
Tracking Join and Self-Join Sizes in Limited Storage

Noga Alon Phillip B. Gibbons Yossi Matias Mario Szegedy

Dept of Mathematics

Tel Aviv University

Tel Aviv, Israel

noga@math.tau.ac.il

Information Sciences Research

Bell Laboratories

Murray Hill, NJ

gibbonsOresearch.bell-labs.com

Dept of Computer Science

Tel Aviv University

Tel Aviv, Israel

matias@math.tau.ac.il

Information Sciences Research

AT&T Labs

Florham Park, NJ

msQresearch.att.com

Abstract

Query optimizers rely on fast, high-quality estimates of re-
sult sizes in order to select between various join plans. Self-
join sizes of relations provide bounds on the join size of any
pairs of such relations. It also indicates the degree of skew
in the data, and has been advocated for several estimation
procedures. Exact computation of the self-join size requires
storage proportional to, the number of distinct attribute val-
ues, which may be prohibitively large. In this paper, we
study algorithms for tracking (approximate) self-join sizes
in limited storage in the presence of insertions and deletions
to the relations. Such algorithms detect changes in the de-
gree of skew without an expensive recomputation from the
base data. We show that an algorithm based on a tug-of-
war approach provides a more accurate estimation than one
based on a sample-and-count approach which is in turn more
accurate than a sampling-only approach.

Next, we study algorithms for tracking (approximate)
join sizes in limited storage; the goal is to maintain a small
signature of each relation such that join sizes can be accu-
rately estimated between any pairs of relations. We show
that taking random samples for join signatures can lead to
inaccurate estimation unless the sample size is quite large;
moreover, by a lower bound we show, no other signature
scheme can significantly improve upon sampling without
further assumptions. These negative results are shown to
hold even in the presence of sanity bounds. On the other
hand, we present a join signature scheme based on tug-of-
war signatures that probvides guarantees on join size estima-
tion as a function of t:he self-join sizes of the joining rela-
tions; this scheme can significantly improve upon the sam-
pling scheme.

1 Introduction

The skew of a data set represents how far the frequency
distribution of the items that occur in the data set is from
being uniform. ‘The skew represents important demographic
information about the data, and is used to guide the compu-
tation in several applications of modern database systems.

Pcmission Lo make digital or hard copies of all or part ol’this work fix
personal or classroom use is granted without fee provided tha1 topics
are not made or distrrbuted for profit or commercial advantage and that
copies bear this notice and the full citation on the tirst page. To copy
othcrwisc, to republish, to post on servers or to redistribute to lists.
requires prior specific permission and/or a fee.
PODS ‘99 Philadelphia PA
Copyright ACM 1999 l-581 13-062-7/99/05...$5.00

In a relational database, the size of the self-join on an at-
tribute in a relation indicates the degree of skew in the dis-
tribution of attribute values. For a relation A, the self-join
size (also called the second frequency moment) on an at-
tribute in A with value domain D is ‘&, CL:, where 0,; is
the frequency of attribute value i in A. Ioannidis and Poos-
ala [IP95] have advocated using self-join sizes for error es-
timation in the context of estimating query result sizes and
access plan costs. Haas et al [HNSS95] advocate its use for
selecting between sampling based algorithms for estimating
the number of distinct attribute values in a relation.

Self-join sizes of relations provide bounds on the join
size of any pairs of such relations, as follows. Consider the
join of relations A and B on joining attribute(s) with value
domain D. For i E D, let a; and bd be the frequency of
the ith value in A and B, respectively. Then the join size,
)A w BI = cisD sib;, satisfies

IA w ~1 < SJ(A) + SJ(B)
2)

where SJ(A) = IA w Al and SJ(B) = IB w BI are the self-
join sizes on the joining attributes. To see this, note that for
any real numbers x and y, (~--y)~ 2 0. Thus x2-2xy+y2 2
0, i.e., (x2 + y2)/2 1 xy. Hence ‘&, aibi 5 c,,,(af +

bi)/2 = (C,,, a? + CiED bf)/2 = (SJ(A) + SJ(B))/S.
For many distributions, such as zipfian and exponen-

tial, the self-join size uniquely determines the parameter
of the distribution. For example, consider an exponential
distribution, in which the ith most popular value occurs
with frequency ~(CY - l)cy-’ in a relation, A, of size n.
Then SJ(A) = ci(n(a - l)a-‘)2 = n”(a - 1)2 C&2)-” =

n”(a - 1)2/(cy” - 1) = n2(a - l)/(a + 1). It follows that
(Y = (n” + SJ(A))/(n2 - SJ(A)).

In the statistics literature, the self-join size is referred to
as the repeat rate or Gini’s index of homogeneity needed in
order to compute the surprise index of the sequence (see,
e.g., [Goo89]).

The self-join size can be computed in one pass over the
data by computing a full histogram of the data, and then
summing the squares of the frequency counts for each at-
tribute value. However, this requires storage proportional
to the number of distinct attribute values, which may be
prohibitively large.

In this paper, we study algorithms for tracking (approx-
imate) self-join sizes in limited storage in the presence of in-
sertions and deletions to the database. Alon et al [AMS96]
proposed two algorithms for tracking self-join sizes in the
presence of insertions, which we denote as sample-count and

10

http://crossmark.crossref.org/dialog/?doi=10.1145%2F303976.303978&domain=pdf&date_stamp=1999-05-01

tug-of-war, and presented upper bounds on the space re-
quired to guarantee a desired accuracy with high probabil-
ity. We consider the practical aspects of these algorithms,
by considering also deletions, implementation issues, and ex-
perimental evaluation, comparing these two approximation
algorithms to a naive sampling approach, across a range of
data sets. Our experiments demonstrate the practical utility
of the proposed algorithms, by showing that good estimates
are obtained while using only a small fraction of the memory
required for an exact self-join size. We compare the accu-
racy of the three approximation algorithms, demonstrating
that unless the self-join size is predominantly determined
by very few items, the naive sampling approach may not
be very useful. In contrast, both approximation algorithms
presented by Alon et al provide accurate estimations. Our
experiments indicate that tug-of-war is more accurate than
sample-count on a wide variety of data sets, although the ac-
curacy of sample-count is often close and sometimes better
than that of tug-of-war.

Next, we study algorithms for tracking (approximate)
join sizes in limited storage; the goal is to maintain a small
signature of each relation such that join sizes can be accu-
rately estimated between any pairs of relations. We show
that taking random samples for join signatures can lead to
inaccurate estimation unless the sample size is quite large.
Moreover, by a lower bound we show, no other signature
scheme can provide significantly better estimation guaran-
tees without further assumptions. These negative results are
shown to hold even in the presence of sanity bounds.’ On
the other hand, we present a join signature scheme based
on tug-of-war (self-join) signatures that provides guarantees
on join size estimation as a function of the self-join sizes of
the joining relations; this scheme can significantly improve
upon the sampling scheme.

The performance and accuracy bounds of the algorithms
in this paper are valid for any data distributions.

Synopsis data structures and tracking algorithms. The sig-
nature schemes studied in this paper are examples of syn-
opsis data structures, data structures whose size is substan-
tively smaller than the full data set and provide typically
approximate answers to queries. There are many existing
examples of synopsis data structures [BDF+97, GM98b]. In
brief, a synopsis data structure has the following advantages
over a non-synopsis (e.g., linear space) data structure: (a) it
may reside in main memory, enabling query responses and
data structure updates that avoid disk accesses altogether,
(b) it can be transmitted remotely at minimal cost, (c) it has
minimal impact on the overall storage costs of a system, (d)
it leaves space in the memory for other processing (available
main memory is a precious resource for external memory al-
gorithms), and (e) it can serve as a small surrogate for data
sets that are currently expensive or impossible to access. On
the other hand, the answers are typically only approximate,
not exact. This is acceptable in many cases, such as the
scenario considered in this paper of size estimation within a
query optimizer.

One can consider synopsis data structures that are static
or dynamic (i.e., incrementally maintained in the presence of
data insertions and deletions). iPracking in limited storage

‘Sanity bounds stipulate a lower bound on the quantity being es-
timated, such that estimation errors are analyzed only for quantities
above this lower bound (see, e.g., [LN95, LNSSO, GGMS96]), presum-
ably the range of interest to the application making use of the esti-
mate. Since estimating small quantities is often considerably more
difficult than estimating large quantities, the use of sanity bounds
may improve considerably the estimation guarantees.

considers this latter case. Tracking algorithms can detect
changes in the quantity to be estimated without an expen-
sive recomputation from the base data, and can also be used
to compute an (approximate) answer/estimation in one pass
and limited storage. On the other hand, they incur a cost
at the time the data is updated. In a typical (offline) data
warehouse scenario, data loading occurs in batch mode, in
between batches of queries; tracking algorithms can be well-
suited for such scenarios. In scenarios where data updates
occur intermixed with queries, the tracking algorithm must
have very low overhead in order to avoid creating a concur-
rency bottleneck, or otherwise must be applied periodically
in batch mode. In this latter case, the accuracy guarantees
are weakened accordingly to account for updates not yet
propagated to the tracking algorithm.

We view the results in this paper as a seep towards the
further understanding and study of synopsis data structures
and tracking algorithms.

Related work. [BDFf97] presents a survey of data redzlc-
tion techniques for massive data sets. [GM98b] presents a
formal framework for evaluating synopsis data structures
and a survey of some of the results in this area. There
has been a flurry of recent work in approximate query an-
swering (e.g., [VLSS, BDF+97, GMP97a, GMP97b, HHW97,
GM98a, AGPR99, HH99, AGP99, MS99]). The work in
[HHW97, AGPR99, HH99] has looked at the problem of
providing approximate answers to queries seeking aggregates
(e.g., sum, avg) of attribute values for the tuples satisfying a
predicate that occur in the join of multiple relations. Thus
although joins are involved, the goal in these works is to
estimate the aggregate, not the join size.

There is an extensive literature on join size estimation
(e.g., [HGT88, LNSSO, HNSS93, LN95, GGMS96]). These
papers consider the traditional approach of estimating the
join sizes without the benefit of precomputed signatures,
and hence incur large overheads at estimation time. For
example, sampling-based approaches take samples of the
databases at the time of estimation; such sampling is slow
due to the random disk accesses involved. In contrast, our
tracking approaches do not incur disk accesses at estimation
time. Also, they adapt incrementally to database updates,
in contrast to previous approaches that recompute from
scratch at each estimation time. (Some of our analysis holds
for this traditional scenario as well.) Poosala [Poo97] pro-
posed join size estimation using signatures that are the Com-
pressed histogram of the relation. (Such histograms can be
maintained incrementally using the algorithm in [GMP97b].)
However, there are no good guarantees on the accuracy of
such estimations. Manku et al [MRL98] presented tracking
algorithms for computing approximate medians and other
quantiles in limited storage.

Outline. The rest of the paper is organized as follows. In
Section 2 we describe the sample-count and tug-of-war al-
gorithms, implementation issues for both algorithms, and
extensions to handle deletions. We also present a new lower
bound for the naive sampling approach. Section 3 presents
our experimental study of the three algorithms for self-join
estimation. Section 4 presents our new results for join size
estimation. Finally, concluding remarks appear in Section 5.

11

2 Tracking self-join sizes

In this section we describe the two algorithms for approxi-
mating self-join sizes in limited storage presented in [AMSSG].
For each algorithm, we provide extensions to handle dele-
tions and present trade-offs in implementing the basic steps
of algorithm. Let A = (~1, wz, . . . , wn) be a sequence of n val-
ues on which we are to estimate the self-join size, where each
‘ui is a member of D =: {1,2,. . . , t}. The basic idea in both
algorithms is a natural one. In order to estimate the self-join
size, SJ(A), a random variable is defined that can be com-
puted under a given space constraint, whose expected value
is SJ(A), and whose variance is relatively small. The desired
result is then obtained by considering sufficiently many such
random variables, partitioning them into groups, computing
the average within each group, and then taking the median
of the group averages.

2.1 Algorithm sample-count

The number of memory words used by the algorithm is
s = si . sz, where 31 is a parameter that determines the ac-
curacy of the result, and 52 determines the confidence. The
algorithm computes sz random variables Yr , Yz, . . . , Y,, and
outputs their median Y. Each Yi is the average of si random
variables X;j : 1 5 j 2: si, where the Xij are independent,
identically distributed random variables. Each of the vari-
ables X = Xij is computed from the sequence in the same
way as follows:

l Choose a random member vp of the sequence A, where
the index p is chosen randomly and uniformly among
the numbers 1,2:. . . , n; suppose that up = 1 (E D).

l Letr=I{q:q>p,v,=l}1(>l)bethenumberof
occurrences of I among the members of the sequence
A following up (inclusive).

0 Let X = n(2r - I).

Extensions. Note that in the tracking scenario, the sequence
A is observed as a series of insertions, and we may be re-
quired at any point to answer a self-join size query on the
sequence to date. Moreover, the length, n, of the sequence
is not fixed in advance, but is increasing with each insert.

We can adapt this algorithm (particularly the first step)
to handle the tracking scenario, as follows. We start with
n = 1, select ~11 as our random member, and set T to be
1. In general, after n -. 1 inserts, we have (for each variable
Xij) some value for our random member RAR and for T. When
the next element v,, is. inserted, we replace WI by that ele-
ment with probability l/n. In case of such a replacement,
we reset r to be 1. If no replacement, ~1 stays as it is, and
T increases by 1 if u, := ul and otherwise does not change.
The cost of adapting the s sample points is O(s), and this
correction process may be too expensive if executed for ev-
ery new sequence member. A more efficient implementation
avoids the adaptation after every insertion using standard
techniques that trade off correction frequency versus estima-
tion effectiveness between corrections.

For the implementation of the second step, we use the
following approach in order to avoid incrementing !c counters
each time a value v is mserted that occurs k times among the
s selected sample points (large k will be expected for highly
skewed data). For each value u in the (current) sample, we
maintain a count k, of the number of sample points with
value v and an aggregate counter, C,, corresponding to the

sum of the k, r-counters associated with sample points with
value v. For each sample point, we also store the value of
C, at the time the sample point was inserted. The values
k, and C, are stored in a lookup table using II as the lookup
key. On the arrival of a new sequence member with value
v, we retrieve &,, and C,, and increment C, by k,. If the
new member is selected to be in the sample, then we also
increment k, and store the value of C, with the sample
point. This results in O(1) time with high probability to
process the new insert, regardless of the input set and of the
sample size s. Note that the individual r-counters are not
kept. When they are needed in order to produce an estimate,
the k, counters for a value v are calculated in O(k,,) time
by reversing the steps used to generate C,.

To handle deletions, we assume that the adversary ,can-
not adapt the sequence in response to the random choices
made by our algorithm. We first observe that for the purpose
of our estimation algorithms, we can replace each sequence
member by its value (so that sequence members with the
same value are indistinguishable). Thus, whenever there is
a deletion with value v, we can assume without loss of gen-
erality that the member to be deleted is the one with value
v that was the last one to be inserted (and not yet deleted).
Using this assumption, we can represent each sequence of in-
sertions and deletions by a canonical sequence which consists
of insertions only, but possibly contains nil1 values. Let a
be a (prefix) sequence consisting of insertions and deletions.
We obtain its canonical sequence A’ by scanning A from left
to right; whenever we see delete(v), we replace it with a nil1
value, and in addition we find the nearest member to the
left of it with value u and replace it with a nil1 value as well.
The non-nil1 values in A’ constitute the multi-set of values
that remain in the relation after processing the sequence A.
Let A be the subsequence of A’ when the locations with the
niil values are ignored.

We now show how the fast implementation of the second
step of sample-count can be extended to handle deletions as
well. In response to a delete(v), we reverse the operations
that were done when the last remaining member with value
v was inserted. If the value v is in the sample (which can
be determined by table lookup), we retrieve k, and C,, and
decrement C, by k,. If C,, is now smaller than one of the “C,,
at time selected”, then remove that sample point and decre-
ment IF,,, since we know that the member was selected into
the sample upon the occurrence of the value v which is now
deleted. This results in O(1) time with high probability to
process the new delete. Moreover, we have reduced the sce-
nario with deletions to one with only insertions, and we can
immediately apply the corresponding theorem in [AMS96],
to obtain:

Theorem 2.1 The estimate Y computed by the above algo-
rithm satisfies:

Prob (IY - SJ(A)I 5 4t”4/&) 2 1 - 2-52’2.

Note that we handle deletions as they occur, since in
the tracking scenario of this paper, we must be prepared at
all times to provide an answer to self-join size estimation
queries on the sequence to date. Moreover, note that the
delete operation may remove sample points without replac-
ing them, dropping the number of sample points below s.
As long as the number of delete operations in any prefix of
a sequence A is at most l/5 of the length of a, then Cher-
noff bounds can be used to show that with high probability
the number of remaining sample points after processing the

12

sequence a is at least s/2. As a result, we obtain accuracy
that is provably close to that obtained for insertions only, in
which the number of sample items is guaranteed to be s.

Note that the sample-count algorithm is reminiscent of
the algorithm in [GM98a] for maintaining “counting sam-
ples”. Counting samples are used to track the top-k most
popular values in a data set, and not the self-join size. They
permit a value to be selected for the sample at most once,
whereas it is crucial for self-join size estimation that a value
can be selected for the sample many times. The top-k list
attempts to report the top k values and their frequency,
whereas the self-join size reports a single estimator. This
allows the latter to apply the averaging and median tech-
niques described above within the limited storage.

2.2 Algorithm tug-of-war

The tug-of-war algorithm can be illustrated as follows: Sup-
pose that a crowd consists of several groups of varying num-
bers of people, and that our goal is to estimate the skew in
the distribution of people to groups. That is, we would like
to estimate SJ(A) for the set {w;}:=~, where vi is the group
to which the i’th person belongs. We arrange a tug-of-war,
forming two teams by having each group assigned at random
to one of the teams. Equating the displacement of the rope
from its original location with the difference in the sizes of
the two teams, it is shown in [AMS96] that the expected
square of the rope displacement is exactly SJ(A), and that
the variance is reasonably small.

In more detail, the number of memory words used by
tug-of-war is s = s1 . ~2, where s1 is a parameter that de-
termines the accuracy of the result, and sz determines the
confidence. As in sample-count, the output Y is the median
of s2 random variables Yl, Y2, . . . , Ysz , each being the aver-
age of ~1 random variables Xij : 1 5 j 5 ~1, where the Xij
are independent, identically distributed random variables.
Each X = Xij is computed from the sequence in the same
way, as follows:

l Select at random a 4-wise independent mapping i e
Ei, where i E {1,2,. . . ,t} and E; E {-1,l).

l Let 2 = cl=, eim;, where rni is the number of mem-
bers with value i.

l LetX=Z2.

Extensions. To implement the first step, we need to select
s independent hash functions, h(v) = ev E (-1, l}, which
can be done in O(s) time. In practice it may be often rea-
sonable to use hash functions that may not be 4-wise in-
dependent but easier to compute. In the second step, we
maintain s program variables that hold the partial sums
Z = CT=, h(vj) = CT=, evj, where n is the current se-
quence length. For each incoming sequence member with
value i we compute the s independent mappings ci, and add
them to the corresponding program variables Z in O(s) time.
To handle deletions, given an input sequence A as above, we
imitate running algorithm tug-of-war on A by the following
simple correction: In response to a delete(v), we reverse the
operations that were done when the last remaining mem-
ber with value v was inserted: for each program variable Z
we subtract e,. It follows from the corresponding theorem
in [AMS96] that:

Theorem 2.2 The estimate Y computed by the above algo-
rithm satisfies:

Prob (IY - SJ(A)(5 4/A) 2 1 - 2-s2’2.

2.3 Algorithm naive-sampling

We contrast algorithm sample-count and algorithm tug-of-
war with the following naive sampling heuristic (not consid-
ered in [AMS96]), denoted below as algorithm naive-sampling.
We sample s elements (without replacement) from the se-
quence, and compute the self-join size, SJ(S), of the sample
set S, by first computing a simple histogram of at most s
buckets on the values that occur in the sample set, and then
summing the squares of the bucket counts. We then scale
SJ(S) into an estimator X whose expected value is SJ(A):

x = n + @J(s) - sb(n - 1)
s(s-1) .

We have the following lower bound on the sample size
required to provide a good quality estimate of the self-join
size. This lower bound applies even for static relations (i.e.,
the difficulty arises even when there is no tracking require-
ment) .

Lemma 2.3 Algorithm naive-sampling requires a sample of
size Cl(fi) to estimate the self-join size to within less than
a factor of 2 with high probability.

Proof. Let F contain n items of different values. Let
G contain n/2 pairs of items such that each pair contains
items with the same value. Members of different pairs have
different values. The estimator for F will be n. Since F and
G are nearly indistinguishable to samples of size o(6), the
estimator for G will also be n with a sizable probability p.
On the other hand, SJ(G) = 2.SJ(F) = 2n, so the estimator
will be a factor of 2 off with probability at least p. .

2.4 Comparison of the algorithms

In both algorithms sample-count and tug-of-war, a single
random variable is expected to provide the right estimate.
However, in order to guarantee that for any input set, al-
gorithm sample-count produces an accurate estimate with
high probability, we need to have a sample of size 0(&). In
theory, algorithm sample-count is inferior to algorithm tug-
of-war in both its space requirement and its simplicity of
implementation. However, recall that algorithm tug-of-war
is more demanding in its update time, which is proportional
to the sample size. More importantly perhaps, the analysis
given by [AMS96] provided theoretical bomids that apply in
general to any input set. This leaves open the question as
to which of the methods would demonstrate better perfor-
mance in actual use. The experimental studies in the next
section attempt to partially consider this issue.

3 Experimental Results

We have implemented the algorithms sample-count, tug-of-
war and naive-sampling, and tested their performance on
various data sequences. We used different data sets ranging
from uniformly distributed random items to the sequences
of words taken from the book Wuthering Heights and from
Genesis. The data sets were either random according to
some fixed distribution (like Poisson), excerpts from books,

13

Table 1: Data sets and their characteristics

data set length- dom. size
path 40,8m 40,001

zipl.5 120,000 2,184
zipl.0 500,000 9,994

uniform 1,000,000 32,768
mf2 19,998 1,693
mf3 19,968 2,881

selfsimilar 120,000 200
Poisson 120,000 39
wuther 120,952 10,546
genesis 43,119 2,674
brown2 855,043 46,153
xout 1 142,732 12,113
youtl 142,732 12.140

or geometric coordinates taken from spatial data. We also
created an artificial data set designed to favor tug-of-war
over sample-count.

Table 1 summarizes the data sets considered in this pa-
per. For each data set, we list its length (n), its domain size
(t), the actual self-join size, and its type, either artificial =
artificially created, statistical = obtained using a statistical
package, text = excerpts from well-known literary works, or
geometric = coordinates taken from a spatial data set.,

The performance was measured for sample sizes 2’, for
i = 0, 1,2,. . . ,14 (i.e., from 1 to 16,384). An example plot
is given in Fig. 1. Plots for the other data sets appear in
Figs. 3-14 at the end of the paper. In each plot, the labels on
the x axis show the base two logarithm of the sample size.
The labels on the y axis show the ratio of the estimated
size to the actual size of the self-join, i.e., the estimate nor-
malized by the actual. The actual join size is shown as a
horizontal line at y = 1. For each sample size, we plot the
normalized estimate produced by algorithms sample-count,
tug-of-war, and naive-sampling. For all three algorithms, by
the law of large numbers, the normalized estimate must tend
to 1 as the sample size grows, since the expectation of each
estimator equals the self-join size. Each plotted point corre-
sponds to one run of an algorithm; this seemed appropriate
since each estimator is already based on the aggregation of
many independent experiments.

3.1 Summary of the results

Algorithms sample-count and tug-of-war are always clear
winners, although in rare cases naive sampling performs al-
most as well as either sample-count or tug-of-war. Both
sample-count and tug--of-war perform well even with a very
modest number of sample points relative to the data set
sizes. They appear to reliably estimate the self-join size of
different kinds of sequences: both synthetic (from the Uni-
form, Zipf, Poisson, Self-similar, Multi-fractal distributions)
and real (Wuthering Beights, Genesis, Brown Corpus, Spa-
tial data).

In around half of the plots, the tug-of-war algorithm con-
verges noticeably faster than the sample-count algorithm.
For most of the remaining plots, the difference between the
two is modest. The most dramatic case in which sample-
count produces better estimates than tug-of-war is for the
Uniform distribution.

The “path” data set was created in order to verify the
theoretical analysis that there are data sets for which the

self-join size
680.000

2.59398e k 09
4.30435e + 09
3.15176e + 07
3.98391e + 06

618,664
3.40818e + 09
9.11973e + 08
1.11546e + 08
2.30896e + 07
5.83962e + 09
9.17222e + 07
9.45824e + 07

type Fig.
artificial 1

statistical 2,3
statistical 4
statistical 5
statistical 6
statistical 7
statistical 8
statistical 9

text 10
text 11
text 12

geometric 13
geometric 14

sample-count algorithm converges particularly slowly (i.e.,
O(&) sample points are needed for an accurate estimate).
The data set has 40,000 values that occur exactly once, and
one value that occurs 800 times. The estimates for this
pathological case are displayed in Figure 1, and indeed the
performance closely matches the theoretical prediction.

Figure 1: A pathological example, in which the three algo-
rithms are run on a data set with 40,000 values occurring ex-
actly once, and one value occurring 800 times. The z-axis.
depicts the base two logarithm of the sample size. The y-axis
depicts the normalized value of the estimator, i.e., the ratio of
the estimator to the actual self-join size. The horizontal line
represents the target normalized value of 1. For each of the 3
algorithms, the normalized value of the estimator is plotted as.
a function of the sample size used to compute the estimator,
for sample sizes 2’, i = 0, 1,2,. . . ,14.

3.2 A closer look into the distribution of tug-of-war esti-
mates

Another approach to measuring the reliability of the tug-of-
war estimator is to consider the distribution of the individual
estimators X = Xij. Each such individual estimator X is
the result of squaring the sum 2 = ‘& h(vj), for a single
pseudo-random choice of a hash function h : { 1, . . . , t} I-+

14

(-1, 1}.2 In Fig. 2, we plot 103 individual estimators for a
sequence generated according to the Zipf distribution with
parameter 1.5. (The data set characteristics, including the
actual self-join size, are given in the second row of Table 1.)

Figure 2: 103 different individual estimators Xij produced by
the tug-of-war algorithm run on data from the Zipf Distribu-
tion with parameter 1.5. The estimators have been sorted in
increasing order. The value of the estimator is plotted as a
function of the estimator number. Each estimator is based on
a single sample point. The actual self-join size is depicted by
a dashed horizontal line segment extending from the y-axis.

4 Signature schemes for join size estimation

In this section, we study signature schemes for join size es-
timation. The goal is to maintain a small signature for each
relation independently such that at any point we can esti-
mate the join size of any two relations. In the traditional
approach of join size estimation without the benefit of pre-
computed signatures, it is well-known that join size esti-
mation is ineffective when the join size to be estimated is
small. Thus previous work on estimating join sizes has ad-
vocated the use of “sanity bounds” [LN95, LNSSO]: the goal
is to develop procedures that provide an accurate estimate
whenever the join size is at least B and otherwise report
that the join size is less than B, and to minimize the B.
(Typical values for B are n3j2 or nlog n.) Sanity bounds
are appropriate for join size estimation: there is a strong
motivation to estimate the join size accurately only when
the join size is large, since in such cases the resources that
would be consumed to perform the join are large.

We consider join size estimation in the presence of an a
priori sanity (lower) bound on the join size and present the
first results showing that the simple random sampling ap-
proach has essentially the best estimation guarantees (worst
case guarantees, over all possible relations) among all possi-
ble signature schemes. Since the estimation guarantees are
not satisfactory, we propose a more refined analysis that
takes into account the self-join sizes of the participating re-
lations. We assume now two bounds: a lower bound on the
join size and an upper bound on the self-join size, and ask
if in this case, one can do better than random sampling?

2Recall that the overall estimator is obtained by computing av-
erages of groups of these individual estimators, and then taking the
median of the group averages. Thus we expect these individual esti-
mators to have much larger variance than our overall estimator.

We show that indeed one can do better by presenting
a signature scheme that gives provably better join size es-
timation for many settings of these two parameters. This
algorithm is based on the tug-of-war approach outlined in
the previous section. It also provides further motivation for
tracking self-join sizes.

For simplicity, throughout this section we assume that
all join sizes to be estimated are for pairwise equality joins
on the same attribute. The results extend immediately to
the case where the joins are on the same set of joining at-
tributes. Extensions to handle the more general scenario
of joins with different joining attributes are also straightfor-
ward, although typically additional space is required to keep
track of the additional attributes.

4.1 Analysis of random samples as signatures

First we study the simple signature scheme of randomly se-
lecting each tuple from a relation with probability p, and
storing the value of the joining attribute for that tuple as
the signature for the relation. To estimate the join size of
two relations F and G, we compute the size of the join of
their signatures and scale the result by pm2. (This procedure
is called t-cross in [HNSS93].)

We can view the tuples in F and G as nodes in the two
sides of a bipartite graph I’ = (I’v,I’,s). There is an edge
between a node f E F and a node g E G if and only if tuples
f and g have the same value on the joining attribute. Then
]PE] = IF w GI, the join size of F and G. The join size of
their samples is the number of edges spanned in I by the
nodes in the samples.

Lemma 4.1 Let I’ be any graph on n nodes. Assume we
select nodes of P randomly, each with probability p > i. Let
X denote the random variable whose value is the number of
edges that are spanned by the nodes in the sam le.

r
Then

E(X) = II’EJp2 and Var(X) 5 ll?EJp2 + CL, dip3, where
di is the degree of node i in F.

Since ‘& df 5 n cy=, d; = 2n]l?E], we can bound
Var(X) in Lemma 4.1 by 3n]rE]p3. Note that if E(X)2 2
aVar(X) for a constant LY > 1, we can apply the Cheby-
chev inequality to obtain a (small) constant factor error
with (high) constant probability. Var(X) 5 E(X)2/a if
31rElnp3 5 lrE12p4/a, i.e., p 2 3on/]PE]. This shows that
a sample of expected size np > 3cxn2/IF w G] is sufficiently
large.

We conclude:

Lemma 4.2 Suppose we have an a priori lower bound B
on the join size. The simple sampling signature scheme es-
timates the join size with constant relative error with high
probability if the random sample has size at least cn2/B, for
a constant c > 3 determined by the desired accuracy and
confidence.

Note that random samples of each relation can be main-
tained incrementally with small overheads as new data is
inserted or deleted into the relation [Vit85, GMP97b], and
hence one can track join sizes in limited storage using this
approach.

4.2 Lower bounds on signature schemes for join size esti-
mation

We prove that, to within constant factors on the signature
size, the simple sampling algorithm in the previous subsec-
tion cannot be improved (measured by worst case analysis)

15

with no further assumptions. The lower bound applies to all
possible signature schcemes, including static signatures that
may or may not have efficient incremental maintenance.

We say an estimate is “good with high probability” if it
is within, say, a 1% relative error with 99% probability.

Theorem 4.3 Let @ be any scheme which assigns bit strings
to database relations, so that there is a random or determin-
istic pairing function D such that given two relations F and
G of size n the formula D(+(F), a(G)) gives a good estimate
on the join size of F and G with high

B
robability, when an

a priori lower bound B, n 5 B 5 n /2, as gaven on the
join size. Then the length of the bit string that @ assigns to
relations of size n must be at least (n - fi)‘/B.

Proof. We use a standard lower bound technique devel-
oped by Yao for a wide range of randomized models. Let
m = n - a. Define t = 10m2/B and fix a set T of t pos-
sible values for the joining attribute, denoted types. Let DI
be the uniform probability distribution on uni-type relations
over T; namely, with probability l/t we select the relation
comprising m tuples of type i, where 1 5 i 5 t. We define
another distribution D2 in the following way: Let S be a
family of subsets of {I., 2,. . . , t} such that: (1) All sets in S

have size m2/B = t/110. (2) ISI = 2mZ’B = 2t/‘o. (3) For
all 5’1, S2 E S, SI # $2, we have ISI n S2l 5 m2/2B = t/20.
One can show the existence of such a set system using the
probabilistic method. For each S E S, we define a relation
S’ of size m comprising B/m tuples of each type in S. Let
S’ be the set of relations so defined. We define DZ to be the
uniform distribution on relations in S’.

To ensure that all join sizes are at least B, we augment
each relation in D1 and D2 to also have fi tuples of type
0. Thus the total size of each relation is n.

Let F be a relation randomly chosen from DI and let
G be a relation randomly chosen from D2. The join size
of F and G is either B or B + m(B/m) = 2B. Applying
Yao’s technique it suffices to show that any deterministic
scheme that assigns strings of length at most (m2/B)-1 fails
to estimate the join size with small error with probability
bounded away from 0 for a random pair F E D1, G E Dz.
Consider partitioning the relations into classes according to
the bit string assigned them by @. For each relation in DI,
the pairing function gives the same estimate for all relations
in DZ in the same class. However, for each class, there can
be at most one relation in D2 for which the estimate has less
than 50% error for more than 95% of the relations in Dl.
To see this, consider S1,Sz E S such that the corresponding
relations in DZ map to the same class, and let T’ = {t E
(SI - SZ) U (S2 - SI)}. For each DI whose type is in T’,
the join size is B for one of S1 and S2 and 2B for the other;
thus any estimate will have at least 50% error for at least
one of them. By the properties of S, we have IT’1 2 2(t/lO-
t/20) = t/10, and hence for one of them, the estimate will
have at least. 50% error for more than t/20 = 5% of the
relations in D1. Since the number of distinct bit strings is
at most 2?“‘IB/2, we get that for a constant fraction of the
pairs F E DI, G E DZ the scheme fails to estimate the join
size with small error. .

2
Thus if B is o(n2): then the bit strings must be at least

n /(l + o(l))B long. Comparing Lemma 4.2 and Theo-
rem 4.3, we have that (i) the sampling signature scheme
with an expected @(n2/B) values stored is good with high
probability, and (ii) no signature scheme is good with high
probability unless it has 0(n2/B) bits stored.

This lower bound implies estimation guarantees that are
not satisfactory in many cases. Thus in the next subsection,
we propose a more refined analysis that takes into account
the self-join sizes of the participating relations. We assume
now two bounds: a lower bound on the join size and an
upper bound on the self-join size, and ask if in this case, can
one do better than random sampling? We show that indeed
one can do better by presenting a signature scheme that
gives provably better join size estimation for many sett#ings,
of these two parameters.

4.3 The tug-of-war join signature scheme

Recall that our goal is to maintain a small signature for
each relation independently such that at any point we can.
estimate the join size of any two relations. Our new sig-,
nature scheme is based on tug-of-war signatures, and pro-,
vides guarantees on join size estimation as a function of
the self-join sizes of the joining relations. Specifically, the
scheme gives an estimator for the join size of any two rela-
tions F and G whose error is (with high probability) at most

2. SJ(F) . SJ(G), where SJ(F) and SJ(G) are the self-join
sizes of F and G. The signature that enables this estimator
for any two relations is only logn bits per relation. Us-
ing this signature as a building block, we construct a large]
signature of Ic log n bits comprising lc independent log n bit
signatures per relation. An estimator based on taking the
arithmetic mean of the k individual estimators reduces the
error by a factor of 4.

Let D = {1,2, . , t} be the domain of the joining at-.
tribute. Let F and G be two relations of n tuples each.
For i = 1,. . , t, let f; and gi be the number of tuples in
F and G whose joining attribute value is i. The join size
IF w GI = CT=, fi . gi.

Let {Ei}f=l be four-wise independent (-1, 1}-valued ran-
dom variables. For F and G we create the signatures S(F) =:
cdl Ei fi and S(G) = ~~=‘=, eigi, respectively.

The estimator for IF w GI is simply S(F). S(G).

Lemma 4.4 Let S(F) and S(G) be tug-of-war join signa-
tures for relations F and G. Then

E(S(F) . S(G)) = IF w GI (1:)
Var(S(F) . S(G)) 5 2. SJ(F) . SJ(G), c4

where SJ(F) and SJ(G) are the self-join sizes of F and G.

Proof.

E(S(F) S(G)) = E(k e?figi + C EiEjfQIj)
i=t l<i#j<t

=e fig; = IF w GI,
i=l

since E(eiej) = 0 for 1 5 i # j 5 t. To prove Equation (2)
define

X = S(F). S(G) - E(S(F) . S(G)) = C ciy figj.
l<i#j<t

Since E(X2) = Vax(S(F) . S(G)), we have:

Va(S(F) . S(G)) = C f?g; + C figifjgj. (3)
l<ifj<t l<i#j<t

16

Now from

and

c figifjgj =

()
c

figi 2 - c ffd

lli#j<t 1<i<t 1<i<t

1<i<t _ _ 1<j<t I<i<t

and Equation (3), we conclude that

V=(S(F). S(G)) I 2 c f: c g; - c fi?gf f
\1<i<t 1<j<t l<i<t /

5 2. SJ(F) . SJ(G).

.
Note that the tug-of-war signature scheme described in

this section is a better join size estimator than the random
sample estimator, because already it is a better estimator
for the self-join (as demonstrated earlier in this paper - see
Lemma 2.3).

The performance of the tug-of-war signature scheme can
be enhanced by repeating the basic scheme k > 1 times and
taking the arithmetic mean of the results. We denote this
scheme by k-TW. The signature size of the k-TW is klogn
per relation.

Theorem 4.5 Let F and G be two relations such that IF w
GI 1 Bl, SJ(F) 5 Bz, and SJ(G) 5 B2. Then the k-TW
estimator with

k = c . SJ(F) . SJ(G) < CB,2

B,2 - B,2

estimates IF w G] within constant relative error with high
probability, for a constant c > 2 determined by the desired
accuracy and confidence.

Proof. By Lemma 4.4, the variance of the l-TW estimator
is upper bounded by 2 SJ(F) . SJ(G) 5 2Bi. Since the
k-TW estimator is the arithmetic mean of k independent
l-TW estimator, we can upper bound its variance by 2
SJ(F) . SJ(G)/k 5 2Bz/k. We also have a Bf lower bound
on the square of the expectation. The theorem follows from
the Chebychev inequality. .

Note that for each l-TW, the {ci}i=r can be determined
by selecting at random from a family of 4-wise independent
hash functions. Thus for k-TW, we select independently
at random k such hash functions. Let Zi be the signature
for the ith hash function hi. For each insertion into the
relation of a new tuple with joining attribute value x, for
i = 1,. ., k, we add hi(x) (= 1 or -1) to 2;; for each
deletion from the relation of an existing tuple with joining
attribute value x, we subtract hi(x) from Zi. Thus we can
use k-TW signatures to track join sizes in limited storage
(namely k log n bits per relation).

must provide good quality estimates for JF w G(for any
other relation G. This rules out adapting approaches used
in traditional join size estimation that supplement sampling
in one relation with indexed lookups of the number of tuples
with a joining attribute value in the other relation, such as
the adaptive sampling of [LN95] and the bifocal sampling
of [GGMS96] (procedures with indexed lookups are called
t-index in [HNSS93]). An alternative scenario to consider is
to be given a set of join pairs and compute a signature for
each pair, and to incrementally maintain these signatures.
The practical problem then is that the size of the signa-
tures and the work for incremental maintenance may scale
with the number of pairs. For example, the construction in
the lower bound of Theorem 4.3 shows that large signatures
are required to obtain good estimates with high probability,
even when restricting the set of joins to be relations from
D1 joining with relations from D2.

5 Conclusions

This paper has considered the problem of tracking (approx-
imate) join and self-join sizes in limited storage in the pres-
ence of insertions and deletions to the relations. The goal
is to maintain a small synopsis of the data in each relation,
kept up-to-date as the data changes, in order to provide a
high quality estimate of a join or self-join size, on demand
at any time.

For self-joins, we discuss three algorithms, sample-count,
tug-of-war, and naive-sampling, focusing on extensions to
handle deletions, implementation issues, and experimental
evaluation. Extending our previous work [AMSSG], we present
analytical bounds demonstrating that, for the same size syn-
opsis, tug-of-war is more accurate than sample-count which
is more accurate than naive-sampling. Our experimental re-
sults on a variety of real and synthetic data sets support this
relative ordering in accuracy; although the gap between tug-
of-war and sample-count is often small, and indeed, some-
times sample-count is more accurate. The naive-sampling
algorithm, on the other hand, does considerably worse than
the other two.

For joins, our goal is to maintain a small synopsis (a
join signature) of each relation such that join sizes can be
accurately estimated between any pairs of relations. We
show that taking uniform random samples for join signa-
tures can lead to inaccurate estimation unless the sample
size is quite large, namely @(n2/B), where n is the size of
each relation and B is an a priori sanity lower bound on the
join size. Moreover, by a lower bound we show, no signa-
ture scheme can provide good estimation guarantees unless
it stores R(n2/B) bits. Thus no other scheme can signifi-
cantly improve upon random sampling without further a.+
sumptions. Finally, we present a signature scheme based on
tug-of-war signatures that provides guarantees on join size
estimation as a function of the self-join sizes of the joining
relations. This scheme can significantly improve upon the
sampling scheme across a range of self-join sizes. Moreover,
the join signature for a relation can be maintained incre-
mentally in the presence of insertions and deletions to the
relation.

Future work includes performing an experimental study
of the tug-of-war join signature scheme, and extending the
work to more general scenarios such as three-way joins.

A remark on signatures for a priori join pairs. We have
considered in this paper the set-up in which the signature
for an individual relation F is computed in isolation and

17

Acknowledgements

The first author is supported in part by a USA-Israel BSF
grant and by the Fund for Basic Research administered by
the Israel Academy of Sciences. The third author is sup-
ported in part by an Alon Fellowship, by a Tel Aviv Uni-
versity Grant, by the Israel Science Foundation founded by
The Academy of Sciences and Humanities, and by the Israeli
Ministry of Science.

We thank Ken Church and Christos Faloutsos for pro-
viding some of the data sets used in our experimentations.

References

[AGP99]

[AGPR99]

[AMS96]

[BDF+97]

[GGMS96]

[GM98a]

[GM98b]

[GMP97a]

[GMP97b]

S. Acharya, P. B. Gibbons, and V. Poosala. Con-
gressional samples for approximate answering of
group-by queries. Technical report, Bell Labo-
ratories, Murray Hill, New Jersey, March 1999.

S. Acharya, P. B. Gibbons, V. Poosala, and
S. Ramaswamy. Join synopses for approximate
query answering. In Proc. ACM SIGMOD In-
ternational Conf. on Management of Data, June
1999.

N. Alon, Y. Matias, and M. Szegedy. The space
complexity of approximating the frequency mo-
ments. In Proc. 28th ACM Symp. on the The-
ory of Computing, pages 20-29, May 1996. Full
version to appear in JCSS special issue for
STOC’96.

D. Barbara, W. DuMouchel, C. Faloutsos, P. J.
Haas, J. M. Hellerstein, Y. Ioannidis, H. V. Ja-
gadish, T. Johnson, R. Ng, V. Poosala, K. A.
Ross, and K. C. Sevcik. The New Jersey data
reduction report. Bulletin of the Technical Com-
mittee on Data Engineering, 20(4):3-45, 1997.

S. Ganguly, P. B. Gibbons, Y. Matias, and
A. Silberschatz. Bifocal sampling for skew-
resistant join size estimation. In Proc. ACM
SIGMOD International Conf. on Management
of Data, pages 271-281, June 1996.

P. B. Gibbons and Y. Matias. New sampling-
based summary statistics for improving approx-
imate query answers. In Proc. ACM SIGMOD
International Conf. on Management of Data,
pages 331--342, June 1998.

P. B. Gibbons and Y. Matias. Synopsis data
structures for massive data sets. D IMA CS:
Series in Discrete Mathematics and Theoreti-
cal Compu.ter Science, 1998. To appear. Avail-
able as Bell Labs tech. rep., Sept. 1998, and at
http://www.bell-labs.com/“pbgibbons/. Also, a
two-page summary of this paper appeared in
SODA’99.

P. B. Gibbons, Y. Matias, and V. Poosala. Aqua
project white paper. Technical report, Bell Lab-
ora.tories, Murray Hill, New Jersey, December
1997.

P. B. Gibbons, Y. Mat&, and V. Poosala. Fast
incremental maintenance of approximate his-
tograms. In Proc. 23rd International Conf. on
Very Large Data Bases, pages 466-475, August
1997.

[Goo89]

[HH99]

[HHW97]

[HNSS93]

[HNSS95]

[HijT88]

[IP95]

[LN95]

[LNSSO]

[MRL98]

[MS991

[PO0971

[Vit85]

[VL93]

I. J. Good. Surprise indexes and p-values. J.
Statistical Computation and Simulation, 32:90-
92, 1989.

P. Haas and J. Hellerstein. Ripple joins for online
aggregation. In Proc. ACM SIGMOD Interna-.
tional Conf. on Management of Data, June 1999.

J. M. Hellerstein, P. J. Haas, and H. J. Wang.
Online aggregation. In Proc. ACM SIGMOD
International Conf. on Management of Data:
pages 171-182, May 1997.

P. J. Haas, J. F. Naughton, S. Seshadri, andi
A. N. Swami. Fixed-precision estimation of join.
selectivity. In Proc. 12th ACM Symp. on Prin
ciples of Database Systems, pages 190-201, May
1993.

P. J. Haas, J. F. Naughton, S. Seshadri, and
L. Stokes. Sampling-based estimation of the
number of distinct values of an attribute. In
Proc. Zlst International Conf. on Very Largf:
Data Bases, pages 311-322, September 1995.

W.-C. Hou, G. ~zsoyoglu, and B. K. Taneja.
Statistical estimators for relational algebra ex-
pressions. In Proc. 7th ACM Symp. on Princi-
ples of Database Systems, pages 276-287, March
1988.

Y. E. Ioannidis and V. Poosala. Balancing his-
togram optimality and practicality for query re-
sult size estimation. In Proc. ACM SIGMOD
International Conf. on Management of Data:
pages 233-244, May 1995.

R. J. Lipton and J. F. Naughton. Query size
estimation by adaptive sampling. J. Compute?
and System Sciences, 51(1):18-25, 1995.

R. J. Lipton, J. F. Naughton, and D. A. Schnei-
der. Practical selectivity estimation through.
adaptive sampling. In Proc. ACM SIGAIOD
International Conf. on Management of Data,
pages 1-12, May 1990.

G. S. Manku, S. Rajagopalan, and B. G. Lind-
sley. Approximate medians and other quan-
tiles in one pass and with limited memory. In
Proc. ACM SIGMOD International Conf. on.

Management of Data, pages 426-435, June 1998.

Y. Matias and E. Segal. Approximate iceberg
queries. Technical report, Department of Com-
puter Science, Tel Aviv University, Tel Aviv, Is-
rael, March 1999.

V. Poosala. Histogram-based estimation tech-
niques in databases. PhD thesis, Univ. of
Wisconsin-Madison, 1997.

J. S. Vitter. Random sampling with a reser-
voir. ACM Transactions on Mathematical Soft-
ware, 11(1):37-57, 1985.

S. V. Vrbsky and J. W. S. Liu. Approximate-
a query processor that produces monotoni-
cally improving approximate answers. IEEE.
‘Trans. on Knowledge and Data Engineering,
5(6):1056-1068, 1993.

18

I .

Figure 3: Accuracy comparison on data from the Zipf Distribu- Figure 6: Accuracy comparison on data from the Multi-fractal
tion with parameter 1.5. The normalized value of the estimator distribution with parameters (20,000,0.2,12). The normalized
produced by each of the 3 algorithms is plotted as a function value of the estimator produced by each algorithm is plotted as
of the base two logarithm of the sample size used. a function of the base two logarithm of the sample size used.

Figure 4: Accuracy comparison on data from the Zipf Distribu- Figure 7: Accuracy comparison on data from the Multi-fractal
tion with parameter 1.0. The normalized value of the estimator distribution with parameters (20,000,0.3,12). The normalized
produced by each algorithm is plotted as a function of the base value of the estimator produced by each algorithm is plotted as
two logarithm of the sample size used. a function of the base two logarithm of the sample size used.

Figure 5: Accuracy comparison on data from the Uniform Dis- Figure 8: Accuracy comparison on data from the Selfsimilar
tribution. The normalized value of the estimator produced by Distribution. The normalized value of the estimator produced
each algorithm is plotted as a function of the base two loga- by each algorithm is plotted as a function of the base two
rithm of the sample size used. logarithm of the sample size used.

19

Figure 9: Accuracy comparison on data from the Poisson Dis- Figure 12: Accuracy comparison on words from the Brown Cor-,
tribution. The normalized value of the estimator produced by pus. The normalized value of the estimator produced by each
each algorithm is plotted as a function of the base two loga- algorithm is plotted as a function of the base two logarithm of
rithm of the sample siz:e used. the sample size used.

Figure 10: Accuracy comparison on words from the book Figure 13: Accuracy comparison on the z-coordinates of data
Wuthering Heights. The normalized value of the estimator from a spatial point set. The normalized value of the estimator
produced by each algor’ithm is plotted as a function of the base produced by each algorithm is plotted as a function of the base
two logarithm of the salmple size used. two logarithm of the sample size used.

Figure 11: Accuracy comparison on words from the book of Figure 14: Accuracy comparison on the y-coordinates of data
Genesis. The normalized value of the estimator produced by from a spatial point set. The normalized value of the estimator
each algorithm is plotted as a function of the base two loga- produced by each algorithm is plotted as a function of the base
rithm of the sample size used. two logarithm of the sample size used.

20

