A Framework for Measuring Changes in Data Characteristics

Venkatesh Ganti Johannes Getirke Raghu Ramakrishnén
{vganti,johannes,ragh@cs.wisc.edu
Wei-Yin Loht

loh@stat.wisc.edu

Abstract guantify deviations can save the analyst considerable time and
effort.
A data mining algorithm builds a model that captures interest- As a second example, a marketing analyst may want to
ing aspects of the underlying data. We develop a framewogfalyze if and how data characteristics differ across sev-
for quantifying the difference, called thdeviation between eral datasets of customer transactions collected from differ-
two datasets in terms of the models they induce. Our frament stores. The analysis can then be used to decide whether
work covers a wide variety of models including frequentitemdifferent marketing strategies are needed for each store. Fur-
sets, decision tree classifiers, and clusters, and captures sta@r, based on the deviation between pairs of datasets, a set
dard measures of deviation such as tthisclassification rate  of stores can be grouped together and earmarked for the same
and thechi-squaredmetric as special cases. We also shownarketing strategy.
how statistical techniques can be applied to the deviation mea- |n this paper, we develop tHEOCUSramework for com-
sure to assess whether the difference between two modelgiging an interpretable, qualifiable deviation measure be-
meaningful (i.e., whether the underlying datasets have statigreen two datasets to quantify the differences between “in-
tically significant differences in their characteristics), and disteresting” characteristics in each dataset (as reflected in the

cuss several practical applications. model it induces when a data mining algorithm is applied on
it [16]). The central idea is that a broad class of models can be
1 Introduction described in terms of structural componer&ind ameasure

component The structural component identifies “interesting
The goal of data mining is to discover (predictive) modelsegions,” and the measure component summarizes the subset
based on the data maintained in the database [16]. Sevephthe data that is mapped to each region. F@&EUSrame-
algorithms have been proposed for computing novel modvork has several desirable features:
els [1, 2, 3, 28, 29], for more efficient model construction . . o
[9, 15, 20, 21, 23, 31, 32, 33, 34, 38], and to deal with new® '€ deviation measure obtained froROCUSIs intu-
data types [19, 21, 24]. There is, however, no work address- itively interpretable in terms of the work required to trans-

ing the important issue of how to measure the difference, or form one_modellto the other (Section 3). I.t can be CO”_]'
deviation between two models. puted using a single scan of the underlying datasets; a

As a motivating example, consider the following appli- gooq uplper bou.nq fotrk:‘requzntl |teéns?j[s cinlble computed
cation. A sales analyst who is monitoring a dataset (e.qg., y simply examining the models (Section 4.1.1).

weekly sales for Walmart) may want to analyze the data thor-s The framework allows comparison of specific parts of two
oughly only if the current snapshot differs significantly from  models. This makes it possible to focus attention on in-

previously analyzed snapshots. In general, since successiveteresting changes that might not significantly affect the
database snapshots overlap considerably, they are quite simi- model as a whole (Section 5).

lar to each other [11, 17, 37]. Therefore, an algorithm that can )
_ e The framework covers the models obtained by several
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cantly from the model based on all the data. Interestingly, Age T

even for very large sample sizes, there is a statistically sig- T3: GCRof T1and T2

nificant difference between the sample-based models and .

the model based on all data. However, the difference di- Figure 5: dt-modelt; = A\(T1,T3)

minishes quickly with increasing sample size. In many€9ions (one region for clags and one region for class,),
situations, it may suffice to use a sample, and our me&hd each region is asgocated Wlth thg fraction of tuples in the
sure of deviation can be used to determine the approprigigtaset that map into it; this fraction is called theasureof

sample size (Section 6). the re_gi_on. Generalizing from this e_xample, eac_h Iea.1c node of
a decision tree fok classes is associated withregions in the
2 Examples lllustrating Deviation attribute space each of which is associated with its measure.

Thesek regions differ only in the class label attribute. In fact,

desianed 1 ture the int " h teristics in th dttﬁ‘e set of regions associated with all the leaf nodes partition
esigned to capture the interesting characteristics in the e attribute space.

Therefore, we use the difference between data mining mode S\We call the set of regions associated with all the leaf nodes

as the measure of deviation between the underlying datas%sthe dt-model the structural componenof the model. We
"} th'.s dp?per, (\j/ye dcp nshldedr thrt()a € cl?sses uqf data dm|lmgg mogé" the set of measures associated with each region in the
els widely studied in the database literat .rs-mo €'s, E structural component theneasure componewf the model.
models, andclustgr-models. Informally, allts-mo.del is the The property that a model consists of structural and mea-
set of “frequent” itemsets; dt-model is a decision tree; a sure components is called theomponenproperty. Figure 2

cluster-model is a set of clusters. We assume that the r(':'ad‘éhows the set of regions in the structural component of the de-

'S f?;n”'ar.wt'.th each 0?1: tge:s;; clastf‘es,f OIT modelsiS(Folr aﬂf]grc'ision tree in Figure 1 where the two regions corresponding to
mal description, see [3, 8, 38] or the u paper [ .]') N 1S4 leaf node are collapsed together for clarity in presentation.
section, we illustrate the concepts and ideas behind the co

X o . e two measures of a leaf node are shown as an ordered
putation of deviation between two datasets first through thﬁ

g ir, e.g., the ordered p&j0.0, 0.3) consists of the measures
class of decision tree models and then through the class fg? g P ) ! u

f tit ts. In Section 3 f lize th { the two collapsed regions of the leaf node (1) in Figure 1.
requent itemsets. in section s, we formalize th€Se CONCepIS. \ye o jllustrate the idea behind the computation of devi-

2.1 dt-models ation between two datasets over a set of regions.leand
D be two datasets. Given a region and the measures of that
ion from the two datasets, tdeviationbetweenD; and
> W.I.t. the region is a function (e.g., absolute difference) of
e two measures; we call this function ttiéference func-
on. A generalization to the deviation over a set of regions
s a “combination” of all their deviations at each region; we
epresent this combination of deviations by a function called

Let the decision tree constructed from a hypothetical data
D with two classes-C; andCs—be as shown in Figure 1.
The decision tree consists of three leaf nodes. The class
tribution at each leaf node is shown beside it (on the le
side) with the top (bottom) number denoting the fraction o
database tuples that belong to cla§gC-, respectively). For
instance, the fractions of database tuples that belong to t aggregate functiore.g., sum.

glasses’]l andCs in thg Ieafnodg (_1) are.0 and0.3, respec- If two datasetsD; and D, induce decision tree models
tively. Each leaf node in the decision tree corresponds to MRith identical structural components, we can combine the two



a b b c It has three interesting regions identified by the frequent item-
ol o4l o3l ol sets{a}, {b}, and{a, b}. Each itemset (equivalently, the cor-
03y e responding region) is associated with its suppdet} with
RN 0.5, {b} with 0.4, and{a,b} with 0.25. The measure of a
- " - region identified by an itemset is the support of the itemset.
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[0.25,0.05] [0.05,0.2] the support is higher than the threshold) whose measure is the
L3 GCRof L1and L2 support of X. The set of all frequent itemsets is theuc-
tural componenaind the set of their supports is threeasure
Figure 6: lits-modelLs = A(L1, L) component

ideas—the 2-component property and the deviation w.r.t. a As in the case of decision trees, if the structural compo-
set of regions-to compute their deviation as follows: the de-nents of two models are identical we compute the deviation
viation betweenD; and D- is the deviation between them between them to be the aggregate of the deviations between
w.r.t. the set of regions in their (identical) structural compothe measures at all regions in either structural component.
nents. However, if the structural components are different, we first

However, the decision tree models induced by two distinghake them identical by extending both models to thedat-
datasets typically have different structural components, a$t common refinemerfeor thelits-models, the GCR is the
hence the simple strategy described above for computing dgnion of the sets of frequent itemsets of both models. For
viations may not apply. Therefore, we first make their strug@xample, Figure 6 shows the GCR of tlits-models L, in-
tural components identical by “extending” them. The extenduced byD; andL, induced byD,. Then, the deviation be-
sion operation relies on the structural relationships betweéween the datasets is the deviation between them over the set
models, and involves refining the two structural component all regions in the GCR. The measures (or supports) from
by splitting regions until the two sets become identical. InD; andD, for each itemset in the GCR are shown below it.
tuitively, the refined set of regions is the finer partition obif the difference function is the absolute difference, and the
tained by overlaying the two partitions of the attribute spacaggregate function is the sum then the deviation betwen
induced by the structural components of both decision treegnd D; is |0.5 — 0.1] + 0.4 — 0.3| + [0.1 — 0.5] 4 |0.25 —

We call the refined set of regions tgeeatest common refine- 0.05]| + 0.05 — 0.2| = 1.125.

ment(GCR) of the two structural components. For instance,

in Figure 5,75 is the GCR of the two tre€B, induced byD; 2.3 Focussed Deviations

and T induced byD,. In each region of the GCR3, we o

show a hypothetical set of measures (only for clagsfrom [N the above examples, we computed the deviation between
the dataset®, andD,. For instance, the measures for the refW0 datasets over the entire attribute space. In cases where
gionsalary > 100K andage < 30 for the clasg’; from @n analyst is mteragtlvely exploring tvx{o.datasets to find re-
D, andD, are0.0 and0.04, respectively. The property that 9ions where they differ considerably, it is necessary to “fo-
the GCR of two models always exists, which we establisRUS” the deviation computation w.r.t. a specific regianThe
later for decision tree models, is called teet-semilattice FOCUSramework covers such requirements. The compu-
property of the class of models. tation is focussed w.r.t. regiof by first intersecting each re-

To summarize, the deviation between two datasgtand 9ion in the GCR withR and then combining (using the aggre-
D, is computed as follows. The structural components of th@ate function) the deviations over these intersected regions.
two dt-models are extended to their GCR. Then, the deviatioi'® intersection withiz ensures that the deviation is com-
betweenD; and D, is the deviation between them over thePuted only over regions containedh In Figure 5, suppose
set of all regions in the GCR. In Figure 5, if the differencdn€ analystis interested only in the difference betweand
function is the absolute difference and the aggregate functida OVer the regior: age < 30. The regions in the GCR;
is the sum then (part of) the deviation betwe@n and D mtersectgt_j withR are the three Ieftmost regions that satisfy
over the set of all”; regions is given by the sum of deviationsthe conditionage < 30. The deviation betweef; andT;
at each region iffs: [0.0 —0.0|+[0.0— 0.04| +|0.1—0.14| 4 WL R i5:]0.0 —0.0] + 0.0 —0.04] +]0.1 — 0.14] = 0.08.

0.0 — 0.0| + 0.0 — 0.0] + |0.005 — 0.1] = 0.175. A cqmplemgntary a}pprqach is to declaratively specify a
set of “interesting” regions in terms of the structural compo-

nents of the two models and then rank the interesting regions
in the order of their deviations. In Section 5, we introduce a
Paralleling the above example computation using the class @t of structural operators and a ranking operator for declar-
decision tree models, we now illustrate the deviation comp@tive specification of interesting regions and region-ranking,
tation through the class of frequent itemset models. respectively.

Figure 3 shows a simple itemset model whére {a, b}.

2.2 lits-models



2.4 Additional Comments

A cluster-model induced by a dataset identifies a set of non
overlapping regions. Even though the set of regions in th
structural component of @uster-model may not be exhaus-

tive, the discussion farluster-models is a special case aft-
models. Due to space constraints, we do not disaisster-
models in the rest of the paper.

gion~ is a subset of the attribute spadé?); t = (t1,...,tn)
is ann-tuple onZ if t € A(Z). Each regiony has a corre-
sponding predicat®, such thaf{ P, (t)=true iff t € v}. A

atasetD is a finite set of.-tuples.

In contrast to a region, a dataset is an enumerated set of
tuples in the attribute space. L&t= {4, A, } with domains
[1,10],[1,10] respectively.A; < 5andD = {(1,1),(2,1)}

Note that the derivation of the GCR of two models dependsre examples of a region (defined by the predicate) and a
on the class of models being considered. We formalize thigataset respectively.
dependence in a later section. The computation of the devi-

ation requires the measures frdin and D, over all the re-

Definition 3.2 Theselectivityo (v, D) of a regiony C A(Z)

gions in the GCR to be computed; therefore, both the datase&td.t. a dataseD is the fraction of tuples irD that map into

need to be scanned once.

Suppose the deviation betwe&h and D is 0.005, and
that betweerD; and D3 is 0.01. From just the deviation val-
ues, we are able to say the data characteristid2;0dnd D-
are more similar than those 6f, andDs. But, we still do not

. def :teD
vio(y,D) <& HHebpiell,

3.2 2-Component, Meet-semilattice Models

The main idea behinBOCUSs that a modelM has a struc-

know whether they have “different” data characteristics; a ddéural component'y, that identifies interesting regions of the
viation of 0.01 may not be uncommon between two datasettribute space, and that each such region is summarized by
generated by the same process. In other words, is the devdameasure (e.g., a count). If the structural component sat-
tion value statistically “significant”? We answer these quedsfies some properties that allow us to “refine” two models

tions rigorously using statistical techniques in Section 3.4.

naturally, we have the basis for an intuitive and quantitative

We instantiate the misclassification error metric (from Maédeviation measure.
chine Learning and Statistics) and the chi-squared goodnessWe already discussed the 2-component property of models

of fit statistic (from Statistics) from thEOCUSramework.
Both metrics only consider the classatfmodels; thus, our

in Section 2. We now describe the meet-semilattice property,

which captures the structural relationship between models in

FOCUSramework which covers other classes of models ag class of modeldA. Figure 5 illustrates the relationship be-
well is more general than the current approaches in Machieeen two decision tre€s, and75. The structure ofl; is

Learning and Statistics.

3 FOCUS

In this section, we describe tlOCUSramework for com-
puting deviations between the “interesting characteristics

two datasetsFOCUS:an be applied to any class of data min-
ing models that satisfy the 2-Component and meet-semilatti
In Section 4, we will prove that these prope

properties.
ties are satisfied bjits-models, dt-models, and cluster-
models.

3.1 Preliminaries

“finer” than that of T}, because we can dedugg's measure
component with respect to any dataskeif the measure com-
ponent ofT5 with respect taD is known. Intuitively,T5 cap-

tures information at a finer level thdh. Similarly, among the

" (;YVO sets of frequentitemsefs andLs shown in Figure 615

Is “finer” than L, because we can deduce the measure com-

rggnent ofL, from that of L;. We capture this relationship

etween the structural components of two modeldAnus-
ing a binary relation called thefinementelation.
For the classes of models we consider, given two mod-
els M, and M-, the greatest lower bound of their structural
componentd’,s, , I' s, under the refinement relation always

We now introduce our notation, beginning with some standarekists; we call this thgreatest common refinement (GQR)
terms. Apartially orderedset(P; <) consists of a non-empty s, andl'az,, and denote it by 4, 5,)- The set of all
setP and a reflexive, antisymmetric, transitive binary relatiorstructural components of models.i along with the refine-

<onP. Let(P; <) be apartially ordered set and HtC P.
An elementa € P is called aower boundof H if a < h for
all h € H. Allower bounds of H is thegreatest lower bound
of H if, for any lower bound of H, we haveb < a. We
denote the greatest lower bound&fby A H. A partially
ordered set{P; <) is a meet-semilatticéf for all a,b € P,
A {a, b} exists.

LetZ = {4,,...,A,} be asetof attributes. L&; be the
domainof the attributed;, i € {1,...,n}.

Definition 3.1 The attribute spaceA(Z) of 7 is the cross
product of the domains of all attribute®; x --- x D,,. Are-

ment relation thus formsmeet-semilattice

Definition 3.3 A class of models\ is said to satisfy th@-
componenproperty if anyM € M induced by a datasé?
can be described a5/, %(Tys, D)) whereT'y, = {v¢, :

1 < i < 1} is a set of regions iMA(Z) andZ(I'ys, D) =
{o(v4, D) : viy € Tar}. We usel'y to denote the set of
structural components of all models.

Definition 3.4 Let I'pr, ,T'ar, € Taq. We say that a set of
regions{v;,,...,7;. } refinesa region~; if for any dataset

D, o(vi,D) = Y% o(v;,,D). We say thafl,, refines



Ty, (denotedy,, < T'yp,) if for every regionﬁg2 € 'y, classes of data mining models (see Observation 3.1). The
idea is to “extend” both models to the GCR of their structural
components, and then compare the extensions. Intuitively, to
extend a modeM to Ty (< T'pr) we find the measure com-
ponentX (T, D) for Ty using the datasdb, i.e., we find

the selectivity of each region iny; w.r.t. D.

there exists a set of region{s/ﬁl,...,'ﬂ\;fl'} C 'y, which
refiney;,, . We call< arefinement relation

Observation 3.1 Let M be any one of the following three
classes of modeldits-models, dt-models, cluster-models.

Then M satisfies the 2-component property and there eXisff‘efinition 3.6 Let M, My € M be two models induced by

zerrifillr;ftzzgm relatiors onI'1 such thatl'; <) is a meet- Dy, D, respectively. We define the deviatiéyy ) (M, M>)
. betweenM, and M, as follows:d(; ) (M, My) <

This observation summarizes results in Sections 4.1 and 4.2. L
6(f7g) (<F/\(M17M2) ) E(F/\(]\/[h]\@)a D1)>:
3.3 Measuring Deviations <F/\(M17M2)’ E(F/\(Ml,Mz)’D2)>)
We now develop our measure of deviation between two mod-
els M, and M,, and thereby, between the underlying two Usually, we dropf andg because they are clear from the
datasets. Intuitively, the difference between the models fontext. : . . . .
y For certain choices off and g (identified in Sec-

guantified as the amount of work required to transform ong . .
model into the other, which is small if the two models ard'ons 4.1and 4.2), using the GCR gives the least value for

“similar” to each other, and high if they are “different” 0 over all common refinements. This property of the least

When the structural components are identical we can tra deviation then corresponds to the least-work transformation
(’;k;tween the two models.

form the measure component of one model to the other - . o .

making the measure at each region under the first mo Pmmarlzmg,the instantiation 6OCU3equires:

agree with that under the second model. Lgf, = I'y,. 1. Arefinementrelatiorx.

Then, the amount of work for transforming(I"y;,, D1) 2. A difference functiory and an aggregate functign

into (T, D2) is the aggregate of the differences between

o(Yi,»D1) ando(vyy,, D2), i = 1,..., [Tar, | We assume 3.3.1  Computational Requirements for §

that the difference, at a region, between the measures of the . ] o

first and the second models is given byliierence function The computation of (M, M) requires the selectivities of all
f (not necessarily the usual difference operator “-"), and thd8910NS iNL" A (4, 1, 10 be computed w.r.t. both the datasets
the aggregate of the differences is given byaggregate func- D, andD,. For the three classes of data mining models we
tion g. We discuss these functions, which enhaR€CUS  consider, this require®; andD- to be scanned once.

ability to instantiate deviation functions for specialized appli-

cations, in Section 3.3.2. For now, it suffices to say that 3-3-2 Difference and Aggregate Functions

andg are model-independent parameters-GfCUSwith the | this section, we motivate the use of paramefesidg in

i .74 . 1 .
signaturesf : 7% — Ry, andg : P(Ry) = Ry the FOCUSramework. We then present two example instan-
We now formally define the deviation when the structurafitions each fof andg.
components of the two models are identical. We first considerf. Let L, and L, be two lits-

Definition 3.5 Let f be a difference functiong an aggre- Models induced byD; and D,. Without loss of general-
gate function, and/,, M» € M be two models induced by % let us assume that, and L, have identical structural
the datasetd;, D, respectively, such thaty, = Ty, = componentsl”. (Othemlse, we can extgnd them to their
{7,...,1}. Forj € {1,2}, letsi, = o(yi,D;) - |D;| de- GCI;Z(.) Consider two ;EemsetXl and X5 in F.X Suppose
note the absolute number of tuplesliy that are mappedinto @7z, »D1) = 0.5,0(yz;, D2) = 0.55, ando(y?, D) =
7}'\/[]_ € Ty, . The deviation betweed/; andM, is defined as 0.0, 0(72(22,02) = 0.05. So,X; varies between a “signifi-

follows: cant” 50% and a “more significant” 55% where&s varies
L def . between a “non-existent” 0% and a “noticeable” 5%. For
9(1,9) (M, Ms) =g({f(kp, 7l“D2’l|D1|a |D21), some applications, the variation ¥, is more significant than
s f(kp,» Ep,» D1l | D2])}) that in X; because noticing an itemset for the first time is

: . more important than a slight increase in an already signif-
In general, two models induced from different datasets . - o
A . icant itemset. For some other applications which just con-
have significantly different structural components. Thereforg ; o .
centrate on the absolute changes in support, the variations in

we first have to reconcile the differences in the structural con}-( and X, are equally important. To allow both cases, our
1 2 . ]

ponents of two models to _mal_<e them compargple. Todo th'fsn‘st instantiationf, finds the absolute difference between the
we rely on the meet-semilattice property exhibited by many

1I+ andRR 4 denote the sets of non-negative integers and non-negative real numbers
respectively.



supports, while the second instantiatifin“scales.” We now The powerset of a set of objects (hefg,along with the su-
define the two instantiatior?s. perset relation forms a meet-semilattice [22]. (In fact, it forms

a lattice.)
Definition 3.7 Let k1, k2, N1, N» € Z, such thats; < N;

andks < N,. Theabsolute difference functiand thescaled Proposition 4.1 The class ofits-models M on the set of
difference functiomre defined as follows: itemsZ exhibits the 2-component property atidy; <) is
a meet-semilattice.
fa(K1, K2, N1, No) =

N, N, Once again, consider the example in Figurels. is the
GCR of L; andL;. The supports fronD; andD- for each
b Al itemset in the GCR are shown belowd (Ly, Ly) =
def | 2 if (kg 4 Kp) >0 bfusgoum) (L1, L2
fs(k1, k2, N1, Na) = { (Fr+73)/2 (1 + 2) 0.4+0.1+0.4+0.2+0.15 = 1.125,andd s, ,,... (L1, L2) =
0, otherwise 0.4. '

We now show that using the GCR of two models rather

The aggregate function takes as input a set of values. ., a0y common refinement gives the least deviation.

The two most commonly used aggregate functionssamm
andmax Since the instantiations gfandg are independent Theorem4.1Let f € {fa, fs} andg € {gsum,gmaz}. LeL
of each other, these example instantiations generate four difss be a common refinement &f,;, andI'ys,. Then,
ferent instantiations of.

6(M17 MZ) < 5(1f,g) (<FM7 E(]-—‘1\/1, D1)>7 <FM, Z:(I‘Mv DZ)>)
3.4 The Qualification Procedure

Is the deviation sufficiently large that it is unlikely that the4.1.1 Upper Bound 6™ for 0
[ 2 . . . .

two data'\set's. are generatgd .by the same generating ProCeRSin exploratory, interactive environment wheri repeat-
The gvallablllty of a quantltatlvg dewgtlon measure makes gdly computed, we can typically work with just estimates of
possible t_o answer such qge;tlons rigorously. If we assUife actual answers, but require fast responses. For the case
that the distributioriF of deviation values under the hypoth—Where the difference function ig,, we now derive an up-
esis that the two datasets are generated by the same pro S bounds* of § that can be cor,nputed fast using just the
is known, we can use standard statistical tests to compute : . o . .

Lo o 0 models (which will probably fit in main memory, unlike
significancesig(d) of the deviationd between two datasets. ( P y y

We usebootst . hni ¢ Statistics [14] t the datasets). Using the upper bouridnstead ofs is safe;
Pi u}s_ V?/O S ratptﬂln%ett: _Inlc(]juest rom Statis 'Cf [ . t] 0 gom'twe will not ignore significant deviations* also satisfies the
pute. We omit the details due to space constraints. (See fangle inequality and can therefore be used to embed a col-

fl:lltp:?pe: tfortdetlegls of the bootstrapping procedure and thI%ction of datasets in B-dimensional space for visually com-
statistical tests [18].) paring their relative differences.

4 Instantiations Definition 4.1 Let M be the class oflits-models and
In this section, we instantiate tfOCUSramework forlits- M1, M> € M be two models at minimum support level
models, dt-models, andcluster-models. Wherever possi- ms induced by D, and D,. Let ki,k2 € Z;. Let
ble, we analyze the properties of the instantiated deviatiofi (£1, %2, | D1, [D2])

functions. I,
fa(lil,liz,|D1|,|D2|), If \D_11|’|D_22\ >ms
4.1 lits-models = fa(K1,0,|D1l,|Dsl), if |’[€)_11| > Ms andﬁ < Ms

We first show that the class tifs-models exhibits the meet- fa(0; 2, | D1, |D2), if 15 <m, and gty > m;

semilattice property. Next, we analyze the deviation functions
and discuss interesting characteristics that arise due to the Yde defineziz‘g) (M, M) def O(f=.q)(My, My).
of the GCR. We then derive an upper bound for the deviation
functionss s, o) whereg € {gsum, Imaz }-

The refinement relation between the structural componen
of two sets of frequent itemsets is defined by shpersete-

lation. LetTy, = Lg; andT'y, = ng be two sets of
frequent itemsets Formally, I'ys, <z Tar, if L O L2, (1) 87y (M, Ms) > 65, 4 (M1, Ma)
* ) satisfies the triangle inequality.

2The signaturef : R4 x R4 — R4 for f where the two arguments correspond (2) 6(g

to the selectivities of a region w.r.t. both datasets suffices for most purposes. Howevgi’a) d* . can be Computed without scanni[ﬂj or Ds.
some functions require absolute measures. We give one such example in Section 5.2.2. (9)
Therefore, we use absolute measures.

3L’[';15 is the set of itemsets iV, with support greater tham s .

eorem 4.2 Let M, , M, € M be two models induced by
1,D2 and letg € {gsum, gmaz}- Then the following prop-
erties hold:




4.2 dt-models

For the rest of the section, léif;, M> € M be two dt-
models induced byD,, D, respectively, and®, denote the
predicate identifying a region.

Definition 4.2 ' N
Can 2l i, Vi, € Doy 3 {0700, F € D
{(Pvf\}l VeV P&.i) iff P”’ziwz}'

setting is to check how well a model built from an old dataset
fits a new dataset.

For both application scenarios, a very useful property of
FOCUSs that we can compute deviations w.r.t. a specific re-
giony C A(Z). Each region in the structural component
Tar = {Vi,i = 1,...,|Tar|} of the modeld can be inde-
pendently focussed w.r4. by taking its intersection withy.
The measure w.r.t. a datagetfor each regiony{, focussed
w.rt.yiso(yN~i,, D).

Intuitively, the GCR of the structural components of two

dt-models is the finer partition of4(Z) obtained by overlay-
ing the two structural componeris,;, andI'y.,. The corre-

Definition 5.1 Let M € M be a model induced by the
datasetD andvy C .A(Z) be a region, called thiocussing

sponding set of predicates is obtained by “anding” all possfegion Then thefocusof M w.r.t.~y is defined as:

ble pairs of predicates from both the structural components.
For example, Figure 5 illustrates the finer partition formed

%%hereFXJ ={yN~i :7is € T} We useM™ andl'}, to
e

by overlaying the partitions of the modéls and7:. For the

sake of clarity, we show the measures only for regions of cla
labelC; inthe GCR. (Anidentical structure exists for the sec

ond class label.) Formally, the G(JF?\(M1 M) of Iy, and
Ly, ISt

{7 :visidentified byP,, AP,, 3 v1 € Tam, A ¥2 € Ta,}

Proposition 4.2 Let M be the class ofit-models with re-

def
MY = (T3, (T, D))
denote the sets of all models.m and structural components

in ' o focussed w.r.ty.

The following theorem shows that all the theory developed
for the class of modeld1 can be applied td1” as well.

Theorem 5.1 Let M be one of the following three classes of
models: lits-models, dt-models, andcluster-models. Let

finement relation<7. Then M exhibits the 2-component =< be a refinement relation such th@t,,; <) forms a meet-

property andT v(; <) is @ meet-semilattice.

Once again, we consider the example in Figurelg's

semilattice. Lety C A(Z) be the focussing region. Then
(I'\4; <) is a meet-semilattice.

structural component is the GCR of the structural comp@efinition 5.2 Let f be a difference function; an aggregate

nents of7} andT,. For the sake of clarity, only the mea-

sures of clasg”; from both D; and D, are shown in73.
(f..9.um) (11, T2) OVer regions corresponding to clasSs is:
|0.1 — 0.14] 4 |0.0 — 0.04| + |0 — 0] 4+ |0 — O] +]0 — O] +
|0.005 - 0.1] = 0.175.

function, andM;, M, be two models induced b®,, D5, re-

spectively. The deviatioﬁ(”f g)(Ml,MQ) betweeni/; and

M, focussed w.r.t. a region C A(Z) is defined as:

077y (My, Ma) = 850 (M, My")

The following theorem shows that using the greatest com-
mon refinement, rather than any common refinement, gives

the least deviation value for the cage= gsum.

Theorem 4.3 Let '), be a common refinement df,,
andT'y,. Letg = gsum, and f € {f.,fs}. Then,
é(fvgsum)(Ml’]\/[2) <

5(1f7g)(<FM7 E(]-—‘1\/17 D1)>7 <FM7 E(]-—‘1\/1, D2)>)

We emphasize that the deviation function may not be
monotonic, i.e., ify C 7' then the deviation overmay not be
less than that over'. For example, if\, M> are two models
constructed fronDy, D, respectively ang € {gsum, Gmaz }
then’}/ - ’)/l = 5Zfa7g)(M1’M2) < 5Zfa7g)(M1’M2)' How-
ever, the same is not true féy;, ) (M1, M>).

Observe that this theorem is less general than Theorem 41The ab|||w to Compute region-speciﬁc deviations is en-
for lits-models. (For a counter example to see that the abovganced by adding operators to manipulate sets of regions. We

lemma is not valid fog = ¢,,..., See the full paper [18].)

5 Focussed Deviations

In this section, we illustrate the power of tROCUSrame-
work by applying it to two different scenariogxploratory
analysisandchange monitoringThe objective in the first set-

ting is to interactively explore and understand the difference$-
between two datasets, similar to the drill-down and roll-up

strategies in OLAP databases [12] and éldehoc miningap-

proach emphasized in [26, 30]. The objective in the second

now introduce a small collection of such operators, divided
into two groupsstructuralandrank operators.

1. Structural Union ( L): The structural union of
two sets of regionsl’; and I'; is given by their
GCRA(Ty,Ty).

Structural Intersection ( M): The structural
intersection of"; andr’; is the set of regionE such that
each region il is a member of botl'; andI';. This is
identical to the standard intersection operation on sets.



3. Structural Difference ©: The structural dif- 5.2 Monitoring Change

ference off’; andl's is (I'; UTs) — (T M Ty). L N
. ' _ 218 (I . 2) (,1 . 2) The objective in this setting is to know how well the model
4. Predicate  p: The predicate region is a subset of the;qngtrycted from the old dataset fits the new dataset. There-
attribute space identified by fore, the structural component for the model on the new

Given a set of regions, the rank operator orders them 15ftptaset is expected to be that of the old dataset, and the ques-

the “interestingness” of change between the two datasets. @ can be cast as "By how much does the old model misrep-

interestingness of a region is captured by a deviation functlohe.sen.t the. new data?" For quISIOI’] trees, the m|scIaSS|f|cat|pn
error is widely used for this purpose; as we show, the chi-

e Rank: Given a set of region¥, two datasetd,, D,, Squared metric can also be adapted (using bootstrapping) to

and a deviation functions s, the rank operator address this question. We show that these two traditional mea-
sures can be captured as special cases dF@eUSrame-
work by appropriate choices ¢gfandg. Thus,FOCUSjen-
eralizes change monitoring in two ways: (1) to models other
e Select:  Given the output of the rank operator, the sethan decision trees, and (2) to change monitoring over specific

lection operator selects a subset of the output. For examegions.

ple,top-region  ,top-n regions , min-region

andbottom-n regions are common selections; We 5 2.1  Misclassification Error

denote these selections BY?, 4™, ™", andd—" re-

p(T,0(s,9), D1, D,)* returns as output a ligt of regions
in the decreasing order of interestingness.

spectively. LetT = (I'y,%(I'r, D,)) be gdt—model constructed on the
datasetD;, and letD, be an independent dataset. For each
5.1 Exploratory Analysis tuplet € D, letC' = T(t) be the class label predicted by

oo ;
The objective in exploratory analysis is to find a set of iniT fs(;ri;. tc:ftfgiiggzs(:;seﬁ O;t I?h(:ﬁniir::l;fsr;?cgticErr]\egrior
teresting regions in terms of the differences between the W yi.

T ; .
datasets. Consider the decision trégsandT, constructed M}IE (Di)) of .T :N'r't.'f.Dé tl)s the fraction of the number of
from Dy and D, shown in Figure 5. Suppose that deviation§uIO es inD, misclassified byr".

above0.05 are considered significanf; and D, differ con- def |{t € Dy andT misclassifies}|

siderably in the shaded regiofly and(2) . If f = f, then ME" (D») Dy
these regions have a deviation (w.r.t. clas9 of 0.08 and
0.095 respectively. Note that regiqd) is a leaf node of’} We define theredicted dataseD? of D, w.r.t. T to be the

but region(2) is a sub-region of a leaf node ii,. More- set of tuples formed by replacing the class label of each tuple
over, the sub-regions @fl) in 73 do not cause significant ¢ € D, with T"s prediction fort. Denoting the replacement
differences betwee®, andD,. Therefore, we have to find of the class label of a tuplewith ¢ by t|c,

regions that are significantly different at all levels of the tree

in addition to the regions df’;. The following expressions DT ef {t':t' =t|T(t),t € Dy}

find the regiongl) and(2) respectively: . ) ,
The following theorem shows that ET(D,) is the devi-
gtor (p(T, Uy, 6(fa7gsum)))7 gtor (p(Dp, Ul 5(fa7gsum))) ation betweerD- andDg atl'r.

Next, consider an example in the frequent itemset domaig.heorem s:2LetT be adt—mTodeI induced byD;. Let Dy
The shoes and clothes departments in the Walmart super m ?_another dataset. ThefiE™ (D)=

ket sell sets of item3%; andZ, respectively. Suppose; and 1 T

D, are datasets collected at two different outlets. An analyst 5 9(fa.geum) (T'7, E(T'7, D2)), (T'7, E(T'r, D))
compares the top-10 itemsets in each department to see if the

popular itemsets are similar across the two departments. Let . . .

L, andL- be the sets of frequent itemsets computed fidm 3-2-2  Chi-squared Goodness of Fit Statistic

and D, respectively. Letf andg be chosen appropriately. The computation of the chi-squared statistié¢ assumes that
The following expressions return the top-10 lists from eacthe entire space is partitioned into cells each of which is as-

department, and the combined top-20: sociated with “expected” and “observed” measures. (See [13]
p(0™°(p(P(Z1) N (Tr, UTL,)),0) U for details.) To apply the chi-squared testdiemodels, we

A 01 (p(P(Z2) N (T, UTL,))), d) use the regions associated with a decision Tres the cells
0°(p(P(Z1) UP(Z2)) N (Tr, UTL,),0) since these regions partition the entire attribute space. The ex-

4S_int:e D1 and D» are usually clear from the context, we omit them from the pected and observed measures ﬂe’*/i, DZ) — g(%., Dl) .
otaton. D3|, 0(:, D2) = 0(s, Ds) -| D The statistict 2 can now
be computed in a straightforward way except for two prob-
lems:



Sample Fraction| 0.01 | 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 |08
Significance | 99.99| 99.99 | 99.99| 99.99| 99.99| 99.99| 99.99 | 99.99| 99.99 | -

Table 1:lits-models:% significance of increase in representativeness with sample sizes friom;

lits-models: 1M.20L.1K.4000pats.4patlen lits-models: 0.75M.20L.1K.4000pats.4patlen lits-models: 0.5M.20L.1K.4000pats.4patlen
25 25
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f
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(1) For the chi-squared statistic to be well-definE¢;, D>)  If one of the datasets is a sample randomly drawn from the

should not be zero. We follow the standard practice in Statisther, the deviation between the models they induce is then a

tics and add a small constant- 0 (0.5 is a common choice) measure of theepresentativenessf the sample in inducing

to ensure this [13]. the true model.

(2) Atleast80% of the expected counts must be greaterthan 5 Let M be the model induced b#, andMs the model in-

in order to use the standad tables. In a decision tree, this duced by a random sampfedrawn fromD. We define the

condition is often violated. For example, if all tuples in nodesample deviation (SD)f S to bed(M, Ms). The smaller the

n are of clasg, the expected measures for regiofisj # i SD of S, the more representativeis of D. This definition

will be zero. The solution to this problem is to use an exadives us a handle to study the influence of the size of the sam-

calculation for the probability distribution of th&?2 statis- ple on its representativeness.

tic under the null hypothesis, i.e., distribution & values Using the SD, we now address two questions. Does in-

when the new dataset fits the old model [13]. The procedurgeasing the size of the sample decrease its SD? If so, by how

(see Section 3.4) to estimate the exact distribution using tlmeuch? If the answer to the first question is affirmative, then

bootstrapping technique can be used to perform the test. the SDs of two sample sizes can be compared to answer the
It is easy to show that chi-squared statistic, adapted as dgcond question; in Sections 6.1.1 and 6.1.2, we carry out this

scribed above, can be instantiated frB@CUS comparison for a wide variety of datasets and models. If the

Proposition 5.1 Let T be the decision tree induced liy,, 2answer to the first question is negative, then the second ques-

and letD, be another dataset. Letbe a (small) constant. tion is irrelevant. We now describe a procedure that returns

Then the chi-squared statistie? is given by: the statisticakignificanceof the decrease in SD due to an in-

crease in the sample size. The significance is the percentage

X? = 555 (T, (T, Dy)), (T, £(T, D»))) where confidencel00(1 — «)% with which the null hypothesis that
e the two sample sizes are equally representative is rejected.
| Dol (g2t — ;)2 " The basic intuition behind the procedure is as follows.
flor,ve, |Da|,|D2)) =4 — =& o >0 Consider two sets of random samples where the firstset
¢, otherwise contains samples of sizg, ;, and the second sét contains
samples of size; (< s;+1). If the SD measures for sizg; 1
6 Effect of Sample Size is smaller than that of; (< s;11) then we expect a large num-

ber of SD values foiS; to be smaller than those féh,. We
se the Wilcoxon two-sample test to check the significance of
Ris hypothesis [7]. (We omit the details due to space con-
fstraints. See the full paper for details [18].)

In this section, we address the following questidtile con-
structing a model using a random sample of the dataset,
bigger sample sizes necessarily yield better mod&&?ap-
ply FOCUSo quantify the notion of “representativeness” o
arandom sample in inducing the “true” model induced by thg.1  Empirical Study
entire dataset. _ _ In this section, we present an empirical study of the repre-
The intuition behind our approach is as follows. The deggnativeness of a sample versus its sizditemodels and
viation obtained from an instantiation 80CUSquantifies

) - dt-models.
the difference between the models induced by two datasets.



Sample Fraction| 0.01 | 0.05 0.1 0.2 03 | 04| 05 0.6 0.7 | 08
Significance | 99.99 | 99.99 | 99.99 | 99.97 | 99.69 | 79 | 99.22 | 99.93 | 95.25| -

Table 2:dt-models:% significance of decrease in sample deviation with sample fractiondrams; 1

dt-models: 1Million tuples dt-models: 0.75 Million tuples dt-models: 0.5 Million tuples
0.03 0.03 0.03
o f a,g_sumFl -— f a,g_sumFl -— 1 f a,g_sumFl <—
f a,g_sumF2 -+ f a,g_sumF2 -+ i f a,0_SumF2 -+
0.025% f"a,g_sumF3 = 0.025 f"a,g_sumF3 = 0.025 1 fag_sumF3 =
f_a,g_sum:F4 - f_a,g_sum:F4 - i f_a,0_sum:F4 -x
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Figure 10: SD vs SF Figure 11: SD vs SF Figure 12: SD vs SF
6.1.1 lits-models 6.1.2 dt-models

We used the synthetic data generator from the IBM QuebYe use the synthetic generator introduced in [2]. It has sev-
Data Mining group. We useNM.¢t,L.|Z|l.N,patspplen to eral classification functions to generate datasets with different
refer to a dataset wittv million transactions, average trans-characteristics. We selected four functions (Functions F1, F2,
action lengtht;, |Z| thousand items}V,, thousand patterns, F3, and F4) for our performance study. We Békl.Fnum to
and average pattern length We used the Apriori algorithm denote a dataset witN million tuples generated using clas-
[5] to compute the set of frequent itemsets from a dataset. sification functionnum. We used a scalable version of the
We studied all four combinations gfandg. Due to space widely studied CART [8] algorithm implemented in the Rain-
constraints, we only present the resultsipf , . 1. (The Forest framework [20] to construct decision tree models. We
remaining plots are given in the full paper [18].) We varusedd;, ,....) to compute the deviation between two mod-
ied two parameters: the size of the dataset and the minimuats.
support level. The datasets used for this study have three dif- Table 2 shows the significance of the decrease in sample
ferent sizes: 1 million, 0.75 million, and 0.5 million trans-deviations for the datasétM.F1 as the sample size is in-
actions. All other parameters to the data generator are sgeased. The significance is measured using the Wilcoxon
as follows: |Z| = 1000, = 20, N, = 4000,p = 4. Fig- test on sets of 50 sample deviation values for each sample
ures 7, 8, and 9 show the sample deviation (SD) versus thize. The decrease in sample deviation values is quite signifi-
sample fraction (SF) values. We draw the following conclueant even at SF=70%.
sions. (1) As the minimum support level decreases, the size Figures 10, 11, and 12 show the plots for different classifi-
of the sample required to achieve a certain level of represecation functions (F1, F2, F3, and F4) in the IBM data genera-
tativeness increases. This is to be expected because the loveerand for varying dataset sizes.
the minimum support level the more difficult it is to estimate
the model. (2) For a given SF value, the representativenessiof.3  Conclusions from this study

samples of a fixed size increases with the dataset size. Ag%r both classes of models, based on the significance values

this is as expected. . . _from the Wilcoxon tests, we conclude that it is better to use
Table 1 shows the significance of the decre;ase in SBrger samples because the decrease in sample deviations is
for the datase;M.ZOL.ll.4pats.4plen __asweincrease tatistically significant even for sample sizes as large as 70-
thg sample size. We measured the §|gp|f|cance using tﬁ%ﬁ%. On the other hand, the SD versus SF plots suggest that
Wilcoxon test on sets of 50 sample deviation values for ea e rate of additional information obtained decreases with in-

size. We conclude that the representativeness of Samplesé‘?éasing sample size, and for many applications, it may be

creases with the size of the sample. Hovx{ever, from F'.' fficient to take a sample of size 20-30% of the original
ures 7, 8, and 9 we see that the decrease in SD is not hlg taset
when the sizes of the sample relative to the dataset size (S '

0
are larger than 30%. 7 Experimental Evaluation

5 Available fi http: .al .html. . . .. .
vallable from hitp:ifwww.almarlen.bm.com/cs/questisyndata.htm In this section, we evaluate the deviation computation and

significance detection algorithms in two parts: first fits-



Dataset ) % sig(9) 0* Time ford | Time for§* ID 0 % sig(9)
Dy 0.0913 1 0.0913 0 0.01 Dy 0.0022 10
Dy 3.2198 99 3.6893 46.27 0.01 D3 1.2068 99
D(3) 6.0957| 99 | 6.60874| 46.16 0.01 D3 0.8146 | 99
Dy 6.0096 99 6.4435 44.19 0.01 Dy 1.4819 99
D +3d(5 | 01511 2 0.1610 | 17.37 0.0 D+3(5 | 0.0569 99
D + 4y | 0.2760 99 0.3645 19.53 0.01 D+ | 0.03722 99
D+6(7 | 02784 99 0.3668 | 18.86 0.0 D+ 4y | 0.0689 99

. . . Figure 14: Deviation with D: 1M.F1
Figure 13: Deviation with D: 1M.20L.1l.4pats.4plen

Experimental Setup of Figure 13

models and then fordt-models. The datasets we used for
this study are also generated from the IBM data generators °
described in Section 6.1, and the naming conventions are the
same as in Section 6.1.

ME —~—

0.5

04

0.3

Misclassification Error

0.2

7.1 Set of Frequent Itemsets

0.1

In this section, through controlled experiments on synthetic "0 02 5s e gp 1 12 14 1o 1o
datasets, we first evaluate the procedure for detecting signifi-

cant deviations. We then evaluate the quality and speed of the Figure 15:Deviation vs. ME
upper bound of the deviation functian.

datasets for the first four rows are generated using the func-

viations betweerD and a variety of datasets. All datasetdO"S F1, F2, F3, and F4 respectively. The datasets used

D1 — Dz, are generated with an average transaction lengffl thlfl Iait tfhr%%(;8WS ?re obtained dby gxtegdlhg/vétr}a
20, and 1000 items;D(,, consists of 500K transactions, To"" OOCM ?:15 D _tmelzszgegerétleM llfé'ﬁgD 3’_Eir|'\/| FZ
D3y — D4y consist of a million transactions each, andD(U:D'f& '_6 +%)(;5M.F21D (?QE)M' —iD +(A8—05M. F3,
d() — d(r) consist of 50K transactions each. The numbel )= oE)TE T e (6)THT06) = : 3
of patterns and the average pattern length for each data8 D(z)=D+6()=D + 0.05M.F4.

: . : . . i he significance of the deviation fdp,y in row (1) is
is as follows. D(1y: (4K,4); D(a),85): (6K,4); D(3),(): , (D
(4K,5); D@y, dn): (5K,5). In each case, we set the mini-lOW because it has the same distribution as thabofThe

mum support level to 1% to compute the set of frequent iten?_ignificance of deviations in row),(3),(4) are high,

Let D=1M.20L.1l.4pats.4plen . We compute de-

sets from both datasets. Figure 13 shows the deviation vﬁ? e):jp:jgt(?ted. ¢ Fromblrov|\£§),gc6)_,(7)50K m we see t.hat.f.e vert1
ues and their significance. The deviation valye ,. .., and de?/;tic:r:gn oTnewblocks ot size causes sighifican

its significance in row(1) reflect the fact thaD,, has the
same distribution as that @. As expectedD ), D(s), D(4)
differ significantly fromD. Moreover, the deviation values
suggest that the paramefetien has a large influence on
data characteristics. The addition®f), andd) to D (rows
(6),(7) ) cause significant deviations because they differ i
the patlen  parameter whereas the additiond®f, which g Related and Future Work
differs only in the parametgrats does not cause a signifi-

In Figure 15, we plot the misclassification error (ME) for
the tree constructed from® w.r.t. a second dataset (chosen
fromd(5y-d(7) and D,y — D 4)) against the deviation between
the two datasets. We see that they exhibit a strong positive
|qorrelation.

cant deviation (rov(s) ) A lot of research on clustering concentrated on detecting “out-
viatl ' liers” within the dataset as noise and devised special strategies

a g-(l;rc])?j l:;;:;;aeeiggtl;nmtgzégggur?#:;i%"ﬁt;ﬁ?ﬂilévﬁ:jes icr)l handle them [15, 23, 29, 35, 38]. In contrast to the work on
: ' . . lustering, [6, 25, 27] concentrated primarily on discoverin
the row(1) is due to the fact thab and D,y have identi- ustering, [ ] primartly IScovering

R . outliers in a dataset.
cal distributions. Therefore, the sets of frequent itemsets were

) o - Interestingness measures to monitor variation in a single
identical; so all the measures necessary to compute the deﬁ’ﬁttern were proposed in [36]. A similar problem of moni-
ation are obtained directly from the models.

toring the support of an individual itemset was addressed in
7.2 Decision Tree Classifiers [4, 10]. Given a pattern (or itemset) their algorithms propose

to track its variation over a temporally ordered set of transac-

We evaluate the significance detection procedure (see S@6ns. However, they do not detect variations at levels higher

tion 3.4) fordt-models using the same experimental frame—than that of a single pattern.

wotrk tis Ic? Set(?tlon 6'.1'2' In this ede[)re]zn.me.nt, ';{ve COM= 1 future work, we intend to apply our framework to ap-
pute the deviations using, ,....) and their significance proximate query answering.

values betweerD=1M.F1 and a variety of datasets. The
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