
Linear Additive Markov Processes

Ravi Kumar Maithra Raghu∗ Tamás Sarlós Andrew Tomkins
Google

Mountain View, CA
{ravi.k53, maithrar, stamas, atomkins}@gmail.com

ABSTRACT
We introduce LAMP: the Linear Additive Markov Process. Tran-
sitions in LAMP may be influenced by states visited in the distant
history of the process, but unlike higher-order Markov processes,
LAMP retains an efficient parameterization. LAMP also allows the
specific dependence on history to be learned efficiently from data.

We characterize some theoretical properties of LAMP, including
its steady-state and mixing time. We then give an algorithm based
on alternating minimization to learn LAMP models from data.

Finally, we perform a series of real-world experiments to show
that LAMP is more powerful than first-order Markov processes,
and even holds its own against deep sequential models (LSTMs)
with a negligible increase in parameter complexity.

1. INTRODUCTION
Markov processes [13] are arguably the most widely used and

broadly known sequence modeling technique available. They are
simple, elegant, and theoretically well understood. They have been
extended in many directions, and form a useful building block for
many more sophisticated approaches in machine learning and data
mining. However, the Markovian assumption that transitions are in-
dependent of history given the current state is routinely violated in
real-world data sequences, as the user’s full history provides pow-
erful clues about the likely next state.

To address these longer-range dependencies, Markov processes
have been extended from first-order models to kth-order models in
which the next element depends on the previous k. Such models,
however, have a parameter space that grows exponentially in k, so
for large state spaces, even storing the most recent 5–6 elements of
history may encounter data sparsity issues and impact generaliza-
tion. Variable-order Markov processes [4] attempt to address these
issues by retaining variable amounts of history, allocating more re-
sources to remembering more important recent situations. Even
here, a dependence on an element from the past can be used only
if all intermediate sequences of states are remembered explicitly;
there are exponentially many such sequences, and they may not
impact the prediction in any way.
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Beyond Markov processes, a wide range of more complex se-
quence models have been proposed. The last two decades have
seen notable empirical success for models based on deep neural
networks, particularly the Long Short-Term Memory (LSTM) archi-
tecture [12]. These LSTM models show state of the art performance
in many domains, at the cost of low interpretability, long training
times, and the requirement for significant parameter tuning.

Basic intuition. Our goal is to propose a model with the simplic-
ity, parsimony, and interpretability of first-order Markov processes,
but with ready access to possibly distant elements of history. The
family of models we propose also has clean mathematical behavior,
is easy to interpret, and comes equipped with an efficient learning
algorithm.

The intuition behind our model is as follows. We select a sam-
pled point from the user’s history, according to a learned time de-
cay. We then assume that the user will adopt the same behavior
as somebody in that prior context. Thus, if a recency-weighted
sample of the user’s past shows significant time spent in the “par-
ent” state and the “office worker” state, the model will offer next
state predictions based on the current state, mixed with predictions
that are appropriate for “parent” and “office worker.” The relative
importance of the current state versus the historical norms will be
learned from the data.

An overview of LAMP. Based on this intuition, we define a Lin-
early Additive Markov Process, or LAMP, based on a stochastic
matrix P , and a distribution w over positive integers. The matrix
determines transitions from a given context, and the distribution
captures how far back into history the process will look to select a
context for the user. Given a user who has traversed a sequence of
statesX = x1x2 . . . xt, the process first selects a past state xi with
probability proportional to wt−i+1, and then selects a next state y
using P as a transition from xi. Thus, the user chooses a next step
by taking a step forward from some state chosen from the history.
The matrix P and the distribution w are to be learned from data.

One may view LAMP as factoring the temporal effect from the
contextual effect, resulting in a multiplicative model. When a state
is chosen from the history, the behavior conditioned on that state is
independent of how long ago the state was visited. This factoring
keeps the model parsimonious.

We also consider a natural generalization of LAMP which we
refer to as Generalized LAMP, or GLAMP. This extended model
allows us to associate different matrices with different regions of
history. For example, one matrix might capture transitions from the
current state, taking into account geographic locality. Another ma-
trix might capture transitions from past states, taking into account
co-visitations. We define and characterize GLAMP.

Theoretical properties. LAMP is a generative sequence model
related to Markov processes, but more expressive. It is therefore
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critical for us to understand the mathematical properties of the pro-
cess, so we can evaluate whether LAMP is appropriate to model a
particular dataset.

With this motivation in mind, we study the theoretical properties
of LAMP. We show that LAMP models with k elements of history
cannot be approximated within any constant factor by Markov pro-
cesses of order k − 1, but can be captured completely by Markov
processes of order k (albeit with a parameterization that is expo-
nentially larger in k). We show further that LAMP models under
some mild regularity conditions do possess a limiting equilibrium
distribution over states, and this distribution is equal to the steady
state of the first-order Markov process defined by matrix P . How-
ever, beyond the steady state itself, the transition dynamics of the
LAMP process are quite different from that of the Markov process
on the same matrix, and are in general different from any first-order
Markov Process. Finally, again under some mild conditions, we are
able to characterize the convergence of LAMP to its steady state,
in terms of properties of P and w. In order to prove these results,
we develop an alternate characterization of the process, dubbed the
exponent process, which allows us to invoke the machinery of re-
newal processes in the analysis.

Learning and evaluation. Given data, the challenge for LAMP is
to determine which stochastic matrix and distribution over positive
integers will maximize likelihood of the observations. The learned
matrix could in general be different from the empirical transition
matrix, as the model might choose to “explain” certain transitions
by reference to historical states rather than the current state.

To perform the learning, we show that the likelihood is convex
in either P or w alone, and we give an alternating maximization
procedure. We will discuss the optimization issues that arise in
fitting this model accurately.

We then perform a series of experiments to evaluate the per-
formance of LAMP. Our expectation is that LAMP will be use-
ful in the same circumstances as Markov processes: as simple, in-
terpretable, and extensible mathematical models, or as modules in
larger statistical systems. We therefore begin by comparing LAMP
to kth-order Markov processes, with and without smoothing. Of
the four datasets we consider, our results show that for two of
them, there is significant benefit to having the additional history
provided by LAMP, and perplexity may be reduced by 20–40%.
For the other two datasets we consider, the LAMP optimizer sets
the weight distribution to place all mass on the most recent state,
causing LAMP to fall back to a first-order Markov process. We
therefore conclude that when benefits are attainable through long-
distance dependencies, LAMP may show significant gains; other-
wise, it degrades gracefully to a first-order Markov process. In this
comparison LAMP and first-order Markov processes have similar
parameter complexity: a large transition matrix in both cases, and
optionally k additional scalars for LAMP. To see any lift with such
a modest additional parameterization is interesting. For complete-
ness, we also compare LAMP with LSTMs. Our experiments show
an intriguing outcome: neither LSTM nor LAMP is a clear winner
on all datasets.

Overall, we find that LAMP represents an intriguing and valu-
able new point on the curve of accuracy versus complexity in finite-
state sequence modeling.

2. RELATED WORK
Markov processes have been studied for more than a century.

The line of work most closely related to ours is that of Additive
Markov processes, in which the Markovian assumption is relaxed
to take some history into account. In particular, the probability of

the next state is a sum of memory functions, where each function
depends on the next state and the historical state. They were for-
mally introduced as a probabilistic process by A. A. Markov [16],
where versions of existing limit theorems for Markov processes
were extended to this new framework. A first usage of these mod-
els to represent long range dependencies came in the context of
physics and dynamical systems [29, 17, 28]. In all of these works,
however, the state space is restricted to binary and the construction
of the memory function is empirical.

Independent of our work and recently, Zhang et al. [35, 34] use
a “gravity model”, which is similar to LAMP in that it is parame-
terized by a transition matrix and a history distribution. However,
they make no attempt to learn the parameters in a robust manner.
Instead, the transition matrix is estimated as the empirical transition
matrix of a first-order Markov process from the data, and the his-
tory distribution is assumed to be from a particular family. We, in
addition to providing a theoretical treatment of LAMP, also develop
a principled method to learn the parameters without assumptions on
the form of the history function.

There have been several lines of work that go beyond the Marko-
vian assumption in order to capture user behavior in real-world set-
tings. Higher-order and variable-order Markov processes [4, 25,
23] use the last few states in the history to determine the proba-
bility of transition to the next state. While they are strictly more
powerful than the first-order Markov process, they suffer from two
drawbacks. First, they are expensive to represent since the amount
of space needed to store the transition matrix could be exponential
in the order, and second, from a learning point of view they are par-
ticularly vulnerable to data sparsity. LAMP, on the other hand, is
succinctly representable and has no data sparsity issues.

Motivated by web browsers, Fagin et al. [10] propose the ‘Back
Button’ random walk in which users can revisit steps immediately
prior in their history as the next state they transition to. However the
back button model erases history when moving backwards, while
LAMP retains it. Pemantle et al. [20] suggest a node-reinforced
random walk, where popular nodes are re-visited with higher pro-
portions. This is one method for utilizing user history while main-
taining a small set of parameters. But the total number of visits to a
node cannot be so easily adapted to take into account temporal rel-
evance. LAMP, on the other hand, can easily incorporate recency
via the history distribution. This notion of using summary statistics
is also studied in Kumar et al. [15] in a different framework, with
summary statistics used to infer facts about an underlying genera-
tive process, which is assumed to be Markovian.

Markov processes have been used in several web mining set-
tings to model user behavior. PageRank [19] is a classic use of
random walks to capture web surfing behavior. First and higher-
order Markov processes have been used to model user browsing
patterns [19, 24, 26, 36, 21] and variable-order Markov processes
have been used to model session logs [2]. First-order Markov pro-
cesses [1, 7] and variable-order hidden Markov processes [5] have
often been applied to context-aware search, document re-ranking,
and query suggestions. Chierichetti et al. [6] study the problem
of using variable-order Markov processes to model user behavior
in different online settings. Singer et al. [27] combine first-order
Markov processes with Bayesian inference for comparing differ-
ent prior beliefs about transitions between states and selecting the
Dirichlet prior best supported by data. Our experiments suggest
that LAMP can go well beyond first-order Markov processes, with
negligible increase in space and learning complexities. We believe
LAMP will be a powerful way to model user behavior for many of
these applications.



3. LAMP
In this section we introduce the Linear Additive Markov Process

(LAMP), and describe its properties.

3.1 Background
Let [n] = {1, 2, . . . , n}. Let X be a state space of size n. We

use lower case x, y, . . . and its subscripted versions to denote ele-
ments of X and upper case X,Y, . . . and its subscripted versions
to denote random variables defined on X . Let {P (x, y)} be an
n×n stochastic matrix defined on X , with P (x, y) ≥ 0 and for all
x ∈ X ,

∑
y∈X P (x, y) = 1.

The matrix P naturally corresponds to a first-order Markov pro-
cess on the state space X in which, given a current state x, the
process jumps to state y with probability P (x, y). Formally, if
x0, . . . , xt−1 are the states in the process so far, then

Pr[Xt = x | x0, . . . , xt−1] = P (xt−1, x). (1)

Let P t denote the matrix raised to the power t. Let nnz(P ) denote
the number of non-zero entries of P .

Let π be the stationary distribution of P satisfying∑
x

P (x, y) · π(x) = π(y), for all y ∈ X .

Equivalently, π = limt→∞ π0 · P t for any starting distribution
π0. If P is ergodic (see, e.g., [13] for formal definitions), then the
stationary distribution π of P is well-defined and unique.

While the stationary distribution captures the asymptotic behav-
ior of the Markov process, it does not quantify how fast it ap-
proaches this limit. The notion of mixing time captures this: it is
the number of steps needed before the Markov process converges
to its stationary distribution, regardless of the node from where it
started. Formally, let 1z denote the unit vector with 1 in the zth
position, and let

∆(P, t, z) =
1

2

∣∣π − 1z · P t
∣∣ =

1

2

∑
x

∣∣π(x)− (1z · P t)(x)
∣∣ ,

denote the total variation distance between the stationary distri-
bution and the distribution after t steps when the Markov process
starts at z. The mixing time, with respect to a parameter δ > 0, is
then defined as:

tmix(P, δ) = max
z

{
min
t

{
∆(P, t′, z) ≤ δ, for all t′ ≥ t

}}
.

A kth-order Markov process, MCk, for k > 1, is defined as
follows: let Pk : X k × X → R be a stochastic matrix on X k, the
space of k-tuples on X . Then,

Pr[Xt = xt | x0, . . . , xt−1] = P (〈xt−k, . . . , xt−1〉 , xt). (2)

where t > k; we assume there is a starting distribution on tuples of
length k − 1.

Let k be a non-negative integer. Let w = (w1, . . . , wk) be a
distribution on [k]. The notation W ∼ w indicates that the random
variable W is chosen according to w, i.e., Pr[W = i] = wi.

3.2 Process definition
LAMP is parameterized by a matrix P and a distribution w on

[k]. The process evolves similarly to a Markov process, except
that at time t, the next state is chosen by drawing an integer i ac-
cording to w, and picking an appropriate transition from the state i
timesteps ago (or from the start state if t − i < 1). Formally, we
define it as follows.

DEFINITION 1 (LAMP). Given a stochastic matrix P and a
distribution w on [k], the kth-order linearly additive Markov pro-
cess lampk(w,P ) evolves according to the following rule:

Pr[Xt = xt | x0, . . . , xt−1] =

k∑
i=1

wi ·P (xmax{0,t−i}, xt). (3)

When k is implicit, we simply denote the process as lamp(w,P ).
We assume that the process starts in some state π0. (As discussed
later, the particular choice of starting state is unimportant.)

3.3 Key features
(i) LAMP is a superset of first-order Markov processes; just set

w1 = 1. We will show (Lemma 2) below that this is a strict contain-
ment, i.e., there are processes expressible with LAMP but provably
not so with a first-order Markov process (despite the comparable
number of parameters). We also explore other expressivity rela-
tions between Markov processes and LAMP (Section 3.4).

(ii) By controlling the distributionw, one can encode highly con-
textual transition behavior and long-range dependencies. The defi-
nition of w determines how fast past history is “forgotten”, and al-
lows a smooth transition from treating the recent past as a sequence,
to treating the more distant past as a set, simply by flattening w.

(iii) While LAMP is a generative sequence model that allows
long-range dependencies, the model complexity is only nnz(P ) +
k. In contrast, the complexity of a kth-order Markov process is
nnz(Pk), which can be exponential in k. In natural extensions of
LAMP, the distribution w may be restricted to a family of distri-
butions specified only by a constant number of shape parameters
(e.g., power law, double Pareto, or log normal distributions).

(iv) An alternative characterization of LAMP provides a tractable
and interpretable way to understand its behavior (Section 4).

(v) The LAMP model is easy to learn from data (Section 5).
While LAMP is by construction intended to be a learned model
with a tractable algorithm for the learning, the mathematical struc-
ture of the model belongs to a much larger and generally non-
learnable Additive Markov processes (Section 7).

3.4 Expressivity
A natural starting point to understand LAMP is to compare it in

terms of expressivity and approximability with Markov processes.
We begin by asking how closely LAMP, which employs a stochas-
tic matrix P , may be approximated by a first-order Markov process.

LEMMA 2. There is a second-order LAMP that cannot be ex-
pressed by any first-order Markov process.

PROOF. Define lamp(w,P ) as follows. The transition matrix
P consists of a cycle on X = [n], with P (i, i+ 1) = 1 for i 6= 1,
and P (1, 1) = ε, P (1, 2) = 1− ε for some small ε > 0 (this is to
ensure mixing). Let k = 2 and w = (1/2, 1/2). All the additions
are modulo n.

By the definition of w and (3), we can see that a sequence gen-
erated by lamp(w,P ) can contain the pattern . . . , i − 1, i, i, . . .
but can never contain the pattern . . . , i, i, i, . . .. I.e., lamp(w,P )
can produce two repeats of a state but not three. However, if we
try to represent this process with a first-order Markov process P1,
then consider P1(i, i). If P1(i, i) = 0, then the first-order process
can never generate the first pattern and if P1(i, i) > 0, then the
first-order process generates the second pattern with positive prob-
ability. Neither of them is correct compared to lamp(w,P ).

This example can be easily extended to show that there is a kth-
order LAMP that cannot be well approximated by any (k − 1)st-



order Markov process. In summary, though the additional param-
eters of a lamp(w,P ) are few, they are sufficient to give LAMP
more degrees of expressivity.

Of course, if the order of the Markov process is high enough,
then it strictly contains all LAMPs of a particular order. The fol-
lowing statements make this precise.

LEMMA 3. kth-order LAMPs can be expressed by kth-order
Markov processes.

PROOF. From (3), that the transitions of lampk(w,P ) depend
only on k tuples, sincew has a support of size k. Therefore, one can
trivially use a kth-order Markov process to (wastefully) represent
the transition probabilities.

LEMMA 4. For k ≥ 2, there is a kth-order Markov process that
is not expressible by a kth-order LAMP.

PROOF. For sake of simplicity, we present the proof for k = 2;
the general case can be proved using similar ideas.

We consider a second-order Markov process on two states, X =
{x, y}. We explicitly construct the following P2 that is not express-
ible as a second-order LAMP. Let β 6= γ and α = 1− δ.

P2 x y
〈x, x〉 α 1− α
〈x, y〉 β 1− β
〈y, x〉 γ 1− γ
〈y, y〉 δ 1− δ

Suppose P2 is expressible by lamp2(w,P ) for some w on [2]
and some stochastic matrix P . We first claim that P (x, x) = α
and P (y, y) = δ, i.e., the diagonals are fixed. This follows from
the definition of P2 and (3) since, for example,

α = P2(〈x, x〉 , x) = Pr[x | 〈x, x〉] =

2∑
i=1

wiP (x, x) = P (x, x).

For the non-diagonals, we can compute

β = P2(〈x, y〉 , x) = w1α+ (1− w1)(1− δ),

γ = P2(〈y, x〉 , x) = w1(1− δ) + (1− w1)α.

It is easy to check that the above system is inconsistent with the
imposed conditions β 6= γ and α = 1− δ.

Note that this result that lampk
⊂
6= MCk is also intuitive, as a kth-

order Markov Process has O(nk) parameters, compared to a kth-
order LAMP, which only has n2 + k parameters. The surprising
aspect is that incorporating a little more trail history with just a few
more parameters leads to inapproximability by lower order Markov
processes, i.e., lampk 6⊆ MCk−1.

4. ANALYSIS OF LAMP
Despite the differences in expressivity of LAMP and Markov

processes, we show that under fairly general conditions they share
the same limiting distribution over states, although the limiting dis-
tribution on paths of length more than 1 may be very different.

As LAMP’s evolution depends on history, we cannot simply char-
acterize its limiting distribution as a fixed point distribution on the
graph. Instead, we say that lamp(w,P ) has a limiting distribu-
tion π if π is a probability distribution over all states and π(x) is
the probability of finding the LAMP at state x ∈ X in the limit.
Next, we study the mixing time of lamp(w,P ) and relate it to
the mixing time of P and the properties of w. Mixing time for
LAMP is defined analogously to Markov processes; we denote this

by tmix(lamp(w,P ), δ). This study also leads us to a connection
between the evolution of lamp(w,P ) and the theory of stochastic
processes, particularly martingales and renewal theory. This en-
ables us to invoke results from these areas, and precisely describe
the long-term behavior of LAMP. Besides being of theoretical in-
terest, knowing the mixing time of LAMP is important to make
conclusions about the validity of the learned model on real data.
In particular, we study the conditions under which mixing time of
LAMP can significantly depart from that of a Markov process.

4.1 Exponent process
To shed light on lamp(w,P ), we present a re-characterization of

the process in terms of certain exponents and mixtures of powers of
P . Suppose π0 is an initial distribution on X and suppose we run
lamp2(w,P ). After the first step, the state distribution is given by
π0P . After the second step, with probability w1 we have the distri-
bution π0P

2 and with probability 1− w1 we moved forward from
π0 again, and have the distribution π0P . After the third step, with
probability w1w2 we have the distribution π0P

3, with probability
(1− w1)w2 + w1(1− w2) we have the distribution π0P

2, and so
on. In this interpretation, the distribution of a Markov process after
t steps will be as π0P

t, while the distribution of LAMP will be the
expectation of a random variable π0P

et , where et depends on the
random choices made from the history distribution, and may grow
and shrink over time. We focus on the evolution of this exponent.

More formally, let et be the random variable denoting the ex-
ponent at time t. The next state of the process is determined by
choosing an earlier state t − i according to w, itself distributed as
π0P

et−i , and then advancing one step from this state. Once the
choice has been made to copy from i states earlier, The new expo-
nent will therefore be et = 1+et−i. From this intuition, we define
the following stochastic process, which we use to analyze size of
the exponents.

DEFINITION 5 (EXPONENT PROCESS). LetW1,W2, . . . be i.i.d.
random variables whereWt ∼ w. For t ∈ Z, the exponent process
is the sequence of random variables et, with et = 0 for t ≤ 0,
e1 = 1, and for t > 1:

Pr[et = et−i + 1] = Pr[Wt = i].

Note that for a first-order Markov process, the exponent process
is deterministic and is simply ..., 0, 1, 2, . . .. For LAMP, the ex-
ponent process is more complex. In the following sections, we
explore this process further, and discover not only concrete state-
ments about the limiting behavior and convergence to equilibrium,
but also connections to the theory of renewal processes. As et is
pre-defined for t ≤ 0, from henceforth we assume t ≥ 0.

We begin with a simple observation on the growth rate.

LEMMA 6. et ≥ bt/kc.

PROOF. We can break the exponent process into consecutive
batches of length k, where batchBi = {eik+1, . . . , e(i+1)k}. Then
min{Bi} ≥ 1 + min{Bi−1}, since et = 1 + ej for some j in
{t − k, . . . , t − 1}. Thus, the minimum exponent must grow by 1
every k steps.

This immediately gives the limiting distribution of LAMP:

THEOREM 7. lamp(w,P ) has a limiting distribution π if and
only if P is ergodic. Furthermore, π is also the stationary distribu-
tion for the first-order Markov process with transition matrix P .

PROOF. The distribution of LAMP is given by the product of
the start state with a mixture of powers of the transition matrix P
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Figure 1: Recovering backward chain from time t: t0 = t, t1 =
t− 2, t2 = t− 10, . . . , t5 = 0. Here, H(t) = 5.

of the underlying Markov process. Lemma 6 gives a lower bound
on every exponent in the mixture, and this lower bound increases
without bound.

Note that the proof above only addresses the finite k case. A similar
result can be stated, with probability almost surely, for the infinite k
case, using results similar to Section 4.2. Theorem 7 also has a di-
rect proof, which can be used to show a similar limiting distribution
result for a generalization of LAMP (details omitted).

Next, we study the mixing time of LAMP in more detail. Lemma 6
gives us a bound on the mixing time, but this bound characterizes
the worst case. We now seek a stronger bound based on the average
case evolution of the exponent process.

4.2 Analysis with renewal theory
Consider the exponent process at a particular time t, with ex-

ponent et. We may trace the origins of this exponent backwards
through the evolution of the process. At time t, the process chose a
point t − i from i steps in the past, and added 1 to the exponent at
that time. Similarly, at time t − i, the process chose another point
even farther in the past from which to step forward. This back-
ward chaining process is depicted in Figure 1. The number of hops
traversed backward at each step is selected i.i.d. from w. For any
point t, we may therefore define a sequence of decreasing positions
t = t0 > t1 > · · · > tH(t), with

eti = eti+1 + 1,

and H(t) a stopping time, with tH(t) the first term ≤ 0. The total
number of hops in this evolution is exactly H(t) = et, as each step
increases the exponent by 1.

We now recall the definition of a renewal process, and show that
the process defined above is a renewal process:

DEFINITION 8 (RENEWAL PROCESS). Let S1, S2, . . . be a set
of positive i.i.d. random variables, and for n ∈ Z+ define the nth
jump time Jn =

∑n
i=1 Si. Then the random variable (Xt)t≥0

defined by Xt = sup{n | Jn ≤ t} is called a renewal process.

The connection to LAMP is made explicit as follows:
(i) The gaps ti − ti+1, each drawn i.i.d. from w, correspond to

the holding time variables Si.
(ii) H(t) correspond to the random variables Xt forming the

renewal process.
Based on this connection, we can employ the strong law of large

numbers for renewal processes [22] to show the following theorem:

THEOREM 9.

lim
t→∞

H(t)

t
=

1

E[w]
, almost surely.

Note that this bound is much stronger than the bound of Lemma 6.1

Based on this bound, we see that the mixing time of LAMP is re-
lated to the mixing time of the underlying Markov process by a
1A weaker statement of convergence in mean may be shown by
using Wald‘s identity [30] combined with H(t) being a stopping
time to condition on the sum of i.i.d. random variables. However,
the law of large numbers allows us to make a statement regarding
the random variable H(t) rather than simply its expectation.

multiplicative factor of E[w] as long as the renewal process has
attained its limiting behavior.

One can then refer to the well-known central limit Theorem [22]
for renewal processes to get concentration bounds.

THEOREM 10. IfW has finite mean and variance µ and σ, then

lim
t→∞

Pr

[
H(t)− t/µ
σµ−3/2

√
t
< α

]
= φ(α),

where φ is the cdf of the standard Gaussian distribution.

However, with slightly stronger assumptions on the moments ofW ,
we can also obtain growth rates for finite t.

4.3 Concrete growth rates and mixing time
To address our original question on mixing times, we derive the

following concrete growth rate via Bernstein’s inequality [8].

THEOREM 11. For k finite, for all t ≥ T ,

Pr

[
et ≥

t

(1 + ε)E[w]

]
≥ 1− e−C(ε)·T

1− e−C(ε)
,

where C(ε) is a constant depending on ε, k, and some of the mo-
ments of w.

this version.) This immediately bounds the mixing time.

THEOREM 12. For w with finite support [k], we have

tmix(lamp(w,P ), δ) ≤ max {T, (1 + ε)E[w] · tmix(P, δ)} ,

with probability at least 1− e−C(ε)·T

1−e−C(ε) .

We can also establish similar results (formal statement and proofs
omitted in this version) for infinite k using the following:

THEOREM 13. Let E[|w|4] ≤ ∞. Then, for all t ≥ T ,

Pr

[
et ≥

t

(1 + ε)E[w]

]
≥ 1−O

(
1

T

)
.

With these results, we conclusively establish long-term behavior of
lamp(w,P ), and next look at learning the model.

5. LEARNING THE PARAMETERS
We now show how to learn the parameters of LAMP, given a

sequence of observations. The input to the learning problem is a
sequence x0, . . . , xt of states, on a state space X . The goal is to
learn the transition matrix P and the distribution w that maximizes
the likelihood of the observed data.

Given the sequence of states, by the definition of LAMP, we have

Pr[xk+1 | x1, . . . , xk] =

k∑
i=1

wi · P (xk+1−i, xk+1).

In particular, the likelihood function decomposes into a product of
such terms and so the log likelihood is

L(x0, ..., xt) =

t∑
j=0

log

(
k∑
i=1

wi · P (xj−i, xj)

)
.

From here onwards we write x0 in place of xmax{0,l} to simplify
the notation.

To compute the gradient with respect to the entries of the transi-
tion matrix P , we compute the gradient with respect to each term in



the above expression and put it together. Let I(·) denote the binary
indicator function. We first have

∂L

∂P (x, y)
=
∑
xj=y

∑k
i=1 I(xj−i = x) · wi∑k
i′=1 wi′P (xj−i′ , xj)

.

For the entries of w, we have

∂L

∂wi
=

t∑
j=0

P (xj−i, xj)∑k
i′=1 wi′P (xj−i′ , xj)

.

It is easy to show that the log likelihood is individually concave
in P (·, ·) and w but not jointly concave (proofs omitted). We run
an alternating minimization to optimize for P and w holding the
other parameters fixed. Recall that w and every row of P is non-
negative and sums to 1. Because of the latter constraint, generic
unconstrained or box-constrained optimization algorithms such as
L-BFGS(-B) cannot be applied to our problem directly.

Let us consider optimizing w while holding P fixed first. By
the Karush–Kuhn–Tucker (KKT) optimality conditions we have
that w∗ is optimum if and only if there exist λ > 0, Lagrange-
multiplier, such that ∂L

∂wi
(w∗) = λ if w∗i > 0 and ∂L

∂wi
(w∗) ≤ λ

if w∗i = 0. Generally, similar KKT conditions can be solved with
complicated sequential quadratic programming or with interior-point
methods [18]. Instead, we recognize that our KKT condition is a
non-trivial extension of the water-filling problem [3, Example 5.2],
that arises in information theory in allocating power to a set of com-
munication channels. Starting from λ =∞, attained by setting all
w∗i = 0, we swipe with λ towards 0 until we find a λ value satis-
fying the KKT conditions with corresponding w∗ that sums to one.
To compute changes in ∂L

∂wi
we rely on the Hessian of L, i.e., we

apply Newton’s method. Furthermore, we pretend that H is diago-
nal. While this assumption is clearly false forw, the approximation
is good enough that the resulting method works well in practice.

Then given an initial guess, w0, our goal is to find an adjustment
u such thatw0+u is still feasible, i.e.,

∑
i ui = 0 and 0 ≤ w0

i +ui
hold for all i = 1, . . . , k, and the KKT condition is satisfied by
w0 +u. Such u can be found with the aforementioned water-filling
technique relying on the fact that each approximate ∂L

∂wi
becomes

a linear function. We iteratively apply these adjustments until the
KKT condition is satisfied up to a small error. Since our Hessian
approximation introduces errors, it can happen that an adjustment
would decrease the log likelihood. To combat this issue, we apply
the well-known trust region method [18] and search for an adjust-
ment u with maxi |ui| ≤ rt, where rt is the size of the trust region
in the tth adjustment step. Note that optimizing over P decom-
poses over optimizing rows of P (x, ·), where optimizing each row
P (x, ·) is analogous to optimizing w. Furthermore it is not hard
to see that the Hessian is indeed diagonal in this case. Thus we
optimize each row of P (x, ·) while holding the rest fixed, i.e., we
perform block coordinate descent.

Lastly we remark that Duchi et al.’s projected gradient method
[9] is also applicable to our problem. We found it slow to converge
as all gradients are equal and positive in optimum typically.

6. EXPERIMENTS
In this section we present our experimental results on LAMP.

The goal of these experiments is to model real-world sequences
with LAMP and compare their performance with first- and higher-
order Markov processes. For comparing the performance, we focus

on standard notions such as perplexity.2 En route we also evaluate
the performance of the learning algorithm based on alternative min-
imization, focusing on the number of iterations, convergence, etc.
First we describe the datasets used for evaluation.

6.1 Data
We use the following datasets. Each dataset is a sequence of

items over a particular domain. Since we are interested in modeling
the transitions, the items will correspond to the states in LAMP
(and in the Markov processes we will compare against) and we will
not use any metadata about the items themselves. For repeatability
purposes, we only focus on publicly available data.

LASTFM. This data is derived from the listening habits of users on
the music streaming service last.fm [11]. In this service, users
can select individual songs or listen to stations based on a genre
or artist. We will focus on sequences, where each sequence cor-
responds to a user and each item in the sequence is the artist for
the song (we focus on artists instead of individual songs). The data
consists of 992 sequences with 19M items. The data is available at
dtic.upf.edu/~ocelma/MusicRecommendationDataset/
lastfm-1K.html.

BRIGHTKITE. BrightKite is a defunct location-based social net-
working website (brightkite.com) where users could publicly
check-in to various locations. Each sequence corresponds to a
user and each item in the sequence is the check-in location (i.e.,
the geographical coordinates) of the user. The data consists of
50K sequences with 4.7M check-ins. This dataset is available at
snap.stanford.edu/data/loc-brightkite.html.

WIKISPEEDIA. This dataset is a set of navigation paths through
Wikipedia, collected as part of a human computation game [31, 32].
In the game users were asked to navigate from a starting Wikipedia
page to a particular target only by following document links. The
dataset consists of 50K (source, destination) paths, which will form
the sequences for our experiments; the items in a sequence will
correspond to the Wikipedia pages. The dataset is available at
snap.stanford.edu/data/wikispeedia.html.

REUTERS. As an illustration of the performance of LAMP on a text
dataset, we consider the Reuters-21578, Distribution 1.0 bench-
mark corpus (available at www.nltk.org/nltk_data/) as a
baseline. Here, each newswire article is considered to be a single
sequence and the items are the words in the sequence. The data
consists of more than 1.2M words.

To mitigate data issues, we focus on non-consecutive reasonably
frequent visits. Since consecutive repetitions for LASTFM might
mean songs from the same CD and for BRIGHTKITE might mean
being in the same place—yielding easy to learn, mundane first-
order models with dominant self-loops as best fit,—we collapse
consecutive repeated items into a single item. We then replace
items that appear fewer than 10 times (in the original sequence)
by a generic ‘rare’ item; this threshold is 50 for LASTFM.

6.2 Baselines
We compare LAMP to various baselines, defined as follows.

NaiveN -gram. An order-k NaiveN -gram behaves as MCk, i.e., a
kth-order Markov process, which employs counts of the previous k
elements to predict the next element. Since a second-order Markov
process in fact uses statistics about 2 past and 1 future element,
order-2 corresponds to 3-grams, and generally, order-k corresponds

2 Perplexity of model q on sequence x0, . . . , xt is the reciprocal
of the geometric mean of the probabilities of observed transitions:
2
−1
t

∑t
i=1 log2 q(xi|xi−1,...,xi−k); the lower the better.

last.fm
dtic.upf.edu/~ocelma/MusicRecommendationDataset/lastfm-1K.html
dtic.upf.edu/~ocelma/MusicRecommendationDataset/lastfm-1K.html
brightkite.com
snap.stanford.edu/data/loc-brightkite.html
snap.stanford.edu/data/wikispeedia.html
www.nltk.org/nltk_data/


to k+ 1-grams. We retain the notion of order so that order-1 Naive
N -gram will be equivalent to order-1 LAMP.
Kneyser–NeyN -gram. This baseline employs state-of-the-art smooth-
ing of N -grams using the Kneyser–Ney algorithm [14]. It corre-
sponds to a variable-order Markov process, in that it employs as
much as context as possible, given the available data, falling back
to lower-order statistics as necessary.
LSTM. This baseline trains an LSTM (Long Short Term Memory)
architecture on the datasets. The LSTM is a type of recurrent neural
network [12], which has recently been very successful in modeling
sequential data.
Weight-only LAMP. This baseline corresponds to running the LAMP
algorithm with the matrixP fixed to the empirical transition matrix,
learning only the weights w.
Initial weights. This baseline corresponds to LAMP with the ma-
trix P fixed to the empirical transition matrix and the history distri-
bution defined as wi ∝ 0.8i. We always initialized the alternating
minimization to these values and hence this baseline.

6.3 Results
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Figure 2: Order vs test perplexity for LAMP, weight-only LAMP,
MLE and Kneyser–Ney N-grams. Top left: BRIGHTKITE, top
right: LASTFM, bottom left: REUTERS, bottom right: WIK-
ISPEEDIA.

We compare LAMP to the N -gram variants and to the LSTM.

6.3.1 LAMP and N-grams
Perplexity. Figure 2 gives our main results on the perplexity of
various order models, across our datasets. The first chart of the fig-
ure covers BRIGHTKITE data, and shows that all LAMP variants
outperform the Markov models on test perplexity, with an order-7
LAMP showing around 19% improvements over the simpler vari-
ants at the same order.

For LASTFM, again LAMP variants outperform N-grams, pro-
ducing text perplexity around 50% lower than smoothed N-grams,
and far lower than naive N-grams, which overfit badly. In this case,
among the LAMP variants, the exponential weights improve over
the optimized by about 18% at order 7. The optimized weights per-
form better than exponential on training perplexity, so the algorithm
could benefit from some additional regularization.

For REUTERS, LAMP models perform similarly to one another,
and the naive N-grams perform so poorly that they do not register
on the chart. The smoothed N-grams outperform all LAMP vari-
ants. However, despite the smoothing, their performance on test
worsens as the data becomes too sparse; this is a regime where

the smoothing is not designed to operate. For this data, LAMP sets
w1 = 1, behaving as a first-order Markov process, and higher-order
N-grams are able to perform better, albeit with the usual trade-off
of higher numbers of parameters.3

Finally, for WIKISPEEDIA, naive and smoothed N-grams per-
form substantially worse than LAMP variants, with LAMP and
weight-only LAMP performing best.

As described in Lemma 3, MCk is more expressive than lampk,
so one may wonder how it is possible that order-k LAMP may show
better performance than a kth-order Markov process. In fact, the
Markov process performs significantly better in training perplex-
ity, but despite our tuning of the Kneser–Ney smoothing, LAMP
generalizes better.
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Figure 3: Order vs number of parameters for BRIGHTKITE. Other
datasets are similar.

Number of parameters. Figure 3 shows how the actual number
of parameters changes with order for the various models. For the
LAMP models, the number of parameters could theoretically grow
as order increases, because the optimizer will see possible tran-
sitions from earlier states, and might choose to increase the den-
sity of the learned matrix. For example, on an expander graph, a
sparse transition matrix could even grow exponentially in density
as a function of order until the matrix becomes dense. While this
growth is possible in theory, it does not occur in practice. The
BRIGHTKITE dataset shows a small increase in parameters from
first to second order LAMP, and the remaining datasets show no
significant increase in parameters whatsoever. The N-gram algo-
rithms show in all cases a dramatic increase in parameters, to the
extent that we could run these baselines only to order 5 (and order
3 for LASTFM).
Number of rounds. Figure 4 shows how the performance of LAMP
changes over the rounds of optimization. For BRIGHTKITE and
LASTFM, the algorithm performs best at 1.5 rounds, meaning the
weights are optimized, then the matrix, and then the weights are re-
optimized for the new matrix. For REUTERS, small improvements
continue beyond this point, and performance for WIKISPEEDIA is
flat across iterations. The appropriate stopping point can be de-
termined from a small holdout set, but from our experiments, per-
forming 1.5 rounds of optimizations seems effective.
Learned weights. We now turn to the weight values learned by the
LAMP model; see Figure 5. BRIGHTKITE and LASTFM show a
similar pattern: when the matrix is fixed to the empirical observed
transitions (right column), the weights decay rapidly, putting most
of their focus on the most recent state. This behavior is expected,
as the matrix in this case has been selected to favor the most recent
state. However, when LAMP is given control of the matrix, the
optimizer selects a matrix for which a flatter weight distribution
improves likelihood, making better use of history.
3LAMP may of course employ a higher-order process as its under-
lying matrix, simply by exploding the state space. It is unlikely
in this case that it would do more than match the performance
of smoothed N-grams, as more remote history without intervening
context does not appear to work well for this dataset.
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Figure 4: Number of iterations in alternating minimization vs test
perplexity for LAMPs of various order. i − 0.5 is the ith weigh
optimization, i is the ith transition matrix optimization. Top left:
BRIGHTKITE, top right: LASTFM, bottom left: REUTERS, bottom
right: WIKISPEEDIA, error bars show standard deviation in 10-fold
cross validation; repeated for 2 datasets.
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Figure 5: Estimated weight values for LAMPs of various order
(left) and weight-only LAMPs (right), Top left: BRIGHTKITE, top
right: LASTFM, bottom left: REUTERS, and bottom right: WIK-
ISPEEDIA set w1 = 1.

We also observe that the relative values of earlier weights in
lower-order versus higher-order LAMP are similar. As order in-
creases, all the weights are dropped slightly to allow some proba-
bility mass to be moved to higher weights corresponding to influ-
ence from more distant information.

Both REUTERS and WIKISPEEDIA assign w1 = 1, indicating
that LAMP’s history is not beneficial in modeling these datasets.

6.3.2 LAMP and LSTM
To this point, we have considered LAMP as an alternative se-

quence modeling technique to Markov processes, appropriate for
use in similar situations. In this section, we consider the perfor-
mance of LAMP relative to LSTMs, which lie on the alternate
end of the spectrum: they are highly expressive recurrent neural
networks representing the best of breed predictor in multiple do-
mains, with an enormous parameter space, high training latency,
low interpretability, and some sensitivity to the specifics of the
training regime. We use a slight variant of the ‘medium’-sized
LSTM [33]. We perform comparisons for LASTFM, BRIGHTKITE,

Algorithm BRIGHTKITE LASTFM REUTERS
LAMP order 6, 1.5 iter 38.4 1054.6 296.8
LSTM, short training time 85.8 1359.1 105.4
LSTM, long training time 51.0 525.7 60.4

Table 1: Perplexity of LAMP and LSTM. Short training time for
LSTM is same as LAMP; long training time is 20x LAMP.

and REUTERS; the WIKISPEEDIA dataset is too small to showcase
the strengths of LSTMs, so we omit it. Table 1 shows the results.

LAMP performs well on BRIGHTKITE relative to the LSTM.
Even after 20x training time the LSTM’s perplexity is about 1/3
higher than LAMP, at which point the LSTM begins to overfit.

On LASTFM, the LSTM with similar training time to LAMP
performs about 30% worse, but with additional training time, the
LSTM performs significantly better, attaining about 50% of the test
perplexity of LAMP, reducing from about 10 bits to about 9 bits of
uncertainty in the prediction. We hypothesize this is because of
additional structure within the music domain.

LSTMs are known to perform well on language data as in the
REUTERS corpus, and pure sequential modeling is unlikely to cap-
ture the nuance of language in the same way. The results are con-
sistent with this expectation: LSTM with short training time al-
ready attains around 1/3 the test perplexity of LAMP, and with
more training, the LSTM improves to roughly 1/5 of LAMP.

In summary, we expect that in general, LSTMs will outperform
simpler techniques for complex sequential tasks such as modeling
language, speech, etc. We expect that LAMPs will be more ap-
propriate in settings in which Markov processes are typically used
today: as simple, interpretable, extensible sequence modeling tech-
niques that may easily be incorporated into more complex systems.
Nonetheless, it is interesting that for datasets like BRIGHTKITE
and LASTFM, LAMP performs on par with LSTMs, indicating that
LAMP models represent a valuable new point on the complex-
ity/accuracy tradeoff curve.

7. DISCUSSION
So far, we have formulated LAMP by the history distribution w

and a transition matrixP , modeling temporal and contextual effects
as multiplicative. But while this model performs well, with more
data available, we might wish to relax this assumption.

The LAMP framework easily extends to a more general formu-
lation in the following manner. Let k be the support of w; we will
assume k is finite in this section.

DEFINITION 14 (GENERALIZED LAMP). Given a distribu-
tion w on a finite support of size k and ` stochastic matrices P =
{P (1), . . . , P (`)}, and a function f : [k] → [`], the Generalized
Linear Additive Markov Process glamp(w,P, f) evolves accord-
ing to the following transition rule:

Pr[Xt = xt | x0, . . . , xt−1] =
k∑
i=1

wiP
(f(i))(xmax{0,t−i}, xt).

This corresponds to a user transitioning from a previous state de-
pendent on the state’s position in their history. In particular, the
temporal and contextual aspects are combined directly in the stochas-
tic matrices P (i), instead of only multiplicatively. Note that LAMP
can be realized by making ` = 1 and f ≡ 1, the constant func-
tion. Another interesting case is when we wish to treat the state im-
mediately prior to the current one with more emphasis than those
following. In this case, ` = 2, f(1) = 1, and f(i) = 2, i > 1.

Despite this generalization, we can still extend some of our re-
sults for LAMPs to GLAMPs. In particular, Theorem 7 holds.



THEOREM 15. glamp(w,P, f) has an equilibrium vector if and
only if the matrix P =

∑k
i=1 wiP

(f(i)) is ergodic. Furthermore,
this equilibrium vector is the same as equilibrium vector for the
first-order Markov process induced by P .

Note that the matrices P (i) may not necessarily commute, so there
is no simple characterization via the exponent process as in the
lamp(w,P ) case. We prove from first principles (details omitted).

8. CONCLUSIONS
In this paper, we propose the linear additive Markov process,

LAMP. LAMP incorporates history by utilizing a history distribu-
tion in conjunction with a stochastic matrix. While it is provably
more general than a first-order Markov process, it inherits many
nice properties of Markov processes, including succinct representa-
tion, ergodicity, and quantifiable mixing time. LAMPs can also be
easily learned. Experiments validate that they go well beyond first-
order Markov processes in terms of likelihood. Overall, LAMP is a
powerful alternative to a first-order Markov process with only neg-
ligible additional cost in terms of space and parameter estimation.

There are several questions around LAMP that constitute inter-
esting future work. They include obtaining more efficient and prov-
ably good parameter estimation algorithms, carrying over standard
Markov process notions such as conductance, cover time, etc. to
LAMP, and bringing LAMP to other application domains such as
NLP. A particularly intriguing question is if lamp2(w,P ), which
has just one more parameter compared to a first-order Markov pro-
cess, has a closed-form parameter estimation.
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