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We investigate the problem of how to extend constraint 
query languages with aggregate operators. We deal 
with standard relational aggregation, and also with ag- 
gregates specific to spatial ,data, such as volume. We 
study several approaches, including the addition of a 
new class of approximate aggregate operators which al- 
low an error tolerance in the computation. We show 
how techniques based on VC-dimension can be used to 
give languages with approximation operators, but also 
show that these languages have a number of shortcom- 
ings. We then give a set of results showing that it is 
impossible to get constraint-based languages that admit 
definable aggregation operators, both for exact opera- 
tors and for approximate ones. These results are quite 
robust, in that they show that closure under aggregation 
is problematic even .when the class of functions permit- 
ted in constraints is expanded. 

This motivates a different approach to the aggregation 
problem. We introduce a language FO + POLY + SUM, 
which permits standard discrete aggregation operators 
to be applied to the outputs of range-restricted con- 
straint queries. We show that this language has a num- 
ber of attractive closure and expressivity properties, 
and that it can compute volumes of linear-constraint 
databases. We also show, using techniques from ma- 
chine learning, that a small extension of FO + POLY + 
SUM can probabilistically find approximations of vol- 
umes for polynomial-constraint databases. 
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1 Introduction 

New applications of database technology, such as Ge- 
ographical Information Systems, have spurred a con- 
siderable amount of research into generalizations of the 
standard relational model to deal with the manipula- 
tion of geometric or spatial data. One common ap- 
proach to modeling spatial databases is to consider in- 
put databases as given by a set of well-behaved re- 
lations in euclidean space - for example, by a set of 
semi-linear or semi-algebraic sets. There are a num- 
ber of proposed query languages that extend classical 
relational algebra to this setting, languages that allow 
the use of various geometric operations in manipulating 
spatial databases. One of the most well-developed mod- 
els for spatial queries is the constraint database model 
[23]. In this model, spatial databases are representeld as 
sets of linear or polynomial constraints. Databases are 
queried using standard relational calculus with linear 
(resp. polynomial) inequalities as selection criteria, see 
[4, 5, 6, 19, 20, 32, 381. These languages, denoted by 
FO + LIN and FO + POLY, have become the dominant 
ones in the constraint database literature. They have 
a very important closure property: the application of a 
FO + LIN query to a linear constraint set yields a new 
set of linear constraints; similarly FO + POLY queries on 
sets definable with polynomial constraints produce sets 
that can still be defined with polynomial constraints. 

Constraint Query Languages, then, give a natural ana- 
log of relational calculus in the geometric context. A 
crucial question, though, concerns how to extend stan- 
dard aggregation constructs from the relational model 
to the geometric setting. This question has two com:po- 
nents. First, we would like our languages to be able 
to apply standard SQL operators such as TOTAL and 
AVG to spatial queries, whenever these operators make 
sense. Since the output of queries in constraint query 
languages (and in other spatial query languages) may 
be merely finitely representable (that is, representable 

102 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F303976.303987&domain=pdf&date_stamp=1999-05-01


by some finite means, e.g., a finite set of constraints) 
and not finite, the aggregation operators cannot be al- 
lowed to be applied to any constraint query output. One 
problem then, is to design a language that allows the 
safe application of classical aggregates. 

The second component of the ‘aggregation question’ 
concerns aggregation notions that are specific to the 
spatial databases. Most commonly, given a database 
and the output of a query over it, one wishes to form 
new queries about the volume of this output. One may 
also extend standard aggregates such as AVG, and ask 
*ofor the average value of a polynomial over a spatial ob- 
ject. Such aggregates arise both from practical concerns 
of GIS, and also as the natural continuous analogs of 
classical aggregation queries. Thus, we would like to 
extend constraint query languages to incorporate the 
ability to calculate volumes and other aggregates aris- 
ing in the spatial setting. 

In attempting to add aggregation to constraint query 
languages, one immediately encounters some daunting 
obstacles. While standard constraint databases are 
closed under first-order operations such as join and 
projection, they are clearly not closed under taking 
of volumes. This fact is well-known in the literature 
[23, 27, 121, and stems from the fact that neither the 
semi-linear nor semi-algebraic sets are closed under in- 
tegrals. To take an example from the semi-algebraic 
setting, a query asking for the volume of initial slices 
of the epigraph of l/x outputs the graph of the In 
function, while iterating volume queries in this fashion 
would give as output transcendental functions that are 
not even expressible using field operations, logarithms 
and exponents. Thus, one cannot hope to add a general 
volume operator to existing first-order constraint query 
languages such as FO + POLY and get a closed language 
while still remaining within the domain of polynomial 
constraint databases. 

There are several approaches to the volume problem 
mentioned above. First, one could weaken the require- 
ment that volumes be computed exactly and instead aim 
only to compute approximate volumes. Thus a query 
might have a tolerance associated with each instance of 
a volume operator, with output required only to be cor- 
rect within the given tolerance. There are a number of 
practical and theoretical motivations for this approach. 
While it is known that computing volumes of even sim- 
ple geometric objects (convex polytopes) is a hard prob- 
lem (#P-hard, see [14]), approximation of volumes, at 
least of convex sets, can be done in polynomial time by 
a randomized algorithm 1151. Moreover, in contrast to 
the well-known fact that semi-algebraic and semi-linear 
sets are not closed under volume operators, the papers 
(24, 25, 261 show that volumes of sets definable with 

polynomial constraints can be approximated, for any 
given E > 0, by a first-order formula with polynomial 
constraints. By giving up the exact volumes and set- 
tling for an approximation, one might hope to retain 
desirable closure properties. 

A second approach to the aggregation problem would be 
to expand out of the domain of polynomial constraints, 
and add new functions to the signature of both the con- 
straints and the query language. This would give the 
possibility of retaining a constraint-based representa- 
tion of databases, while gaining closure under volume 
operators. Of course, in this approach one should ex- 
pand the constraint set so that it still defines only topo- 
logically well-behaved objects. 

A third approach to the volume problem is to search for 
languages which can compute or approximate the vol- 
umes of important classes of sets, but which may not be 
closed under iterative application of volume operators. 
For example, one could allow volume and other aggre- 
gation operators to be applied only to a subclass of the 
input queries. Restrictions on the nesting of volume 
operators would then have to be imposed. 

An example of this last approach in the existing litera- 
ture is [ll], where it is shown that polynomial constraint 
query languages can express the (exact) volume for any 
set that admits a special condition called ‘variable in- 
dependence’. This condition means, informally, that in 
the constraint specification of sets in, say, lR2, there is 
no interaction between z and y. Unfortunately, this 
condition is too restrictive: it excludes many of the sets 
that arise most often in spatial applications. 

In this paper, we analyze the feasibility of each of the 
above approaches in detail. For the first approach, we 
show that techniques based on VC dimension, coming 
out of the work of [24, 25, 261 give us approximate vol- 
ume operators that give semi-algebraic output on semi- 
algebraic input. However, we show a number of short- 
comings of such an approach. Not only are the ap- 
proximate volume operators obtained according to the 
technique of [24, 25, 261 sensitive to .the input repre- 
sentation, but the blow-up in the size of the constraint 
databases produced in query evaluation precludes any 
possible use of these operators in practice. 

Turning to the second approach, we show that it is com- 
pletely infeasible. No first-order constraint language 
based on any reasonably well-behaved class of functions 
can express, or even approximate, volume. In the pro- 
cess of showing this, we develop a new set of techniques 
for proving inexpressibility results, techniques not based 
on the usual method of reduction to generic queries. 

We then consider solutions that give up full closure un- 
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der volume, and give a number of positive results. We 
present a higher-order language that allows one to cal- 
culate the volume of arbitrary semi-linear sets. Specifi- 
cally, we give a language, called FO + POLY -I- SUM, that 
has attractive closure properties, remains within the do- 
main of polynomial constraint databases, and allows 
the exact calculation of volumes for linear-constraint 
input databases. This language also has the pleasant 
feature that it is closed under the classical aggregation 
operators SUM and AVG. Since FO+POLY+SUM in- 
cludes SQL aggregation, contains FO + POW, and also 
allows one to make use of standard aggregation evalu- 
ation techniques in calculating volumes, it seems to be 
a good candidate for the constraint analog of classical 
aggregation languages. 

We remark that another approach to the aggregation 
problem was considered in [12], which gave a new ag- 
gregate operator /.L, under which FO + LIN is closed. 
However, p(X) = 0 for any bounded set X; thus, this 
operator cannot be used to deal with volumes. 

Organization Section 2 introduces the notation. Ap- 
proximability is studied in Section 3. The method of 
defining approximate volumes of [24,25,26] is analyzed, 
and the main difficulties in applying the approximation 
operators coming from this work are outlined. Section 4 
shows that approximatte volume operators cannot be de- 
fined in first-order constraint languages, even when the 
signature is expanded. Section 5 defines an extension 
of FO + POLY with SQL-like aggregation (summation 
over finite sets) and shows that this extension can ex- 
press volumes of semi-linear databases. All proofs can 
be found in the full version [8]. 

2 Notation 

Structures, instances, queries Most notations are 
fairly standard in the l.iterature on constraint databases, 
cf. [5, 6, 32, 191. Let M = (U,sZ) be an infinite struc- 
ture, where U is an infinite set, called a universe (in 
the database literature often called the domain), and 0 
is a set of interpreted functions, constants, and predi- 
cates. In the field of constraint databases, most exam- 
ples have 2.4 = $ the set of real numbers. Examples 
of signatures (and corresponding classes of constraints) 
that have been considered are: 

Dense Order Constraints: (R, <); 
Linear Constraints: Rrin = (R +, -, 0, 1, <); 

Polynomial Constraints: R = (R, +, *, 0, 1, <); 
Exponential Constraints: Rxp = ($ +, *, e5, <). 

A (relational) database schema SC is a nonempty col- 
lection of relation names {Sr, . . . , Sl} with associated 

arities pi, . . . ,pl > 0. We shall consider both finite 
and finitely representable instances. Given M, an fi- 
nite instance of SC over M is a family of finite sets, 
{Ll,...,&}, where Ri C UP’. That is, each schema 
symbol Si of arity pi is interpreted as a finite pi-ary re- 
lation over U. Given a finite instance D, adorn(D) de- 
notes its active domain, that is, the set of all elements 
that occur in the relations in D. 

A finitely-representable (f.r.) instance of SC over M 
is a family of sets {Xi,. . . ,Xl}, with X; c UPi, such 
that for each Xi there exists a quantifier-free formula 
cxi(X1,. . . ,xpi) in the language of M with X; = {a E 
UPi ] M /= o;(Z)}. Most applications of constraint 
databases consider f.r. instances defined over Rrin (thlese 
are called semi-linear sets) or over R (called semi- 
algebraic sets). For example, in the spatial setting, a 
f.r. instance interprets the schema predicates as semi- 
linear or semi-algebraic sets. 

As our basic query language, we consider relational 
calculus, or first-order logic, FO, over the underlying 
structure and the database schema. In what follows, 
FO(SC,n) is the set of all first-order formulae in the 
language that contains all symbols of SC and 0. That 
is, FO(SC, a) formulae are built up from the atomic SC 
and 52 formulae by using Boolean connectives V, A, 1 
and quantifiers V, 3. 

Regardless of whether we are in the ‘classical’ setting, 
where queries are applied to finite databases, or in the 
constraint query setting, we will refer to the above syn- 
tactic query languages as relational calculus with R con- 
straints. This will be denoted by FO + R. When R is 
(+, -1 0, 1, <), or (+, *, 0, 1, <), or (+, *, eZ, <), we use 
the standard abbreviations FO + LIN, FO + POLY and 
FO + EXP. 

In the case of finite databases, we shall also use 
the active-domain quantifiers: for a formula cp(z,@‘), 
one can form formulae 3z E adom.cp(z,@‘) and Vs E 
adom.cp(x, y3. For a structure M and a SC-instance D, 
the notion of (M, D) + cp is defined in a standard way 
for FO(SC,n) f ormulae, where (M, D) + 3x (~(2, a) 
means that for some a E U we have (M, D) k cp(a, v), 
and (M, D) k 3x E adorn cp(x, .) means that for some 
a E adorn(D) we have (M, D) j= cp(a, D). If M is un- 
derstood, we write D + cp. 

Given cp(Z,y3 and a’, we write cp(Z, D) for {$ ( D b 
cp(a, b)}; in the absence of 3c’ we just write v(D) for the 
output of cp on D. 

The class of subformulae of FO that only use the active- 
domain quantification is denoted by FO,t. Over R 
and &in, one does not lose expressiveness over finite 
instances by going from FO to FOact , see [6, 321. 

104 



Adding aggregate operators We shall use VOL(X) 
to denote the volume of a set X C R”. More precisely, 
VOL(X) is the measure of any Lebesgue-measurable set 
X C_ IR”. We shall not worry about dealing with non- 
measurable sets, as all bounded sets defined with con- 
straints relevant for spatial applications (those listed 
above, plus some extensions) are measurable. 

We shall consider adding volume to a query language 
as follows. If cp(Z, 93 is a formula, then the following is 
a formula with free variables 2, z: 

Assume that a structure M = (&Cl) is fixed. Let an 
instance (finite or f.r.) D be given. Then 

D b [VOL$.cp(Z,y3](a',v) iff v = VOL(cp(d,D)) 

Recall that cp(Z, D) = {c ] D + cp(a’, b)}. 

The extension of any query language C with VOL will 
be denoted by C + VOL; for example, one can speak 
ofF0 + LIN + VOL or FO+ POLY+VOL. Of course 
we know that due to the nonclosure results mentioned 
in the introduction, FO + LIN 5 FO + LIN + VOL and 
FO+ PoLY~FO+POLY+VOL. 

As the next step, we restrict our attention to bounded 
sets. Without any loss of generality, we shall deal with 
subsets of I” c JR”, where I throughout this paper 
denotes [0, 11. We define VOLI g.v’.cp(Z, y3 just as above, 
except that now we require that v = Vo~(cp(a', 0) nIn). 
In particular, 0 5 v 5 1. We similarly define languages 
L + VOLI. As with VOL, languages like FO + LIN and 
FO + POLY are not closed under VOLZ: for example, 
arctan = Jo” & = VOLZ({(Y, 2) I (0 I Y 5 2) A 
(0 5 z 5 l/(y2 + l))}), for 0 5 2 5 1. 

As standard languages are not closed under taking vol- 
ume, we address the question of whether one can ob- 
tain closure by lowering one’s demands. In particu- 
lar, we would like to see if approximating the volume, 
rather than computing it directly, gives us a closed lan- 
guage. The hope that closure might be obtained in 
this way is motivated by the fact that for every formula 
cp(Z, y3 in R and for every E > 0, one can find a formula 
&(Z, z) that gives c-approximation of volumes of sets 
~(8, R) = VOLI({$ 1 R /= ~(3, b)}), see [24, 25, 261. 

We have to explain what we mean by approximating 
volume in this context. Clearly, we cannot hope to find 
&(Z, z) with z defining an c-interval around the real 
value of the volume - then the volume itself would be 
definable as the center of the interval! Thus, we settle 
for less. Similar to [24, 25, 261, we say for every E > 0, 
that an operator VOL' is an c-approximation operator 
if for every f.r., over M, set A C IP x IP , given by a 

formula cp(Z, @), VOL" returns a f.r. set in llP x $ given 
by y&(5, .z) such that : 

1. 

2. 

For every Z E R” , &(a, .) must be satisfiable (that 
is, M + 3z.&(a’,z)); 

If M b &(Z, v), then Iv - Vo~(cp(Z, IQ) 1 < c. 

Thus, VOLT must return a & that is guaranteed to find 
an (absolute) c-approximation of the volume. We next 
say that a query language L defines VOL', if there is a 
query in L that defines such an operator. That is, for 
each query cp(Z,y3 in L and E > 0 there is a L-query 
&(3c, z) such that for any database D, and any ?i, we 
have 

1) D t= %.&(Z,z), and 
2) D /= &(Z,v) implies Iv - VOL((P(Z,D))J< c. 

Notice that in the last definition I+& is independent of 
D. We also define e-approximation operators to vol- 
ume in the case where we restrict to bounded sets. 
As before, we use, w.l.o.g., I” as bounding set. An 
c-approximation operator in the bounded setting is de- 
noted by VOLT. Such an operator must satisfy the vari- 
ant of condition 2) above: 1 v - Vo~(cp(a', D) ~II”) 1 < E. 

These operators, and their definability in query lan- 
guages, are studied in Sections 3 and 4. 

0-minimality, VC dimension Many results that we 
prove extend beyond linear and polynomial constraints. 
To state them in greater generality, we shall use o- 
mdnamality [37], which plays an important role in the 
study of constraint query languages (cf. [5, 6, 71). 

A structure M = (U, 0) is o-minimal, if every defin- 
able set is a finite union of points and open intervals 
(a, b) = {x 1 a < x < b}, (-oqa) = {x 1 x < a}, 
and (a,oo) = {x ] x > a} (we assume that < is in 0). 
Definable sets are those of the form {x I M + v(x)}, 
where cp is a first-order formula in the language of M, 
possibly supplemented with symbols for constants from 
M. All the structures on the reals we mentioned so 
far - RI;,, R, Rexp - are o-minimal (the first two by 
Tarski’s quantifier-elimination, the last one by [39]). 

If M = (ES,Cl), we define M+,, to be ($0, +,*). We 
often require that not just M but also M+,, be o- 
minimal. Note that this requirement is satisfied by 
&in, R and Rexpa 

We also consider structures having finite VC dimen- 
sion of definable families [3, 281 (also known as struc- 
tures without the independence property [36]). VC di- 
mension, introduced in statistics to study uniform con- 
vergence of stochastic processes, has become central to 
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computational learning theory [3, lo], and found appli- 
cation in other areas, e.g., complexity [31]. 

Suppose X is an infinite set, an.d C & 2”. Let F c 
X be finite; we say that C shatters F if the collection 
{F n C 1 C E C} is :!F. The Vapnik-Chervonenkis (VC) 
dimension of C, VCdim(C), is the maximal cardinality 
of a finite set shattered by C. If arbitrarily large finite 
sets are shattered b,y C, we let VCdim(C) =: 00. 

Let M = (U,R), and let cp(Z,$) be a formula in the 
language of M with. ]Z]= n, Iv’]= m. For each Z E U”, 
define cp(Z, M) = (c E Urn ] M j= cp(Z,@}, and let 
F,(M) be {(~(a’, M) ] Z E U“}. Families of sets aris- 
ing in such a way are called definable families. We say 
that M is a structure with finite VC dimension if the 
VC dimension of each definable family is finite. Every 
o-minimal structure is a structure with finite VC di- 
mension [28], and the latter class is in fact much larger 
than the class of o-minimal structures. 

3 Approximating aggregates in constraint query 
languages 

The VC dimension-based implementation of approx- 
imate volume operators We now start our investiga- 
tion of the expressibility of approximate volume oper- 
ators. The results ad [24, 25, 261 do immediately give 
a closed language for computing approximate volumes. 
We then examine th.ose operators and show that they 
can blow up the size of the database enormously. 

Lemma 1 Let e > 0, and let cp(2,$‘) be a FO + POLY 
query. Then for every semi-algebraic database instance 
D there exists a formula cp&(Z, .z) such that ~&(a’, a) 
is satisfiable for all Z, and /= &(a’,~) implies 1 v - 
VOLz(cp@, D)) I< E. Hence, there is a collection of E- 
approximation operators VOL;, E > 0, for R. 

Proof. Replace each occurrence of a SC predicate by 
its definition (a FO formula over R) and apply the ap- 
proximating formulae of [24, 25, 261 (see below). Cl 

The addition of the operators VOL;, E > 0, to FO + 
POLY allows the calculation of approximate volumes, 
while retaining the property of FO+POLY that the out- 
put of a query is representable as a constraint database. 

We give a rough sketch of the formulae approximating 
the volume that are constructed in [24, 25, 261. As- 
sume that we are given a first-order formula cp(Z,yy3 
over the real field R:. with ] Z I= n and I y’]= m, and 
E > 0. We want to find a formula @(Z, z) approximating 

VOLZ((P(% R)) = VOL({~ I 4% iI)} n Im>. ’ 
The construction of $J is based on two key observations. 
First, one can find a small random sample that gives a 
good volume approximation uniformly for all Z. Seclond, 
the sampling procedure can be derandomized. 

The first observation follows from the finiteness of VC! 
dimension of definable families. As we noted before,, 
o-minimal structures, and the real field in particular,, 
are structures with finite VC dimension. That is, each. 
definable family F,(R) = {cp(Z,R) I ci E IF’} E 2wm 
has a finite VC dimension d (we assume from now 
on that all sets are restricted to [O,l]). Then, the 
classical result relating VC dimension and learnabil- 
ity [3, lo] states the following. Fix c,6 > 0, and. let 
M > max( 2 log 3, y log 5). Assume that an M-point 
sample X = {si,... , ZM} is randomly chosen in I”. 
For each Z, let w(Z,X) be the fraction of X that falls 
into cp(Z, R). Then ] v(& X) - VOLI(IJY(~, R)) I< t: for 
all ?i E Iw”, with probability at least 1 - 6. 

Since the VC dimension of F,(R) is a finite number 
d, one can write a formula that takes as input an M- 
sample and calculates the number of elements in the 
sample that fall into sets cp(Z,R). Note that the M 
given in the paragraph above depends only on d, E <and 
6, not Z. Hence with probability > 1 - S a sample X 
plugged into the formula gives us a good approximation 
to the volume over a for every a’. The construction 
in [24, 25, 261 then derandomizes this sampling, along 
the lines of the classical proof of BPP C PH. Namely, 
one gets a formula y(l, v) that determines whether the 
set {X ) X is an M-sample from I” whose portion 
falling into ~(2, R) is within e/2 from v} has a certain 
number of translates covering the entire unit cube in the 
appropriate dimension. Then [24, 25, 261 prove that a 
w for which these translates cover the cube must be an 
e-approximation to the volume of cp(Z, R). 

Shortcomings of the approximation technique ‘We 
note here some shortcomings of the technique of Lemma 
1 in the context of constraint databases. In the tech- 
nique, one has to put the definition of a constraint 
database D into a query cp, and then apply the method 
of [24, 25, 261 to the result. That method produces, an 
output formula whose size is a polynomial in the input 
formula and f: theoretically, a nice bound. In attem,pt- 
ing to apply this technique in practice, however, we find 
that the bounds obtained are rather unpleasant, even 
for modest values of e, as the size of the quantifier prefix 
is quite large. In the constraint database setting, those 
will have to be eliminated, via a quantifier-elimination 

‘The notion of approximation in [24, 25, 261 is slightly more spe- 
cific: it requires that k $(a,~) imply ) IJ - Vo~~(p(ci,R)) I< E, and 
Iv - VOLI('P(B,R))I< s/4 imply + 11(&v). 
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procedure, which will be very costly. Let us illustrate 
this by a simple example. 

Example: Let the schema contain one unary pred- 
icate U interpreted as a subset of [0, 11. The query 
(P(xI,x~;YI,Y~) is given by 

V(a) A U(xz> A x1 -C YI A YI < 52 A 0 5 ~2 A ~2 I YI 

Let E = l/10. We want to evaluate the query 
(V~I$7x~l, 572; Yl, Yz>>( x1, x2, Z) saying that z is an 
c-approximation to the volume of cp(zi, x2, U) = 
{(Yl,YZ) I u + cp( xl, x2; yl, ys)}, where VOLT is the op- 
erator obtained through the method above. Note that 
Vo~l(cp(a, b, U)) = (b2 - a2)/2. To evaluate this query 
on a database where U consists of n elements, by ap- 
plying Lemma 1, we would first plug U in cp to obtain 
a formula with > 2n atomic subformulae that does not 
mention U. Using the bounds from [25], we obtain a 
formula for e-approximation of the volume that has at 
least log atomic subformulae, and at least 1O1l quan- 
tifiers. Thus, applying the method of [24, 25, 261 ‘as 
is’ appears to be infeasible in the context of constraint 
databases. 

The technique of Lemma 1 also tells us nothing about 
the definability of the operators VOL;, nor the power of 
the language that results from adding them to a stan- 
dard language, like FO+POLY, since the approximating 
formula cpi, varies with the input database. 

4 Uniformly definable volume operators and expan- 
sion of the signature 

We saw in the last section that the main shortcoming 
of all known examples of approximate volume opera- 
tors was’the blow-up in the size of the representation. 
It was also left open whether some volume approxima- 
tion operators can be defined in standard languages, like 
FO + POLY, uniformly for all database instances. We 
now investigate whether we can find other approxima- 
tion methods that can be expressed in nicely-behaved 
languages and that admit low complexity evaluation 
techniques. The main result is that one cannot cap- 
ture approximate volume operators in a nice constraint 
language such as FO+POLY. That is, 

Inexpressibility of Approximate Operators FO + 
LIN, FO + POLY and FO + EXP cannot express VOLT 
for any E < l/2. cl 

In fact, we prove a stronger result. Theorem 2 shows 
that even if one extends the constraint signature to in- 
clude functions beyond FO + EXP, as long as we stay 
within a well-behaved structure, we cannot capture ap- 
proximate volume. Furthermore, we show that in lan- 

guages like FO + POLY, only trivial approximations are 
possible. An example of a trivial approximation is re- 
turning l/2 for every subset of In - in this case we 
know that the difference between the real volume and 
its approximation is 5 l/2. 

Proving expressivity bounds such as Theorem 2 and 
Corollary 1 is not very simple. Almost all, if not all, 
existing expressivity bounds for constraint query lan- 
guages either involve generic queries (e.g., the parity 
test, see [5, 6, 32, 41) or are proved by reduction to 
generic queries (e.g., [20]). However, queries involv- 
ing approximation defined as in Section 2 are extremely 
nongeneric. We introduce the main ideas for the proof 
in several steps. We first consider an easier case of the 
aggregate AVG for finite instances and prove that it can 
be neither defined nor approximated in languages like 
FO + POLY. The proof introduces the idea of reduction 
to what we call a (cl, cz)-separating sentence, with cl, cg 
being constant real numbers. We then show how the 
same reduction easily proves that FO + POLY and the 
likes cannot produce relative approximations of VOL. 
For the absolute approximation VOL;, the reduction 
only works under very special assumptions on the in- 
put, and to conclude the proof we need to use results 
from circuit complexity. 

This section gives further evidence that if one wants to 
stay within a reasonable (for spatial applications) class 
of constraints, one must give up uniform closure under 
any nontrivial approximation to the volume. 

Separating sentences We shall consider a relational 
database schema SC that consists of two unary rela- 
tions, VI and U2. Let cl, c2 > 1 be two real numbers. 
We say that + is a (cl, cz)-separating sentence if for any 
finite instance D of SC, it is the case that card(Ul) > 
cl. card(&) implies D k @ and card(U2) > ~2. card(Ul) 
implies D /== +D. Note that this definition says noth- 
ing about the case when $ . card(&) 5 card(&) 5 
cr . card(&), and thus direct application of bounds on 
expressiveness of generic queries is impossible. Still, we 
can show: 

Proposition 1 Let M = (U, 0) be o-minimal, cl, c2 > 
1, and SC as above. Then no (cl, cz)-separating sen- 
tence is definable in FO(SC, a). 

Proof sketch. Assume such a sentence @ is definable. 
By [6], there exists a definable extension M’ of M such 
that over M’, 9 is equivalent to an active semantics 
sentence Q. By [5], there is an infinite subset of U over 
which X0 is definable in the language of VI, U2 and <. 
Then one uses Ehrenfeucht-Fra’isse games to show that 
this is impossible. cl 
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4.1 Dealing with AVG 

We assume that instances store elements of a numer- 
ical domain, for example Iw. Given a query cp(Z, z), 
we define AvG~(~,Y) by letting D j== AvG,JZ, w) iff 
card(cp(a’, 0)) < oo and v = AVG(tp(i?,.D)), where 
AvG(C) = (&c c)/card(C). Note that the aggregate 
AVG is typically defined using the bag semantics; how- 
ever, as we show inexpressibility results, dealing with 
this simplified versio’n will suffice. 2 

It is easily shown (by reduction to equal cardinality) 
that AvG,+, is not definable in FO + POLY, even if 
D + cp(Z,c) implies 0 5 c 5 1. We now define E- 
approximation of AYG just as we did it for VOL. As- 
sume a query ~(5, z) is given. An operator AvG;, when 
applied to cp, produces a query &(9, z) such that, for 
any instance D and any a’, D + 3z.cp(Z,z), and if 
D + cp(Z,v), then 1 v - AvG((P(c?, D) rl I) I< E and 
0 5 v < 1. For convenience, we let AvG(C) = 0 for C 
infinite. 

For E 2 l/2, AVG; is definable in FO(SC, 0) if the input 
is finite or f.r. over !a, as long as the constants 0,1/2 
and 1 are definable. However, 

Theorem 1 Let M = (R,fl), and let M+,, be o- 
minimal. Let E < 1./2. Then AVG; is not definable 
in FO + R, even ov’er finite instances. In particular, 
AVG; is not definable in FO + POLY. 

Proof sketch. Given 0 < E < l/2, it is possible to find 
a number 0 < A < l/2 and two FO + POLY queries 
that translate two finite sets Ul and UZ into intervals 
(0, A) and (1 - A, 1) respectively, in such a way that 
for the results of translation, Vi and Vi, AvG(U; u U,l) 
can be written as a function of SE%@ Using this, and 
assuming that AVG; :is definable, one obtains a (cl, cz)- 
separating sentence in FO + (0 U { +, *}) for appropriate 
cl, c2 > 1 that depend on E. This contradicts Proposi- 
tion 1. 0 

4.2 Dealing with volume 

We start with two easy results. First, for unbounded 
measures (no restriction to 1”) volume cannot be ap- 
proximated in languages like FO + POLY. 

Proposition 2 Let JM = (llJi,fi), and let M+,, be o- 
minimal. Then no e-approximation operator VOL' is 
definable in FO + R. cl 

'We shall come back to the multiset semantics later. 

The proof is by reduction to equal cardinality, for sparse 
finite sets. It relies on the fact that there is no a pri- 
ori bound on the outputs of queries. Thus, a different 
approach is needed to show inexpressibility of VOL;. 

For a query cp(Z,c’, and two constants 0 < cl < ~2, we 
say that +(i!, z) gives a (cl, c2)-relative approximation 
of the volume if for any 3, $(a, 0) is satisfiable, and 

D I= +,v) * cl < (~/Vo~(cp(W))) < c-2 

An easy reduction to separating sentences shows: 

Proposition 3 Assume that (!R, 0) is such that 
(l&Q+,*) is o-minimal. Then for any 0 < cl < ~2, 
the (cl, CS)-relative approximation of the volume is not 
definable in FO + R, for any dimension k > 0, even for 
queries restricted to [0, 11”. cl 

One often is interested in an e-relative approximation 
V,,, or volume V # 0 defined such that 1 Vapp - V 1 
/V < e, for 0 5 E < 1. Since the existence of an E- 
relative approximation means the existence of a (11 - 
E, 1 + c)-relative approximation to the volume in the 
sense defined above, we get that languages like FO + 
LIN, FO + POLY and FO + EXP cannot express relat,ive 
approximations of the volume, even for subsets of [O:, 11. 

4.3 Absolute approximation 

We shall now prove the strongest of the inexpressibility 
results: that VOL;, for E < l/2, cannot be defined in 
languages like FO + LIN and FO + POLY. First note: 

Proposition 4 FO + LIN defines VOL; for E 2 l/2. 

Proof sketch. If the volume is not 0 or 1, then l/f! is 
the e-approximation. cl 

This trivial approximation is the bext one can hope for 
in languages like FO + LIN and FO + POLY. 

Theorem 2 Let M = (lR,Sl), and let M+,, be o- 
minimal. Assume that E < l/2. Then VOL; is not 
definable in FO + R. 

Proof sketch. Let SC consist of two unary relations A 
and B. Call a finite instance good if A is an initial frag- 
ment of natural numbers, and B is a nonempty proper 
subset of A. Let cl = (1 - 26)/3 and cz = (2 + 26)/3. 
A sentence 9 in the language of SC and R is called1 a 
(cl, c2)-good sentence if card(B) < cl . card(A) implies 
D + 79 and card(B) > c2 . card(A) implies D b 9 
for any good instance D. Note that this is the same as 
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having a separating sentence for B and A - B; however, 
here we only require that the above conditions hold for 
a good instance. The theorem follows from two lemmas. 

Lemma 2 Assume VOLi is definable in FO + R. Then 
for cl, c2 as above there exists a signature W extending 
$2 and a (cl, c2)-good sentence in FO,,t (SC, a’). 

Proof sketch of Lemma 2. With an FO+POLY query, we 
can map the active domain of a good instance into [0, l] 
so that the distance between two consecutive elements 
is the same. Next, consider the union X of all intervals 
that start with an element of B and span to the next 
(in the order <) element of A - B, or to 1 if there 
is no such element. Let Y be obtained in the same 
way by changing the roles of B and A - B. Then, 
using e-approximations of VOL(X) and VOL(Y), one 
can construct a (cl, cz)-good sentence in FO + R. The 
result now follows from the natural-active collapse [6]. 

Lemma 3 Let 0 be an arbitrary signature on Iw. Then 
FOXt(SC, 0) cannot define a (cl, cz)-good sentence. 

Proof sketch of Lemma 3. Suppose 9 defines such a sen- 
tence. With each n > 0 and each B E (0,. . . , n-l}, as- 
sociate a structure S(B, n) whose universe is (0,. . . , n- 
l}, one unary symbol U is interpreted as B, and the 
remaining signature operators correspond to atomic O- 
subformulae of 9, which naturally inherit their interpre- 
tation from 0. We then show that there is a sentence %J! 
such that for card(B) < cln we have S(B,n) b 1Q and 
for card(B) > c2n we have S(B,n) b Q. Next, using 
standard techniques (see, e.g., [13]) we convert !@ into 
a family of non-uniform AC0 circuits (nonuniformity 
comes from the interpretation of O-predicates). Thus, 
this family of circuits can distinguish cardinalities > c2n 
from those < cln; in particular, from large enough n, 
it can distinguish some cardinalities in [J;;, n - fl. 
However, AC0 circuits are not capable of doing this, 
cf. [13]. This proves Lemma 3 and thus the theorem. 0 

Corollary 1 FO + LIN, FO + POLY and FO + EXP 
cannot express VOLi for any e < l/2. q 

Theorem 2 shows that one cannot possibly adjust the 
method of [24, 25, 261 to get the approximation opera- 
tors uniformly definable. This is somewhat surprising, 
for the following reasons. It is possible that there exists 
an o-minimal structure which is closed under taking in- 
tegrals. That is, for every ~(9, y3 in the language of the 
structure, there is a formula $(Z!, Z) such that + $(a’, v) 
iffv=S...S x,+,p(~,p)~~~d% = Vo~(cp(Z, lR?)nm). The 
existence of such a structure is conjectured in [25]. By 
Theorem 2, even if such a structure M = (Et, fl) ex- 

isted, the volume of outputs of very simple queries on 
finite instances could not be approximated in FO + R! 

Is it possible that one can express the approximate vol- 
ume computation over outputs of some particularly sim- 
ple queries? We now show that for two very simple 
classes, this remains impossible in FO + POLY and sim- 
ilar languages. 

Corollary 2 In languages FO + LIN, FO + POLY, 
FO + EXP, it is impossible to express VOL; even re- 
stricted to a) outputs of conjunctive <-queries over fi- 
nite instances, OT b) schema predicates, interpreted as 
f.r. instances definable with dense-order constraints. 0 

Remarks One may ask where the procedure of [24, 25, 
261 fails if we try to apply it, in a uniform way, to, 
say, FO + POLY queries. Note that the method of 
[24, 25, 261 produces a formula whose quantifier pre- 
fix is proportional to the VC dimension of the family 
of sets defined by the input formula. However, for re- 
lational calculus queries, this may depend on the size 
of the database, thus making it impossible to quantify 
uniformly over random samples. For a query (p(Z,$J 
with and a database D, the definable family given by 
cp and D is F,(D) = {cp(&D) 1 3 E U”} where 
cp(Z’, D) = {g 1 D + cp(Z,b)}. The size of a finite 
database D, 1 D 1, is defined to be canl(adom(D)). 

Proposition 5 There exists a (quantifier-free) rela- 
tional calculus query cp(x, y), and a sequence of 
databases DI , Dz, . . . of increasing size such that 
VCdim(Fq(D,)) 1 log 1 D, I. Cl 

We also remark that under some special assumptions on 
the outputs of the queries, their volumes can be approxi- 
mated. We can show, using LGwner-John ellipsoids [18], 
that for a FO + POLY query cp(Z,y3 with 1 y’l= k, un- 
der the assumption that cp(Z, D) is convex, a relative 
(cl, ~2) approximation of its volume can be found with 
cl = $# - E and c2 = v + E for an arbitrarily small 
E > 0. 

5 FO + POLY + SUM: An aggregate language for 
constraint databases 

We now introduce a language for extending FO + POLY 
with a summation operator. The main difficulty is to 
make sure that when summation is done over all el- 
ements in some query output, we are guaranteed that 
the query output is finite. To do this, we use techniques 
from [7] for guaranteeing that a query is safe (that is, 
that a query yields finite output). 



Let Q be a non-boolean query over a database schema 
SC. We say that c! is a semi-algebraic query if it gives 
semi-algebraic outlput on semi-algebraic inputs. We 
say Q is semi-algebraic-to-finite and write Q E SAF 
if Q produces finite output on semi-algebraic input 
databases. If Q is expressed as cp(y,Z), we say that 
Q is Z-semi-algebraic-to-finite if for every 8 the query 
cp(y, Z), with one free variable y, is in SAF. In the lan- 
guage FO + POLY i- SUM, all queries are semi-algebraic 
queries, but in the construction we will have to ensure 
that certain subqueries are in the smaller class SAF. 

A first-order formula y(z,w’) with distinguished vari- 
able z in the language of the real field is said to be 
deterministic if it produces at most one output x for 
every vector of real numbers w’. Deterministic formulae 
are the building blocks from which safe queries can be 
formed. Given a deterministic formula $z,w’) and a 
finite set of tuples of reals A (having the same length 
as $), we let 7(A) refer to the bag kJa,~f~(Z), where 
f, is the correspondling partial function taking 20’ to the 
unique x such that ,y(z,23) holds. Note that it is decid- 
able if a formula is ,deterministic. 

Definition of FO + POLY + SUM The query language 
FO + POLY + SUM is defined inductively as follows. 
Atomic queries are the same as for FO + POLY. The 
formulae of FO + POLY + SUM are closed under boolean 
connectives and quantification V and 3 (over the reals). 

Next, we define the summation term-former. Given 
any FO + POLY + SUM formula cp(y,Z’), we let 
END[Y, cp(y, z)](u, Z) be the query that holds for a tuple 
(b, Z) on an input database D iff b is an endpoint of 
the intervals that compose cp(D,Z). Note that if cp is a 
semi-algebraic query (which is guaranteed by Lemma 4 
below), then END[Y, cp(y, z’)] is Z-SAF. 

A range-restricted FO + POLY + SUM expression 
is an expression of the form p(d,z) E 
(cpl(1.6 Z~PWY, (PZ(Y, 31) where a(~, 23 and ~~(76 23 
are FO + POLY + SUM queries. It binds y, th_at is, 
the free variables are 2, d. We have D /= ~(2, b) for 
a’=(a1,... , a,) iff 11 k cpi (a’, b) and 

D !== (END[y, @(Y, g]>(a;, @, i = 1,. . . ,n. 

It then follows from. the closure property (Lemma 4) 
that for any D and any & the set p(D,b) = (~5 ] D b 
p(& b)} is finite. 

For any deterministic formula ~(z, 5) in the language of 
the real field and any range-restricted expression ~(5, Z) 
as above we now define a term t(,ZJ by 

[ c rIPI 
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Given D and b’, the value of t(b) in D is the sum of all 
the members of the finite bag y(A), where A = ~(13, @I. 

Finally, new terms in FO + POLY + SUM can be built 
by applying composition with the real functions +, *. If 
tis are terms and cp is a formula, then tl = t2, tI < t,z 
and cp(tl , . . . , tk) are FO + POLY + SUM formulae. 

Examples of FO + POLY + SUM queries Let cp(ur) be 
an FO+POLY query. Let 7(x, w) E (z = w) and p(w) q - 
(w = ~)]END[~u,(P(‘w)]. Then the FO + POLY + SUM 
term (without free variables) Cp(wJ r gives the sum of 
all the endpoints of the intervals that compose (~(13). 

The area of a convex polygon in R2 can be defined in 
FO + POLY + SUM. Assume that the polygon is gjven 
by a predicate P(x, y) (it could be an input relation or 
the output of a query). There is a FO + POLY query 
cpp(x, y) that computes all the vertices of P - this is 
because a’ is vertex iff a’ # conv(P - {ii’)). Since one cart 
compute the boundary of P by a FO + POLY query, it 
follows that there is a FO + POLY query z+(Z,y3 that 
tests if 3c, y’ are two adjacent vertices of P. 

We now form two FO + POLY queries. The query 
@a(u) tests if u is a coordinate of a vertex of P. The 
query $i(Z, y’, 2) tests the following conditions: (111 
(pp(Z)Al\(pp($lA(pp(Z) holds; (2) Z is a lexicographically 
minimal vertex of P; (3) either VP@, zZ holds and $ is 
lexicographically less than z’and ~p(5?, $) A ~p(Z,,5): 
or vp(Z, ?i) A VP@, 2’) A -wp(iZ, 2). 

We now let ~(2, y’, z”) be the range-restricted expression 
(?+!~r(3c,f, Z)]END[$&(r&)]). It can be easily seen that 
for P convex, the output of p is finite and produoes a 
triangulation of P. 

Since for each triangle with vertices (al, us), (bl, b2), 
(cl, cs), its area is computable as (albz - azbl + a2cl - 
aics + blc2 - czb1)/2, we obtain a deterministic for- 
mula ~(v, 3, y’, 2) saying that w is the area of the triangle 
with vertices 5,&Z. We then conclude that the term 
c p(z,g,,L’) 7 defines the area of P. 

Note that the above method codes a standard computa- 
tion of area used in computational geometry [34] which 
generalizes to nonconvex polygons, and is in fact used 
in GISs for area computation [40]. 

Properties of FO+POLY+SUM The language FO + 
POLY + SUM has a number of attractive features. It ex- 
tends both FO + POLY and the relational calculus with 
summation and other standard aggregates. It is aIso 
related to aggregate languages for statistical databases 
studied recently in [21]. Furthermore, we have the fol- 
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lowing properties. 

Lemma 4 l EweryFO+ POLY+SUM query returns 
semi-algebraic output on a semi-algebraic input. 

l For any SAF FO + POLY + SUM query (p(Z), we 
can express in FO + POLY + SUM the cardinality 
of the output of cp. 

l For any SAF FO + POLY query (p(Z) and any 
deterministic formula x(x,GJ) we can express in 
FO+POLY+SUM the sum of the x values of x for 
w’ ranging over the output of cp and the average of 
the x values of x over the output of cp. 

The most important of these properties - closure - is 
obtained from the fact that there is a uniform bound 
on the number of intervals composing definable sets 
cr(d, R) for any formula CX(~, y) in the language of the 
real field. 

6 Computing and approximating the volume 

In this section we show how to use the aggregate lan- 
guage FO + POLY + SUM for volume computation and 
approximation. We first show it can precisely com- 
pute volumes of semi-linear sets. We then show how 
it can be used to uniformly approximate volumes of 
semi-algebraic sets. 

6.1 Computing the volume of semi-linear sets in 
FO + PC&Y + SUM 

Our first goal is to prove that FO + POLY + SUM can 
compute the volume of semi-linear sets. We start by 
noting that taking volumes of semi-linear sets does not 
take us out of the semi-algebraic setting. This fact is 
easily derived from known results in the literature (and 
may have been published before, see, for example, [9] 
for a closely related result). 

Lemma 5 For any formula cp(5!,y3 over the real or- 
dered group Rlinp the volume of cp is semi-algebraic. 
That is, {a, v 1 [VOL y’..cp(i!, #‘)](a, w)} is a semi-algebraic 
set. cl 

We now prove that the language FO + POLY + SUM can 
express volumes of semi-linear sets. 

Theorem 3 l For every schema predicate S E SC 
there is an FO + POLY + SUM term r which, for 
any semi-linear database D, computes the volume 
of S in D. 

l For every FO + LIN query cp there is an FO + 
POLY + SUM term rV such that for any semi-linear 
database D, r,(D) returns the volume of q(D). 

Proof is by induction on dimension. We sketch it 
in dimensions 1 and 2, assuming S is bounded. If 
S c I3 is semilinear, it is a finite union of intervals, 
and hence volume is definable with summation. If 
S E lR2, then VOL(S) = 1 JXS(S, y)dydx, where xs 
is the characteristic function. The innermost integral 
is l&l,U.~) rl( 17 x where pr is the query saying that 1 
and u are the lower and the upper endpoints of a maxi- 
mal interval from the set {y ( S(x, y)}, and y(w, 1, u) = 
(w = ‘1~ - 1). The function g(x) = [&,(I,,,,,r](x) is 
a piecewise linear function of z - this follows from the 
proof of Lemma 5. We can define in FO + POLY + SUM 
the set of points x where it is not smooth. Let T be 
the sum of all values (mu2 - m12)/2 + b(u - l), where 
the quadruples (u, 1, m, b) vary over all quadruples of 
points such that (1,~) are consecutive points of nons- 
moothness of g, and g(z) = mx+b on the interval (1, u). 
Since g is piecewise linear, there are only finitely many 
pairs of consecutive points of nonsmoothness. There- 
fore there are only finitely many quadruples (u, I, m, b) 
as above. Also note that the formula +y(.w, Z,U, m, b) 
given by w = (mu2 - m12)/2 + b(u - I) is a determinis- 
tic formula. Hence there is an FO + POLY + SUM query 
returning the sum of all 7 output values w as (I, u, m, b) 
vary. Therefore, T is FO + POLY + SUM definable. That 
T = VOL(S) follows from Fubini’s theorem. cl 

6.2 Approximating volumes of semi-algebraic sets 
and FO+ POLY+SUM 

We now discuss a possible extension of FO+POLY+SUM 
to approximate volumes of semi-algebraic sets. The idea 
is to get a random sample and use it to approximate 
volume, since we can compute the number of points in 
the sample that fall into a given set. The sampling 
idea was used previously for approximating traditional 
relational aggregates (see [16, 221). We extend this to 
the spatial context, and also obtain uniform dependence 
on parameters: for a query cp(Z, ~7, one can find one 
sample that will provide a good approximation for all 
VOL(C~(~!, D)), with high probability. 

The addition to the language that we propose is the 
witness, or choice, operator W of [2]. Given a query 
cp(Z,c’,, Wg..cp is a new query, with the same free vari- 
ables, that randomly selects for each Z one tuple from 
cp(Z, D), if it is nonempty. Wd.cp(Z) selects randomly 
one tuple from q(D). For the use of the witness opera- 
tor in query languages, see [2, 291. 

We first deal with the case of finite instances D. 
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Theorem 4 Let ~(2, y’) be a FO + POLO query, with 
/2[= n, I<[= m. Let e,6 > 0. Then there exists a FO+ 
POLY + SUM + W query &,s(d, z) such that for every 
?i, there is a unique element va satisfying $,,s(Z, e), and 

with probability at ,least 1 - 6. Moreover, this query has 
at most max( 4 log $, F log I:)) calls to the witness 
operator W, where C is a constant that depends only on 

cp. 

Proof sketch. The proof follows from the classical results 
in learning theory on the size of a sample [lo] and a 
Clog ] D ] bound on the VC dimension. The latter is 
established in the Proposition below. 

Proposition 6 Let M = (U, 0) be o-minimal. Let SC 
be a relational schema, and ~(3, y’> a FO(SC, 0) query. 
Then there is a number C that depends on cp only such 
that for the family F,(D) = {cp(Z,D) 1 3 E Uw} we 
have: VCdim(F,(D)) < C log( ] D I). If M is a struc- 
ture with finite VC dimension, the same is true for all 
active-semantics cp. 0 

With this result, [lll] gives us the bound on the size of a 
single sample that tests multiple volumes; the sample is 
then generated using counting abilities of FO + POLY + 
SUM and the W operator. Cl 

In some cases, it is possible to determine the constant 
C. For example, let ~(2, y’> be an active semantics FO+ 
POLY query, with Iv’]= k. Let q be the quantifier rank 
of cp, and let p be the maximal arity of a relation in the 
schema. Let d be the maximal degree of a polynomial 
constraint used in cp (1, if none is used), and let s be 
the total number of atomic subformulae of cp. Then the 
bounds of [17] can be used to show that C can be taken 
to be lSk(p + q)(log(8edps) + 1). 

Remark Note that the bound of Theorem 4 holds for f.r. 
instances if querying is done via finite codings whose 
size is at most polynomial in the size of the finite rep- 
resentation. Such c:odings are known; see, e.g., (7, 301; 
several papers studied querying via such finite codings 
[35,7,38]. Note also that the method of Theorem 4 can 
only be applied as top-level aggregation, as the result is 
not guaranteed to be semi-algebraic. 

7 Conclusions 

This paper has dealt with the key question of how to 
add aggregation to constraint query languages. The 

first fundamental question is whether there can be a 
language that is closed under the natural spatial ag- 
gregation operators, and which also retains the basic 
closure property that is fundamental to a constraint- 
based approach: namely, that every query output can 
be again represented as a constraint solution set. Our 
results give indication that this is impossible: these two 
closure properties are fundamentally incompatible. Per- 
haps more surprisingly, we show that the problem is not 
particular to the polynomial or linear constraint model; 
even going to a larger well-behaved constraint set does 
not remedy the problem. 

The results above motivated us to look for languages 
that are not closed under volume operators, but which 
are closed under natural discrete aggregations and 
which permit the computation of volumes for rremi- 
linear sets. The language FO + POLY + SUM define,d 
here gives a natural approach to the addition of dis- 
crete aggregation operators to a constraint language. 
The key idea is the notion of range-restricted query- 
ing: allowing aggregation to be formed only on sets 
that are guaranteed to be finite. We show not only that 
FO+POLY+SUM has some attractive closure properties 
analogous to classical aggregate languages, but it allows 
one to do a significant amount of spatial aggregattion, 
e.g., volumes of semi-linear sets. 

The approach given here based on classical summation 
over range-restricted sets is natural, and allows, one 
to re-use many of the evaluation strategies for dlassii- 
cal aggregation operators; it is clear, however, that the 
syntax given here for FO + POLY + SUM is quite awk- 
ward. We hope to find more streamlined and natural 
syntax for FO + POLY + SUM, and we are looking a,t 
subsets of FO + POLY + SUM that can be more effi.- 
ciently evaluated than the full language. It remains t,o 
discover how one could best provide support for directl;y 
expressing volumes in some language built ‘on top of’ 
FO + POLY + SUM, and how to add grouping constructs 
to the language. 
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