
ar
X

iv
:1

41
2.

07
73

v1
 [

cs
.A

I]
 2

 D
ec

 2
01

4

Expressiveness of Logic Programs under General
Stable Model Semantics

Heng Zhang
Yan Zhang

Artificial Intelligence Research Group
School of Computing, Engineering and Mathematics

University of Western Sydney, Australia

August 7, 2018

Abstract

The stable model semantics had been recently generalized tonon-
Herbrand structures by several works, which provides a unified frame-
work and solid logical foundations for answer set programming. This
paper focuses on the expressiveness of normal and disjunctive pro-
grams under the general stable model semantics. A translation from
disjunctive programs to normal programs is proposed for infinite struc-
tures. Over finite structures, some disjunctive programs are proved to
be intranslatable to normal programs if the arities of auxiliary pred-
icates and functions are bounded in a certain way. The equivalence
of the expressiveness of normal programs and disjunctive programs
over arbitrary structures is also shown to coincide with that over finite
structures, and coincide with whether NP is closed under complement.
Moreover, to capture the exact expressiveness, some intertranslatabil-
ity results between logic program classes and fragments of second-
order logic are obtained.

Introduction

Logic programming with default negation is an elegant and efficient formalism for
knowledge representation, which incorporates the abilities of classical logic, inductive
definition and commonsense reasoning. Nowadays, the most popular semantics for this
formalism is the stable model semantics proposed by [16]. Logic programming based
on this semantics, which is known as answer-set programming, has then emerged as a
flourishing paradigm for declarative programming in the last fifteen years.

The original stable model semantics focuses only on Herbrand structures in which
the unique name assumption is made. For a certain class of applications, this assump-
tion will simplify the representation. However, there are many applications where the

1

http://arxiv.org/abs/1412.0773v1

knowledge can be more naturally represented over non-Herbrand structures, includ-
ing arithmetical structures and other metafinite structures. To overcome this limit, the
general stable model semantics, which generalizes the original semantics to arbitrary
structures, was then proposed by [14] via second-order logic, by [23] via circumscrip-
tion, and by [25] via Gödel’s 3-valued logic, which provides us a unified framework
for answer set programming, armed with powerful tools from classical logic.

The main goal of this work is to identify the expressiveness of logic programs,
which is one of the central topics in knowledge representation and reasoning. We will
focus on two important classes of logic programs – normal programs and disjunctive
programs. Over Herbrand structures, the expressiveness oflogic programs under the
query equivalence has been thoroughly studied in the last three decades. An excel-
lent survey for these works can be found in [5]. Our task is quite different. On the
one hand, we will work on the general stable model semantics so that non-Herbrand
structures will be considered. On the other hand, instead ofconsidering query equiva-
lence, the expressiveness in our work will be based on model equivalence. This setting
is important since answer set solvers are usually used to generate models. The model
equivalence implies the query equivalence, but the converse is in general not true.

We also hope this work contributing to the effective implementation of answer set
solvers. Translating logic programs into classical logicsis a usual approach to imple-
ment answer set solvers, e.g., [22, 21]. In this work, we are interested in translating
normal programs to first-order sentences so that the state-of-the-art SMT solvers can
be used for answer set solving. As the arity of auxiliary symbol is the most important
factor to introduce nondeterminism [18], we will try to find translations with small
arities of auxiliary symbols.

Our contribution in this paper is fourfold. Firstly, we showthat, over infinite struc-
tures, every disjunctive program can be equivalently translated to a normal one. Sec-
ondly, we prove that, if finite structures are focused, for each integern greater than
1 there is a disjunctive program with intensional predicatesof arities less thann that
cannot be equivalently translated to any normal program with auxiliary predicates of
arities less than2n. Thirdly, we show that disjunctive and normal programs are of the
same expressiveness over arbitrary structures if and only if they are of the same expres-
siveness over finite structures, if and only if the complexity class NP is closed under
complement. Lastly, to understand the exact expressiveness of logic programs, we also
prove that the intertranslatability holds between some classes of logic programs and
some fragments of second-order logic.

Preliminaries

Vocabulariesare assumed to be sets of predicate constants and function constants.
Logical symbols are as usual, including a countable set of predicate variables and a
countable set of function variables. Every constant or variable is equipped with a nat-
ural number, itsarity. Nullary function constants and variables are calledindividual
constantsandvariablesrespectively. Nullary predicate constants are calledproposi-
tions. Sometimes, we do not distinguish between constants and variables, and simply
call thempredicatesor functionsif no confusion occurs. Atoms, formulas, sentences

2

and theories of a vocabularyυ (or shortly,υ-atoms,υ-formulas,υ-sentences andυ-
theories) are built fromυ, equality, variables, connectives and quantifiers in a standard
way. Everypositive clauseof υ is a finite disjunction ofυ-atoms. Given a sentenceϕ
and a theoryΣ, let υ(ϕ) andυ(Σ) denote the sets of constants occurring inϕ andΣ
respectively.

AssumingQ to be∀ or∃, letQτ andQx̄ denote the quantifier blocksQX1 · · ·QXn

andQx1 · · ·Qxm respectively ifτ is the finite set{X1, . . . , Xn}, x̄ = x1 · · ·xm, Xi

andxi are predicate/function and individual variables respectively. Let Σ1F
n,k be the

class of sentences of formQ1τ1 · · ·Qnτnϕ, whereQi is ∃ if i is odd, otherwise it is∀;
τi is a finite set of variables of arities≤ k; and no second-order quantifier appears in
ϕ. Let Σ1

n,k denote the class defined as the same asΣ1F
n,k except no function variable

allowed in anyτi. LetΣ1F
n (respectively,Σ1

n) be the union ofΣ1F
n,k (respectively,Σ1

n,k)
for all k ≥ 0. Given a classΣ defined as above, letΣ[∀∗∃∗] (respectively,Σ[∀∗]) be the
class of sentences inΣ with first-order part of form∀x̄∃ȳϑ (respectively,∀x̄ϑ), where
x̄ andȳ are tuples of individual variables, andϑ quantifier-free.

EverystructureA of υ (or shortly,υ-structureA) is accompanied by a nonempty
setA, thedomainof A, and interprets eachn-ary predicate constantP in υ as ann-
ary relationPA onA, and interprets eachn-ary function constantf in υ as ann-ary
functionfA onA. A structure isfinite if its domain is finite; otherwise it isinfinite.
Let FIN denote the class of finite structures, and letINF denote the class of infinite
structures. Arestriction of a structureA to a vocabularyσ is the structure obtained
from A by discarding all interpretations for constants not inσ. Given a vocabulary
υ ⊃ σ and aσ-structureB, everyυ-expansionof B is a structureA of υ such thatB is
a restriction ofA to σ. Given a structureA and a setτ of predicates, let INS(A, τ) be
the set ofground atomsP (ā) for all ā ∈ PA and allP in τ .

Everyassignmentin a structureA is a function that maps each individual variable to
an element ofA and maps each predicate (respectively, function) variableto a relation
(respectively, function) onA of the same arity. Given a formulaϕ and an assignment
α in A, write A |= ϕ[α] if α satisfiesϕ in A in the standard way. In particular, ifϕ
is a sentence, simply writeA |= ϕ, and sayA is amodelof ϕ, or in other words,ϕ
is true in A. Given formulasϕ, ψ and a classC of structures, we sayϕ is equivalent
to ψ overC, or writeϕ ≡C ψ for short, if for everyA in C and every assignmentα in
A, α satisfiesϕ in A if and only if α satisfiesψ in A. Given a quantifier-free formula
ϕ and an assignmentα in A, let ϕ[α] denote theground formulaobtained fromϕ by
substitutinga for t whenevera = α(t) andt is a term.

A class of structures is also called aproperty. Let C andD be two properties. We
sayD is definedby a sentenceϕ overC, or equivalently,ϕ definesD overC, if each
structure ofC is in D if and only if it is a model ofϕ; D is definablein a classΣ of
sentences overC if there is a sentence inΣ that definesD overC. Given two classes
Σ,Λ of sentences, we writeΣ ≤C Λ if each property definable inΣ over C is also
definable inΛ over C; we write Σ ≃C Λ if both Σ ≤C Λ andΛ ≤C Σ hold. In
particular, ifC is the class of arbitrary structures, the subscriptC can be dropped.

3

Logic Programs and Stable Models

Everydisjunctive programis a set ofrulesof the form

ζ1 ∧ · · · ∧ ζm → ζm+1 ∨ · · · ∨ ζn (1)

where0 ≤ m ≤ n andn > 0; ζi is an atom not involving the equality ifm < i ≤ n;
ζj is a literal, i.e. an atom or the negation of an atom, if1 ≤ j ≤ m. Given a rule,
the disjunctive part is called itshead, and the conjunctive part is called itsbody. Given
a disjunctive programΠ, a predicate is calledintensional(w.r.t. Π) if it appears in
the head of some rule inΠ; a formula is calledintensional(w.r.t. Π) if it does not
involve any non-intensional predicate. Letυ(Π) be the set of predicates and functions
appearing inΠ.

Let Π be a disjunctive program. ThenΠ is callednormal if the head of each rule
contains at most one atom,Π is plain if the negation of any intensional atom does not
appear in the body of any rule,Π is propositionalif it does not involve any predicate of
positive arity, andΠ is finite if it contains only a finite set of rules. In particular, unless
mentioned otherwise, a disjunctive program is alwaysassumed to be finite.

Given any disjunctive programΠ, letSM(Π) denote the second-order sentenceϕ∧
∀τ∗(τ∗ < τ → ¬ϕ∗), whereτ is the set of intensional predicates;τ∗ is the set of pred-
icate variablesP ∗ for all predicatesP in τ ; τ∗ < τ is the formula∧P∈τ∀x̄(P ∗(x̄) →
P (x̄))∧¬∧P∈τ ∀x̄(P (x̄) → P ∗(x̄)); ϕ is the conjunction of all the sentencesγ∀ such
thatγ is a rule inΠ andγ∀ is the first-order universal closure ofγ; ϕ∗ is the formula
obtained fromϕ by substitutingP ∗ for all positive occurrences ofP in the head or in
the body of each rule ifP is in τ . (So, all negations in intensional literals are default
negations.) A structureA is called astable modelof Π if it satisfiesSM(Π). For more
details about this transformation, please refer to [14].

Given two propertiesC andD, we sayD is definedby a disjunctive programΠ
overC via the setτ of auxiliary constantsif the formula∃τSM(Π) definesD overC,
whereτ is a set of predicates and functions occurring inΠ. Givenn ≥ 0, let DLPn

(respectively,DLPF
n) be the class of sentences∃τSM(Π) for all disjunctive programs

Π and all finite setsτ of predicate (respectively, predicate and function) constants of
arities≤ n. LetDLP (respectively,DLPF) be the union ofDLPn (respectively,DLPF

n)
for all n ≥ 0. In above definitions, ifΠ is restricted to be normal, we then obtain the
notationsNLPn,NLP

F
n,NLP andNLPF respectively.

Given a ruleγ, letγ−

B be the set of conjuncts in the body ofγ in which no intensional
predicate positively occurs, and letγ+ be the rule obtained fromγ by removing all
literals inγ−

B . Given a disjunctive programΠ and a structureA, let ΠA be the set of
rulesγ+[α] for all assignmentsα in A and all rulesγ in Π such thatα satisfiesγ−

B in
A. Now,ΠA can be regarded as a propositional program where each groundatom as a
proposition. This procedure is called thefirst-order Gelfond-Lifschitz reductiondue to
the following result:

Proposition 1 ([28], Proposition 4). LetΠ be a disjunctive program andτ the set of
intensional predicates. Then anυ(Π)-structureA is a stable model ofΠ iff INS(A, τ)
is a minimal (w.r.t. the set inclusion) model ofΠA.

4

Progression Semantics

In this subsection, we review a progression semantics proposed by [28], which gen-
eralizes the fixed point semantics of [24] to logic programming with default negation
over arbitrary structures. For convenience, two positive clauses consisting of the same
set of atoms will be regarded as the same.

LetΠ be a propositional, possibly infinite and plain disjunctiveprogram. LetPC(υ(Π))
denote the set of positive clauses ofυ(Π) and letΛ ⊆ PC(υ(Π)). DefineΓΠ(Λ) to be

H ∨ C1 ∨ · · · ∨ Ck

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

k ≥ 0 & H,C1, . . . , Ck ∈ PC(υ(Π))

& ∃p1, . . . , pk ∈ υ(Π) s.t.
[

p1 ∧ · · · ∧ pk → H ∈ Π &

C1 ∨ p1, . . . , Ck ∨ pk ∈ Λ

]

.

It is clear thatΓΠ is a monotone operator onPC(υ(Π)).
Now, a progression operator for first-order programs can then be defined via the

first-order Gelfond-Lifschitz reduction. Given a disjunctive programΠ and anυ(Π)-
structureA, defineΓA

Π to be the operatorΓΠA ; let ΓA

Π ↑0 denote the empty set, and let
ΓA

Π ↑n denoteΓA

Π(Γ
A

Π ↑n−1) for all n > 0; finally, let ΓA

Π ↑ω be the union ofΓA

Π ↑n for
all n ≥ 0. To illustrate the definitions, a simple example is given as follows.

Example 1. LetΠ be the logic program consisting of rules

S(x) ∨ T (x) and T (x) ∧E(x, y) → T (y).

Let υ be {E} andA a structure ofυ. Then, forn > 0, ΓA

Π ↑n is the set of clauses
S(a) ∨ T (b) such thata, b ∈ A and there exists a path froma to b viaE of length less
thann. �

The following proposition shows that the general stable model semantics can be
defined by the progression operator.

Proposition 2 ([28], Theorem 1). LetΠ be a disjunctive program,τ the set of inten-
sional predicates ofΠ, andA a structure ofυ(Π). ThenA is a stable model ofΠ iff
INS(A, τ) is a minimal model ofΓA

Π ↑ω.

Remark1. In Proposition 2, it is clear that, ifΠ is normal,A is a stable model ofΠ if
and only if INS(A, τ) = ΓA

Π ↑ω.

Infinite Structures

This section will focus on the expressiveness of logic programs over infinite structures.
We first propose a translation that reduces each disjunctiveprogram to a normal pro-
gram over infinite structures. The main idea is to encode grounded positive clauses by
elements in the intended domain. With the encoding, we then simulate the progression
of the given disjunctive program by the progression of a normal program.

5

We first show how to encode a positive clause by an element. LetA be an infinite
set. Eachencoding functiononA is defined to be an injective function fromA×A into
A. Let encbe an encoding function onA andc an element inA such thatenc(a, b) 6= c

for all elementsa, b ∈ A. To simplify the statement, letenc(a1, . . . , ak; c) denote the
expression

enc((· · · (enc(c, a1), a2), · · ·), ak) (2)

for anyk ≥ 0 and any set of elementsa1, . . . , ak ∈ A. In the above expression, the
special elementc is used as a flag to indicate that the encoded tuple will be started after
c, and is then called theencoding flagof this encoding.

Let A∗ denote the set of finite tuples of elements inA and enc[A, c] the set of
elementsenc(ā; c) for all tuplesā in A∗. Themerging functionmrgonA related toenc
andc is the function fromenc[A, c]× enc[A, c] into enc[A, c] such that

mrg(enc(ā; c), enc(b̄; c)) = enc(ā, b̄; c) (3)

for all tuplesā and b̄ in A∗. Again, to simplify the statement, we letmrg(a1, . . . , ak)
be short for the expression

mrg((· · · (mrg(a1, a2), a3), · · ·), ak) (4)

if all encoding flags ofa1, . . . , ak are the same. It is clear that the merging function is
unique ifencandc are fixed.

Example 2. Let Z+, the set of all positive integers, be the domain that we will focus,
and letP1, P2, P3 be three predicates of arities2, 3, 1 respectively. Next, we show how
to encode ground positive clauses by integers inZ+.

Let e be a function fromZ+ × Z+ intoZ+ such that

e(m,n) = 2m + 3n for all m,n ∈ Z+. (5)

It is easy to check thate is an encoding function onZ+, and integers1, 2, 3, 4 are not
in the range ofe. For1 ≤ i ≤ 3, let i be the encoding flag for the encodings of atoms
built fromPi. Then the grounded atomP2(1, 3, 5) can be encoded by

e(1, 3, 5; 2) = e(e(e(2, 1), 3), 5) = 2155 + 35. (6)

Let 4 be the encoding flag for encodings of positive clauses. Then the positive clause
P2(1, 3, 5) ∨ P3(2) ∨ P1(2, 4) can be encoded bye(e(1, 3, 5; 2), e(2; 3), e(2, 4; 1); 4).
�

In classical logic, two positive clauses are equivalent if and only if they contain the
same set of atoms. Assume thatc is the encoding flag for encodings of positive clauses
and enc is the encoding function. To capture the equivalence between two positive
clauses, some encoding predicates related toencandc are needed. We define them as
follows:

in = {(enc(ā; c), b) | ā ∈ A∗ ∧ b ∈ [ā]}, (7)

subc= {(enc(ā; c), enc(b̄; c)) | ā, b̄ ∈ A∗ ∧ [ā] ⊆ [b̄]}, (8)

equ= {(enc(ā; c), enc(b̄; c)) | ā, b̄ ∈ A∗ ∧ [ā] = [b̄]}, (9)

6

where[ā], [b̄] are the sets of elements in̄a, b̄ respectively. Intuitively,in(a, b) expresses
that the atom encoded byb appears in the positive clause encoded bya; subc(a, b)
expresses that the positive clause encoded bya is a subclause of that encoded byb;
andequ(a, b) expresses that the positive clauses encoded bya andb respectively are
equivalent.

With the above method for encoding, we can then define a translation. LetΠ be
a disjunctive program. We first construct a class of normal programs related toΠ as
follows:

1. LetCΠ denote the set consisting of an individual constantcP for each predicate
constantP that occurs inΠ, and of an individual constantcǫ, wherecǫ will be inter-
preted as the encoding flag for positive clauses, andcP as the encoding flag for atoms
built fromP . LetΠ1 consist of the rule

ENC(x, y, c) → ⊥ (10)

for each individual constantc ∈ CΠ, and the following rules:

¬ENC(x, y, z) → ENC(x, y, z) (11)

¬ENC(x, y, z) → ENC(x, y, z) (12)

ENC(x, y, z) ∧ ENC(u, v, z) ∧ ¬x = u → ⊥ (13)

ENC(x, y, z) ∧ ENC(u, v, z) ∧ ¬y = v → ⊥ (14)

ENC(x, y, z) → OKe(x, y) (15)

¬OKe(x, y) → OKe(x, y) (16)

ENC(x, y, z) ∧ ENC(x, y, u) ∧ ¬z = u → ⊥ (17)

Informally, rules (15)–(17) describe thatENC is the graph of a function; rules (13)–(14)
describe thatENC is injective. Thus,ENC should be the graph of an encoding function.
In addition, rule (10) assures thatc is not in the range ofENC.

2. LetΠ2 be the program consisting of the following rules:

y = cǫ → MRG(x, y, x) (18)
[

MRG(x, u, v) ∧ ENC(u,w, y)

∧ ENC(v, w, z)

]

→ MRG(x, y, z) (19)

ENC(x, u, y) → IN(u, y) (20)

ENC(x, z, y) ∧ IN(u, x) → IN(u, y) (21)

x = cǫ → SUBC(x, y) (22)

SUBC(u, y) ∧ ENC(u, v, x) ∧ IN(v, y) → SUBC(x, y) (23)

SUBC(x, y) ∧ SUBC(y, x) → EQU(x, y) (24)

Informally, rules (18)–(19) describe thatMRG is the graph of the merging function
related toENCandcǫ; rules (20)–(21) are an inductive version of (7); rules (22)–(23) are
an inductive version of (8); all rules (20)–(24) then assertthat EQU is the equivalence
between positive clauses.

7

3. LetΠ3 be the logic program consisting of the rule

TRUE(x) ∧ EQU(x, y) → TRUE(y) (25)

and the rule

TRUE(x1) ∧ · · · ∧ TRUE(xk)∧

ENC(y1, ⌈ϑ1⌉, x1) ∧ · · · ∧ ENC(yk, ⌈ϑk⌉, xk)

∧ MRG(⌈γH⌉, y1, . . . , yk, z) ∧ γB

→ TRUE(z) (26)

for each ruleγ in Π, whereϑ1, . . . , ϑk list all the intensional atoms that have strictly
positive occurrences in the body ofγ for somek ≥ 0; γH is the head ofγ, γ−B is the
conjunction of literals occurring in the body ofγ but not inϑ1, . . . , ϑk; ENC(t1, ⌈ϑ⌉, t2)
denotes the following conjunction

ui0 = cP ∧ ENC(ui0, t1, u
i
1) ∧ · · ·

∧ ENC(uim−1, tm, u
i
m) ∧ ENC(t1, u

i
m, t2)

for some new variablesuij if t1, t2 are terms andϑ an atom of formP (t1, . . . , tm);
MRG(⌈γH⌉, y1, . . . , yk, z) denotes

ENC(v0,⌈ζ1⌉, v1) ∧ · · · ∧ ENC(vn−1, ⌈ζn⌉, vn)

∧ MRG(w0, y1, w1) ∧ · · · ∧ MRG(wk−1, yk, wk)

∧ v0 = cǫ ∧ w0 = vn ∧ z = wk

if γH = ζ1 ∨ · · · ∨ ζn for some atomsζ1, . . . , ζn andn ≥ 0.
Intuitively, rule (25) assures that the progression is closed under the equivalence

of positive clauses; rule (26) then simulates the progression operator for the original
program. As each positive clause is encoded by an element in the intended domain,
the processes of decoding and encoding should be carried outbefore and after the
simulation respectively.

Example 3. Let γ = P (v) ∧ ¬Q(v) → R(v) ∨ S(v) be a rule such thatP,Q,R, S
are intensional. Then the following rule, defined by (26) with a slight simplification,
simulatesγ:

TRUE(x1) ∧ ENC(cP ,v,u1) ∧ ENC(y1,u1,x1)∧

ENC(cR,v,u2) ∧ ENC(cǫ,u2,w1) ∧ ENC(cS ,v,u3)∧

ENC(w1,u3,w2) ∧ MRG(w2,y1,z) ∧ ¬Q(v)

→ TRUE(z).

4. LetΠ4 be the program consisting of the rule

x = cǫ → FALSE(x) (27)

and the rule

FALSE(x) ∧ ENC(x, ⌈ϑ⌉, y) ∧ ¬ϑ → FALSE(y) (28)

8

for every intensional atomϑ of the formP (z̄P), wherez̄P denotes a tuple of distinct
individual variablesz1 · · · zkP

that are different fromx andy, andkP is the arity ofP .
This program is intended to define the predicateFALSE as follows:FALSE(a) holds

in the intended structure if and only ifa encodes a positive clause that is false in the
structure.

5. LetΠ5 be the logic program consisting of the rule

TRUE(cǫ) → ⊥ (29)

and the following rule

TRUE(x) ∧ ENC(y, ⌈ϑ⌉, x) ∧ FALSE(y) → ϑ (30)

for each atomϑ of the form same as that inΠ4.
Informally, this program asserts that a ground atom is true in the intended structure

if and only if there is a positive clause containing this atomsuch that the clause in true
and all the other atoms in this clause are false in the structure.

Now, we letΠ⋄ denote the union ofΠ1, . . . ,Π5. This then completes the definition
of the translation. The soundness of this translation is assured by the following theorem.

Theorem 1. LetΠ be a disjunctive program. Then over infinite structures,SM(Π) is
equivalent to∃πSM(Π⋄), whereπ denotes the set of constants occurring inΠ⋄ but not
in Π.

To prove this result, some notations and lemmas are needed. Let υi andτ be the
sets of intensional predicates ofΠi andΠ respectively. Letσ = υ1 ∪ υ2 ∪ υ(Π). Given
a structureA of υ(Π), eachencoding expansionof A is defined to be aσ-expansionB
of A satisfying both of the following:

1. ENC is interpreted as the graph of an encoding functionenconA such that no
element amongcBǫ andcBP (for all P ∈ τ) belongs to the range ofenc, ENC as the
complement of the graph ofenc, andOKB

e= A×A;

2. MRG is interpreted as the graph of the merging function related to encandcBǫ ,
andIN, SUBC, EQU as the encoding predicatesin, subc, equrelated toencandcBǫ
respectively.

LetA be a structure ofυ(Π) with an encoding expansionB. Let encbe the encod-
ing function with graphENCB. Let

[[P (a1, . . . , ak)]]
B = enc(a1, . . . , ak; cBP), (31)

[[ϑ1 ∨ · · · ∨ ϑn]]
B = enc([[ϑ1]]B, . . . , [[ϑn]]B; cBǫ). (32)

If the encoding expansionB is clear from the context, we simply write[[·]]B as [[·]].
Given a setΣ of ground positive clauses, let[[Σ]] be the set of elements[[C]] for all
C ∈ Σ. Let∆n(B) be the set of elementsa with TRUE(a) ∈ ΓB

Π3
↑n.

Lemma 1. LetA be a structure ofυ(Π) with an encoding expansionB. Then[[ΓA

Π↑ω
]] = ∪n≥0∆

n(B).

9

Next, given a structureA of υ(Π), anυ(Π⋄)-expansionC of A is called aprogres-
sion expansionof A if the restriction ofC toσ, denoted byB, is an encoding expansion
of A; C interpretsTRUE as[[ΓA

Π↑ω]]
B, and interpretsFALSE as

{

[[C]]B | C ∈ GPC(τ, A) & INS(A, τ) |= ¬C
}

(33)

whereGPC(τ, A) denotes the set of ground positive clauses built from predicates inτ
and elements inA.

Lemma 2. LetA be a structure ofυ(Π) with a progression expansionC. ThenINS(A, τ)
is a minimal model ofΓA

Π↑ω iff INS(C, τ) is a minimal model ofΠC
5 .

Due to the limit of space, we will omit the proofs of Lemmas 1 and 2 here. To
show Lemma 1, it is sufficient to show both[[ΓA

Π↑n]] ⊆ ∆2n(B) and[[ΓA

Π↑n]] ⊇ ∆n(B),
and each of them can be done by an induction. For Lemma 2, roughly speaking, the
soundness is assured by the result that every head-cycle-free disjunctive program is
equivalent to the normal program obtained by shifting [4]. Please note that every set of
positive clauses is head-cycle-free, andΠ4 andΠ5 are designed for the simulation of
shifting. With these lemmas, we can then prove Theorem 1:

Proof of Theorem 1.By the splitting lemma in [15] and the second-order transforma-
tion, it suffices to show thatSM(Π) is equivalent to the following formula

∃π[SM(Π1) ∧ · · · ∧ SM(Π5)] (34)

over infinite structures. Now we prove it as follows.
“=⇒”: Let A be an infinite model ofSM(Π). LetB be an encoding expansion ofA.

The existence of such an expansion is clearly assured by the infiniteness ofA. It is easy
to check thatB is a stable model of bothΠ1 andΠ2. LetC be the progression expansion
of A that is also an expansion ofB. By Proposition 2, INS(B, τ) = INS(A, τ) should
be a minimal model ofΓA

Π↑ω. By Lemma 1 and definition, INS(B, τ) is also a minimal
model ofΓB

Π3
↑ω. By Proposition 2 again,B is then a stable model ofΠ3, which implies

that so isC. It is also easy to check thatC is a stable model ofΠ4. On the other hand,
since INS(A, τ) is a minimal model ofΓA

Π ↑ω, by Lemma 2, INS(C, τ) should be a
minimal model ofΠC

5 , which means thatC is a stable model ofΠ5 by Proposition 1.
Thus,A is a model of formula (34).

“⇐=”: Let A be an infinite model of formula (34). Then there exists anυ(Π⋄)-
expansionC of A such thatC satisfiesSM(Πi) for all i : 1 ≤ i ≤ 5. Let B be the
restrictions ofC toσ. Then, by a routine check, it is easy to show thatB is an encoding
expansion ofA. As C is a stable model ofΠ3, by Proposition 2, INS(C, υ3) is then
a minimal model ofΓC

Π3
↑ω = ΓB

Π3
↑ω. Furthermore, by Lemma 1 and the conclusion

thatC satisfiesSM(Π4), we then have thatC is a progression expansion ofA. On the
other hand, sinceC is also a stable model ofΠ5, by Proposition 1 we can conclude
that INS(C, τ) is a minimal model ofΠC

5 . Thus, by Lemma 2 we immediately have that
INS(A, τ) is a minimal model ofΓA

Π ↑ω. By Proposition 2,A is then a stable model of
Π.

10

Remark2. Note that, given any finite domainA, there is no injective function from
A × A intoA. Therefore, we can not expect that the above translation works on finite
structures.

Corollary 1. DLP ≃INF NLP.

Now, let us focus on the relationship between logic programsand second-order
logic. The following proposition says that, over infinite structures, normal programs
are more expressive than the existential second-order logic, which then strengthens a
result in [3] where such a separation over arbitrary structures was obtained.

Proposition 3. NLP 6≤INF Σ1
1.

To show this, our main idea is to define a property that can be defined by a normal
program but not by any existential second-order sentence. The property is defined as
follows. LetυR be the vocabulary consisting of a binary predicateE and two individual
constantss andt. Let REACHi be the class of infiniteυR-structures in each of which
there is a finite path froms to t via edges inE. Now, we show the result.

Proof of Proposition 3.First show that REACHi is definable inNLP over infinite struc-
tures. LetΠ be the normal program

{

P (s) , P (x) ∧ E(x, y) → P (y), ¬P (t) → ⊥
}

. (35)

By a simple check, we can show that the formula∃PSM(Π) defines the desired prop-
erty over infinite structures.

Next, we prove that REACHi is undefinable inΣ1
1 over infinite structures. Towards

a contradiction, assume that there is a first-order sentenceϕ and a finite setτ of pred-
icates such that∃τϕ is in Σ1

1 and defines REACHi over infinite structures. LetR be a
binary predicate not inτ . Letψ denote

∀x∃yR(x, y) ∧ ∀x¬R(x, x)∧

∀x∀y∀z[R(x, y) ∧R(y, z) → R(x, z)].
(36)

Intuitively, it asserts that the relationR is both transitive and irreflexive, and each ele-
ment in the domain has a successor w.r.t. this relation. It isobvious that such a relation
exists if and only if the domain is infinite. Therefore, the formula∃τϕ ∧ ∃Rψ defines
REACHi over arbitrary structures.

Moreover, letγ0(x, y) bex = y; for all n > 0 letγn(x, y) denote∃zn(γn−1(x, zn)∧
E(zn, y)), where eachγn(x, y) asserts that there is a path of lengthn from x to y. Let
Λ be the set of sentences¬γn(s, t) for all n ≥ 0. Now we claim:

Claim.Λ ∪ {∃τϕ, ∃Rψ} is satisfiable.

To show this, it suffices to show that the first-order theoryΛ∪{ϕ, ψ} is satisfiable.
Let Φ be a finite subset ofΛ, and letn = max{m | ¬γm(s, t) ∈ Φ}. Let A be an
infinite model ofψ with vocabularyυ(ϕ) ∪ υ(ψ) in which the minimal length of paths
from s to t via edgeE is an integer> n. ThenA is clearly a model ofΦ∪{ϕ, ψ}. Due
to the arbitrariness ofΦ, by the compactness we then have the desired claim.

11

Let A be any model ofΛ ∪ {∃τϕ, ∃Rψ}. Then according to∃Rψ, A should be
infinite, and byΛ, there is no path froms to t via E in A. However, according to
∃τϕ, every infinite model of it should bes-to-t reachable, a contradiction. Thus, the
property REACHi is then undefinable inΣ1

1 over infinite structures. This completes the
proof immediately.

The following separation immediately follows from the proof of Theorem 4.1 in [10].
Although their statement refers to arbitrary structures, the proof still works if only in-
finite structures are focused.

Proposition 4. Σ1
2 6≤INF DLP.

Finite Structures

This section will focus on the expressiveness of logic programs over finite structures.
We first consider the relationship between disjunctive and normal programs. Unfortu-
nately, in the general case, we have the following result:

Proposition 5. DLP ≃FIN NLP iff NP = coNP.1

Proof. By Fagin’s Theorem [13] and Stockmeyer’s logical characterization of the poly-
nomial hierarchy [27],2 we have thatΣ1

2 ≃FIN Σ1
1 iff Σp

2 = NP. By a routine complex-
ity theoretical argument, it is also true thatΣp

2 = NP iff NP = coNP. On the other
hand, according to the proof of Theorem 6.3 in [11], or by Proposition 7 in this section,
Leivant’s normal form [20] and the definition ofSM, we can concludeDLP ≃FIN Σ1

2;
by Proposition 6 in this section, it holds thatNLP ≃FIN Σ1

1. Combining these conclu-
sions, we then have the desired proposition.

This result shows us how difficult it is to separate normal programs from disjunctive
programs over finite structures. To know more about the relationship, we will try to
prove a weaker separation between these two classes. Beforedoing this, we need to
study the relationship between logic programs and second-order logic. For the class of
normal programs, we have the following characterization:

Proposition 6. NLPF
n ≃FIN Σ1F

1,n[∀
∗] for all n > 1.

To prove the above characterization, we have to develop a translation that turns nor-
mal programs to first-order sentences. The main idea is to extend the Clark completion
by a progression simulation, so it is an improved version of the ordered completion
proposed by [3].

Now, we define the translation. LetΠ be a normal program andn the maximal arity
of intensional predicates ofΠ. Without loss of generality, assume the head of every rule
in Π is of formP (x̄), whereP is ak-ary predicate for somek ≥ 0, andx̄ is the tuple
of distinct individual variablesx1, . . . , xk. Let ≺ be a new binary predicate and̟ a

1A similar result for traditional logic programs under the query equivalence can be obtained by the ex-
pressiveness results proved by [26, 11].

2In their characterizations of complexity classes, no function constant of positive arity is allowed. How-
ever, this restriction can be removed as functions can be easily simulated by predicates.

12

universal first-order sentence asserting that≺ is a strict partial order. Given two tuple
s̄, t̄ of terms of the same length, lets̄ ≺ t̄ be a quantifier-free formula asserting thats̄

is less than̄t w.r.t. the lexicographic order extended from≺ naturally.
Let τ be the set of intensional predicates ofΠ. Letc be the least integer≥ log2 |τ |+

n. Fix P to be ak-ary predicate inτ and letλ = P (x1, . . . , xk). Supposeγ1, . . . , γl
list all the rules inΠ whose heads areλ, and supposeγi is of form

ζi ∧ ϑi1 ∧ · · · ∧ ϑimi
→ λ (37)

whereϑi
1, . . . , ϑ

i
mi

list all the positive intensional conjuncts in the body ofγi, ζi is the
conjunction of other conjuncts that occurs in the body ofγi,mi ≥ 0, andȳi is the tuple
of all individual variables occurring inγi but not inλ.

Next, we letϕP denote the conjunction of rulesγi for all i : 1 ≤ i ≤ l, and letψP

denote the formula

λ→
l
∨

i=1

∃ȳi

ζi ∧
mi
∧

j=1

(

ϑij ∧ LESSD(ϑ
i
j , λ)

)

 (38)

where, for every intensional atomsϑ andϑ0, ord(ϑ) denotes the tuple(ocQ(t̄), · · · , o
1
Q(t̄))

if ϑ of formQ(t̄), eachosQ is a new function whose arity is the same as that ofQ, and
LESSD(ϑ, ϑ0) denotes formulaord(ϑ) ≺ ord(ϑ0).

DefineϕΠ as the universal closure of conjunction of the formula̟ and formulas
ϕP ∧ψP for all P ∈ τ . Letσ be the set of functionsosQ for allQ ∈ τ ands : 1≤ s≤ c.
Clearly,∃σϕΠ is equivalent to a sentence inΣ1F

1,n[∀
∗] by introducing Skolem functions

if n > 1. Now we show the soundness:

Lemma 3. Given any finite structureA of υ(Π) with at least two elements in the
domain,A |= SM(Π) iff A |= ∃σϕΠ.

Proof. Due to the limit of space, we only show the right-to-left direction. LetB be
a finite model ofϕΠ. By formula̟, B must interpret predicate≺ as a strict partial
order onB. Let A be the restriction ofB to υ(Π). To show thatA is a stable model
of Π, by Proposition 2 it suffices to show that INS(A, τ) = ΓA

Π ↑ω. We first claim that
ΓA

Π ↑m ⊆ INS(A, τ) for all m ≥ 0. This can be shown by an induction onm. The case
of m = 0 is trivial. Letm > 0 and assumeΓA

Π ↑m−1⊆ INS(A, τ). Our task is to show
ΓA

Π ↑m ⊆ INS(A, τ). Let p be a ground atom inΓA

Π ↑m. By definition, there must exist
a ruleγi of form (37) inΠ and an assignmentα in A such thatλ[α] = p, α satisfiesζi

in A (so equivalently, inB), and for each atomϑi
j , ϑi

j [α] ∈ ΓA

Π ↑m−1. By the inductive
assumption, eachϑi

j[α] ∈ INS(A, τ), or in other words,α satisfies eachϑi
j in A (so

equivalently, inB). As α clearly satisfies the ruleγi in B, we can conclude thatα
satisfiesλ in B, which impliesp = λ[α] ∈ INS(B, τ) = INS(A, τ). So, the claim is
true. From it, we haveΓA

Π ↑ω⊆ INS(A, τ).
Now, it remains to prove INS(A, τ) ⊆ ΓA

Π ↑ω. Towards a contradiction, assume
this is not true. Then we must haveΓA

Π ↑ω (INS(A, τ) by the previous conclusion.
Given two ground intensional atomsp1 andp2 in INS(A, τ), we definep1 < p2 if
LESSD(p1, p2) is true inB. Let p be a<-minimal atom in INS(A, τ) − ΓA

Π ↑ω and
supposep = P (ā) for someP ∈ τ . Letα be an assignment inB such thatα(x̄) = ā.

13

By definition,α should satisfyψP (in whichλ[α] = p) in B. So, there exist an integer
i : 1 ≤ i ≤ l and an assignmentα0 in B such that (i)α0(x̄) = ā, (ii) ζi[α0] is true in
B, and (iii) for all j, qj ∈ INS(B, τ) = INS(A, τ) andqj < λ[α0], whereqj denotes
ϑi
j[α0]. As λ[α0] = λ[α] = p andp is <-minimal in INS(A, τ) − ΓA

Π ↑ω, we can
concludeqj ∈ ΓA

Π ↑ω for all j. According to the definition ofψP , the ruleγi (of form
(37)) is inΠ, which impliesq1 ∧ · · · ∧ qmi

→ p = γ+i [α0] ∈ ΠA. By definition, we
then havep ∈ ΓA

Π ↑ω, a contradiction.

Remark3. Letm andn be the number and the maximal arity of intensional predicates
respectively. The maximal arity of auxiliary constants in our translation is onlyn (that
of the ordered completion in [3] is2n), which is optimal if Conjecture 13 in [6] is true.
Moreover, the number of auxiliary constants in our translation ism · (⌈log2m⌉ + n),
while that of the ordered completion ism2. (Note thatn is normally very small.)

Remark4. Similar to the work in [3], we can develop an answer set solverby calling
some SMT solver. By the comparison in the above remark, this approach is rather
promising. In addition, as a strict partial order is available in almost all the SMT solvers
(e.g., built-in arithmetic relations), our translation can be easily optimized.

Now we are in the position to prove Proposition 6.

Proof of Proposition 6.“≥FIN”: Let ϕ be any sentence inΣ1F
1,n[∀

∗]. It is obvious thatϕ
can be written as an equivalent sentence of form∃τ∀x̄(γ1 ∧ · · · ∧ γk) for somek ≥ 0,
where eachγi is a disjunction of atoms or negated atoms, andτ a finite set of functions
or predicates of arity≤ n. LetΠ be a logic program consisting of the ruleγ̃i → ⊥ for
eachi : 1 ≤ i ≤ k, whereγ̃i is obtained fromγi by substitutingϑ for each negated
atom¬ϑ, followed by substituting¬ϑ for each atomϑ, and followed by substituting∧
for ∨. It is easy to check that∃τSM(Π) is inNLPF

n and equivalent toϕ.
“≤FIN”: Let C=1 (respectively,C>1) be the class of finite structures with exactly one

(respectively, at least two) element(s) in the domain. LetΠ be a normal program andτ
a finite set of predicates and functions such that∃τSM(Π) is in NLPF

n. It is trivial to
construct a sentence, sayζ, in Σ1F

1,n[∀
∗] such that∃τSM(Π) is equivalent toζ overC=1.

(Please note that, if the domain is a singleton, a first-orderlogic program will regress
to a propositional one.) By Lemma 3, there is also a sentenceψ in Σ1F

1,n[∀
∗] such that

∃τSM(Π) is equivalent toψ overC>1. Letϕ be the following sentence:

[∃x∀y(x = y) ∧ ζ] ∨ [∃x∃z(¬x = z) ∧ ψ]. (39)

Informally, this formula first test whether or not the domainis a singleton. If it is true,
let ζ work; otherwise letψ work. Thus, it is easy to show that∃τSM(Π) is equivalent
to ϕ over finite structures. It is also clear thatϕ can be written to be an equivalent
sentence inΣ1F

1,n[∀
∗]. (Please note that every first-order quantifier can be regarded as a

second-order quantifier over a function variable of arity0.)

Remark5. Assuming Conjecture 1 in [6], by the results of [17],NLPF
k then exactly

captures the class of languages computable inO(nk)-time (wheren is the size of input)

3It impliesESOF
n[∀

∗] ≃FIN ESOF
n[∀

n], where the latter is the class of sentences inESOF
n[∀

∗] with at
mostn individual variables.

14

in Nondeterministic Random Access Machines (NRAMs), and whether an extensional
database can be expanded to a stable model of a disjunctive program is decidable in
O(nk)-time in NRAMs.

By Proposition 6 and the fact that auxiliary functions can besimulated by auxiliary
predicates in both logic programs and second-order logic, we have the following result:

Corollary 2. NLP ≃FIN Σ1
1.

Next, let us focus on the translatability from a fragment of second-order logic to
disjunctive programs. For convenience, in the rest of this paper, we fixSUCC to be a
binary predicate, fixFIRST andLAST to be two unary predicates, and fixυS to be the
set consisting of these predicates. In particular, unless mentioned otherwise, a logic
program or a formula is always assumed to contains no predicate inυS.

A structureA is called asuccessor structureif:

1. its vocabulary contains all the predicates inυS, and

2. SUCCA is a binary relationR onA such that the transitive closure ofR is a strict
total order and for alla ∈ A, both|{b | (a, b) ∈ R}| ≤ 1 and|{b | (b, a) ∈ R}| ≤
1 hold, and

3. FIRSTA (respectively,LASTA) consists of the least element (respectively, the
largest element) inA w.r.t. SUCCA.

By this definition, given a successor structure, both the least and largest elements must
exist, so it is then finite. Now, we letSUC denote the class of successor structures.

Let Σ1
2,n[∀

n∃∗] be the class of sentences inΣ1
2,n[∀

∗∃∗] that involve at mostn uni-
versal quantifiers. Now we can show:

Lemma 4. Σ1
2,n[∀

n∃∗] ≤SUC DLPn for all n > 0.

Proof. (Sketch) Let∃τ∀σϕ be any sentence inΣ1
2,n[∀

n∃∗] whereτ, σ are finite sets of
predicates of arities≤ n. Without loss of generality, supposeϕ = ∀x̄∃ȳ(ϑ1∨· · ·∨ϑm),
wherex̄ is of lengthn; eachϑi is a finite conjunction of literals. Next, we want to
construct a disjunctive program which defines the property expressed by the sentence
∃τ∀σϕ.

Before constructing the program, we need to define some notations. Letū andv̄ be
any two tuples of individual variablesu1 · · ·uk andv1 · · · vk respectively. Let FIRST(ū)
denote the conjunction ofFIRST(ui) for all i : 1 ≤ i ≤ k, and let LAST(ū) denote the
conjunction ofLAST(ui) for all i : 1 ≤ i ≤ k. Moreover, let SUCCi(ū, v̄) be the
formula

u1 = v1 ∧ · · · ∧ ui−1 = vi−1

∧ SUCC(ui, vi) ∧ LAST(ui+1)

∧ FIRST(vi+1) ∧ · · · ∧ LAST(uk) ∧ FIRST(vk)

(40)

for eachi : 1 ≤ i ≤ k.

15

Now let us construct the translation. First we define:

∆1 = { X(z̄) ∨Xc(z̄) | X ∈ σ ∪ τ } ,

∆2 = { LAST(x̄) ∧D(x̄) → Xc(z̄) | X ∈ σ } ,

∆3 = { LAST(x̄) ∧D(x̄) → X(z̄) | X ∈ σ } ,

∆4 = { FIRST(x̄) ∧ ϑci (x̄, ȳ) → D(x̄) | 1 ≤ i ≤ m } ,

∆5 =

{

SUCCj(v̄, x̄) ∧D(v̄)∧

ϑci (x̄, ȳ) → D(x̄)

∣

∣

∣

∣

∣

1 ≤ i ≤ m

1 ≤ j ≤ n

}

,

∆6 = { LAST(x̄) ∧ ¬D(x̄) → ⊥ } ,

where, for eachX ∈ σ ∪ τ , Xc is a new predicate of the same arity;ϑci is the formula
obtained fromϑi by substitutingXc for ¬X wheneverX ∈ σ ∪ τ ; D is ann-ary new
predicate.

LetΠ be the union of∆1, . . . ,∆6 andπ the set of new predicates introduced in the
translation. Clearly,∃πSM(Π) is in DLPn. By a similar (slightly more complicated)
argument to that in Theorem 6.3 of [11], we can show that∃π∃τ∃σSM(Π) ≡SUC

∃τ∀σϕ.

Next, we show that this result can be generalized to finite structures. To do this, we
need a program to define the class of successor structures. Now we define it as follows.

Let ΠS be the program consisting of the following rules.

¬LESS(x, y) → LESS(x, y) (41)

¬LESS(x, y) → LESS(x, y) (42)

LESS(x, y) ∧ LESS(y, z) → LESS(x, z) (43)

LESS(x, y) ∧ LESS(y, x) → ⊥ (44)

¬LESS(x, y) ∧ ¬LESS(y, x) ∧ ¬x = y → ⊥ (45)

LESS(x, y) → FIRST(y) (46)

¬FIRST(x) → FIRST(x) (47)

LESS(x, y) → LAST(x) (48)

¬LAST(x) → LAST(x) (49)

LESS(x, y) ∧ LESS(y, z) → SUCC(x, z) (50)

¬SUCC(x, y) ∧ LESS(x, y) → SUCC(x, y) (51)

Informally, rules (41)–(42) are choice rules to guess a binary relationLESS; rule (43),
(44) and (45) restrictLESSto be transitive, antisymmetric and total respectively so that
it is a strict total order; rules (46)–(47) and rules assert thatFIRST andLAST consist of
the least and the last elements respectively if they exist; the last two rules then assert
thatSUCCdefines the relation for direct successors. The following simple lemma shows
thatΠS is the desired program.

Lemma 5. Given a vocabularyσ ⊇ υS and a structureA of σ, A is a successor
structure iff it is finite and is a model of∃τSM(ΠS), whereτ denotesυ(ΠS)− υS.

16

Now we can then prove the following result:

Proposition 7. Σ1
2,n[∀

n∃∗] ≤FIN DLPn for all n > 1.

Proof. Let n > 1 andϕ a sentence inΣ1
2,n[∀

n∃∗]. LetΠ0 be the disjunctive program
constructed in the proof of Lemma 4 related toϕ, and letσ be the set of predicates
appearing inΠ0 but neither inυS nor in υ(ϕ). Let Π = Π0 ∪ ΠS and letτ be the
set of predicates appearing inΠS but not inυS. Next we show thatϕ is equivalent to
∃τ∃σSM(Π) over finite structures. By definition and the splitting lemmain [15], it
suffices to show thatϕ is equivalent to

∃υS(∃τSM(ΠS) ∧ ∃σSM(Π0)) (52)

over finite structures. Letυ denote the union ofυ(ϕ) andυS. Now we prove the new
statement as follows.

“=⇒”: Let A be a finite model ofϕ. Clearly, there must exist at least oneυ-
expansion, sayB, of A such thatB is a successor structure. By Lemma 5,B should be
a model of∃τSM(ΠS), and by the proof of Lemma 4,B is also a model of∃σSM(Π0).
Hence,A is a model of formula (52).

“⇐=”: Let A be a finite model of formula (52). Then there is anυ-expansion, say
B, of A such thatB satisfies both∃τSM(ΠS) and∃σSM(Π0). By Lemma 5,B is a
successor structure, and then by the proof of Lemma 4,B must be a model ofϕ. This
means thatA is a model ofϕ.

With these results, we can prove a weaker separation:

Theorem 2. DLPn 6≤FIN NLPF
2n−1 for all n > 1.

Proof. Let υn be the vocabulary consisting of only ann-ary predicatePn. Define
PARITYn to be the class of finiteυn-structures in each of whichPn is interpreted
as a set consisting of an even number ofn-tuples. Fixn > 1. Now, let us show that
PARITY 2n is definable inDLPn overFIN.

We first show that, over successor structures, PARITY 2n is definable inΣ1
2,n[∀

n∃∗].
Let FIRST, LAST and SUCCi be the same as those in the proof of Lemma 4, and let
SUCC(s̄, t̄) denote the conjunction of SUCCi(s̄, t̄) for all i : 1 ≤ i ≤ n if s̄ and t̄ are
n-tuples of terms. LetX andY be two predicate variables of arityn. We defineϕ1 to
be the formula

[

∀z̄(FIRST(z̄) → [Y (z̄) ↔ P2n(x̄, z̄)])∧

∀ȳz̄(SUCC(ȳ, z̄) → [P2n(x̄, z̄) ↔ Y (ȳ)⊕ Y (z̄)])

]

→ ∃z̄(LAST(z̄) ∧ [X(x̄) ↔ Y (z̄)]),

whereψ ⊕ χ denotes the formula(ψ ↔ ¬χ). Informally, ϕ1 is intended to define
“X(ā) is true if and only if the cardinality of{b̄ | P (ā, b̄)} is odd”. Defineϕ2 to be the
formula

[

∀z̄(FIRST(z̄) → [X(z̄) ↔ Y (z̄)])∧

∀ȳz̄(SUCC(ȳ, z̄) → [X(z̄) ↔ Y (ȳ)⊕ Y (z̄)])

]

→ ∃z̄[LAST(z̄) ∧ ¬Y (z̄)].

17

Intuitively,ϕ2 asserts “X consists of an even number ofn-tuples on the domain”. Now,
let ϕ = ∃X∀Y ∀x̄(ϕ1 ∧ ϕ2). Obviously,ϕ can be written as an equivalent sentence in
Σ1

2,n[∀
n∃∗]. By a careful check, it is not difficult to show that, given anysuccessor

structureA of υ(ϕ), the restriction ofA to υ2n is in PARITY 2n if and only if A is a
model ofϕ.

According to the proof of Lemma 4, there exist a disjunctive programΠ0 and a
finite setτ of predicates of arities≤ n such that∃τSM(Π0) is equivalent toϕ over
successor structures and no predicate inυS is intensional w.r.t.Π0. LetΠ be the union
of ΠS andΠ0. Letσ be the set of predicates inυ(Π)− υ2n. It is easy to show that, over
finite structures, PARITY 2n is defined by∃σSM(Π), so definable inDLPn.

Next, we show that PARITY 2n is undefinable inNLPF
2n−1 over finite structures. If

this is true, we then obtain the desired proposition immediately. By Proposition 6, it
is sufficient to prove that PARITY 2n is not definable inΣ1F

1,2n−1 over finite structures.
Towards a contradiction, assume that it is not true. By a similar argument to that in
Theorem 3.1 of [7], we have:

Claim. Letm ≥ 1. Then PARITY 2m is definable inΣ1F
1,2m−2 overFIN if PARITYm is

definable inΣ1F
1,m−1 overFIN.

With this claim, we can then infer that PARITY 4n is definable inΣ1F
1,4n−2 over finite

structures. As every function variable of arityk ≥ 0 can always be simulated by a
predicate variable of arityk + 1, PARITY 4n should be definable inΣ1

1,4n−1 over finite
structures, which contradicts with Theorem 2.1 in [1]. Thiscompletes the proof.

Arbitrary Structures

Based on the results presented in the previous two sections,we can then compare the
expressiveness of disjunctive programs and normal programs over arbitrary structures.

Theorem 3. DLP ≃ NLP iff DLP ≃FIN NLP.

Proof. The left-to-right direction is trivial. Now let us show the converse. Assume
DLP ≃FIN NLP, and letΠ be a disjunctive program. Then there must exist a normal
programΠ◦ such thatSM(Π) ≡FIN ∃σSM(Π◦), whereσ is the set of predicates oc-
curring inΠ◦ but not inΠ. By Theorem 1, there is a normal programΠ⋄ such that
SM(Π) ≡INF ∃τSM(Π⋄). Without loss of generality, let us assumeσ ∩ τ = ∅. To
showDLP ≃ NLP, our idea is to design a normal program testing whether or notthe
intended structure is finite. If that is true, we letΠ◦ work; otherwise, letΠ⋄ work. To
do this, we introduce a new predicateFINITE of arity 0, and letΠT be the union ofΠS

and the following logic program:

FIRST(x) → NUM(x),

NUM(x) ∧ SUCC(x, y) → NUM(y),

NUM(x) ∧ LAST(x) → FINITE

. (53)

Let π = υ(ΠT)− {FINITE}. We then have the following:

Claim. If A |=∃πSM(ΠT), thenA is finite iff A |= FINITE.

18

The left-to-right direction follows from Lemma 5. We only show the converse.
Let us assume thatA satisfies bothFINITE and∃πSM(ΠT). Let υ0 be the union of
υ(ΠT) and the vocabulary ofA. Then, there must exist anυ0-expansionB of A such
that B is a stable model ofΠT. So, LESSB should be a strict total order onA; the
element inFIRSTB (respectively,LASTB), if it exists, should be the least (respectively,
largest) element inAw.r.t. LESSB; andSUCCB should be the relation defining the direct
successors w.r.t.LESSB. As FINITE is true inA, there must exist an integern ≥ 0 and
n elementsa1, . . . , an in A such thatFIRST(a1), LAST(an) and eachSUCC(ai, ai+1)
are true inB. We assert that every element inA should beai for somei. If not, let b
be one of such elements. AsLESSB is a strict total order, there must existi : 1≤ i < n

such that bothLESS(ai, b) andLESS(b, ai+1) are true inB. But this is impossible since
SUCC(ai, ai+1) is true inB. So, we must haveA = {a1, . . . , an}. This implies thatA
is finite, and then we obtain the claim.

Next, let us construct the desired program. LetΠ◦
0 (respectivelyΠ⋄

0) denote the
normal program obtained fromΠ◦ (respectively,Π⋄) by addingFINITE (respectively,
¬FINITE) to the body of each rule as a conjunct. LetΠ† be the union ofΠ◦

0,Π⋄
0 andΠT.

Let ν = υ(Π†) − υ(Π). Now, we show that∃νSM(Π†) is equivalent toSM(Π) over
arbitrary structures. By definition and the splitting lemmain [15], it suffices to show
thatSM(Π) is equivalent to

∃FINITE[∃σSM(Π◦
0) ∧ ∃τSM(Π⋄

0) ∧ ∃πSM(ΠT)]. (54)

Let A be a structure ofυ(Π). As a strict partial order always exists on domainA,
we can construct anυ(Π) ∪ υ(ΠT)-expansionB of A such thatB is a stable model of
ΠT. By the claim,B |= FINITE if and only if A is finite. First assume thatA is finite.
By definition, it is clear that∃σSM(Π◦

0) is satisfied byB if and only if ∃σSM(Π◦)
is satisfied byA, and∃σSM(Π⋄

0) is always true inB. This means that∃νSM(Π†) is
equivalent toSM(Π) over finite structures. By a symmetrical argument, we can show
that the equivalence also holds over infinite structures. This then completes the proof.

Remark6. In classical logic, it is well-known that separating languages over arbitrary
structures is usually easier than that over finite structures [8]. In logic programming,
it also seems that arbitrary structures are better-behavedthan finite structures. For ex-
ample, there are some preservation theorems that work on arbitrary structures, but not
on finite structures [2]. Thus, it might be possible to develop techniques on arbitrary
structures for some stronger separations ofDLP fromNLP.

Corollary 3. DLP ≃ NLP iff NP = coNP.

Next, we give a characterization for disjunctive programs.

Proposition 8. DLP ≃ Σ1
2[∀

∗∃∗].

Proof. (Sketch) The direction “≤” trivially follows from the second-order definition
of stable model semantics. So, it remains to show the converse. Letϕ be a sentence in
Σ1

2[∀
∗∃∗]. Without loss of generality, assume thatϕ is of the form

∃τ∀σ∀x̄∃ȳ[ϑ1(x̄, ȳ) ∨ · · · ∨ ϑk(x̄, ȳ)] (55)

19

whereτ andσ are two finite sets of predicates;x̄ andȳ two finite tuples of individual
variables; eachϑi is a conjunction of atoms or negated atoms. Letn be the length of̄x.

Now, we construct a translation. Firstly, let us define

Λ1 = {TX(x̄, z̄) ∨ FX(x̄, z̄) | X ∈ σ ∪ τ },

Λ2 = { D(x̄) → FX(x̄, z̄) | X ∈ σ },

Λ3 = { D(x̄) → TX(x̄, z̄) | X ∈ σ },

Λ4 = { ϑ⋄i (x̄, ȳ) → D(x̄) | 1 ≤ i ≤ k },

Λ5 = { ¬D(x̄) → ⊥ },

(56)

where, for eachX ∈ σ∪τ , TX andFX are two distinct new predicates of arity(m+n)
if m is the arity ofX ; eachϑ⋄i is the formula obtained fromϑi by substitutingFX(x̄, t̄)
for ¬X(t̄) and followed by substitutingTX(x̄, t̄) for X(t̄) wheneverX ∈ σ ∪ τ andt̄
is a tuple of terms of the corresponding length; andD is ann-ary new predicate.

Let Π be the union ofΛ1, . . . ,Λ5. Clearly,Π is a disjunctive program. Letπ be
the set of new predicates introduced in the translation. By asimilar argument to that in
Lemma 4, we can show thatϕ is equivalent to∃πSM(Π).

Conclusion and Related Work

Combining the results proved in previous sections with someexisting results, we then
obtain an almost complete picture for the expressiveness oflogic programs and some
related fragments of second-order logic. As shown in Figure1, the expressiveness hier-
archy in each subfigure is related to a structure class. In each subfigure, the syntactical
classes in a same block are proved to be of the same expressiveness over the related
structure class. A block is closer to the top, the classes in the block are then more ex-
pressive. In addition, a dashed line means that the corresponding separation is true if
and only ifNP is not closed under complement.

Σ1F
1
[∀∗]

Σ1
1

NLP

DLP

Σ1
2[∀

∗
∃
∗]

Σ1
2

Infinite Structures

Σ1F
1
[∀∗]

Σ1
1 = NP

NLP

DLP

Σ1
2
[∀∗∃∗]

Σ1
2 = Σp

2

Finite Structures

Σ1F
1
[∀∗]

Σ1
1

NLP

DLP

Σ1
2[∀

∗
∃
∗]

Σ1
2

Arbitrary Structures

Figure 1: Expressiveness Hierarchies Related to LPs

Without involving the well-known complexity conjecture, we established the in-
translatability from disjunctive to normal programs over finite structures if the arities
of auxiliary constants are bounded in a certain sense. This can be regarded as evidence

20

that disjunctive programs are more expressive than normal programs over finite struc-
tures. As a byproduct, we also developed a succinct translation from normal programs
to first-order sentences. This then improved the ordered completion proposed by [3].

There are several existing works contributing to Figure 1, which are listed as fol-
lows. The translatability fromΣ1

1 to Σ1F
1 [∀∗] follows from the well-known Skolem nor-

mal form. The translatability fromΣ1
2 to Σ1

2[∀
∗∃∗] over finite structures is due to [20].

The separation ofΣ1
2 from Σ1

2[∀
∗∃∗] (on both arbitrary and infinite structures) is due

to [10]. FromNLP to Σ1
1, both the intranslatability over arbitrary structures andthe

translatability over finite structures are due to [3].
The (in)translatability between first-order theories and logic programs were also

considered in [29]. But first-order theories there are basedon non-monotonic seman-
tics. Over Herbrand structures, [26, 9] proved that normal programs, disjunctive pro-
grams and universal second-order logic are of the same expressiveness under the query
equivalence. Their proofs employ an approach from recursion theory. However, this
approach seems difficult to be applied to general infinite structures. In the proposi-
tional case, there have been a lot of works on the translatability and expressiveness of
logic programs, e.g., [12, 19]. It should be noted that the picture of expressiveness and
translatability in there is quite different from that in thefirst-order case.

References

[1] M. Ajtai, Σ1
1-formulae on finite structures, Annals of Pure and Applied Logic24

(1983), 1–48.

[2] M. Ajtai and Y. Gurevich,Datalog vs first-order logic, Journal of Computer and
System Sciences49 (1994), 562–588.

[3] V. Asuncion, F. Lin, Y. Zhang, and Y. Zhou,Ordered completion for first-order
logic programs on finite structures, Artificial Intelligence177–179(2012), 1–24.

[4] R. Ben-Eliyahu and R. Dechter,Propositional semantics for disjunctive logic pro-
grams, Annals of Mathematics and Artificial Intelligence12 (1994), no. 1–2, 53–
87.

[5] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov,Complexity and expressive
power of logic programming, ACM Computing Surveys33 (2001), no. 3, 374–
425.

[6] A. Durand, E. Grandjean, and F. Olive,New results on arity vs. number of vari-
ables, Research report 20–2004, LIF,Marseille, France(2004).

[7] A. Durand, C. Lautemann, and T. Schwentick,Subclasses of binary NP, Journal
of Logic and Computation8 (1998), no. 2, 189–207.

[8] H.-D. Ebbinghaus and J. Flum,Finite model theory, 2 ed., Springer-Verlag, New
York, 1999.

21

[9] T. Eiter and G. Gottlob,Expressiveness of stable model semantics for disjunctive
logic programs with functions, The Journal of Logic Programming33 (1997),
167–178.

[10] T. Eiter, G. Gottlob, and Y. Gurevich,Normal forms for second-order logic over
finite structures, and classication of NP optimization problems, Annals of Pure
and Applied Logic78 (1996), 111–125.

[11] T. Eiter, G. Gottlob, and H. Mannila,Disjunctive datalog, ACM Transactions on
Database Systems22 (1997), 364–418.

[12] Thomas Eiter, Michael Fink, Hans Tompits, and Stefan Woltran, On eliminating
disjunctions in stable logic programming, Proceedings of KR, 2004, pp. 447–458.

[13] R. Fagin,Generalized first-order spectra and polynomial-time recognizable sets,
Complexity of Computation, SIAM-AMS Proceedings, vol. 7, 1974, pp. 43–73.

[14] P. Ferraris, J. Lee, and V. Lifschitz,Stable models and circumscription, Artificial
Intelligence175(2011), 236–263.

[15] P. Ferraris, J. Lee, V. Lifschitz, and R. Palla,Symmetric splitting in the general
theory of stable models, Proceedings of IJCAI, 2009, pp. 797–803.

[16] M. Gelfond and V. Lifschitz,The stable model semantics for logic programming,
Proceedings of ICLP/SLP, 1988, pp. 1070–1080.

[17] Etienne Grandjean,Universal quantifiers and time complexity of random access
machines, Mathematical Systems Theory18 (1985), no. 2, 171–187.

[18] Neil Immerman,Descriptive complexity, Graduate texts in computer science,
Springer, 1999.

[19] Tomi Janhunen,Some (in)translatability results for normal logic programs and
propositional theories, Journal of Applied Non-Classical Logics16(2006), no. 1–
2, 35–86.

[20] D. Leivant,Descriptive characterizations of computational complexity, Journal
of Computer and System Sciences39 (1989), 51–83.

[21] Yuliya Lierler and Marco Maratea,Cmodels-2: SAT-based answer set solver en-
hanced to non-tight programs, Proceedings of LPNMR, 2004, pp. 346–350.

[22] F. Lin and Y. Zhao,Assat: computing answer sets of a logic program by sat
solvers, Artificial Intelligence157(2004), no. 1-2, 115–137.

[23] F. Lin and Y. Zhou,From answer set logic programming to circumscription via
logic of GK, Artificial Intelligence175(2011), no. 1, 264–277.

[24] J. Lobo, J. Minker, and A. Rajasekar,Foundations of disjunctive logic program-
ming, The MIT Press, Cambridge, 1992.

22

[25] David Pearce and Agustłn Valverde,A first order nonmonotonic extension of con-
structive logic, Studia Logica80 (2005), no. 2/3, 321–346.

[26] J. S. Schlipf,The expressive powers of the logic programming semantics, Journal
of Computer and System Sciences51 (1995), no. 1, 64–86.

[27] L. J. Stockmeyer,The polynomial-time hierarchy, Theoretical Computer Science
3 (1977), 1–22.

[28] Heng Zhang and Yan Zhang,First-order expressibility and boundedness of dis-
junctive logic programs, Proceedings of IJCAI, 2013, pp. 1198–1204.

[29] Heng Zhang, Yan Zhang, Mingsheng Ying, and Yi Zhou,Translating first-order
theories into logic programs, IJCAI, 2011, pp. 1126–1131.

23

	Introduction
	Preliminaries
	Logic Programs and Stable Models
	Progression Semantics

	Infinite Structures
	Finite Structures
	Arbitrary Structures
	Conclusion and Related Work

