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Abstract 

Query optimizers rely on fast, high-quality estimates of re- 
sult sizes in order to select between various join plans. Self- 
join sizes of relations provide bounds on the join size of any 
pairs of such relations. It also indicates the degree of skew 
in the data, and has been advocated for several estimation 
procedures. Exact computation of the self-join size requires 
storage proportional to, the number of distinct attribute val- 
ues, which may be prohibitively large. In this paper, we 
study algorithms for tracking (approximate) self-join sizes 
in limited storage in the presence of insertions and deletions 
to the relations. Such algorithms detect changes in the de- 
gree of skew without an expensive recomputation from the 
base data. We show that an algorithm based on a tug-of- 
war approach provides a more accurate estimation than one 
based on a sample-and-count approach which is in turn more 
accurate than a sampling-only approach. 

Next, we study algorithms for tracking (approximate) 
join sizes in limited storage; the goal is to maintain a small 
signature of each relation such that join sizes can be accu- 
rately estimated between any pairs of relations. We show 
that taking random samples for join signatures can lead to 
inaccurate estimation unless the sample size is quite large; 
moreover, by a lower bound we show, no other signature 
scheme can significantly improve upon sampling without 
further assumptions. These negative results are shown to 
hold even in the presence of sanity bounds. On the other 
hand, we present a join signature scheme based on tug-of- 
war signatures that probvides guarantees on join size estima- 
tion as a function of t:he self-join sizes of the joining rela- 
tions; this scheme can significantly improve upon the sam- 
pling scheme. 

1 Introduction 

The skew of a data set represents how far the frequency 
distribution of the items that occur in the data set is from 
being uniform. ‘The skew represents important demographic 
information about the data, and is used to guide the compu- 
tation in several applications of modern database systems. 
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In a relational database, the size of the self-join on an at- 
tribute in a relation indicates the degree of skew in the dis- 
tribution of attribute values. For a relation A, the self-join 
size (also called the second frequency moment) on an at- 
tribute in A with value domain D is ‘&, CL:, where 0,; is 
the frequency of attribute value i in A. Ioannidis and Poos- 
ala [IP95] have advocated using self-join sizes for error es- 
timation in the context of estimating query result sizes and 
access plan costs. Haas et al [HNSS95] advocate its use for 
selecting between sampling based algorithms for estimating 
the number of distinct attribute values in a relation. 

Self-join sizes of relations provide bounds on the join 
size of any pairs of such relations, as follows. Consider the 
join of relations A and B on joining attribute(s) with value 
domain D. For i E D, let a; and bd be the frequency of 
the ith value in A and B, respectively. Then the join size, 
)A w BI = cisD sib;, satisfies 

IA w ~1 < SJ(A) + SJ(B) 
2 ) 

where SJ(A) = IA w Al and SJ(B) = IB w BI are the self- 
join sizes on the joining attributes. To see this, note that for 
any real numbers x and y, (~--y)~ 2 0. Thus x2-2xy+y2 2 
0, i.e., (x2 + y2)/2 1 xy. Hence ‘&, aibi 5 c,,,(af + 

bi)/2 = (C,,, a? + CiED bf)/2 = (SJ(A) + SJ(B))/S. 
For many distributions, such as zipfian and exponen- 

tial, the self-join size uniquely determines the parameter 
of the distribution. For example, consider an exponential 
distribution, in which the ith most popular value occurs 
with frequency ~(CY - l)cy-’ in a relation, A, of size n. 
Then SJ(A) = ci(n(a - l)a-‘)2 = n”(a - 1)2 C&2)-” = 

n”(a - 1)2/(cy” - 1) = n2(a - l)/(a + 1). It follows that 
(Y = (n” + SJ(A))/(n2 - SJ(A)). 

In the statistics literature, the self-join size is referred to 
as the repeat rate or Gini’s index of homogeneity needed in 
order to compute the surprise index of the sequence (see, 
e.g., [Goo89]). 

The self-join size can be computed in one pass over the 
data by computing a full histogram of the data, and then 
summing the squares of the frequency counts for each at- 
tribute value. However, this requires storage proportional 
to the number of distinct attribute values, which may be 
prohibitively large. 

In this paper, we study algorithms for tracking (approx- 
imate) self-join sizes in limited storage in the presence of in- 
sertions and deletions to the database. Alon et al [AMS96] 
proposed two algorithms for tracking self-join sizes in the 
presence of insertions, which we denote as sample-count and 
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tug-of-war, and presented upper bounds on the space re- 
quired to guarantee a desired accuracy with high probabil- 
ity. We consider the practical aspects of these algorithms, 
by considering also deletions, implementation issues, and ex- 
perimental evaluation, comparing these two approximation 
algorithms to a naive sampling approach, across a range of 
data sets. Our experiments demonstrate the practical utility 
of the proposed algorithms, by showing that good estimates 
are obtained while using only a small fraction of the memory 
required for an exact self-join size. We compare the accu- 
racy of the three approximation algorithms, demonstrating 
that unless the self-join size is predominantly determined 
by very few items, the naive sampling approach may not 
be very useful. In contrast, both approximation algorithms 
presented by Alon et al provide accurate estimations. Our 
experiments indicate that tug-of-war is more accurate than 
sample-count on a wide variety of data sets, although the ac- 
curacy of sample-count is often close and sometimes better 
than that of tug-of-war. 

Next, we study algorithms for tracking (approximate) 
join sizes in limited storage; the goal is to maintain a small 
signature of each relation such that join sizes can be accu- 
rately estimated between any pairs of relations. We show 
that taking random samples for join signatures can lead to 
inaccurate estimation unless the sample size is quite large. 
Moreover, by a lower bound we show, no other signature 
scheme can provide significantly better estimation guaran- 
tees without further assumptions. These negative results are 
shown to hold even in the presence of sanity bounds.’ On 
the other hand, we present a join signature scheme based 
on tug-of-war (self-join) signatures that provides guarantees 
on join size estimation as a function of the self-join sizes of 
the joining relations; this scheme can significantly improve 
upon the sampling scheme. 

The performance and accuracy bounds of the algorithms 
in this paper are valid for any data distributions. 

Synopsis data structures and tracking algorithms. The sig- 
nature schemes studied in this paper are examples of syn- 
opsis data structures, data structures whose size is substan- 
tively smaller than the full data set and provide typically 
approximate answers to queries. There are many existing 
examples of synopsis data structures [BDF+97, GM98b]. In 
brief, a synopsis data structure has the following advantages 
over a non-synopsis (e.g., linear space) data structure: (a) it 
may reside in main memory, enabling query responses and 
data structure updates that avoid disk accesses altogether, 
(b) it can be transmitted remotely at minimal cost, (c) it has 
minimal impact on the overall storage costs of a system, (d) 
it leaves space in the memory for other processing (available 
main memory is a precious resource for external memory al- 
gorithms), and (e) it can serve as a small surrogate for data 
sets that are currently expensive or impossible to access. On 
the other hand, the answers are typically only approximate, 
not exact. This is acceptable in many cases, such as the 
scenario considered in this paper of size estimation within a 
query optimizer. 

One can consider synopsis data structures that are static 
or dynamic (i.e., incrementally maintained in the presence of 
data insertions and deletions). iPracking in limited storage 

‘Sanity bounds stipulate a lower bound on the quantity being es- 
timated, such that estimation errors are analyzed only for quantities 
above this lower bound (see, e.g., [LN95, LNSSO, GGMS96]), presum- 
ably the range of interest to the application making use of the esti- 
mate. Since estimating small quantities is often considerably more 
difficult than estimating large quantities, the use of sanity bounds 
may improve considerably the estimation guarantees. 

considers this latter case. Tracking algorithms can detect 
changes in the quantity to be estimated without an expen- 
sive recomputation from the base data, and can also be used 
to compute an (approximate) answer/estimation in one pass 
and limited storage. On the other hand, they incur a cost 
at the time the data is updated. In a typical (offline) data 
warehouse scenario, data loading occurs in batch mode, in 
between batches of queries; tracking algorithms can be well- 
suited for such scenarios. In scenarios where data updates 
occur intermixed with queries, the tracking algorithm must 
have very low overhead in order to avoid creating a concur- 
rency bottleneck, or otherwise must be applied periodically 
in batch mode. In this latter case, the accuracy guarantees 
are weakened accordingly to account for updates not yet 
propagated to the tracking algorithm. 

We view the results in this paper as a seep towards the 
further understanding and study of synopsis data structures 
and tracking algorithms. 

Related work. [BDFf97] presents a survey of data redzlc- 
tion techniques for massive data sets. [GM98b] presents a 
formal framework for evaluating synopsis data structures 
and a survey of some of the results in this area. There 
has been a flurry of recent work in approximate query an- 
swering (e.g., [VLSS, BDF+97, GMP97a, GMP97b, HHW97, 
GM98a, AGPR99, HH99, AGP99, MS99]). The work in 
[HHW97, AGPR99, HH99] has looked at the problem of 
providing approximate answers to queries seeking aggregates 
(e.g., sum, avg) of attribute values for the tuples satisfying a 
predicate that occur in the join of multiple relations. Thus 
although joins are involved, the goal in these works is to 
estimate the aggregate, not the join size. 

There is an extensive literature on join size estimation 
(e.g., [HGT88, LNSSO, HNSS93, LN95, GGMS96]). These 
papers consider the traditional approach of estimating the 
join sizes without the benefit of precomputed signatures, 
and hence incur large overheads at estimation time. For 
example, sampling-based approaches take samples of the 
databases at the time of estimation; such sampling is slow 
due to the random disk accesses involved. In contrast, our 
tracking approaches do not incur disk accesses at estimation 
time. Also, they adapt incrementally to database updates, 
in contrast to previous approaches that recompute from 
scratch at each estimation time. (Some of our analysis holds 
for this traditional scenario as well.) Poosala [Poo97] pro- 
posed join size estimation using signatures that are the Com- 
pressed histogram of the relation. (Such histograms can be 
maintained incrementally using the algorithm in [GMP97b].) 
However, there are no good guarantees on the accuracy of 
such estimations. Manku et al [MRL98] presented tracking 
algorithms for computing approximate medians and other 
quantiles in limited storage. 

Outline. The rest of the paper is organized as follows. In 
Section 2 we describe the sample-count and tug-of-war al- 
gorithms, implementation issues for both algorithms, and 
extensions to handle deletions. We also present a new lower 
bound for the naive sampling approach. Section 3 presents 
our experimental study of the three algorithms for self-join 
estimation. Section 4 presents our new results for join size 
estimation. Finally, concluding remarks appear in Section 5. 
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2 Tracking self-join sizes 

In this section we describe the two algorithms for approxi- 
mating self-join sizes in limited storage presented in [AMSSG]. 
For each algorithm, we provide extensions to handle dele- 
tions and present trade-offs in implementing the basic steps 
of algorithm. Let A = (~1, wz, . . . , wn) be a sequence of n val- 
ues on which we are to estimate the self-join size, where each 
‘ui is a member of D =: {1,2,. . . , t}. The basic idea in both 
algorithms is a natural one. In order to estimate the self-join 
size, SJ(A), a random variable is defined that can be com- 
puted under a given space constraint, whose expected value 
is SJ(A), and whose variance is relatively small. The desired 
result is then obtained by considering sufficiently many such 
random variables, partitioning them into groups, computing 
the average within each group, and then taking the median 
of the group averages. 

2.1 Algorithm sample-count 

The number of memory words used by the algorithm is 
s = si . sz, where 31 is a parameter that determines the ac- 
curacy of the result, and 52 determines the confidence. The 
algorithm computes sz random variables Yr , Yz, . . . , Y,, and 
outputs their median Y. Each Yi is the average of si random 
variables X;j : 1 5 j 2: si, where the Xij are independent, 
identically distributed random variables. Each of the vari- 
ables X = Xij is computed from the sequence in the same 
way as follows: 

l Choose a random member vp of the sequence A, where 
the index p is chosen randomly and uniformly among 
the numbers 1,2:. . . , n; suppose that up = 1 ( E D). 

l Letr=I{q:q>p,v,=l}1( >l)bethenumberof 
occurrences of I among the members of the sequence 
A following up (inclusive). 

0 Let X = n(2r - I). 

Extensions. Note that in the tracking scenario, the sequence 
A is observed as a series of insertions, and we may be re- 
quired at any point to answer a self-join size query on the 
sequence to date. Moreover, the length, n, of the sequence 
is not fixed in advance, but is increasing with each insert. 

We can adapt this algorithm (particularly the first step) 
to handle the tracking scenario, as follows. We start with 
n = 1, select ~11 as our random member, and set T to be 
1. In general, after n -. 1 inserts, we have (for each variable 
Xij) some value for our random member RAR and for T. When 
the next element v,, is. inserted, we replace WI by that ele- 
ment with probability l/n. In case of such a replacement, 
we reset r to be 1. If no replacement, ~1 stays as it is, and 
T increases by 1 if u, := ul and otherwise does not change. 
The cost of adapting the s sample points is O(s), and this 
correction process may be too expensive if executed for ev- 
ery new sequence member. A more efficient implementation 
avoids the adaptation after every insertion using standard 
techniques that trade off correction frequency versus estima- 
tion effectiveness between corrections. 

For the implementation of the second step, we use the 
following approach in order to avoid incrementing !c counters 
each time a value v is mserted that occurs k times among the 
s selected sample points (large k will be expected for highly 
skewed data). For each value u in the (current) sample, we 
maintain a count k, of the number of sample points with 
value v and an aggregate counter, C,, corresponding to the 

sum of the k, r-counters associated with sample points with 
value v. For each sample point, we also store the value of 
C, at the time the sample point was inserted. The values 
k, and C, are stored in a lookup table using II as the lookup 
key. On the arrival of a new sequence member with value 
v, we retrieve &,, and C,, and increment C, by k,. If the 
new member is selected to be in the sample, then we also 
increment k, and store the value of C, with the sample 
point. This results in O(1) time with high probability to 
process the new insert, regardless of the input set and of the 
sample size s. Note that the individual r-counters are not 
kept. When they are needed in order to produce an estimate, 
the k, counters for a value v are calculated in O(k,,) time 
by reversing the steps used to generate C,. 

To handle deletions, we assume that the adversary ,can- 
not adapt the sequence in response to the random choices 
made by our algorithm. We first observe that for the purpose 
of our estimation algorithms, we can replace each sequence 
member by its value (so that sequence members with the 
same value are indistinguishable). Thus, whenever there is 
a deletion with value v, we can assume without loss of gen- 
erality that the member to be deleted is the one with value 
v that was the last one to be inserted (and not yet deleted). 
Using this assumption, we can represent each sequence of in- 
sertions and deletions by a canonical sequence which consists 
of insertions only, but possibly contains nil1 values. Let a 
be a (prefix) sequence consisting of insertions and deletions. 
We obtain its canonical sequence A’ by scanning A from left 
to right; whenever we see delete(v), we replace it with a nil1 
value, and in addition we find the nearest member to the 
left of it with value u and replace it with a nil1 value as well. 
The non-nil1 values in A’ constitute the multi-set of values 
that remain in the relation after processing the sequence A. 
Let A be the subsequence of A’ when the locations with the 
niil values are ignored. 

We now show how the fast implementation of the second 
step of sample-count can be extended to handle deletions as 
well. In response to a delete(v), we reverse the operations 
that were done when the last remaining member with value 
v was inserted. If the value v is in the sample (which can 
be determined by table lookup), we retrieve k, and C,, and 
decrement C, by k,. If C,, is now smaller than one of the “C,, 
at time selected”, then remove that sample point and decre- 
ment IF,,, since we know that the member was selected into 
the sample upon the occurrence of the value v which is now 
deleted. This results in O(1) time with high probability to 
process the new delete. Moreover, we have reduced the sce- 
nario with deletions to one with only insertions, and we can 
immediately apply the corresponding theorem in [AMS96], 
to obtain: 

Theorem 2.1 The estimate Y computed by the above algo- 
rithm satisfies: 

Prob (IY - SJ(A)I 5 4t”4/&) 2 1 - 2-52’2. 

Note that we handle deletions as they occur, since in 
the tracking scenario of this paper, we must be prepared at 
all times to provide an answer to self-join size estimation 
queries on the sequence to date. Moreover, note that the 
delete operation may remove sample points without replac- 
ing them, dropping the number of sample points below s. 
As long as the number of delete operations in any prefix of 
a sequence A is at most l/5 of the length of a, then Cher- 
noff bounds can be used to show that with high probability 
the number of remaining sample points after processing the 

12 



sequence a is at least s/2. As a result, we obtain accuracy 
that is provably close to that obtained for insertions only, in 
which the number of sample items is guaranteed to be s. 

Note that the sample-count algorithm is reminiscent of 
the algorithm in [GM98a] for maintaining “counting sam- 
ples”. Counting samples are used to track the top-k most 
popular values in a data set, and not the self-join size. They 
permit a value to be selected for the sample at most once, 
whereas it is crucial for self-join size estimation that a value 
can be selected for the sample many times. The top-k list 
attempts to report the top k values and their frequency, 
whereas the self-join size reports a single estimator. This 
allows the latter to apply the averaging and median tech- 
niques described above within the limited storage. 

2.2 Algorithm tug-of-war 

The tug-of-war algorithm can be illustrated as follows: Sup- 
pose that a crowd consists of several groups of varying num- 
bers of people, and that our goal is to estimate the skew in 
the distribution of people to groups. That is, we would like 
to estimate SJ(A) for the set {w;}:=~, where vi is the group 
to which the i’th person belongs. We arrange a tug-of-war, 
forming two teams by having each group assigned at random 
to one of the teams. Equating the displacement of the rope 
from its original location with the difference in the sizes of 
the two teams, it is shown in [AMS96] that the expected 
square of the rope displacement is exactly SJ(A), and that 
the variance is reasonably small. 

In more detail, the number of memory words used by 
tug-of-war is s = s1 . ~2, where s1 is a parameter that de- 
termines the accuracy of the result, and sz determines the 
confidence. As in sample-count, the output Y is the median 
of s2 random variables Yl, Y2, . . . , Ysz , each being the aver- 
age of ~1 random variables Xij : 1 5 j 5 ~1, where the Xij 
are independent, identically distributed random variables. 
Each X = Xij is computed from the sequence in the same 
way, as follows: 

l Select at random a 4-wise independent mapping i e 
Ei, where i E {1,2,. . . ,t} and E; E {-1,l). 

l Let 2 = cl=, eim;, where rni is the number of mem- 
bers with value i. 

l LetX=Z2. 

Extensions. To implement the first step, we need to select 
s independent hash functions, h(v) = ev E (-1, l}, which 
can be done in O(s) time. In practice it may be often rea- 
sonable to use hash functions that may not be 4-wise in- 
dependent but easier to compute. In the second step, we 
maintain s program variables that hold the partial sums 
Z = CT=, h(vj) = CT=, evj, where n is the current se- 
quence length. For each incoming sequence member with 
value i we compute the s independent mappings ci, and add 
them to the corresponding program variables Z in O(s) time. 
To handle deletions, given an input sequence A as above, we 
imitate running algorithm tug-of-war on A by the following 
simple correction: In response to a delete(v), we reverse the 
operations that were done when the last remaining mem- 
ber with value v was inserted: for each program variable Z 
we subtract e,. It follows from the corresponding theorem 
in [AMS96] that: 

Theorem 2.2 The estimate Y computed by the above algo- 
rithm satisfies: 

Prob (IY - SJ(A)( 5 4/A) 2 1 - 2-s2’2. 

2.3 Algorithm naive-sampling 

We contrast algorithm sample-count and algorithm tug-of- 
war with the following naive sampling heuristic (not consid- 
ered in [AMS96]), denoted below as algorithm naive-sampling. 
We sample s elements (without replacement) from the se- 
quence, and compute the self-join size, SJ(S), of the sample 
set S, by first computing a simple histogram of at most s 
buckets on the values that occur in the sample set, and then 
summing the squares of the bucket counts. We then scale 
SJ(S) into an estimator X whose expected value is SJ(A): 

x = n + @J(s) - sb(n - 1) 
s(s-1) . 

We have the following lower bound on the sample size 
required to provide a good quality estimate of the self-join 
size. This lower bound applies even for static relations (i.e., 
the difficulty arises even when there is no tracking require- 
ment) . 

Lemma 2.3 Algorithm naive-sampling requires a sample of 
size Cl(fi) to estimate the self-join size to within less than 
a factor of 2 with high probability. 

Proof. Let F contain n items of different values. Let 
G contain n/2 pairs of items such that each pair contains 
items with the same value. Members of different pairs have 
different values. The estimator for F will be n. Since F and 
G are nearly indistinguishable to samples of size o(6), the 
estimator for G will also be n with a sizable probability p. 
On the other hand, SJ(G) = 2.SJ(F) = 2n, so the estimator 
will be a factor of 2 off with probability at least p. . 

2.4 Comparison of the algorithms 

In both algorithms sample-count and tug-of-war, a single 
random variable is expected to provide the right estimate. 
However, in order to guarantee that for any input set, al- 
gorithm sample-count produces an accurate estimate with 
high probability, we need to have a sample of size 0( &). In 
theory, algorithm sample-count is inferior to algorithm tug- 
of-war in both its space requirement and its simplicity of 
implementation. However, recall that algorithm tug-of-war 
is more demanding in its update time, which is proportional 
to the sample size. More importantly perhaps, the analysis 
given by [AMS96] provided theoretical bomids that apply in 
general to any input set. This leaves open the question as 
to which of the methods would demonstrate better perfor- 
mance in actual use. The experimental studies in the next 
section attempt to partially consider this issue. 

3 Experimental Results 

We have implemented the algorithms sample-count, tug-of- 
war and naive-sampling, and tested their performance on 
various data sequences. We used different data sets ranging 
from uniformly distributed random items to the sequences 
of words taken from the book Wuthering Heights and from 
Genesis. The data sets were either random according to 
some fixed distribution (like Poisson), excerpts from books, 
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Table 1: Data sets and their characteristics 

data set length- dom. size 
path 40,8m 40,001 

zipl.5 120,000 2,184 
zipl.0 500,000 9,994 

uniform 1,000,000 32,768 
mf2 19,998 1,693 
mf3 19,968 2,881 

selfsimilar 120,000 200 
Poisson 120,000 39 
wuther 120,952 10,546 
genesis 43,119 2,674 
brown2 855,043 46,153 
xout 1 142,732 12,113 
youtl 142,732 12.140 

or geometric coordinates taken from spatial data. We also 
created an artificial data set designed to favor tug-of-war 
over sample-count. 

Table 1 summarizes the data sets considered in this pa- 
per. For each data set, we list its length (n), its domain size 
(t), the actual self-join size, and its type, either artificial = 
artificially created, statistical = obtained using a statistical 
package, text = excerpts from well-known literary works, or 
geometric = coordinates taken from a spatial data set., 

The performance was measured for sample sizes 2’, for 
i = 0, 1,2,. . . ,14 (i.e., from 1 to 16,384). An example plot 
is given in Fig. 1. Plots for the other data sets appear in 
Figs. 3-14 at the end of the paper. In each plot, the labels on 
the x axis show the base two logarithm of the sample size. 
The labels on the y axis show the ratio of the estimated 
size to the actual size of the self-join, i.e., the estimate nor- 
malized by the actual. The actual join size is shown as a 
horizontal line at y = 1. For each sample size, we plot the 
normalized estimate produced by algorithms sample-count, 
tug-of-war, and naive-sampling. For all three algorithms, by 
the law of large numbers, the normalized estimate must tend 
to 1 as the sample size grows, since the expectation of each 
estimator equals the self-join size. Each plotted point corre- 
sponds to one run of an algorithm; this seemed appropriate 
since each estimator is already based on the aggregation of 
many independent experiments. 

3.1 Summary of the results 

Algorithms sample-count and tug-of-war are always clear 
winners, although in rare cases naive sampling performs al- 
most as well as either sample-count or tug-of-war. Both 
sample-count and tug--of-war perform well even with a very 
modest number of sample points relative to the data set 
sizes. They appear to reliably estimate the self-join size of 
different kinds of sequences: both synthetic (from the Uni- 
form, Zipf, Poisson, Self-similar, Multi-fractal distributions) 
and real (Wuthering Beights, Genesis, Brown Corpus, Spa- 
tial data). 

In around half of the plots, the tug-of-war algorithm con- 
verges noticeably faster than the sample-count algorithm. 
For most of the remaining plots, the difference between the 
two is modest. The most dramatic case in which sample- 
count produces better estimates than tug-of-war is for the 
Uniform distribution. 

The “path” data set was created in order to verify the 
theoretical analysis that there are data sets for which the 

self-join size 
680.000 

2.59398e k 09 
4.30435e + 09 
3.15176e + 07 
3.98391e + 06 

618,664 
3.40818e + 09 
9.11973e + 08 
1.11546e + 08 
2.30896e + 07 
5.83962e + 09 
9.17222e + 07 
9.45824e + 07 

type Fig. 
artificial 1 

statistical 2,3 
statistical 4 
statistical 5 
statistical 6 
statistical 7 
statistical 8 
statistical 9 

text 10 
text 11 
text 12 

geometric 13 
geometric 14 

sample-count algorithm converges particularly slowly (i.e., 
O( &) sample points are needed for an accurate estimate). 
The data set has 40,000 values that occur exactly once, and 
one value that occurs 800 times. The estimates for this 
pathological case are displayed in Figure 1, and indeed the 
performance closely matches the theoretical prediction. 

Figure 1: A pathological example, in which the three algo- 
rithms are run on a data set with 40,000 values occurring ex- 
actly once, and one value occurring 800 times. The z-axis. 
depicts the base two logarithm of the sample size. The y-axis 
depicts the normalized value of the estimator, i.e., the ratio of 
the estimator to the actual self-join size. The horizontal line 
represents the target normalized value of 1. For each of the 3 
algorithms, the normalized value of the estimator is plotted as. 
a function of the sample size used to compute the estimator, 
for sample sizes 2’, i = 0, 1,2,. . . ,14. 

3.2 A closer look into the distribution of tug-of-war esti- 
mates 

Another approach to measuring the reliability of the tug-of- 
war estimator is to consider the distribution of the individual 
estimators X = Xij. Each such individual estimator X is 
the result of squaring the sum 2 = ‘& h(vj), for a single 
pseudo-random choice of a hash function h : { 1, . . . , t} I-+ 
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(-1, 1}.2 In Fig. 2, we plot 103 individual estimators for a 
sequence generated according to the Zipf distribution with 
parameter 1.5. (The data set characteristics, including the 
actual self-join size, are given in the second row of Table 1.) 

Figure 2: 103 different individual estimators Xij produced by 
the tug-of-war algorithm run on data from the Zipf Distribu- 
tion with parameter 1.5. The estimators have been sorted in 
increasing order. The value of the estimator is plotted as a 
function of the estimator number. Each estimator is based on 
a single sample point. The actual self-join size is depicted by 
a dashed horizontal line segment extending from the y-axis. 

4 Signature schemes for join size estimation 

In this section, we study signature schemes for join size es- 
timation. The goal is to maintain a small signature for each 
relation independently such that at any point we can esti- 
mate the join size of any two relations. In the traditional 
approach of join size estimation without the benefit of pre- 
computed signatures, it is well-known that join size esti- 
mation is ineffective when the join size to be estimated is 
small. Thus previous work on estimating join sizes has ad- 
vocated the use of “sanity bounds” [LN95, LNSSO]: the goal 
is to develop procedures that provide an accurate estimate 
whenever the join size is at least B and otherwise report 
that the join size is less than B, and to minimize the B. 
(Typical values for B are n3j2 or nlog n.) Sanity bounds 
are appropriate for join size estimation: there is a strong 
motivation to estimate the join size accurately only when 
the join size is large, since in such cases the resources that 
would be consumed to perform the join are large. 

We consider join size estimation in the presence of an a 
priori sanity (lower) bound on the join size and present the 
first results showing that the simple random sampling ap- 
proach has essentially the best estimation guarantees (worst 
case guarantees, over all possible relations) among all possi- 
ble signature schemes. Since the estimation guarantees are 
not satisfactory, we propose a more refined analysis that 
takes into account the self-join sizes of the participating re- 
lations. We assume now two bounds: a lower bound on the 
join size and an upper bound on the self-join size, and ask 
if in this case, one can do better than random sampling? 

2Recall that the overall estimator is obtained by computing av- 
erages of groups of these individual estimators, and then taking the 
median of the group averages. Thus we expect these individual esti- 
mators to have much larger variance than our overall estimator. 

We show that indeed one can do better by presenting 
a signature scheme that gives provably better join size es- 
timation for many settings of these two parameters. This 
algorithm is based on the tug-of-war approach outlined in 
the previous section. It also provides further motivation for 
tracking self-join sizes. 

For simplicity, throughout this section we assume that 
all join sizes to be estimated are for pairwise equality joins 
on the same attribute. The results extend immediately to 
the case where the joins are on the same set of joining at- 
tributes. Extensions to handle the more general scenario 
of joins with different joining attributes are also straightfor- 
ward, although typically additional space is required to keep 
track of the additional attributes. 

4.1 Analysis of random samples as signatures 

First we study the simple signature scheme of randomly se- 
lecting each tuple from a relation with probability p, and 
storing the value of the joining attribute for that tuple as 
the signature for the relation. To estimate the join size of 
two relations F and G, we compute the size of the join of 
their signatures and scale the result by pm2. (This procedure 
is called t-cross in [HNSS93].) 

We can view the tuples in F and G as nodes in the two 
sides of a bipartite graph I’ = (I’v,I’,s). There is an edge 
between a node f E F and a node g E G if and only if tuples 
f and g have the same value on the joining attribute. Then 
]PE] = IF w GI, the join size of F and G. The join size of 
their samples is the number of edges spanned in I by the 
nodes in the samples. 

Lemma 4.1 Let I’ be any graph on n nodes. Assume we 
select nodes of P randomly, each with probability p > i. Let 
X denote the random variable whose value is the number of 
edges that are spanned by the nodes in the sam le. 

r 
Then 

E(X) = II’EJp2 and Var(X) 5 ll?EJp2 + CL, dip3, where 
di is the degree of node i in F. 

Since ‘& df 5 n cy=, d; = 2n]l?E], we can bound 
Var(X) in Lemma 4.1 by 3n]rE]p3. Note that if E(X)2 2 
aVar(X) for a constant LY > 1, we can apply the Cheby- 
chev inequality to obtain a (small) constant factor error 
with (high) constant probability. Var(X) 5 E(X)2/a if 
31rElnp3 5 lrE12p4/a, i.e., p 2 3on/]PE]. This shows that 
a sample of expected size np > 3cxn2/IF w G] is sufficiently 
large. 

We conclude: 

Lemma 4.2 Suppose we have an a priori lower bound B 
on the join size. The simple sampling signature scheme es- 
timates the join size with constant relative error with high 
probability if the random sample has size at least cn2/B, for 
a constant c > 3 determined by the desired accuracy and 
confidence. 

Note that random samples of each relation can be main- 
tained incrementally with small overheads as new data is 
inserted or deleted into the relation [Vit85, GMP97b], and 
hence one can track join sizes in limited storage using this 
approach. 

4.2 Lower bounds on signature schemes for join size esti- 
mation 

We prove that, to within constant factors on the signature 
size, the simple sampling algorithm in the previous subsec- 
tion cannot be improved (measured by worst case analysis) 
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with no further assumptions. The lower bound applies to all 
possible signature schcemes, including static signatures that 
may or may not have efficient incremental maintenance. 

We say an estimate is “good with high probability” if it 
is within, say, a 1% relative error with 99% probability. 

Theorem 4.3 Let @ be any scheme which assigns bit strings 
to database relations, so that there is a random or determin- 
istic pairing function D such that given two relations F and 
G of size n the formula D(+(F), a(G)) gives a good estimate 
on the join size of F and G with high 

B 
robability, when an 

a priori lower bound B, n 5 B 5 n /2, as gaven on the 
join size. Then the length of the bit string that @ assigns to 
relations of size n must be at least (n - fi)‘/B. 

Proof. We use a standard lower bound technique devel- 
oped by Yao for a wide range of randomized models. Let 
m = n - a. Define t = 10m2/B and fix a set T of t pos- 
sible values for the joining attribute, denoted types. Let DI 
be the uniform probability distribution on uni-type relations 
over T; namely, with probability l/t we select the relation 
comprising m tuples of type i, where 1 5 i 5 t. We define 
another distribution D2 in the following way: Let S be a 
family of subsets of {I., 2,. . . , t} such that: (1) All sets in S 

have size m2/B = t/110. (2) ISI = 2mZ’B = 2t/‘o. (3) For 
all 5’1, S2 E S, SI # $2, we have ISI n S2l 5 m2/2B = t/20. 
One can show the existence of such a set system using the 
probabilistic method. For each S E S, we define a relation 
S’ of size m comprising B/m tuples of each type in S. Let 
S’ be the set of relations so defined. We define DZ to be the 
uniform distribution on relations in S’. 

To ensure that all join sizes are at least B, we augment 
each relation in D1 and D2 to also have fi tuples of type 
0. Thus the total size of each relation is n. 

Let F be a relation randomly chosen from DI and let 
G be a relation randomly chosen from D2. The join size 
of F and G is either B or B + m(B/m) = 2B. Applying 
Yao’s technique it suffices to show that any deterministic 
scheme that assigns strings of length at most (m2/B)-1 fails 
to estimate the join size with small error with probability 
bounded away from 0 for a random pair F E D1, G E Dz. 
Consider partitioning the relations into classes according to 
the bit string assigned them by @. For each relation in DI, 
the pairing function gives the same estimate for all relations 
in DZ in the same class. However, for each class, there can 
be at most one relation in D2 for which the estimate has less 
than 50% error for more than 95% of the relations in Dl. 
To see this, consider S1,Sz E S such that the corresponding 
relations in DZ map to the same class, and let T’ = {t E 
(SI - SZ) U (S2 - SI)}. For each DI whose type is in T’, 
the join size is B for one of S1 and S2 and 2B for the other; 
thus any estimate will have at least 50% error for at least 
one of them. By the properties of S, we have IT’1 2 2(t/lO- 
t/20) = t/10, and hence for one of them, the estimate will 
have at least. 50% error for more than t/20 = 5% of the 
relations in D1. Since the number of distinct bit strings is 
at most 2?“‘IB/2, we get that for a constant fraction of the 
pairs F E DI, G E DZ the scheme fails to estimate the join 
size with small error. . 

2 
Thus if B is o(n2): then the bit strings must be at least 

n /(l + o(l))B long. Comparing Lemma 4.2 and Theo- 
rem 4.3, we have that (i) the sampling signature scheme 
with an expected @(n2/B) values stored is good with high 
probability, and (ii) no signature scheme is good with high 
probability unless it has 0(n2/B) bits stored. 

This lower bound implies estimation guarantees that are 
not satisfactory in many cases. Thus in the next subsection, 
we propose a more refined analysis that takes into account 
the self-join sizes of the participating relations. We assume 
now two bounds: a lower bound on the join size and an 
upper bound on the self-join size, and ask if in this case, can 
one do better than random sampling? We show that indeed 
one can do better by presenting a signature scheme that 
gives provably better join size estimation for many sett#ings, 
of these two parameters. 

4.3 The tug-of-war join signature scheme 

Recall that our goal is to maintain a small signature for 
each relation independently such that at any point we can. 
estimate the join size of any two relations. Our new sig-, 
nature scheme is based on tug-of-war signatures, and pro-, 
vides guarantees on join size estimation as a function of 
the self-join sizes of the joining relations. Specifically, the 
scheme gives an estimator for the join size of any two rela- 
tions F and G whose error is (with high probability) at most 

2. SJ(F) . SJ(G), where SJ(F) and SJ(G) are the self-join 
sizes of F and G. The signature that enables this estimator 
for any two relations is only logn bits per relation. Us- 
ing this signature as a building block, we construct a large] 
signature of Ic log n bits comprising lc independent log n bit 
signatures per relation. An estimator based on taking the 
arithmetic mean of the k individual estimators reduces the 
error by a factor of 4. 

Let D = {1,2, . , t} be the domain of the joining at-. 
tribute. Let F and G be two relations of n tuples each. 
For i = 1,. . , t, let f; and gi be the number of tuples in 
F and G whose joining attribute value is i. The join size 
IF w GI = CT=, fi . gi. 

Let {Ei}f=l be four-wise independent (-1, 1}-valued ran- 
dom variables. For F and G we create the signatures S(F) =: 
cdl Ei fi and S(G) = ~~=‘=, eigi, respectively. 

The estimator for IF w GI is simply S(F). S(G). 

Lemma 4.4 Let S(F) and S(G) be tug-of-war join signa- 
tures for relations F and G. Then 

E(S(F) . S(G)) = IF w GI (1:) 
Var(S(F) . S(G)) 5 2. SJ(F) . SJ(G), c4 

where SJ(F) and SJ(G) are the self-join sizes of F and G. 

Proof. 

E(S(F) S(G)) = E(k e?figi + C EiEjfQIj) 
i=t l<i#j<t 

=e fig; = IF w GI, 
i=l 

since E(eiej) = 0 for 1 5 i # j 5 t. To prove Equation (2) 
define 

X = S(F). S(G) - E(S(F) . S(G)) = C ciy figj. 
l<i#j<t 

Since E(X2) = Vax(S(F) . S(G)), we have: 

Va(S(F) . S(G)) = C f?g; + C figifjgj. (3) 
l<ifj<t l<i#j<t 
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Now from 

and 

c figifjgj = 

( ) 
c 

figi 2 - c ffd 

lli#j<t 1<i<t 1<i<t 

1<i<t _ _ 1<j<t I<i<t 

and Equation (3), we conclude that 

V=(S(F). S(G)) I 2 c f: c g; - c fi?gf f 
\1<i<t 1<j<t l<i<t / 

5 2. SJ(F) . SJ(G). 

. 
Note that the tug-of-war signature scheme described in 

this section is a better join size estimator than the random 
sample estimator, because already it is a better estimator 
for the self-join (as demonstrated earlier in this paper - see 
Lemma 2.3). 

The performance of the tug-of-war signature scheme can 
be enhanced by repeating the basic scheme k > 1 times and 
taking the arithmetic mean of the results. We denote this 
scheme by k-TW. The signature size of the k-TW is klogn 
per relation. 

Theorem 4.5 Let F and G be two relations such that IF w 
GI 1 Bl, SJ(F) 5 Bz, and SJ(G) 5 B2. Then the k-TW 
estimator with 

k = c . SJ(F) . SJ(G) < CB,2 

B,2 - B,2 

estimates IF w G] within constant relative error with high 
probability, for a constant c > 2 determined by the desired 
accuracy and confidence. 

Proof. By Lemma 4.4, the variance of the l-TW estimator 
is upper bounded by 2 SJ(F) . SJ(G) 5 2Bi. Since the 
k-TW estimator is the arithmetic mean of k independent 
l-TW estimator, we can upper bound its variance by 2 
SJ(F) . SJ(G)/k 5 2Bz/k. We also have a Bf lower bound 
on the square of the expectation. The theorem follows from 
the Chebychev inequality. . 

Note that for each l-TW, the {ci}i=r can be determined 
by selecting at random from a family of 4-wise independent 
hash functions. Thus for k-TW, we select independently 
at random k such hash functions. Let Zi be the signature 
for the ith hash function hi. For each insertion into the 
relation of a new tuple with joining attribute value x, for 
i = 1,. ., k, we add hi(x) (= 1 or -1) to 2;; for each 
deletion from the relation of an existing tuple with joining 
attribute value x, we subtract hi(x) from Zi. Thus we can 
use k-TW signatures to track join sizes in limited storage 
(namely k log n bits per relation). 

must provide good quality estimates for JF w G( for any 
other relation G. This rules out adapting approaches used 
in traditional join size estimation that supplement sampling 
in one relation with indexed lookups of the number of tuples 
with a joining attribute value in the other relation, such as 
the adaptive sampling of [LN95] and the bifocal sampling 
of [GGMS96] (procedures with indexed lookups are called 
t-index in [HNSS93]). An alternative scenario to consider is 
to be given a set of join pairs and compute a signature for 
each pair, and to incrementally maintain these signatures. 
The practical problem then is that the size of the signa- 
tures and the work for incremental maintenance may scale 
with the number of pairs. For example, the construction in 
the lower bound of Theorem 4.3 shows that large signatures 
are required to obtain good estimates with high probability, 
even when restricting the set of joins to be relations from 
D1 joining with relations from D2. 

5 Conclusions 

This paper has considered the problem of tracking (approx- 
imate) join and self-join sizes in limited storage in the pres- 
ence of insertions and deletions to the relations. The goal 
is to maintain a small synopsis of the data in each relation, 
kept up-to-date as the data changes, in order to provide a 
high quality estimate of a join or self-join size, on demand 
at any time. 

For self-joins, we discuss three algorithms, sample-count, 
tug-of-war, and naive-sampling, focusing on extensions to 
handle deletions, implementation issues, and experimental 
evaluation. Extending our previous work [AMSSG], we present 
analytical bounds demonstrating that, for the same size syn- 
opsis, tug-of-war is more accurate than sample-count which 
is more accurate than naive-sampling. Our experimental re- 
sults on a variety of real and synthetic data sets support this 
relative ordering in accuracy; although the gap between tug- 
of-war and sample-count is often small, and indeed, some- 
times sample-count is more accurate. The naive-sampling 
algorithm, on the other hand, does considerably worse than 
the other two. 

For joins, our goal is to maintain a small synopsis (a 
join signature) of each relation such that join sizes can be 
accurately estimated between any pairs of relations. We 
show that taking uniform random samples for join signa- 
tures can lead to inaccurate estimation unless the sample 
size is quite large, namely @(n2/B), where n is the size of 
each relation and B is an a priori sanity lower bound on the 
join size. Moreover, by a lower bound we show, no signa- 
ture scheme can provide good estimation guarantees unless 
it stores R(n2/B) bits. Thus no other scheme can signifi- 
cantly improve upon random sampling without further a.+ 
sumptions. Finally, we present a signature scheme based on 
tug-of-war signatures that provides guarantees on join size 
estimation as a function of the self-join sizes of the joining 
relations. This scheme can significantly improve upon the 
sampling scheme across a range of self-join sizes. Moreover, 
the join signature for a relation can be maintained incre- 
mentally in the presence of insertions and deletions to the 
relation. 

Future work includes performing an experimental study 
of the tug-of-war join signature scheme, and extending the 
work to more general scenarios such as three-way joins. 

A remark on signatures for a priori join pairs. We have 
considered in this paper the set-up in which the signature 
for an individual relation F is computed in isolation and 
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Figure 3: Accuracy comparison on data from the Zipf Distribu- Figure 6: Accuracy comparison on data from the Multi-fractal 
tion with parameter 1.5. The normalized value of the estimator distribution with parameters (20,000,0.2,12). The normalized 
produced by each of the 3 algorithms is plotted as a function value of the estimator produced by each algorithm is plotted as 
of the base two logarithm of the sample size used. a function of the base two logarithm of the sample size used. 

Figure 4: Accuracy comparison on data from the Zipf Distribu- Figure 7: Accuracy comparison on data from the Multi-fractal 
tion with parameter 1.0. The normalized value of the estimator distribution with parameters (20,000,0.3,12). The normalized 
produced by each algorithm is plotted as a function of the base value of the estimator produced by each algorithm is plotted as 
two logarithm of the sample size used. a function of the base two logarithm of the sample size used. 

Figure 5: Accuracy comparison on data from the Uniform Dis- Figure 8: Accuracy comparison on data from the Selfsimilar 
tribution. The normalized value of the estimator produced by Distribution. The normalized value of the estimator produced 
each algorithm is plotted as a function of the base two loga- by each algorithm is plotted as a function of the base two 
rithm of the sample size used. logarithm of the sample size used. 

19 



Figure 9: Accuracy comparison on data from the Poisson Dis- Figure 12: Accuracy comparison on words from the Brown Cor-, 
tribution. The normalized value of the estimator produced by pus. The normalized value of the estimator produced by each 
each algorithm is plotted as a function of the base two loga- algorithm is plotted as a function of the base two logarithm of 
rithm of the sample siz:e used. the sample size used. 

Figure 10: Accuracy comparison on words from the book Figure 13: Accuracy comparison on the z-coordinates of data 
Wuthering Heights. The normalized value of the estimator from a spatial point set. The normalized value of the estimator 
produced by each algor’ithm is plotted as a function of the base produced by each algorithm is plotted as a function of the base 
two logarithm of the salmple size used. two logarithm of the sample size used. 

Figure 11: Accuracy comparison on words from the book of Figure 14: Accuracy comparison on the y-coordinates of data 
Genesis. The normalized value of the estimator produced by from a spatial point set. The normalized value of the estimator 
each algorithm is plotted as a function of the base two loga- produced by each algorithm is plotted as a function of the base 
rithm of the sample size used. two logarithm of the sample size used. 
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