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ABSTRACT
In recent years, interest in recommender research has shifted
from explicit feedback towards implicit feedback data. A di-
versity of complex models has been proposed for a wide vari-
ety of applications. Despite this, learning from implicit feed-
back is still computationally challenging. So far, most work
relies on stochastic gradient descent (SGD) solvers which
are easy to derive, but in practice challenging to apply, es-
pecially for tasks with many items. For the simple matrix
factorization model, an efficient coordinate descent (CD)
solver has been previously proposed. However, efficient CD
approaches have not been derived for more complex models.

In this paper, we provide a new framework for deriving
efficient CD algorithms for complex recommender models.
We identify and introduce the property of k-separable mod-
els. We show that k-separability is a sufficient property to
allow efficient optimization of implicit recommender prob-
lems with CD. We illustrate this framework on a variety of
state-of-the-art models including factorization machines and
Tucker decomposition. To summarize, our work provides the
theory and building blocks to derive efficient implicit CD al-
gorithms for complex recommender models.

1. INTRODUCTION
In recent years, the focus of recommender system research

has shifted from explicit feedback problems such as rating
prediction to implicit feedback problems. Most of the signal
that a user provides about her preferences is implicit. Exam-
ples for implicit feedback are: a user watches a video, clicks
on a link, etc. Implicit feedback data is much cheaper to
obtain than explicit feedback, because it comes with no ex-
tra cost for the user and thus is available on a much larger
scale. However, learning a recommender system from im-
plicit feedback is computationally expensive because the ob-
served actions of a user need to be contrasted against all the
non-observed actions [5, 13].

Stochastic gradient descent (SGD) and coordinate descent
(CD) are two widely used algorithms for large scale machine
learning. Both algorithms are considered state-of-the-art for
learning matrix factorization models from implicit feedback
and have been studied extensively. SGD and CD have shown
different strengths and weaknesses on various data sets [4,
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17, 16, 8, 25, 15, 22, 26]. While SGD is available as a gen-
eral framework to optimize a broad class of models [13], CD
is only available for a few simple models [5, 10]. In fact, it
is even unknown if CD can be used to efficiently optimize
complex recommender models. Our work closes this gap
and identifies a model property called k-separability, that
is a sufficient condition to allow efficient learning from im-
plicit feedback. Based on k-separability, we provide a gen-
eral framework to derive efficient implicit CD solvers.

Our paper is organized as follows: First, we introduce the
problem of learning from implicit feedback and show that the
number of implicit training examples makes the application
of standard algorithms challenging. Next, we provide our
general framework for efficient implicit learning with CD. We
identify k-separability of a model as a sufficient property to
make efficient learning feasible and introduce iCD, a generic
learning algorithm for k-separable models. In Section 5, we
show how to apply iCD to a diverse set of models, including,
matrix factorization (MF), factorization machines (FM) and
tensor factorization. This section serves both as solutions to
popular models as well as a guide for applying the framework
to other complex recommender models.

To summarize, our contributions are:

• We identify a basic property of recommender models
that allows efficient CD learning from implicit data.

• We provide iCD, a framework to derive efficient im-
plicit CD algorithms.

• We apply the framework and derive algorithms for MF,
MF with side information, FM, PARAFAC and Tucker
Decomposition.

2. RELATED WORK
Since several years, matrix factorization (MF) is regarded

as the most effective, basic recommender system model.
Two optimization strategies dominate the research on MF
from implicit feedback data. The first one is Bayesian Per-
sonalized Ranking (BPR) [13], a stochastic gradient descent
(SGD) framework, that contrasts pairs of consumed to non-
consumed items. The second one is coordinate descent (CD)
also known as alternating least squares on an elementwise
loss over both the consumed and non-consumed items [5]. In
terms of the loss formulation, BPR’s pairwise classification
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Figure 1: Left: Explicit rating data, with S =
{(c1, i1, 2), (c1, i3, 3), (c2, i3, 4), . . .}. Right: Implicit data,
e.g., watch/ purchase/ click count, |Simpl| = |C||I|.

loss is better suited for ranking whereas CD loss is better
suited for numerical data. With regard to the optimization
task, both techniques face the same challenge of learning
over a very large number of training examples. BPR tack-
les this issue by sampling negative items, but it has been
shown that BPR has convergence problems when the num-
ber of items is large [7, 12]. It requires more complex, non-
uniform, sampling strategies for dealing with this problem
[12, 6]. On the other hand, for CD-MF, Hu et al. [5] have de-
rived an efficient algorithm that allows to optimize over the
large number of non-consumed items without any cost. This
computational trick is exact and does not involve sampling.
Many authors have compared both CD-MF and BPR-MF
on a variety of datasets and some work reports better qual-
ity for BPR-MF [4, 17, 16, 8] whereas for other problems
CD-MF works better [8, 25, 15, 22, 26]. This large body
of results indicates that the advantages of CD and BPR are
orthogonal and both approaches have their merits.

Our discussion so far was focused on learning matrix fac-
torization models from implicit data. Shifting from simple
matrix factorization to more complex factorization models
has shown large success in many implicit recommendation
problems [2, 4, 18, 1, 9, 24]. However, work on complex
factorization models relies almost exclusively on SGD op-
timization using the generic BPR framework. Our work,
provides the theory as well as a practical framework for de-
riving CD learners for such complex models. Like CD for
MF, our generic algorithm is able to optimize on all non-
consumed items without explicitly iterating over them. To
summarize, our paper enables researchers and practitioners
to apply CD in their work and gives them a choice between
the advantages of BPR and CD.

3. PROBLEM STATEMENT
Let I be a set of items and C a set of contexts. Let S be

a set of observed feedback where a tuple (c, i, y, α) ∈ S indi-
cates that in context c, a score y has been assigned to item i
with confidence α. See Figure 1 for an illustration. We use
a general notation of context which can include for instance
user, time, location, attributes, history, etc. Section 5 and
Section 6 show more examples for context.

3.1 Recommender Model
A recommender model ŷ : C × I → R is a function that

assigns a score to every context-item pair. The model ŷ is
parameterized by a set of model parameters Θ. The model ŷ
is typically used to decide which items to present in a given
context.

The learning task is to find the values of the model param-
eters that minimize a loss over the data S, e.g., a squared
loss

L(Θ|S) =
∑

(c,i,y,α)∈S

α (ŷ(c, i)− y)2 +
∑
θ∈Θ

λθθ
2 (1)

where λθ is an regularization constant for parameter θ.

3.2 Coordinate Descent Algorithm
Objective (1) can be minimized by coordinate descent

(CD). CD iterates through the model parameters and up-
dates one parameter at a time. For a selected parameter
θ ∈ Θ, CD computes the first L′ and second derivative L′′

of L with respect to the selected coordinate θ:

L′(θ|S) = 2
∑

(c,i,y,α)∈S

α (ŷ(c, i)− y)ŷ′(c, i) + 2λθ θ (2)

L′′(θ|S) = 2
∑

(c,i,y,α)∈S

α [(ŷ(c, i)− y)ŷ′′(c, i) + ŷ′(c, i)2] + 2λθ

(3)

and performs a Newton update step:

θ ← θ − η L
′(θ|S)

L′′(θ|S)
(4)

where η ∈ (0, 1] is the step size. For multilinear models, a
full step, i.e., η = 1, can be chosen without risking diver-
gence [11]. All models in Section 5 fall into this category.

Such CD algorithms have been well studied and the run-
time complexity is typically linear in the complexity of the
training examples and embedding dimension. For MF, [23]
shows a complexity of O(|S| k) and for FM, [11] derives a
complexity of O(NZ(X) k) where NZ(X) is the number of
non-zero entries in the design matrix X. The linear runtime
complexity in the number of training examples makes these
algorithms well suited for explicit recommendation settings,
however, they become infeasible for implicit problems.

3.3 Learning from Implicit Feedback
In an implicit recommendation problem, the non-consumed

items are meaningful and cannot be ignored. For instance,
in Figure 1 (right), the data depicts how often each item
was consumed in a context in the past. The non-consumed
items, i.e., the ones with a count of zero, are useful to learn
user preferences. To formalize, the training data Simpl of an
implicit problem consists of a set S+ of observed feedback
and all the non-consumed tuples S0

Simpl = S+ ∪ S0, |Simpl| = |C| |I| (5)

with

∀(c, i, y, α) ∈ S0 : y = 0, α = α0. (6)

S+ contains the observed feedback and is of much smaller
scale than Simpl, usually |S+| � |C| |I|.

The implicit learning problem can be stated as minimizing
the objective in eq. (1) over the implicit data Simpl. While
possible in theory, in practice, it is infeasible to apply the
learning algorithms of Section 3.2 to this problem due to
their linear computational runtime in the size of the train-
ing data which is |Simpl| = |C||I| for implicit problems. Our
paper shows how to derive efficient CD algorithms for opti-
mizing eq. (1) over implicit data.



4. GENERIC COORDINATE DESCENT AL-
GORITHM FOR IMPLICIT FEEDBACK

4.1 Implicit Regularizer
As discussed in Section 3.3, the reason why training on

implicit data is challenging is the large number of implicit
examples S0 which is typically |S0| ∈ O(|C||I|). Note that
S0 includes all context-item pairs that are not in S+. We
show now that we can rephrase the optimization criterion
to sum over all context-item pairs. This reformulation is a
prerequisite to later allow the decomposition of the loss in
Section 4.2. Moreover it allows to study implicit optimiza-
tion without having to consider S+.

Lemma 1. Implicit learning can be rephrased as a com-
bination of learning on a small positive set and minimizing
the scoring function on any context-item pair.

argmin
Θ

L(Θ|Simpl) = argmin
Θ

(
L(Θ|S) + α0

∑
c∈C

∑
i∈I

ŷ(c, i)2

︸ ︷︷ ︸
=:R(Θ)

)

(7)

where the observed feedback is rescaled

S :=

{(
c, i,

α

α− α0
y, α− α0

)
: (c, i, y, α) ∈ S+

}
. (8)

Proof. Per definition of the loss (eq. 1) and the implicit
training set Simpl (eq. 5)

L(Θ|Simpl) = L(Θ|S+) + α0

∑
(c,i)∈S0

ŷ(c, i)2

=L(Θ|S+)− L(Θ|{(c, i, 0, α0) : (c, i, y, α) ∈ S+}) + α0R(Θ)

We further can collapse each pair of examples into a sin-
gle one. We show this for the pair (c, i, y, α) ∈ S and its
counterpart (c, i, 0,−α0).

L(Θ|{(c, i, y, α)}) + L(Θ|{(c, i, 0,−α0)})
=α (ŷ(c, i)− y)2 − α0 ŷ(c, i)2

=(α− α0)

(
ŷ(c, i)2 − 2

α

α− α0
y ŷ(c, i) +

α

α− α0
y2

)
=(α− α0)

(
ŷ(c, i)− α

α− α0
y

)2

+ const

=L

(
Θ|
{(

c, i,
α

α− α0
y, α− α0

)})
+ const

The additional constant does not change the optimum for
Θ, so rescaling of examples as in eq. (8) preserves the opti-
mum.

The lemma allows an interesting interpretation of implicit
learning tasks. Implicit problems can be seen as explicit
or one-class problems with an additional implicit regularizer
or bias R(Θ) for predicting zeros. Compared to a common
regularizer such as L2, the implicit regularizer is aware of
the model ŷ. L2 penalizes non-zero model parameters Θ
whereas the implicit regularizer penalizes non-zero predic-
tions ŷ. Consequently, the implicit regularizer is less re-
strictive than L2 because small predictions can be achieved
even with large model parameters.

4.2 iCD Algorithm for k-separable Models
As shown in eq. (7), implicit learning can be formulated

as explicit learning on a small set S with an expensive im-
plicit regularizer R. Learning models over an explicit loss is
already well studied [23, 11], so we focus now on the implicit
regularizer

R(Θ) =
∑
c∈C

∑
i∈I

ŷ(c, i)2 (9)

The general computational complexity is O(|C||I|).
In this section, we introduce the concept of a k-separable

model. We will provide an efficient implicit CD solver for
any k-separable model. In Section 5, we show that many
common models are k-separable, including matrix factor-
ization, feature-based approaches such as factorization ma-
chines, but also higher-order tensor factorization such as
PARAFAC or Tucker decomposition. The iCD framework
that we derive in this section is not limited to the mod-
els described above but can serve as a blueprint for other
k-separable models as well.

Definition 1 (k-separable). A model ŷ(c, i) is called
k-separable iff the model can be rewritten as

ŷ(c, i) = 〈φ(c),ψ(i)〉 =

k∑
f=1

φf (c)ψf (i) (10)

with functions

φ : C → Rk, ψ : I → Rk (11)

where φ is parameterized by ΘC and ψ is parameterized by
ΘI with ΘC ∩ΘI = ∅.

Lemma 2. The implicit regularizer of any k-separable model
can be decomposed to:

R(Θ) =

k∑
f=1

k∑
f ′=1

∑
c∈C

φf (c)φf ′(c)︸ ︷︷ ︸
=:JC(f,f ′)

∑
i∈I

ψf (i)ψf ′(i)︸ ︷︷ ︸
=:JI (f,f ′)

(12)

Proof. The lemma follows from inserting the k-separable
model (eq. 10) into the implicit regularizer (eq. 9) and rear-
ranging the summations.

R(Θ) =
∑
c∈C

∑
i∈I

k∑
f=1

φf (c)ψf (i)
k∑

f ′=1

φf ′(c)ψf ′(i)

=
k∑
f=1

k∑
f ′=1

(∑
c∈C

φf (c)φf ′(c)

)(∑
i∈I

φf (i)φf ′(i)

)

This lemma is key to efficient learning algorithms from im-
plicit data. It shows that the context and item sides can
be computed independently, which drops the computational
complexity from O(|C| |I|) to O((|C| + |I|) k2). Next, we
show how this can be used for gradient computation which
is required for the update step in CD (see eq. 4).

Lemma 3. The implicit regularizer gradients of any k-
separable model with respect to any model parameter θ ∈ ΘC

(or analogously θ ∈ ΘI), can be simplified to

R′(θ) = 2

k∑
f=1

k∑
f ′=1

JI(f, f
′)
∑
c∈C

φf (c)φ′f ′(c) (13)



Algorithm 1 Generic Implicit CD

1: procedure iCD-Generic(S,C, I)
2: Θ← N (0, σ)
3: repeat
4: Compute Φ and Ψ if necessary
5: Compute JI
6: for θ ∈ ΘC do
7: Compute L′(θ|S), L′′(θ|S)
8: Compute R′(θ), R′′(θ)

9: θ ← θ − η L′(θ|S)+α0 R
′(θ)

L′′(θ|S)+α0 R′′(θ)

10: Update Φ if necessary
11: end for
12: Apply step 5 to 11 to the items.
13: until converged
14: return Θ
15: end procedure

R′′(θ) = 2

k∑
f=1

k∑
f ′=1

JI(f, f
′)
∑
c∈C

[
φf (c)φ′′f ′(c) + φ′f (c)φ′f ′(c)

]
(14)

Proof. The lemma follows from deriving eq. (12).

This lemma shows that computing R′ and R′′ of any context
parameter is independent of |I|.

From the analysis follows the recipe to derive an efficient
iCD learning algorithm for a model ŷ. First, rewrite the
model as a dot product of φ and ψ. Second, construct the
first and second derivative of φ and ψ with respect to any
model parameter θ ∈ Θ. These results allow to compute
R′(θ) and R′′(θ) for any model parameter θ ∈ Θ efficiently.
With these gradients for the expensive implicit regularizer,
a Newton step can be applied. Algorithm 1 shows a generic
iCD algorithm using the ideas of this section.

Most models allow some further optimizations: (i) When
the gradients of φ or ψ are sparse, some of the summands of
eqs. (13, 14) drop. (ii) The model parameters usually have
some structure which can be used for traversing the model
parameters more systematically. We will show both of these
steps in the next section for a variety of models.

5. APPLICATIONS
In this section, we apply iCD to two classes of complex fac-

torization models, namely feature-based factorization mod-
els and tensor factorization models. We have chosen these
two classes because they are very powerful and frequently
used. Moreover each of them has some interesting proper-
ties with respect to deriving iCD algorithms. The provided
algorithms can be directly applied to many common recom-
mender system tasks. This section also serves as a guide for
deriving iCD algorithms in general.

5.1 Matrix Factorization (MF)
We start by applying our framework to matrix factoriza-

tion (see Figure 2). For MF, the scoring function is

ŷ(c, i) := 〈wc,hi〉 =

k∑
f=1

wc,f hi,f (15)

with model parameters Θ = {W,H} where W ∈ RC×k and
H ∈ RI×k.

Algorithm 2 Implicit CD for MF

1: procedure iCD-MF(S,C, I)
2: W,H ← N (0, σ)
3: repeat
4: for f∗ ∈ {1, . . . , k} do
5: for f ∈ {1, . . . , k} do
6: Compute JI(f

∗, f)
7: end for
8: for c∗ ∈ C do
9: Compute L′(wc∗,f∗ |S), L′′(wc∗,f∗ |S)

10: Compute R′(wc∗,f∗), R
′′(wc∗,f∗)

11: wc∗,f∗←wc∗,f∗−
L′(wc∗,f∗ |S)+αR′(wc∗,f∗ )

L′′(wc∗,f∗ |S)+αR′′(wc∗,f∗ )

12: end for
13: Apply step 5 to 12 to the items.
14: end for
15: until converged
16: return W,H
17: end procedure

SimplW

H

C

I

k

k

Figure 2: Matrix factorization: Each context c is associated
with an embedding wc and every item i with an embed-
ding hi. The model parameters W ∈ RC×k, H ∈ RI×k are
learned to approximate the data Simpl with the dot product
of 〈wc,hi〉.

A MF model is trivially k-separable with

φf (c) = wc,f , ψf (i) = hi,f . (16)

Furthermore, the gradients are sparse

∂φf (c)

∂wc∗,f∗
=

{
1, if c = c∗ ∧ f = f∗

0, else
(17)

and all second derivatives are 0. Thus, the regularizer deriva-
tives simplify to

R′(wc∗,f∗) = 2

k∑
f=1

JI(f, f
∗)wc∗,f (18)

R′′(wc∗,f∗) = 2 JI(f
∗, f∗) (19)

The derivation is symmetric for the item side.
As MF associates each model parameter with an embed-

ding dimension f , we can traverse the parameters one di-
mension at a time. A full step η = 1 can be taken because
MF is bilinear. Algorithm 2 shows the full procedure.

The computation of JI(f
∗, ·) is trivially in O(|I| k). Gra-

dient computation of the implicit regularizer is O(k) per
parameter and for the explicit part O(|S|) for all parame-
ters. Overall, the algorithm has a complexity of O((|I| +
|C|) k2 + |S| k) per iteration.
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Figure 3: Matrix factorization with side information: In ad-
dition to the data Simpl, a feature vector xc ∈ Rp is given
for every context c ∈ C and a feature vector zi ∈ Rp for
each item i ∈ I. Each of the context features l ∈ {1, . . . , p}
is assigned a k-dimensional embedding vector wl ∈ Rk and
similarly hl ∈ Rk for each item feature. The model param-
eters W ∈ Rp×k, H ∈ Rp×k are learned to approximate the
data Simpl with a XW (Z H)t.

5.2 Feature-Based Factorization Models
One of the most powerful extension of MF is feature based

modeling for the context and item. Feature-based factoriza-
tion models are strictly more powerful than MF and have
shown large improvements in many applications (e.g. [2,
11]). For instance, the cold-start problem is commonly solved
by replacing or complementing user and item ids with user
and item attributes [2]. Another example is context-aware
recommendation, where the context is represented by sev-
eral variables, e.g. location or time in addition to the user
id. Also sequential models can be represented by feature
based modeling [6].

Learning general feature-based models on implicit feed-
back was restricted to BPR so far. This is the first work
that provides an implicit CD algorithm for this important
model class.

To formalize the problem, assume each c ∈ C is repre-
sented by a feature vector xc ∈ Rp and each i ∈ I by a
feature vector zi ∈ Rp. See Figure 3 for an illustration.

5.2.1 MF with Side Information (MFSI)
We start with a feature based extension of matrix factor-

ization similar to [2]:

ŷ(c, i) = xcW (ziH)t =
k∑
f=1

(
p∑
l=1

xc,l wl,f

)(
p∑
l=1

zi,l hl,f

)
(20)

with Θ = {W,H}. MFSI is k-separable using

φf (c) =

p∑
l=1

xc,l wl,f , ψf (i) =

p∑
l=1

zi,l hl,f (21)

and the gradients are sparse

∂φf (c)

∂wl∗,f∗
=

{
xc,l∗ , if f = f∗

0, else
(22)

Due to sparse gradients of φ and ψ, the first and second

Algorithm 3 Implicit CD for MF with Side Information

1: procedure iCD-MFSide(S,C, I)
2: W,H ← N (0, σ)
3: repeat
4: Compute Φ and Ψ
5: for f∗ ∈ {1, . . . , k} do
6: for f ∈ {1, . . . , k} do
7: Compute JI(f

∗, f)
8: end for
9: for l∗ ∈ {1, . . . , p} do

10: Compute L′(wl∗,f∗ |S), L′′(wl∗,f∗ |S)
11: Compute R′(wl∗,f∗), R

′′(wl∗,f∗)

12: wl∗,f∗←wl∗,f∗−
L′(wl∗,f∗ |S)+αR′(wl∗,f∗ )

L′′(wl∗,f∗ |S)+αR′′(wl∗,f∗ )

13: Update Φ
14: end for
15: Apply step 6 to 14 to the items.
16: end for
17: until converged
18: end procedure

regularizer derivatives simplify to:

R′(wl∗,f∗) = 2

k∑
f=1

JI(f, f
∗)
∑
c∈C

xc,l∗ φf (c) (23)

R′′(wl∗,f∗) = 2 JI(f
∗, f∗)

∑
c∈C

x2
c,l∗ (24)

Note that the sums over the context variable depend only
on context where xc,l∗ 6= 0, so with a sparse iterator, the
computation is O(kNZ(X)) for optimizing all of the context
variables in a given embedding layer f∗.

This computation assumes that Φ and Ψ are given. Ob-
viously, while optimizing W , Ψ does not change and while
optimizing H, Φ does not change. However, while optimiz-
ing W , Φ changes but can be kept in sync with changes in
W by updating:

φf∗(c)← φf∗(c) + xc,l∗(w
new
l∗,f∗ − wold

l∗,f∗) (25)

The item side can be derived analogously. The total runtime
of Algorithm 3 for one epoch over all variables isO(k2 (NZ(X)+
NZ(Z))) for the implicit regularizer.

5.2.2 Factorization Machines
The Factorization Machine (FM) model [11] is a more

complex factorized model that includes biases and interac-
tions between all variables. In general, the FM for a feature
vector x ∈ Rp is defined as

ŷ(x) = b+

p∑
l=1

xl w̃l +
∑
l=1

∑
l′>l

〈wl,wl′〉xlx′l (26)

where b is a global bias parameter, w̃ are feature biases and
W are the embeddings. In our case, for a context-item pair
(c, i), we set the input feature vector x as the concatenation
of the context and item feature vectors: x := (xc,zi).
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Figure 4: Example for tensor factorization data: two cate-
gorical variables on the context side, C ⊆ C1×C2. This data
can be interpreted as a 3-mode tensor with missing values.

The FM model is (k + 2)-separable, with

φf (c) =

p∑
l=1

xc,l wl,f , ψf (i) =

p∑
l=1

zi,l hl,f , (27)

φk+1(c) = b+

p∑
l=1

xc,l w̃l +
∑
l=1

∑
l′>l

〈wl,wl′〉xc,lxc,l′ , (28)

ψk+1(i) = 1, (29)

φk+2(c) = 1, (30)

ψk+2(c) =

p∑
l=1

zi,l h̃l +
∑
l=1

∑
l′>l

〈hl,hl′〉zi,lzi,l′ . (31)

where for the context, φ is parameterized by w̃ ∈ Rp for the
linear part and W ∈ Rp×k for the factors. And analogously
for items, ψ is parameterized by h̃ ∈ Rp for the linear part
and H ∈ Rp×k for the factors.

The gradients are sparse:

∂φf (c)

∂w̃l∗
=

{
xc,l∗ , if f = k + 1

0, else
(32)

∂φf (c)

∂wl∗,f∗
=


xc,l∗ , if f = f∗

xc,l∗(φf∗(c)− xc,l∗wl∗,f∗), if f = k + 1

0, else

(33)

Similar to MFSI, due to the sparsity in gradients, one of the
nested loops drops for the first regularizer derivative R′ and
both nested sums drop for the second regularizer derivative
R′′. Consequently, the flow and runtime analysis for FM is
the same as for MFSI.

5.3 Tensor Factorization
Tensor factorization generalizes matrix factorization and

deals with problems that involve more than two categorical
variables. For instance, in personalized recommendation of
tags for bookmarks [20], the context consists of two vari-
ables, the user C1 and the bookmark C2, and the item I
corresponds to the tag. For personalized web search [19],
the context consists of the user C1 and the query C2 and
the item I to the web page. The data can be seen as a three
mode tensor over C1, C2 and I. Figure 4 shows an example
of how observations over context C ⊆ C1 × C2 and items
I translate to a tensor. A tensor factorization model tries
to approximate the tensor with a low rank decomposition
(see Figure 5). Although tensor factorization models are
multilinear, we show that they fit well into our framework.

Additionally, we want to highlight, that existing tensor
factorization learning algorithms [19, 20, 10] require that the

k3

Simpl
C1

I

U

C2
k2

k1

W

  V

Figure 5: A tensor factorization model, decomposes a given
tensor into one matrix per mode, here U ∈ RC1×k1 for C1,
V ∈ RC2×k2 for C2 and W ∈ RC3×k3 for I.

tensor data is dense, i.e., the empty parts in the tensor in
Figure 4 are filled with zeros. This would imply that context
combinations that never have been observed, are used for
training as well, i.e., C = C1 × C2. In some applications,
this might not make sense, for instance if C1 encodes a device
type and C2 encodes an operating system version. Our iCD
framework works for both sparse and dense context. We will
point out the differences when necessary.

5.3.1 Parallel Factor Analysis (PARAFAC)
We first discuss the Parallel Factor Analysis (PARAFAC) [3]

model which is a 3-mode extension of matrix factorization.

ŷ(c1, c2, i) :=

k∑
f=1

uc1,f vc2,f wi,f (34)

with Θ = {U, V,W} where U ∈ RC1×k, V ∈ RC2×k and
W ∈ RI×k. PARAFAC is k-separable with

φf (c1, c2) = uc1,f vc2,f , ψf (i) = wi,f (35)

Again, gradients are sparse:

∂φf (c1, c2)

∂uc∗1 ,f∗
=

{
vc2,f , if c1 = c∗1 ∧ f = f∗

0, else
(36)

and the loss derivatives simplify to

R′(uc∗1 ,f∗) = 2

k∑
f=1

JI(f, f
∗)uc∗,f

∑
c2:(c∗1 ,c2)∈C

vc2,f vc2,f∗

(37)

R′′(uc∗1 ,f∗) = 2 JI(f
∗, f∗)

∑
c2:(c∗1 ,c2)∈C

vc2,f∗ vc2,f∗ (38)

The item side is equivalent to matrix factorization.
If the context is dense and includes all possible combina-

tions of context variables, i.e., if C = C1 × C2, then the
computation of JC(f, f ′), can be decomposed to:

JC(f, f ′) =
∑
c1∈C

uc1,f uc1,f ′︸ ︷︷ ︸
=:JC1

(f,f ′)

∑
c2∈C

vc2,f vc2,f ′︸ ︷︷ ︸
=:JC2

(f,f ′)

(39)

This means, the computation is in O(|C1|+ |C2|) instead of
O(|C1| |C2|). On the other hand if C is sparse and contains
only the subset of the observed context combinations, i.e.,
C ⊂ C1 × C2, then there is no need for decomposing this
sum. The same applies to the loss derivatives of eqs. (37,38):
Again, if all possible context is modeled, then {c2 : (c∗1, c2) ∈
C} = C2 and thus JC2(f, f ′) can replace the sum over C2.



The overall runtime for PARAFAC’s implicit regularizer
is O((|C|+ |I|) k2) for sparse context and O((|C1|+ |C2|+
|I|) k2) for dense context. The traversal over model param-
eters can be arranged as in the MF algorithm.

5.3.2 Tucker Decomposition
Tucker Decomposition (TD) [21] is a generalization of

PARAFAC which computes all interactions between the fac-
tor matrices. The strength of each interaction is given by a
core tensor B. For our running example with two context
variables c1, c2 and one item variable i, TD is defined as

ŷ(c1, c2, i) =

k1∑
f1=1

k2∑
f2=1

k3∑
f3=1

bf1,f2,f3uc1,f1 vc2,f2 wi,f3 (40)

with Θ = {B,U, V,W} where B ∈ Rk1×k2×k3 is the core ten-

sor and U ∈ R|C1|×k1 , V ∈ R|C2|×k2 andW ∈ R|I|×k3 . TD is
much more computationally expensive than PARAFAC, re-
quiring O(k1 k2 k3) operations just for evaluating the model
on one data point.

Even though Tucker decomposition contains nested sums,
it is k3-separable with

φf (c1, c2) =

k1∑
f1=1

k2∑
f2=1

bf1,f2,fuc1,f1 vc2,f2 , ψf (i) = wi,f

The derivatives of these functions are:

∂φf (c1, c2)

∂uc1,f∗1
=

{∑k2
f2=1 bf∗1 ,f2,f vc2,f2 , if c1 = c∗1

0, else
(41)

∂φf (c1, c2)

∂vc2,f∗2
=

{∑k1
f1=1 bf1,f∗2 ,f uc1,f1 , if c2 = c∗2

0, else
(42)

∂φf (c1, c2)

∂bf∗1 ,f∗2 ,f∗3
=

{
uc1,f∗1 vc2,f∗2 , if f = f∗3
0, else

(43)

∂ψf (i)

∂wi∗,f∗3
=

{
1, if f = f∗3 ∧ i = i∗

0, else
(44)

Unlike all the other models we have presented so far, the gra-
dients for φ are non-zero for any factor index f ∈ {1, . . . , k}.
Consequently, the nested loops over factors of the loss gra-
dient (eq. 13) cannot be improved further. However, for
ψ, which is sparse, the same optimization as in the other
models can be applied.

Like for PARAFAC, if C is dense, i.e., C = C1 × C2, we
can precompute intermediate matrices for C1 and C2 and
the computation of JC(f, f ′) simplifies to

k1∑
f1=1

k1∑
f ′1=1

k2∑
f2=1

k2∑
f ′2=1

bf1,f2,f bf ′1,f ′2,f ′JC1(f1, f
′
1)JC2(f2, f

′
2)

If C is sparse, there is no need for this optimization and we
can use a straightforward computation of JC . The overall
runtime complexities are O(k2

1 k
2
2 k

2
3 (|C1| + |C2| + |I|)) for

dense context and O(k2
1 k

2
2 k

2
3 (|C|+ |I|)) for sparse context.

6. EXPERIMENTS
The main objective of the experiments is to illustrate the

generality of the iCD framework. We show how iCD can be
applied to a variety of recommender problems that cannot be
solved with MF alone. For MF models, efficient coordinate

descent algorithms (CD) have been previously proposed [5]
and its performance compared against gradient descent al-
gorithms such as BPR [13]. Both approaches are considered
state-of-the-art and while CD outperforms BPR on certain
datasets [8, 25, 15, 22, 26], BPR has been shown to work bet-
ter on others [4, 17, 16, 8]. The purpose of our experiments
is not to compare BPR and CD on yet another dataset, but
rather to demonstrate the versatility of the iCD framework
and illustrate how it can serve as a building block for future
research on complex recommender models. As with MF,
it is likely that both iCD and BPR will show strengths in
different applications.

6.1 Experimental Setup
We evaluate on a dataset of 200, 000 users interacting with

YouTube. Our subset contains |I| = 68, 000 videos. The
dataset also contains side information about age, country,
gender and device info. We apply iCD to three popular rec-
ommendation problems – Cold-Start, Offline Recommenda-
tion, and Instant Recommendation (see Section 6.2). We
compare the following algorithms:

• Popularity: a static recommender that returns the
most popular videos.

• Coview: returns based on the previously watched video,
the most commonly chosen next video.

• iCD-MF: user-item matrix factorization using iCD for
optimization, similar to [5].

• iCD-FM: a factorization machine with varying features
for the context (Section 5.2). We report results for
different feature choices.

We measure the recall and NDCG for the top 100 returned
videos. Note that we report relative improvements over the
Popularity recommender. All hyperparameters are tuned
on a separate tuning holdout set.

6.2 Results

6.2.1 Cold-Start Recommendation
In the Cold-Start recommendation [2] scenario, we assume

that a user interacts with the recommender system for the
first time. To simulate this scenario, we select a random
subset of users and hold out all their events for evaluation
purposes; we train on the remaining users.

The common approach for dealing with cold-start is to
represent a user by side information [2]. Here, we use the
feature-based FM model (iCD-FM) with the user’s age, gen-
der, country and device info as context features. Figure 7
shows that attribute-aware FM achieves a 2x improvement
over the baselines. As expected, neither MF nor Coview can
do any better than most-popular recommendation.

6.2.2 Offline Recommendation
In the Offline Recommendation scenario, we hold out the

last feedback of each user and use all the previous feed-
back for training. This is the most commonly used pro-
tocol to evaluate the performance of a recommender algo-
rithm. We experiment with multiple FM models: (1) iCD-FM
A: an FM with user attributes, (2) iCD-FM P: a sequential
FM that only uses the previously watched video (similar
to FPMC [14] or Coview) and (3) iCD-FM A+P+U: an FM
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Figure 6: Different variants of context features are used in the iCD-FM models: A = gender, age, country and device, P = the
previously watched video, H = all videos watched so far, U = user id.

that uses all signals: attributes, previously watched video
and user id (similar to FPMC [14] with user attributes). As
shown in Figure 6a, the complex FM model with all fea-
tures achieves the best quality, illustrating the flexibility of
feature engineering with iCD.

6.2.3 Instant Recommendation
In large-scale industrial applications, online training is of-

ten not feasible due to complex serving stacks. Commonly,
models are periodically trained offline (e.g., every day or
week) and applied on a stream of user interactions. When
the model is queried to generate recommendations for a user,
all feedback until the current time is taken into account for
prediction. We simulate this setting by choosing a global
cutoff time where all the events before the cutoff are used
for training and all the remaining ones for evaluation.

In such settings, models relying on user ids, such as MF,
cannot capture recent feedback. Instead, describing a user
by the sequence of previously watched videos allows for in-
stant personalization. Such a model can be configured using
a feature-based FM model (Section 5.2) and we experiment
with four configurations (1) iCD-FM A: FM using user at-
tributes, (2) iCD-FM P: a sequential FM based on the pre-
viously watched video, (3) iCD-FM H: a FM based on all
previously watched videos, (4) iCD-FM A+P+H: an FM com-
bining all signals. As expected, the complex FM model with
all features achieves the best quality. Again, we would like
to note the generality of the iCD framework, which enables
flexible feature engineering.

6.3 Computational Costs
As stated in Section 3.3, any conventional CD solver,

e.g. [11], could solve the implicit feedback problem. Now,
we substantiate that this is infeasible because of the large
number of implicit examples. Figure 8 compares the compu-
tational cost for learning an FM with a conventional CD to
the costs of iCD on our dataset with 70k items. We use three
different context features from Figure 6. The plot shows rel-
ative costs to iCD-FM P. For all three context choices, con-
ventional CD shows four orders of magnitude higher com-
puational costs than iCD. The empirical measured runtime
for iCD was in the order of minutes; consequently, CD’s four
order of magnitude increase in runtime translates to weeks
of training for each iteration. Clearly, using a conventional
CD solver to optimize the implicit loss directly is infeasible.
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Figure 8: Training costs in log-scale of conventional CD (left,
blue) versus iCD (right, red) on our implicit dataset.

7. CONCLUSION
In this work, we have presented a general, efficient frame-

work for learning recommender system models from implicit
feedback. First, we have shown that learning from implicit
feedback can be reformulated as optimizing a cheap explicit
loss and an expensive implicit regularizer. Then we have in-
troduced the concept of k-separable models. We have shown
that the implicit regularizer of any k-separable model can be
computed efficiently without iterating over all context-item
pairs. Finally, we have shown that many popular recom-
mender models are k-separable, including matrix factoriza-
tion, factorization machines and tensor factorization. More-
over, we have provided efficient learning algorithms for these
models based on our framework. Our framework is not lim-
ited to the models discussed in the paper but designed to
serve as a general blueprint for deriving learning algorithms
for recommender systems.
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