
Exact and Approximate Aggregation in Constraint Query Languages

Abstract

Michael Benedikt Leonid Libkin
Bell Laboratories Bell Laboratories

1000 E Warrenville Rd 600 Mountain Avenue
Naperville, IL 60566 Murray Hill, NJ 07974

E-mail: benediktObell-labs.com Email: libkinQbell-labs.com

We investigate the problem of how to extend constraint
query languages with aggregate operators. We deal
with standard relational aggregation, and also with ag-
gregates specific to spatial ,data, such as volume. We
study several approaches, including the addition of a
new class of approximate aggregate operators which al-
low an error tolerance in the computation. We show
how techniques based on VC-dimension can be used to
give languages with approximation operators, but also
show that these languages have a number of shortcom-
ings. We then give a set of results showing that it is
impossible to get constraint-based languages that admit
definable aggregation operators, both for exact opera-
tors and for approximate ones. These results are quite
robust, in that they show that closure under aggregation
is problematic even .when the class of functions permit-
ted in constraints is expanded.

This motivates a different approach to the aggregation
problem. We introduce a language FO + POLY + SUM,
which permits standard discrete aggregation operators
to be applied to the outputs of range-restricted con-
straint queries. We show that this language has a num-
ber of attractive closure and expressivity properties,
and that it can compute volumes of linear-constraint
databases. We also show, using techniques from ma-
chine learning, that a small extension of FO + POLY +
SUM can probabilistically find approximations of vol-
umes for polynomial-constraint databases.

Pcnnission LO make digital or hard copies ofall or part ol‘this work Iix
personal or classroom USC is granted without fee provided that topics
are not made or distributed for profit or commercial advantage and that
copies hear this notice and the lilll citation WI the tirst page. To copy
otherwise, to republish, to post on servers or to rcdistrihutc to lists.
requires prior specific permission and/or a fee.

PODS ‘99 Philadelphia PA
Copyright ACM 1999 l-58113-062-7/99/05...$5.00

1 Introduction

New applications of database technology, such as Ge-
ographical Information Systems, have spurred a con-
siderable amount of research into generalizations of the
standard relational model to deal with the manipula-
tion of geometric or spatial data. One common ap-
proach to modeling spatial databases is to consider in-
put databases as given by a set of well-behaved re-
lations in euclidean space - for example, by a set of
semi-linear or semi-algebraic sets. There are a num-
ber of proposed query languages that extend classical
relational algebra to this setting, languages that allow
the use of various geometric operations in manipulating
spatial databases. One of the most well-developed mod-
els for spatial queries is the constraint database model
[23]. In this model, spatial databases are representeld as
sets of linear or polynomial constraints. Databases are
queried using standard relational calculus with linear
(resp. polynomial) inequalities as selection criteria, see
[4, 5, 6, 19, 20, 32, 381. These languages, denoted by
FO + LIN and FO + POLY, have become the dominant
ones in the constraint database literature. They have
a very important closure property: the application of a
FO + LIN query to a linear constraint set yields a new
set of linear constraints; similarly FO + POLY queries on
sets definable with polynomial constraints produce sets
that can still be defined with polynomial constraints.

Constraint Query Languages, then, give a natural ana-
log of relational calculus in the geometric context. A
crucial question, though, concerns how to extend stan-
dard aggregation constructs from the relational model
to the geometric setting. This question has two com:po-
nents. First, we would like our languages to be able
to apply standard SQL operators such as TOTAL and
AVG to spatial queries, whenever these operators make
sense. Since the output of queries in constraint query
languages (and in other spatial query languages) may
be merely finitely representable (that is, representable

102

http://crossmark.crossref.org/dialog/?doi=10.1145%2F303976.303987&domain=pdf&date_stamp=1999-05-01

by some finite means, e.g., a finite set of constraints)
and not finite, the aggregation operators cannot be al-
lowed to be applied to any constraint query output. One
problem then, is to design a language that allows the
safe application of classical aggregates.

The second component of the ‘aggregation question’
concerns aggregation notions that are specific to the
spatial databases. Most commonly, given a database
and the output of a query over it, one wishes to form
new queries about the volume of this output. One may
also extend standard aggregates such as AVG, and ask
*ofor the average value of a polynomial over a spatial ob-
ject. Such aggregates arise both from practical concerns
of GIS, and also as the natural continuous analogs of
classical aggregation queries. Thus, we would like to
extend constraint query languages to incorporate the
ability to calculate volumes and other aggregates aris-
ing in the spatial setting.

In attempting to add aggregation to constraint query
languages, one immediately encounters some daunting
obstacles. While standard constraint databases are
closed under first-order operations such as join and
projection, they are clearly not closed under taking
of volumes. This fact is well-known in the literature
[23, 27, 121, and stems from the fact that neither the
semi-linear nor semi-algebraic sets are closed under in-
tegrals. To take an example from the semi-algebraic
setting, a query asking for the volume of initial slices
of the epigraph of l/x outputs the graph of the In
function, while iterating volume queries in this fashion
would give as output transcendental functions that are
not even expressible using field operations, logarithms
and exponents. Thus, one cannot hope to add a general
volume operator to existing first-order constraint query
languages such as FO + POLY and get a closed language
while still remaining within the domain of polynomial
constraint databases.

There are several approaches to the volume problem
mentioned above. First, one could weaken the require-
ment that volumes be computed exactly and instead aim
only to compute approximate volumes. Thus a query
might have a tolerance associated with each instance of
a volume operator, with output required only to be cor-
rect within the given tolerance. There are a number of
practical and theoretical motivations for this approach.
While it is known that computing volumes of even sim-
ple geometric objects (convex polytopes) is a hard prob-
lem (#P-hard, see [14]), approximation of volumes, at
least of convex sets, can be done in polynomial time by
a randomized algorithm 1151. Moreover, in contrast to
the well-known fact that semi-algebraic and semi-linear
sets are not closed under volume operators, the papers
(24, 25, 261 show that volumes of sets definable with

polynomial constraints can be approximated, for any
given E > 0, by a first-order formula with polynomial
constraints. By giving up the exact volumes and set-
tling for an approximation, one might hope to retain
desirable closure properties.

A second approach to the aggregation problem would be
to expand out of the domain of polynomial constraints,
and add new functions to the signature of both the con-
straints and the query language. This would give the
possibility of retaining a constraint-based representa-
tion of databases, while gaining closure under volume
operators. Of course, in this approach one should ex-
pand the constraint set so that it still defines only topo-
logically well-behaved objects.

A third approach to the volume problem is to search for
languages which can compute or approximate the vol-
umes of important classes of sets, but which may not be
closed under iterative application of volume operators.
For example, one could allow volume and other aggre-
gation operators to be applied only to a subclass of the
input queries. Restrictions on the nesting of volume
operators would then have to be imposed.

An example of this last approach in the existing litera-
ture is [ll], where it is shown that polynomial constraint
query languages can express the (exact) volume for any
set that admits a special condition called ‘variable in-
dependence’. This condition means, informally, that in
the constraint specification of sets in, say, lR2, there is
no interaction between z and y. Unfortunately, this
condition is too restrictive: it excludes many of the sets
that arise most often in spatial applications.

In this paper, we analyze the feasibility of each of the
above approaches in detail. For the first approach, we
show that techniques based on VC dimension, coming
out of the work of [24, 25, 261 give us approximate vol-
ume operators that give semi-algebraic output on semi-
algebraic input. However, we show a number of short-
comings of such an approach. Not only are the ap-
proximate volume operators obtained according to the
technique of [24, 25, 261 sensitive to .the input repre-
sentation, but the blow-up in the size of the constraint
databases produced in query evaluation precludes any
possible use of these operators in practice.

Turning to the second approach, we show that it is com-
pletely infeasible. No first-order constraint language
based on any reasonably well-behaved class of functions
can express, or even approximate, volume. In the pro-
cess of showing this, we develop a new set of techniques
for proving inexpressibility results, techniques not based
on the usual method of reduction to generic queries.

We then consider solutions that give up full closure un-

103

der volume, and give a number of positive results. We
present a higher-order language that allows one to cal-
culate the volume of arbitrary semi-linear sets. Specifi-
cally, we give a language, called FO + POLY -I- SUM, that
has attractive closure properties, remains within the do-
main of polynomial constraint databases, and allows
the exact calculation of volumes for linear-constraint
input databases. This language also has the pleasant
feature that it is closed under the classical aggregation
operators SUM and AVG. Since FO+POLY+SUM in-
cludes SQL aggregation, contains FO + POW, and also
allows one to make use of standard aggregation evalu-
ation techniques in calculating volumes, it seems to be
a good candidate for the constraint analog of classical
aggregation languages.

We remark that another approach to the aggregation
problem was considered in [12], which gave a new ag-
gregate operator /.L, under which FO + LIN is closed.
However, p(X) = 0 for any bounded set X; thus, this
operator cannot be used to deal with volumes.

Organization Section 2 introduces the notation. Ap-
proximability is studied in Section 3. The method of
defining approximate volumes of [24,25,26] is analyzed,
and the main difficulties in applying the approximation
operators coming from this work are outlined. Section 4
shows that approximatte volume operators cannot be de-
fined in first-order constraint languages, even when the
signature is expanded. Section 5 defines an extension
of FO + POLY with SQL-like aggregation (summation
over finite sets) and shows that this extension can ex-
press volumes of semi-linear databases. All proofs can
be found in the full version [8].

2 Notation

Structures, instances, queries Most notations are
fairly standard in the l.iterature on constraint databases,
cf. [5, 6, 32, 191. Let M = (U,sZ) be an infinite struc-
ture, where U is an infinite set, called a universe (in
the database literature often called the domain), and 0
is a set of interpreted functions, constants, and predi-
cates. In the field of constraint databases, most exam-
ples have 2.4 = $ the set of real numbers. Examples
of signatures (and corresponding classes of constraints)
that have been considered are:

Dense Order Constraints: (R, <);
Linear Constraints: Rrin = (R +, -, 0, 1, <);

Polynomial Constraints: R = (R, +, *, 0, 1, <);
Exponential Constraints: Rxp = ($ +, *, e5, <).

A (relational) database schema SC is a nonempty col-
lection of relation names {Sr, . . . , Sl} with associated

arities pi, . . . ,pl > 0. We shall consider both finite
and finitely representable instances. Given M, an fi-
nite instance of SC over M is a family of finite sets,
{Ll,...,&}, where Ri C UP’. That is, each schema
symbol Si of arity pi is interpreted as a finite pi-ary re-
lation over U. Given a finite instance D, adorn(D) de-
notes its active domain, that is, the set of all elements
that occur in the relations in D.

A finitely-representable (f.r.) instance of SC over M
is a family of sets {Xi,. . . ,Xl}, with X; c UPi, such
that for each Xi there exists a quantifier-free formula
cxi(X1,. . . ,xpi) in the language of M with X; = {a E
UPi] M /= o;(Z)}. Most applications of constraint
databases consider f.r. instances defined over Rrin (thlese
are called semi-linear sets) or over R (called semi-
algebraic sets). For example, in the spatial setting, a
f.r. instance interprets the schema predicates as semi-
linear or semi-algebraic sets.

As our basic query language, we consider relational
calculus, or first-order logic, FO, over the underlying
structure and the database schema. In what follows,
FO(SC,n) is the set of all first-order formulae in the
language that contains all symbols of SC and 0. That
is, FO(SC, a) formulae are built up from the atomic SC
and 52 formulae by using Boolean connectives V, A, 1
and quantifiers V, 3.

Regardless of whether we are in the ‘classical’ setting,
where queries are applied to finite databases, or in the
constraint query setting, we will refer to the above syn-
tactic query languages as relational calculus with R con-
straints. This will be denoted by FO + R. When R is
(+, -1 0, 1, <), or (+, *, 0, 1, <), or (+, *, eZ, <), we use
the standard abbreviations FO + LIN, FO + POLY and
FO + EXP.

In the case of finite databases, we shall also use
the active-domain quantifiers: for a formula cp(z,@‘),
one can form formulae 3z E adom.cp(z,@‘) and Vs E
adom.cp(x, y3. For a structure M and a SC-instance D,
the notion of (M, D) + cp is defined in a standard way
for FO(SC,n) f ormulae, where (M, D) + 3x (~(2, a)
means that for some a E U we have (M, D) k cp(a, v),
and (M, D) k 3x E adorn cp(x, .) means that for some
a E adorn(D) we have (M, D) j= cp(a, D). If M is un-
derstood, we write D + cp.

Given cp(Z,y3 and a’, we write cp(Z, D) for {$ (D b
cp(a, b)}; in the absence of 3c’ we just write v(D) for the
output of cp on D.

The class of subformulae of FO that only use the active-
domain quantification is denoted by FO,t. Over R
and &in, one does not lose expressiveness over finite
instances by going from FO to FOact , see [6, 321.

104

Adding aggregate operators We shall use VOL(X)
to denote the volume of a set X C R”. More precisely,
VOL(X) is the measure of any Lebesgue-measurable set
X C_ IR”. We shall not worry about dealing with non-
measurable sets, as all bounded sets defined with con-
straints relevant for spatial applications (those listed
above, plus some extensions) are measurable.

We shall consider adding volume to a query language
as follows. If cp(Z, 93 is a formula, then the following is
a formula with free variables 2, z:

Assume that a structure M = (&Cl) is fixed. Let an
instance (finite or f.r.) D be given. Then

D b [VOL$.cp(Z,y3](a',v) iff v = VOL(cp(d,D))

Recall that cp(Z, D) = {c] D + cp(a’, b)}.

The extension of any query language C with VOL will
be denoted by C + VOL; for example, one can speak
ofF0 + LIN + VOL or FO+ POLY+VOL. Of course
we know that due to the nonclosure results mentioned
in the introduction, FO + LIN 5 FO + LIN + VOL and
FO+ PoLY~FO+POLY+VOL.

As the next step, we restrict our attention to bounded
sets. Without any loss of generality, we shall deal with
subsets of I” c JR”, where I throughout this paper
denotes [0, 11. We define VOLI g.v’.cp(Z, y3 just as above,
except that now we require that v = Vo~(cp(a', 0) nIn).
In particular, 0 5 v 5 1. We similarly define languages
L + VOLI. As with VOL, languages like FO + LIN and
FO + POLY are not closed under VOLZ: for example,
arctan = Jo” & = VOLZ({(Y, 2) I (0 I Y 5 2) A
(0 5 z 5 l/(y2 + l))}), for 0 5 2 5 1.

As standard languages are not closed under taking vol-
ume, we address the question of whether one can ob-
tain closure by lowering one’s demands. In particu-
lar, we would like to see if approximating the volume,
rather than computing it directly, gives us a closed lan-
guage. The hope that closure might be obtained in
this way is motivated by the fact that for every formula
cp(Z, y3 in R and for every E > 0, one can find a formula
&(Z, z) that gives c-approximation of volumes of sets
~(8, R) = VOLI({$ 1 R /= ~(3, b)}), see [24, 25, 261.

We have to explain what we mean by approximating
volume in this context. Clearly, we cannot hope to find
&(Z, z) with z defining an c-interval around the real
value of the volume - then the volume itself would be
definable as the center of the interval! Thus, we settle
for less. Similar to [24, 25, 261, we say for every E > 0,
that an operator VOL' is an c-approximation operator
if for every f.r., over M, set A C IP x IP , given by a

formula cp(Z, @), VOL" returns a f.r. set in llP x $ given
by y&(5, .z) such that :

1.

2.

For every Z E R” , &(a, .) must be satisfiable (that
is, M + 3z.&(a’,z));

If M b &(Z, v), then Iv - Vo~(cp(Z, IQ) 1 < c.

Thus, VOLT must return a & that is guaranteed to find
an (absolute) c-approximation of the volume. We next
say that a query language L defines VOL', if there is a
query in L that defines such an operator. That is, for
each query cp(Z,y3 in L and E > 0 there is a L-query
&(3c, z) such that for any database D, and any ?i, we
have

1) D t= %.&(Z,z), and
2) D /= &(Z,v) implies Iv - VOL((P(Z,D))J< c.

Notice that in the last definition I+& is independent of
D. We also define e-approximation operators to vol-
ume in the case where we restrict to bounded sets.
As before, we use, w.l.o.g., I” as bounding set. An
c-approximation operator in the bounded setting is de-
noted by VOLT. Such an operator must satisfy the vari-
ant of condition 2) above: 1 v - Vo~(cp(a', D) ~II”) 1 < E.

These operators, and their definability in query lan-
guages, are studied in Sections 3 and 4.

0-minimality, VC dimension Many results that we
prove extend beyond linear and polynomial constraints.
To state them in greater generality, we shall use o-
mdnamality [37], which plays an important role in the
study of constraint query languages (cf. [5, 6, 71).

A structure M = (U, 0) is o-minimal, if every defin-
able set is a finite union of points and open intervals
(a, b) = {x 1 a < x < b}, (-oqa) = {x 1 x < a},
and (a,oo) = {x] x > a} (we assume that < is in 0).
Definable sets are those of the form {x I M + v(x)},
where cp is a first-order formula in the language of M,
possibly supplemented with symbols for constants from
M. All the structures on the reals we mentioned so
far - RI;,, R, Rexp - are o-minimal (the first two by
Tarski’s quantifier-elimination, the last one by [39]).

If M = (ES,Cl), we define M+,, to be ($0, +,*). We
often require that not just M but also M+,, be o-
minimal. Note that this requirement is satisfied by
&in, R and Rexpa

We also consider structures having finite VC dimen-
sion of definable families [3, 281 (also known as struc-
tures without the independence property [36]). VC di-
mension, introduced in statistics to study uniform con-
vergence of stochastic processes, has become central to

105

computational learning theory [3, lo], and found appli-
cation in other areas, e.g., complexity [31].

Suppose X is an infinite set, an.d C & 2”. Let F c
X be finite; we say that C shatters F if the collection
{F n C 1 C E C} is :!F. The Vapnik-Chervonenkis (VC)
dimension of C, VCdim(C), is the maximal cardinality
of a finite set shattered by C. If arbitrarily large finite
sets are shattered b,y C, we let VCdim(C) =: 00.

Let M = (U,R), and let cp(Z,$) be a formula in the
language of M with.]Z]= n, Iv’]= m. For each Z E U”,
define cp(Z, M) = (c E Urn] M j= cp(Z,@}, and let
F,(M) be {(~(a’, M)] Z E U“}. Families of sets aris-
ing in such a way are called definable families. We say
that M is a structure with finite VC dimension if the
VC dimension of each definable family is finite. Every
o-minimal structure is a structure with finite VC di-
mension [28], and the latter class is in fact much larger
than the class of o-minimal structures.

3 Approximating aggregates in constraint query
languages

The VC dimension-based implementation of approx-
imate volume operators We now start our investiga-
tion of the expressibility of approximate volume oper-
ators. The results ad [24, 25, 261 do immediately give
a closed language for computing approximate volumes.
We then examine th.ose operators and show that they
can blow up the size of the database enormously.

Lemma 1 Let e > 0, and let cp(2,$‘) be a FO + POLY
query. Then for every semi-algebraic database instance
D there exists a formula cp&(Z, .z) such that ~&(a’, a)
is satisfiable for all Z, and /= &(a’,~) implies 1 v -
VOLz(cp@, D)) I< E. Hence, there is a collection of E-
approximation operators VOL;, E > 0, for R.

Proof. Replace each occurrence of a SC predicate by
its definition (a FO formula over R) and apply the ap-
proximating formulae of [24, 25, 261 (see below). Cl

The addition of the operators VOL;, E > 0, to FO +
POLY allows the calculation of approximate volumes,
while retaining the property of FO+POLY that the out-
put of a query is representable as a constraint database.

We give a rough sketch of the formulae approximating
the volume that are constructed in [24, 25, 261. As-
sume that we are given a first-order formula cp(Z,yy3
over the real field R:. with] Z I= n and I y’]= m, and
E > 0. We want to find a formula @(Z, z) approximating

VOLZ((P(% R)) = VOL({~ I 4% iI)} n Im>. ’
The construction of $J is based on two key observations.
First, one can find a small random sample that gives a
good volume approximation uniformly for all Z. Seclond,
the sampling procedure can be derandomized.

The first observation follows from the finiteness of VC!
dimension of definable families. As we noted before,,
o-minimal structures, and the real field in particular,,
are structures with finite VC dimension. That is, each.
definable family F,(R) = {cp(Z,R) I ci E IF’} E 2wm
has a finite VC dimension d (we assume from now
on that all sets are restricted to [O,l]). Then, the
classical result relating VC dimension and learnabil-
ity [3, lo] states the following. Fix c,6 > 0, and. let
M > max(2 log 3, y log 5). Assume that an M-point
sample X = {si,... , ZM} is randomly chosen in I”.
For each Z, let w(Z,X) be the fraction of X that falls
into cp(Z, R). Then] v(& X) - VOLI(IJY(~, R)) I< t: for
all ?i E Iw”, with probability at least 1 - 6.

Since the VC dimension of F,(R) is a finite number
d, one can write a formula that takes as input an M-
sample and calculates the number of elements in the
sample that fall into sets cp(Z,R). Note that the M
given in the paragraph above depends only on d, E <and
6, not Z. Hence with probability > 1 - S a sample X
plugged into the formula gives us a good approximation
to the volume over a for every a’. The construction
in [24, 25, 261 then derandomizes this sampling, along
the lines of the classical proof of BPP C PH. Namely,
one gets a formula y(l, v) that determines whether the
set {X) X is an M-sample from I” whose portion
falling into ~(2, R) is within e/2 from v} has a certain
number of translates covering the entire unit cube in the
appropriate dimension. Then [24, 25, 261 prove that a
w for which these translates cover the cube must be an
e-approximation to the volume of cp(Z, R).

Shortcomings of the approximation technique ‘We
note here some shortcomings of the technique of Lemma
1 in the context of constraint databases. In the tech-
nique, one has to put the definition of a constraint
database D into a query cp, and then apply the method
of [24, 25, 261 to the result. That method produces, an
output formula whose size is a polynomial in the input
formula and f: theoretically, a nice bound. In attem,pt-
ing to apply this technique in practice, however, we find
that the bounds obtained are rather unpleasant, even
for modest values of e, as the size of the quantifier prefix
is quite large. In the constraint database setting, those
will have to be eliminated, via a quantifier-elimination

‘The notion of approximation in [24, 25, 261 is slightly more spe-
cific: it requires that k $(a,~) imply) IJ - Vo~~(p(ci,R)) I< E, and
Iv - VOLI('P(B,R))I< s/4 imply + 11(&v).

106

procedure, which will be very costly. Let us illustrate
this by a simple example.

Example: Let the schema contain one unary pred-
icate U interpreted as a subset of [0, 11. The query
(P(xI,x~;YI,Y~) is given by

V(a) A U(xz> A x1 -C YI A YI < 52 A 0 5 ~2 A ~2 I YI

Let E = l/10. We want to evaluate the query
(V~I$7x~l, 572; Yl, Yz>>(x1, x2, Z) saying that z is an
c-approximation to the volume of cp(zi, x2, U) =
{(Yl,YZ) I u + cp(xl, x2; yl, ys)}, where VOLT is the op-
erator obtained through the method above. Note that
Vo~l(cp(a, b, U)) = (b2 - a2)/2. To evaluate this query
on a database where U consists of n elements, by ap-
plying Lemma 1, we would first plug U in cp to obtain
a formula with > 2n atomic subformulae that does not
mention U. Using the bounds from [25], we obtain a
formula for e-approximation of the volume that has at
least log atomic subformulae, and at least 1O1l quan-
tifiers. Thus, applying the method of [24, 25, 261 ‘as
is’ appears to be infeasible in the context of constraint
databases.

The technique of Lemma 1 also tells us nothing about
the definability of the operators VOL;, nor the power of
the language that results from adding them to a stan-
dard language, like FO+POLY, since the approximating
formula cpi, varies with the input database.

4 Uniformly definable volume operators and expan-
sion of the signature

We saw in the last section that the main shortcoming
of all known examples of approximate volume opera-
tors was’the blow-up in the size of the representation.
It was also left open whether some volume approxima-
tion operators can be defined in standard languages, like
FO + POLY, uniformly for all database instances. We
now investigate whether we can find other approxima-
tion methods that can be expressed in nicely-behaved
languages and that admit low complexity evaluation
techniques. The main result is that one cannot cap-
ture approximate volume operators in a nice constraint
language such as FO+POLY. That is,

Inexpressibility of Approximate Operators FO +
LIN, FO + POLY and FO + EXP cannot express VOLT
for any E < l/2. cl

In fact, we prove a stronger result. Theorem 2 shows
that even if one extends the constraint signature to in-
clude functions beyond FO + EXP, as long as we stay
within a well-behaved structure, we cannot capture ap-
proximate volume. Furthermore, we show that in lan-

guages like FO + POLY, only trivial approximations are
possible. An example of a trivial approximation is re-
turning l/2 for every subset of In - in this case we
know that the difference between the real volume and
its approximation is 5 l/2.

Proving expressivity bounds such as Theorem 2 and
Corollary 1 is not very simple. Almost all, if not all,
existing expressivity bounds for constraint query lan-
guages either involve generic queries (e.g., the parity
test, see [5, 6, 32, 41) or are proved by reduction to
generic queries (e.g., [20]). However, queries involv-
ing approximation defined as in Section 2 are extremely
nongeneric. We introduce the main ideas for the proof
in several steps. We first consider an easier case of the
aggregate AVG for finite instances and prove that it can
be neither defined nor approximated in languages like
FO + POLY. The proof introduces the idea of reduction
to what we call a (cl, cz)-separating sentence, with cl, cg
being constant real numbers. We then show how the
same reduction easily proves that FO + POLY and the
likes cannot produce relative approximations of VOL.
For the absolute approximation VOL;, the reduction
only works under very special assumptions on the in-
put, and to conclude the proof we need to use results
from circuit complexity.

This section gives further evidence that if one wants to
stay within a reasonable (for spatial applications) class
of constraints, one must give up uniform closure under
any nontrivial approximation to the volume.

Separating sentences We shall consider a relational
database schema SC that consists of two unary rela-
tions, VI and U2. Let cl, c2 > 1 be two real numbers.
We say that + is a (cl, cz)-separating sentence if for any
finite instance D of SC, it is the case that card(Ul) >
cl. card(&) implies D k @ and card(U2) > ~2. card(Ul)
implies D /== +D. Note that this definition says noth-
ing about the case when $. card(&) 5 card(&) 5
cr . card(&), and thus direct application of bounds on
expressiveness of generic queries is impossible. Still, we
can show:

Proposition 1 Let M = (U, 0) be o-minimal, cl, c2 >
1, and SC as above. Then no (cl, cz)-separating sen-
tence is definable in FO(SC, a).

Proof sketch. Assume such a sentence @ is definable.
By [6], there exists a definable extension M’ of M such
that over M’, 9 is equivalent to an active semantics
sentence Q. By [5], there is an infinite subset of U over
which X0 is definable in the language of VI, U2 and <.
Then one uses Ehrenfeucht-Fra’isse games to show that
this is impossible. cl

107

4.1 Dealing with AVG

We assume that instances store elements of a numer-
ical domain, for example Iw. Given a query cp(Z, z),
we define AvG~(~,Y) by letting D j== AvG,JZ, w) iff
card(cp(a’, 0)) < oo and v = AVG(tp(i?,.D)), where
AvG(C) = (&c c)/card(C). Note that the aggregate
AVG is typically defined using the bag semantics; how-
ever, as we show inexpressibility results, dealing with
this simplified versio’n will suffice. 2

It is easily shown (by reduction to equal cardinality)
that AvG,+, is not definable in FO + POLY, even if
D + cp(Z,c) implies 0 5 c 5 1. We now define E-
approximation of AYG just as we did it for VOL. As-
sume a query ~(5, z) is given. An operator AvG;, when
applied to cp, produces a query &(9, z) such that, for
any instance D and any a’, D + 3z.cp(Z,z), and if
D + cp(Z,v), then 1 v - AvG((P(c?, D) rl I) I< E and
0 5 v < 1. For convenience, we let AvG(C) = 0 for C
infinite.

For E 2 l/2, AVG; is definable in FO(SC, 0) if the input
is finite or f.r. over !a, as long as the constants 0,1/2
and 1 are definable. However,

Theorem 1 Let M = (R,fl), and let M+,, be o-
minimal. Let E < 1./2. Then AVG; is not definable
in FO + R, even ov’er finite instances. In particular,
AVG; is not definable in FO + POLY.

Proof sketch. Given 0 < E < l/2, it is possible to find
a number 0 < A < l/2 and two FO + POLY queries
that translate two finite sets Ul and UZ into intervals
(0, A) and (1 - A, 1) respectively, in such a way that
for the results of translation, Vi and Vi, AvG(U; u U,l)
can be written as a function of SE%@ Using this, and
assuming that AVG; :is definable, one obtains a (cl, cz)-
separating sentence in FO + (0 U { +, *}) for appropriate
cl, c2 > 1 that depend on E. This contradicts Proposi-
tion 1. 0

4.2 Dealing with volume

We start with two easy results. First, for unbounded
measures (no restriction to 1”) volume cannot be ap-
proximated in languages like FO + POLY.

Proposition 2 Let JM = (llJi,fi), and let M+,, be o-
minimal. Then no e-approximation operator VOL' is
definable in FO + R. cl

'We shall come back to the multiset semantics later.

The proof is by reduction to equal cardinality, for sparse
finite sets. It relies on the fact that there is no a pri-
ori bound on the outputs of queries. Thus, a different
approach is needed to show inexpressibility of VOL;.

For a query cp(Z,c’, and two constants 0 < cl < ~2, we
say that +(i!, z) gives a (cl, c2)-relative approximation
of the volume if for any 3, $(a, 0) is satisfiable, and

D I= +,v) * cl < (~/Vo~(cp(W))) < c-2

An easy reduction to separating sentences shows:

Proposition 3 Assume that (!R, 0) is such that
(l&Q+,*) is o-minimal. Then for any 0 < cl < ~2,
the (cl, CS)-relative approximation of the volume is not
definable in FO + R, for any dimension k > 0, even for
queries restricted to [0, 11”. cl

One often is interested in an e-relative approximation
V,,, or volume V # 0 defined such that 1 Vapp - V 1
/V < e, for 0 5 E < 1. Since the existence of an E-
relative approximation means the existence of a (11 -
E, 1 + c)-relative approximation to the volume in the
sense defined above, we get that languages like FO +
LIN, FO + POLY and FO + EXP cannot express relat,ive
approximations of the volume, even for subsets of [O:, 11.

4.3 Absolute approximation

We shall now prove the strongest of the inexpressibility
results: that VOL;, for E < l/2, cannot be defined in
languages like FO + LIN and FO + POLY. First note:

Proposition 4 FO + LIN defines VOL; for E 2 l/2.

Proof sketch. If the volume is not 0 or 1, then l/f! is
the e-approximation. cl

This trivial approximation is the bext one can hope for
in languages like FO + LIN and FO + POLY.

Theorem 2 Let M = (lR,Sl), and let M+,, be o-
minimal. Assume that E < l/2. Then VOL; is not
definable in FO + R.

Proof sketch. Let SC consist of two unary relations A
and B. Call a finite instance good if A is an initial frag-
ment of natural numbers, and B is a nonempty proper
subset of A. Let cl = (1 - 26)/3 and cz = (2 + 26)/3.
A sentence 9 in the language of SC and R is called1 a
(cl, c2)-good sentence if card(B) < cl . card(A) implies
D + 79 and card(B) > c2 . card(A) implies D b 9
for any good instance D. Note that this is the same as

108

having a separating sentence for B and A - B; however,
here we only require that the above conditions hold for
a good instance. The theorem follows from two lemmas.

Lemma 2 Assume VOLi is definable in FO + R. Then
for cl, c2 as above there exists a signature W extending
$2 and a (cl, c2)-good sentence in FO,,t (SC, a’).

Proof sketch of Lemma 2. With an FO+POLY query, we
can map the active domain of a good instance into [0, l]
so that the distance between two consecutive elements
is the same. Next, consider the union X of all intervals
that start with an element of B and span to the next
(in the order <) element of A - B, or to 1 if there
is no such element. Let Y be obtained in the same
way by changing the roles of B and A - B. Then,
using e-approximations of VOL(X) and VOL(Y), one
can construct a (cl, cz)-good sentence in FO + R. The
result now follows from the natural-active collapse [6].

Lemma 3 Let 0 be an arbitrary signature on Iw. Then
FOXt(SC, 0) cannot define a (cl, cz)-good sentence.

Proof sketch of Lemma 3. Suppose 9 defines such a sen-
tence. With each n > 0 and each B E (0,. . . , n-l}, as-
sociate a structure S(B, n) whose universe is (0,. . . , n-
l}, one unary symbol U is interpreted as B, and the
remaining signature operators correspond to atomic O-
subformulae of 9, which naturally inherit their interpre-
tation from 0. We then show that there is a sentence %J!
such that for card(B) < cln we have S(B,n) b 1Q and
for card(B) > c2n we have S(B,n) b Q. Next, using
standard techniques (see, e.g., [13]) we convert !@ into
a family of non-uniform AC0 circuits (nonuniformity
comes from the interpretation of O-predicates). Thus,
this family of circuits can distinguish cardinalities > c2n
from those < cln; in particular, from large enough n,
it can distinguish some cardinalities in [J;;, n - fl.
However, AC0 circuits are not capable of doing this,
cf. [13]. This proves Lemma 3 and thus the theorem. 0

Corollary 1 FO + LIN, FO + POLY and FO + EXP
cannot express VOLi for any e < l/2. q

Theorem 2 shows that one cannot possibly adjust the
method of [24, 25, 261 to get the approximation opera-
tors uniformly definable. This is somewhat surprising,
for the following reasons. It is possible that there exists
an o-minimal structure which is closed under taking in-
tegrals. That is, for every ~(9, y3 in the language of the
structure, there is a formula $(Z!, Z) such that + $(a’, v)
iffv=S...S x,+,p(~,p)~~~d% = Vo~(cp(Z, lR?)nm). The
existence of such a structure is conjectured in [25]. By
Theorem 2, even if such a structure M = (Et, fl) ex-

isted, the volume of outputs of very simple queries on
finite instances could not be approximated in FO + R!

Is it possible that one can express the approximate vol-
ume computation over outputs of some particularly sim-
ple queries? We now show that for two very simple
classes, this remains impossible in FO + POLY and sim-
ilar languages.

Corollary 2 In languages FO + LIN, FO + POLY,
FO + EXP, it is impossible to express VOL; even re-
stricted to a) outputs of conjunctive <-queries over fi-
nite instances, OT b) schema predicates, interpreted as
f.r. instances definable with dense-order constraints. 0

Remarks One may ask where the procedure of [24, 25,
261 fails if we try to apply it, in a uniform way, to,
say, FO + POLY queries. Note that the method of
[24, 25, 261 produces a formula whose quantifier pre-
fix is proportional to the VC dimension of the family
of sets defined by the input formula. However, for re-
lational calculus queries, this may depend on the size
of the database, thus making it impossible to quantify
uniformly over random samples. For a query (p(Z,$J
with and a database D, the definable family given by
cp and D is F,(D) = {cp(&D) 1 3 E U”} where
cp(Z’, D) = {g 1 D + cp(Z,b)}. The size of a finite
database D, 1 D 1, is defined to be canl(adom(D)).

Proposition 5 There exists a (quantifier-free) rela-
tional calculus query cp(x, y), and a sequence of
databases DI , Dz, . . . of increasing size such that
VCdim(Fq(D,)) 1 log 1 D, I. Cl

We also remark that under some special assumptions on
the outputs of the queries, their volumes can be approxi-
mated. We can show, using LGwner-John ellipsoids [18],
that for a FO + POLY query cp(Z,y3 with 1 y’l= k, un-
der the assumption that cp(Z, D) is convex, a relative
(cl, ~2) approximation of its volume can be found with
cl = $# - E and c2 = v + E for an arbitrarily small
E > 0.

5 FO + POLY + SUM: An aggregate language for
constraint databases

We now introduce a language for extending FO + POLY
with a summation operator. The main difficulty is to
make sure that when summation is done over all el-
ements in some query output, we are guaranteed that
the query output is finite. To do this, we use techniques
from [7] for guaranteeing that a query is safe (that is,
that a query yields finite output).

Let Q be a non-boolean query over a database schema
SC. We say that c! is a semi-algebraic query if it gives
semi-algebraic outlput on semi-algebraic inputs. We
say Q is semi-algebraic-to-finite and write Q E SAF
if Q produces finite output on semi-algebraic input
databases. If Q is expressed as cp(y,Z), we say that
Q is Z-semi-algebraic-to-finite if for every 8 the query
cp(y, Z), with one free variable y, is in SAF. In the lan-
guage FO + POLY i- SUM, all queries are semi-algebraic
queries, but in the construction we will have to ensure
that certain subqueries are in the smaller class SAF.

A first-order formula y(z,w’) with distinguished vari-
able z in the language of the real field is said to be
deterministic if it produces at most one output x for
every vector of real numbers w’. Deterministic formulae
are the building blocks from which safe queries can be
formed. Given a deterministic formula $z,w’) and a
finite set of tuples of reals A (having the same length
as $), we let 7(A) refer to the bag kJa,~f~(Z), where
f, is the correspondling partial function taking 20’ to the
unique x such that ,y(z,23) holds. Note that it is decid-
able if a formula is ,deterministic.

Definition of FO + POLY + SUM The query language
FO + POLY + SUM is defined inductively as follows.
Atomic queries are the same as for FO + POLY. The
formulae of FO + POLY + SUM are closed under boolean
connectives and quantification V and 3 (over the reals).

Next, we define the summation term-former. Given
any FO + POLY + SUM formula cp(y,Z’), we let
END[Y, cp(y, z)](u, Z) be the query that holds for a tuple
(b, Z) on an input database D iff b is an endpoint of
the intervals that compose cp(D,Z). Note that if cp is a
semi-algebraic query (which is guaranteed by Lemma 4
below), then END[Y, cp(y, z’)] is Z-SAF.

A range-restricted FO + POLY + SUM expression
is an expression of the form p(d,z) E
(cpl(1.6 Z~PWY, (PZ(Y, 31) where a(~, 23 and ~~(76 23
are FO + POLY + SUM queries. It binds y, th_at is,
the free variables are 2, d. We have D /= ~(2, b) for
a’=(a1,... , a,) iff 11 k cpi (a’, b) and

D !== (END[y, @(Y, g]>(a;, @, i = 1,. . . ,n.

It then follows from. the closure property (Lemma 4)
that for any D and any & the set p(D,b) = (~5] D b
p(& b)} is finite.

For any deterministic formula ~(z, 5) in the language of
the real field and any range-restricted expression ~(5, Z)
as above we now define a term t(,ZJ by

[c rIPI
P(43

Given D and b’, the value of t(b) in D is the sum of all
the members of the finite bag y(A), where A = ~(13, @I.

Finally, new terms in FO + POLY + SUM can be built
by applying composition with the real functions +, *. If
tis are terms and cp is a formula, then tl = t2, tI < t,z
and cp(tl , . . . , tk) are FO + POLY + SUM formulae.

Examples of FO + POLY + SUM queries Let cp(ur) be
an FO+POLY query. Let 7(x, w) E (z = w) and p(w) q -
(w = ~)]END[~u,(P(‘w)]. Then the FO + POLY + SUM
term (without free variables) Cp(wJ r gives the sum of
all the endpoints of the intervals that compose (~(13).

The area of a convex polygon in R2 can be defined in
FO + POLY + SUM. Assume that the polygon is gjven
by a predicate P(x, y) (it could be an input relation or
the output of a query). There is a FO + POLY query
cpp(x, y) that computes all the vertices of P - this is
because a’ is vertex iff a’ # conv(P - {ii’)). Since one cart
compute the boundary of P by a FO + POLY query, it
follows that there is a FO + POLY query z+(Z,y3 that
tests if 3c, y’ are two adjacent vertices of P.

We now form two FO + POLY queries. The query
@a(u) tests if u is a coordinate of a vertex of P. The
query $i(Z, y’, 2) tests the following conditions: (111
(pp(Z)Al\(pp($lA(pp(Z) holds; (2) Z is a lexicographically
minimal vertex of P; (3) either VP@, zZ holds and $ is
lexicographically less than z’and ~p(5?, $) A ~p(Z,,5):
or vp(Z, ?i) A VP@, 2’) A -wp(iZ, 2).

We now let ~(2, y’, z”) be the range-restricted expression
(?+!~r(3c,f, Z)]END[$&(r&)]). It can be easily seen that
for P convex, the output of p is finite and produoes a
triangulation of P.

Since for each triangle with vertices (al, us), (bl, b2),
(cl, cs), its area is computable as (albz - azbl + a2cl -
aics + blc2 - czb1)/2, we obtain a deterministic for-
mula ~(v, 3, y’, 2) saying that w is the area of the triangle
with vertices 5,&Z. We then conclude that the term
c p(z,g,,L’) 7 defines the area of P.

Note that the above method codes a standard computa-
tion of area used in computational geometry [34] which
generalizes to nonconvex polygons, and is in fact used
in GISs for area computation [40].

Properties of FO+POLY+SUM The language FO +
POLY + SUM has a number of attractive features. It ex-
tends both FO + POLY and the relational calculus with
summation and other standard aggregates. It is aIso
related to aggregate languages for statistical databases
studied recently in [21]. Furthermore, we have the fol-

110

lowing properties.

Lemma 4 l EweryFO+ POLY+SUM query returns
semi-algebraic output on a semi-algebraic input.

l For any SAF FO + POLY + SUM query (p(Z), we
can express in FO + POLY + SUM the cardinality
of the output of cp.

l For any SAF FO + POLY query (p(Z) and any
deterministic formula x(x,GJ) we can express in
FO+POLY+SUM the sum of the x values of x for
w’ ranging over the output of cp and the average of
the x values of x over the output of cp.

The most important of these properties - closure - is
obtained from the fact that there is a uniform bound
on the number of intervals composing definable sets
cr(d, R) for any formula CX(~, y) in the language of the
real field.

6 Computing and approximating the volume

In this section we show how to use the aggregate lan-
guage FO + POLY + SUM for volume computation and
approximation. We first show it can precisely com-
pute volumes of semi-linear sets. We then show how
it can be used to uniformly approximate volumes of
semi-algebraic sets.

6.1 Computing the volume of semi-linear sets in
FO + PC&Y + SUM

Our first goal is to prove that FO + POLY + SUM can
compute the volume of semi-linear sets. We start by
noting that taking volumes of semi-linear sets does not
take us out of the semi-algebraic setting. This fact is
easily derived from known results in the literature (and
may have been published before, see, for example, [9]
for a closely related result).

Lemma 5 For any formula cp(5!,y3 over the real or-
dered group Rlinp the volume of cp is semi-algebraic.
That is, {a, v 1 [VOL y’..cp(i!, #‘)](a, w)} is a semi-algebraic
set. cl

We now prove that the language FO + POLY + SUM can
express volumes of semi-linear sets.

Theorem 3 l For every schema predicate S E SC
there is an FO + POLY + SUM term r which, for
any semi-linear database D, computes the volume
of S in D.

l For every FO + LIN query cp there is an FO +
POLY + SUM term rV such that for any semi-linear
database D, r,(D) returns the volume of q(D).

Proof is by induction on dimension. We sketch it
in dimensions 1 and 2, assuming S is bounded. If
S c I3 is semilinear, it is a finite union of intervals,
and hence volume is definable with summation. If
S E lR2, then VOL(S) = 1 JXS(S, y)dydx, where xs
is the characteristic function. The innermost integral
is l&l,U.~) rl(17 x where pr is the query saying that 1
and u are the lower and the upper endpoints of a maxi-
mal interval from the set {y (S(x, y)}, and y(w, 1, u) =
(w = ‘1~ - 1). The function g(x) = [&,(I,,,,,r](x) is
a piecewise linear function of z - this follows from the
proof of Lemma 5. We can define in FO + POLY + SUM
the set of points x where it is not smooth. Let T be
the sum of all values (mu2 - m12)/2 + b(u - l), where
the quadruples (u, 1, m, b) vary over all quadruples of
points such that (1,~) are consecutive points of nons-
moothness of g, and g(z) = mx+b on the interval (1, u).
Since g is piecewise linear, there are only finitely many
pairs of consecutive points of nonsmoothness. There-
fore there are only finitely many quadruples (u, I, m, b)
as above. Also note that the formula +y(.w, Z,U, m, b)
given by w = (mu2 - m12)/2 + b(u - I) is a determinis-
tic formula. Hence there is an FO + POLY + SUM query
returning the sum of all 7 output values w as (I, u, m, b)
vary. Therefore, T is FO + POLY + SUM definable. That
T = VOL(S) follows from Fubini’s theorem. cl

6.2 Approximating volumes of semi-algebraic sets
and FO+ POLY+SUM

We now discuss a possible extension of FO+POLY+SUM
to approximate volumes of semi-algebraic sets. The idea
is to get a random sample and use it to approximate
volume, since we can compute the number of points in
the sample that fall into a given set. The sampling
idea was used previously for approximating traditional
relational aggregates (see [16, 221). We extend this to
the spatial context, and also obtain uniform dependence
on parameters: for a query cp(Z, ~7, one can find one
sample that will provide a good approximation for all
VOL(C~(~!, D)), with high probability.

The addition to the language that we propose is the
witness, or choice, operator W of [2]. Given a query
cp(Z,c’,, Wg..cp is a new query, with the same free vari-
ables, that randomly selects for each Z one tuple from
cp(Z, D), if it is nonempty. Wd.cp(Z) selects randomly
one tuple from q(D). For the use of the witness opera-
tor in query languages, see [2, 291.

We first deal with the case of finite instances D.

111

Theorem 4 Let ~(2, y’) be a FO + POLO query, with
/2[= n, I<[= m. Let e,6 > 0. Then there exists a FO+
POLY + SUM + W query &,s(d, z) such that for every
?i, there is a unique element va satisfying $,,s(Z, e), and

with probability at ,least 1 - 6. Moreover, this query has
at most max(4 log $, F log I:)) calls to the witness
operator W, where C is a constant that depends only on

cp.

Proof sketch. The proof follows from the classical results
in learning theory on the size of a sample [lo] and a
Clog] D] bound on the VC dimension. The latter is
established in the Proposition below.

Proposition 6 Let M = (U, 0) be o-minimal. Let SC
be a relational schema, and ~(3, y’> a FO(SC, 0) query.
Then there is a number C that depends on cp only such
that for the family F,(D) = {cp(Z,D) 1 3 E Uw} we
have: VCdim(F,(D)) < C log(] D I). If M is a struc-
ture with finite VC dimension, the same is true for all
active-semantics cp. 0

With this result, [lll] gives us the bound on the size of a
single sample that tests multiple volumes; the sample is
then generated using counting abilities of FO + POLY +
SUM and the W operator. Cl

In some cases, it is possible to determine the constant
C. For example, let ~(2, y’> be an active semantics FO+
POLY query, with Iv’]= k. Let q be the quantifier rank
of cp, and let p be the maximal arity of a relation in the
schema. Let d be the maximal degree of a polynomial
constraint used in cp (1, if none is used), and let s be
the total number of atomic subformulae of cp. Then the
bounds of [17] can be used to show that C can be taken
to be lSk(p + q)(log(8edps) + 1).

Remark Note that the bound of Theorem 4 holds for f.r.
instances if querying is done via finite codings whose
size is at most polynomial in the size of the finite rep-
resentation. Such c:odings are known; see, e.g., (7, 301;
several papers studied querying via such finite codings
[35,7,38]. Note also that the method of Theorem 4 can
only be applied as top-level aggregation, as the result is
not guaranteed to be semi-algebraic.

7 Conclusions

This paper has dealt with the key question of how to
add aggregation to constraint query languages. The

first fundamental question is whether there can be a
language that is closed under the natural spatial ag-
gregation operators, and which also retains the basic
closure property that is fundamental to a constraint-
based approach: namely, that every query output can
be again represented as a constraint solution set. Our
results give indication that this is impossible: these two
closure properties are fundamentally incompatible. Per-
haps more surprisingly, we show that the problem is not
particular to the polynomial or linear constraint model;
even going to a larger well-behaved constraint set does
not remedy the problem.

The results above motivated us to look for languages
that are not closed under volume operators, but which
are closed under natural discrete aggregations and
which permit the computation of volumes for rremi-
linear sets. The language FO + POLY + SUM define,d
here gives a natural approach to the addition of dis-
crete aggregation operators to a constraint language.
The key idea is the notion of range-restricted query-
ing: allowing aggregation to be formed only on sets
that are guaranteed to be finite. We show not only that
FO+POLY+SUM has some attractive closure properties
analogous to classical aggregate languages, but it allows
one to do a significant amount of spatial aggregattion,
e.g., volumes of semi-linear sets.

The approach given here based on classical summation
over range-restricted sets is natural, and allows, one
to re-use many of the evaluation strategies for dlassii-
cal aggregation operators; it is clear, however, that the
syntax given here for FO + POLY + SUM is quite awk-
ward. We hope to find more streamlined and natural
syntax for FO + POLY + SUM, and we are looking a,t
subsets of FO + POLY + SUM that can be more effi.-
ciently evaluated than the full language. It remains t,o
discover how one could best provide support for directl;y
expressing volumes in some language built ‘on top of’
FO + POLY + SUM, and how to add grouping constructs
to the language.

Acknowledgements Part of this work was done while the
second author was visiting INRIA. We thank Serge Abite-
boul, Stephane Grumbach, Michel Scholl and Luc Segoutin
for helpful discussions. Libkin thanks ah the members of
the Verso team for their hospitality.

References

[l] S. Abiteboul, R. Hull and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[2] S. Abiteboul, V. Vianu. DataIog extensions for
database queries and updates. JCSS 43 (1991), 62-124:.

[3] M. Anthony and N. Biggs. Computational Learning
Theory. Cambridge Univ. Press, 1992.

112

[4] 0. Belagradek, A. Stolboushkin, M.TsaitIin. Extended
order-generic queries. A PAL, to appear.

[5] M. Benedikt, G. Dong, L. Libkin and L. Wong. Rela
tional expressive power of constraint query languages.
Journal of the ACM 45 (1998), l-34.

[S] M. Benedikt and L. Libkin. Languages for relational
databases over interpreted structures. In PODS’97,
pages 87-98.

[7] M. Benedikt and L. Libkin. Safe constraint queries. In
PODS’98, pages 99-108.

[8] M. Benedikt and L. Libkin. Exact and approximate
aggregation in constraint query languages. Technical
Memo, Bell Labs, 1998.

[9] H. Bieri and W. Nef. A sweep-plane algorithm for com-
puting the volume of polyhedra represented in Boolean
form. Linear Algebra and Its Applications 52/53 (1983),
69-97.

[lo] A. Blumer, A. Ehrenfeucht, D. Haussler, M. Warmuth.
Learnability and the Vapnik-Chervonenkis dimension.
Journal of the ACM 36 (1989), 929-965.

[ll] J. Chomicki, D. Goldin and G. Kuper. Variable inde-
pendence and aggregation closure. In PODS’96, pages
40-48.

[12] J. Chomicki and G. Kuper. Measuring infinite relations.
In PODS’95, pages 78-85.

[13] L. Denenberg, Y. Gurevich and S. Shelah. Definability
by constant-depth polynomial-size circuits. Informa-
tion and Control 70 (1986), 2X-240.

[14] M. Dyer and A. Frieze. On the complexity of computing
the volume of a polytope. SIAM J. Cornput., 17 (1988),
967-974.

[15] M. Dyer, A. Frieze and R. Kannan. A random
polynomial-time algorithm for approximating the vol-
ume of convex bodies. Journal of the ACM, 38 (1991),
1-17.

(161 P. Gibbons and Y. Matias. New sampling-based sum-
mary statistics for improving approximate query an-
swers. In SIGMOD’98, pages 331-342.

[17] P. Goldberg and M. Jerrum. Bounding the Vapnik
Chervonenkis dimension of concept classes parameter-
ized by real numbers. Machine Learning 18 (1995), 131-
148.

118) M. GrBtschel, L. Lovbz and A. Schrijver. Geometric
Algorithms and Combinatorial Optimization. Springer,
1993.

[19] S. Grumbach and J. Su. Finitely representable
databases, JCSS 55 (1997), 273-298.

[20] S. Grumbach and J. Su. Queries with arithmetical con-
straints. Theoretical Computer Science 173 (1997), 151-
181.

[21] S. Grumbach, M. Rafanehi and L. Tininini. Querying
aggregate data. This volume.

[22] J. Hellerstein, P. Haas and H. Wang. Online aggrega-
tion. In SIGMOD’97, pages 171-182.

[23] P. KaneIIakis, G. Kuper, and P. Revesz. Constraint
query languages. JCSS, 51 (1995), 26-52. Extended
abstract in PODS’SO, pages 299-313.

[24] M. Karpinski and A. Macintyre. Approximating the
volume of general Pfa&n bodies. In Structures in Logic
and Computer Science: A Selection of Essays in Honor
of A. Ehrenfeucht, Springer LNCS 1261, 1997, pages
162-173.

[25] M. Karpinski and A. Macintyre. Approximating vol-
ume and integrals in o-minimal and p-minimal theories.
Technical Report, University of Bonn, 1997.

[26] P. Koiran. Approximating the volume of definable sets.
In FOCS’95, pages 134-141.

[27] G. Kuper. Aggregation in constraint databases. In
PPCP’93, 166-173.

(281 M. C. Laskowski. Vapnik-Chervonenkis classes of de-
finable sets. J. London Math. SOC., 45:377-384, 1992.

[29] S. Naqvi and S. Tsur. A Logical Language for Data and
Knowledge Bases. Computer Science Press, 1989.

[30] C. Papadimitriou, D. Suciu and V. Vianu. Topological
queries in spatial databases. In PODS’96, pages 81-92.

[31] C. Papadimitriou and M. Yannakakis. On limited non-
determinism and the complexity of the V-C dimension.
JCSS 53 (1996), 161-170.

[32] J. Paredaens, J. Van den Bussche, and D. Van Gucht.
First-order queries on finite structures over the reals.
In LICS’95, pages 79-89.

[33] A. Pihay, C. Steinhorn. Definable sets in ordered struc-
tures. III. fians. AMS 309 (1988), 469476.

[34] J. O’Rourke. Computational Geometry in C. Cam-
bridge Univ. Press, 1994.

(351 L. Segoufin and V. Vianu. Querying spatial databases
via topological invariants. In PODS’98, pages 89-98.

[36] S. Shelah. Stability, the f.c.p., and superstability.
Ann. of Math. Logic 3 (1971), 271-362.

[37] L. van den Dries. Tame Topology and o-minimal Stwc-
tures. Cambridge Univ. Press, 1998.

[38] L. Vandeurzen, M. Gyssens and D. Van Gucht. An
expressive language for linear spatial database queries.
In PODS’98, pages 109-118.

[39] A.J. Wilkie. Model completeness results for expan-
sions of the ordered field of real numbers by re-
stricted Pfaffian functions and the exponential function.
J. Amer. Math. SOC. 9 (1996), 1051-1094.

[40] M. Worboys. GIS: A Computing Perspective. Taylor &
Francis, 1995.

113

