIMP parameter
choices and some engineering details. As explained earlier,
all our experiments have A = B.

It is helpful to discuss the quality measures. Suppose we
wish to find all entries above some threshold τ > 0. Typical
choices are in the range [0.1, 0.5] (cosine values are rarely
higher in our applications). The support of [ATA]≥τ is de-
noted by Hτ , and this is the set of pairs that we wish to
find. Let the output of WHIMP be S. The natural aim is
to maximize both precision and recall.
• Precision: the fraction of output that is “correct”, |Hτ ∩

S|/|S|.
• Recall: the fraction of Hτ that is output, |Hτ ∩S|/|Hτ |.
There are three parameter choices in WHIMP, as described

in Theorem 4.1. We show practical settings for these param-
eters.



Figure 3: Precision-recall curves

`, the sketch length: This appears in Step 1c of Round
1. Larger ` implies better accuracy for the SimHash sketch,
and thereby leads to higher precision and recall. On the
other hand, the communication in Round 3 requires emitting
all sketches, and thus, it is linear in `.

A rough rule of thumb is as follows: we wish to distin-
guish A∗,a · A∗,b = 0 from A∗,a · A∗,b > τ . (Of course,
we wish for more, but this argument suffices to give rea-
sonable values for `.) Consider a single bit of SimHash.
In the former case, Pr[h(A∗,a) = h(A∗,b) = 1/2, while
in the latter case Pr[h(A∗,a) = h(A∗,b)] = 1 − θa,b/π =

cos−1(A∗,a · A∗,b)/π ≥ 1 − cos−1(τ)/π. It is convenient to
express the latter as Pr[h(A∗,a) = h(A∗,b)] ≥ 1/2 + δ, where
δ = 1/2− cos−1(τ)/π.

Standard binomial tail bounds tells us that 1/δ2 indepen-
dent SimHash bits are necessary to distinguish the two cases.
For convergence, at least one order of magnitude more sam-
ples are required, so ` should be around 10/δ2. Plugging in
some values, for τ = 0.1, δ = 0.03, and ` should be 11, 000.
For τ = 0.2, we get ` to be 2, 400. In general, the size of `
is around 1 kilobyte.

s, the oversampling factor: This parameter appears
in Step 1b of Round 3, and determines the number of wedge
samples generated. The easiest way to think about s is in
terms of vanilla wedge sampling. Going through the cal-
culations, the total number of wedge samples (over the en-
tire procedure) is exactly s

∑
r ‖Ar,∗‖1‖Ar,∗‖1 = s‖ATA‖1.

Fix a pair (a, b) ∈ Hτ , with dot product exactly τ . The
probability that a single wedge sample produces (a, b) is
A∗,a · A∗,b/‖ATA‖1 = τ/‖ATA‖1. Thus, WHIMP gener-
ates this pair (expected) τ/‖ATA‖1× s‖ATA‖1 = τs times.

The more samples we choose, the higher likelihood of find-
ing a pair (a, b) ∈ Sτ . On the other hand, observe that pairs
in Hτ are generated τs times, and increasing s increases the
communication in Round 3. Thus, we require s to be at
least 1/τ , and our rule of thumb is 10/τ to get convergence.

σ, the filtering value: This is used in the final opera-
tion, Step 1(b)v, and decides which pairs are actually out-
put. The effect of σ is coupled with the accuracy of the
SimHash sketch. If the SimHash estimate is perfect, then
σ should just be τ . In practice, we modify σ to account
for SimHash error. Higher σ imposes a stricter filer and
improves precision at the cost of recall. And the opposite
happens for lower σ. In most runs, we simply set σ = τ . We
vary σ to generate precision-recall curves.

7. EXPERIMENTAL SETUP
As mentioned earlier, we run all experiments on Twit-

ter’s Hadoop cluster. All the code for this work was writ-
ten in Scalding, which is Twitter’s Scala API to Cascading,
an open-source framework for building dataflows that can
be executed on Hadoop. These are all mature production
systems, aspects of which have been discussed in detail else-
where [31, 27, 20].

Datasets: We choose four large datasets. Two of them,
clueweb and eu are webgraphs. The dataset friendster is
a social network, and is available from the Stanford Large
Network Dataset Collection [28]. The two webgraphs were
obtained from the LAW graph repository [8, 9]. Apart from
these public datasets, we also report results on our propri-
etary dataset, flock, which is the Twitter follow graph.

We interpret the graph as vectors in the following way.
For each vertex, we take the incidence vector of the in-
neighborhood. Thus, two vertices are similar if they are fol-
lowed by a similar set of other vertices. This is an extremely
important signal for Twitter’s recommendation system [21],
our main motivating problem. For consistency, we apply the
same viewpoint to all the datasets.

We apply a standard cleaning procedure (for similarity)
and remove high out-degrees. In other words, if some vertex
v has more than 10K followers (outdegree> 10K), we remove
all these edges. (We do not remove the vertex, but rather
only its out-edges.) Intuitively, the fact that two vertices are
followed by v is not a useful signal for similarity. In flock

and friendster, such vertices are typically spammers and
should be ignored. For webgraphs, a page linking to more
than 10K other pages is probably not useful for similarity
measurement.

Dataset Dimensions n = d Size (nnz) |ATA|1
friendster 65M 1.6B 7.2E9
clueweb 978M 42B 6.8E10
eu 1.1B 84B 1.9E11
flock - O(100B) 5.1E12

Table 1: Details on Datasets

We give the size of the datasets in Tab. 1. (This is after
cleaning, which removes at most 5% of the edges. Exact
sizes for flock cannot be revealed but we do report aggre-
gate results where possible.) Since the underlying matrix
A is square, n = d. All instances have at least a billion
non-zeros. To give a sense of scale, the raw storage of 40B



Figure 4: Per-user precision-recall histograms for τ = 0.4

non-zeros (as a list of edges/pairs, each of which is two longs)
is roughly half a terrabyte. This is beyond the memory of
most commodity machines or nodes in a small cluster, un-
derscoring the challenge in designing distributed algorithms.

Parameters: We set the parameters of WHIMP as fol-
lows. Our focus is typically on τ > 0.1, though we shall
present results for varying τ ∈ [0.1, 0.5]. The sketch length `
is 8192 (1KB sketch size); the oversampling factor s is 150;
σ is just τ . For getting precision-recall curves, we vary σ, as
discussed in §6.

Evaluation: ComputingATA exactly is infeasible at these
sizes. A natural evaluation would be pick a random sample
of vertices and determine all similar vertices for each vertex
in the sample. (In terms of matrices, this involves sampling
columns of A to get a thinner matrix B, and then computing
ATB explicitly). Then, we look at the output of WHIMP
and measure the number of similar pairs (among this sam-
ple) it found. An issue with pure uniform sampling is that
most vertices tend to be low degree (the columns have high
sparsity). In recommendation applications, we care for ac-
curate behavior at all scales.

We perform a stratified sampling of columns to gener-
ate ground truth. For integer i, we create a bucket with
all vertices whose indegree (vector sparsity) is in the range
[10i, 10i+1). We then uniformly sample 1000 vertices from
each bucket to get a stratified sample of vertices/columns.
All evaluation is performed with respect to the exact results
for this stratified sample.

8. EXPERIMENTAL RESULTS
Precision-recall curves: We use threshold τ of 0.2, 0.4,

0.6. We compute precision-recall curves for WHIMP on all
the datasets, and present the results in Fig. 3. Observe the
high quality results on clueweb, eu, and friendster: for
τ ≥ 0.4, the results are near perfect. The worst behavior
is that of flock, which still dominates a precision and re-
call of 0.7 in all cases. Thus, WHIMP is near perfect when
nnz(A) has substantially fewer than 100B entries (as our the-
ory predicts). The extreme size of flock probably requires
even larger parameter settings to get near perfect results.

Per-vertex results: In recommendation applications,
global precision/recall is less relevant that per-user results.
Can we find similar neighbors for most users, or alternately,
for how many users can we provide accurate results? This
is more stringent quality metric than just the number of
entries in [ATA]≥τ obtained.

Figure 5: Split-up of shuffle over various rounds for WHIMP

Dataset WHIMP (TB) DISCO est. (TB) ‖ATA‖1
friendster 4.9 26.2 7.2e+09
clueweb 90.1 247.4 6.8e+10
eu 225.0 691.2 1.9e+11
flock 287.0 18553.7 5.1e+12

Table 2: Total communication/shuffle cost of WHIMP

In the following experiment, we simply set the filtering
value σ to be τ . We vary τ in 0.2, 0.4, etc. For each
dataset and each vertex in the evaluation sample, (gener-
ation described in §7) we compute the precision and recall
for WHIMP just for the similar vertices of the sample vertex.
We just focus on the minimum of the precision and recall
(this is a lower bound on any Fβ score, and is a conservative
measure). The cumulative (over the sample) histogram of
the minimum of the precision and recall is plotted in Fig. 4.

Just for clarity, we give an equivalent description in terms
of matrices. We compute the (minimum of) precision and re-
call of entries above τ in a specific (sampled) column of ATA.
We plot the cumulative histogram over sampled columns.

For space reasons, we only show the results for τ = 0.4
and ignore the smallest dataset, friendster. The results
for clueweb and eu are incredibly accurate: for more than
90% of the sample, both precision and recall are above 0.8,
regardless of τ . The results for flock are extremely good,
but not nearly as accurate. WHIMP gets a precision and
recall above 0.7 for at least 75% of the sample. We stress
the low values of cosine similarities here: a similarity of
0.2 is well-below the values studied in recent LSH-based re-
sults [37, 39, 38]. It is well-known that low similarity values
are harder to detect, yet WHIMP gets accurate results for
an overwhelming majority of the vertices/users.



Shuffle cost of WHIMP: The main impetus behind
WHIMP was to get an algorithm with low shuffle cost. Rounds
1 and 2 only shuffle the input data (and a small factor over
it), and do not pose a bottleneck. Round 3 has two major
shuffling steps.
• Shuffling the sketches: In Step 1a, the sketches are com-

municated. The total cost is the sum of sizes of all sketches,
which is `nnz(A).
• Shuffling the candidates that are output: In Step 1(b)v,

the candidates large entries are output. There is an impor-
tant point here that is irrelevant in the theoretical descrip-
tion. We perform a deduplication step to output entries
only once. This requires a shuffle step after which the final
output is generated.
We split communication into three parts: the sketch shuffle,
the candidate shuffle, and the final (deduped) output. The
total of all these is presented in Tab. 2. (We stress that this
is not shuffled together.) The split-up between the various
parts is show in in Fig. 5. Observe that the sketch and can-
didate shuffle are roughly equal. For friendster and flock,
the (deduped) output is itself more than 10% of the total
shuffle. This (weakly) justifies the optimality Theorem 4.1
in these cases, since the total communication is at most an
order of magnitude more than the desired output. For the
other cases, the output is between 3-5% of the total shuffle.

Comparisons with existing art: No other algorithm
works at this scale, and we were not able to deploy anything
else for such large datasets. Nonetheless, given the param-
eters of the datasets, we can mathematically argue against
other approaches.
• Wedge sampling of Cohen-Lewis [11], DISCO [43]: Dis-

tributed version of wedge sampling were given by Zadeh and
Goel in their DISCO algorithm [43]. But it cannot scale
to these sizes. DISCO is equivalent to using Round 2 of
WHIMPto set up weights, and then running Round 3 with-
out any filtering step (Step 1(b)v). Then, we would look
for all pairs (a, b) that have been emitted sufficiently many
times, and make those the final output. In this case, CPU
and shuffle costs are basically identical, since any candidate
generated is emitted.
Consider (a, b) such that A∗,a ·A∗,b = τ . By the wedge sam-
pling calculations, s‖ATA‖1 wedge samples would generate
(a, b) an expected sτ times. We would need to ensure that
this is concentrated well, since we finally output pairs gener-
ated often enough. In our experience, setting s = 50/τ is the
bare minimum to get precision/recall more than 0.8. Note
that WHIMP only needs to generate such a wedge sample
once, since Step 1(b)v is then guaranteed to output it (as-
suming SimHash is accurate). But vanilla wedge sampling
must generate (a, b) with a frequency close to its expecta-
tion. Thus, WHIMP can set s closer to (say) 10/τ , but this
is not enough for the convergence of wedge sampling.
But all the wedges have to be shuffled, and this leads to
10‖ATA‖1/τ wedges being shuffled. Each wedge is two longs
(using standard representations), and that gives a ballpark
estimate of 160‖ATA‖1/τ . We definitely care about τ = 0.2,
and WHIMP generates results for this setting (Fig. 3). We
compute this value for the various datasets in Tab. 2, and
present it as the estimated shuffle cost for DISCO.
Observe that it is significantly large than the total shuffle
cost of WHIMP, which is actually split roughly equally into
two parts (Fig. 5). The wedge shuffles discussed above are
most naturally done in a single round. To shuffle more than

Table 3: Top similar results for a few Twitter accounts,
generated from WHIMP on flock.

Users similar to @www2016ca
Rank Twitter @handle Score

1 @WSDMSocial 0.268
2 @WWWfirenze 0.213
3 @SIGIR2016 0.190
4 @ecir2016 0.175
5 @WSDM2015 0.155

Users similar to @duncanjwatts
Rank Twitter @handle Score

1 @ladamic 0.287
2 @davidlazer 0.286
3 @barabasi 0.284
4 @jure 0.218
5 @net science 0.200

Users similar to @POTUS
Rank Twitter @handle Score

1 @FLOTUS 0.387
2 @HillaryClinton 0.368
3 @billclinton 0.308
4 @BernieSanders 0.280
5 @WhiteHouse 0.267

200TB would require a more complex algorithm that splits
the wedge samples into various rounds. For eu and flock,
the numbers are more than 1000TB, and completely beyond
the possibility of engineering. We note that friendster can
probably be handled by the DISCO algorithm.
• Locality-Sensitive Hashing [24, 37]: LSH is an impor-

tant method for nearest neighbor search. Unfortunately, it
does not perform well when similarities are low but still sig-
nificant (say τ = 0.2). Furthermore, it is well-known to
require large memory overhead. The basic idea is to hash
every vector into a “bucket” using, say, a small (like 8-bit)
SimHash sketch. The similarity is explicitly computed on all
pairs of vectors in a bucket, i.e. those with the same sketch
value. This process is repeated with a large number of hash
functions to ensure that most similar pairs are found.
Using SimHash, the mathematics says roughly the follow-
ing. (We refer the reader to important LSH papers for more
details [24, 18, 3, 37].) Let the probability of two similar
vectors (with cosine similarity above 0.2) having the same
SimHash value be denoted P1. Let the corresponding prob-
ability for two vectors with similarity zero by P2. By the
SimHash calculations of §6, P1 = 1/2−cos−1(0.2)/π ≈ 0.56,
while P2 = 0.5. This difference measures the “gap” ob-
tained by the SimHash function. The LSH formula basically
tells us that the total storage of all the hashes is (at least)

n1+(logP1)/(logP2) bytes. This comes out to be n1.83. As-
suming that n is around 1 billion, the total storage is 26K
TB. This is astronomically large, and even reducing this by
a factor of hundred is insufficient for feasibility.

Case Study: In addition to the demonstration of the
algorithm’s performance in terms of raw precision and re-
call, we also showcase some examples to illustrate the prac-
tical effectiveness of the approach. Some of these results
are presented in Table 3. First, note that the cosine score
values that generate the results are around 0.2, which pro-
vides justification for our focus on generating results with
these values. Furthermore, note that even at these values,
the results are quite interpretable and clearly find similar
users: for the @www2016ca account, it finds accounts for
other related social networks and data mining conferences.



For @duncanjwatts, who is a network science researcher, the
algorithm finds other network science researchers. And fi-
nally, an example of a very popular user is @POTUS, for
whom the algorithm finds clearly very related accounts.
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