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Abstract

A data mining algorithm builds a model that captures interest-
ing aspects of the underlying data. We develop a framework
for quantifying the difference, called thedeviation, between
two datasets in terms of the models they induce. Our frame-
work covers a wide variety of models including frequent item-
sets, decision tree classifiers, and clusters, and captures stan-
dard measures of deviation such as themisclassification rate
and thechi-squaredmetric as special cases. We also show
how statistical techniques can be applied to the deviation mea-
sure to assess whether the difference between two models is
meaningful (i.e., whether the underlying datasets have statis-
tically significant differences in their characteristics), and dis-
cuss several practical applications.

1 Introduction

The goal of data mining is to discover (predictive) models
based on the data maintained in the database [16]. Several
algorithms have been proposed for computing novel mod-
els [1, 2, 3, 28, 29], for more efficient model construction
[9, 15, 20, 21, 23, 31, 32, 33, 34, 38], and to deal with new
data types [19, 21, 24]. There is, however, no work address-
ing the important issue of how to measure the difference, or
deviation, between two models.

As a motivating example, consider the following appli-
cation. A sales analyst who is monitoring a dataset (e.g.,
weekly sales for Walmart) may want to analyze the data thor-
oughly only if the current snapshot differs significantly from
previously analyzed snapshots. In general, since successive
database snapshots overlap considerably, they are quite simi-
lar to each other [11, 17, 37]. Therefore, an algorithm that can
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quantify deviations can save the analyst considerable time and
effort.

As a second example, a marketing analyst may want to
analyze if and how data characteristics differ across sev-
eral datasets of customer transactions collected from differ-
ent stores. The analysis can then be used to decide whether
different marketing strategies are needed for each store. Fur-
ther, based on the deviation between pairs of datasets, a set
of stores can be grouped together and earmarked for the same
marketing strategy.

In this paper, we develop theFOCUSframework for com-
puting an interpretable, qualifiable deviation measure be-
tween two datasets to quantify the differences between “in-
teresting” characteristics in each dataset (as reflected in the
model it induces when a data mining algorithm is applied on
it [16]). The central idea is that a broad class of models can be
described in terms of astructural componentand ameasure
component. The structural component identifies “interesting
regions,” and the measure component summarizes the subset
of the data that is mapped to each region. TheFOCUSframe-
work has several desirable features:

� The deviation measure obtained fromFOCUSis intu-
itively interpretable in terms of the work required to trans-
form one model to the other (Section 3). It can be com-
puted using a single scan of the underlying datasets; a
good upper bound for frequent itemsets can be computed
by simply examining the models (Section 4.1.1).

� The framework allows comparison of specific parts of two
models. This makes it possible to focus attention on in-
teresting changes that might not significantly affect the
model as a whole (Section 5).

� The framework covers the models obtained by several
mining algorithms, including frequent itemsets, decision
trees, and clusters (Sections 4.1 and 4.2). It also captures
themisclassification rate(commonly used for evaluating
decision trees) andchi-squared statisticas special cases
of the deviation measure. (In Section 5.2.2, we also show
how the chi-squared statistic can be applied to decision
trees, using the bootstrapping technique to avoid some
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standard restrictions that would otherwise make it inap-
plicable.)

We illustrate the power of the framework through these
additional contributions:

� We show howFOCUScan be used to interactively identify
and explore subsets of data that lead to interesting changes
in the model being studied (Section 5). We define a set
of operators to discover regions where the differences be-
tween the datasets are interesting.

� We apply our measure of deviation to study whether mod-
els based on a sample of the available data differ signifi-
cantly from the model based on all the data. Interestingly,
even for very large sample sizes, there is a statistically sig-
nificant difference between the sample-based models and
the model based on all data. However, the difference di-
minishes quickly with increasing sample size. In many
situations, it may suffice to use a sample, and our mea-
sure of deviation can be used to determine the appropriate
sample size (Section 6).

2 Examples Illustrating Deviation

In general, a data mining model constructed from a dataset is
designed to capture the interesting characteristics in the data.
Therefore, we use the difference between data mining models
as the measure of deviation between the underlying datasets.
In this paper, we consider three classes of data mining mod-
els widely studied in the database literature:lits-models, dt-
models, andcluster-models. Informally, alits-model is the
set of “frequent” itemsets; adt-model is a decision tree; a
cluster-model is a set of clusters. We assume that the reader
is familiar with each of these classes of models. (For a for-
mal description, see [3, 8, 38] or the full paper [18].) In this
section, we illustrate the concepts and ideas behind the com-
putation of deviation between two datasets first through the
class of decision tree models and then through the class of
frequent itemsets. In Section 3, we formalize these concepts.

2.1 dt-models

Let the decision tree constructed from a hypothetical dataset
D with two classes|C1 andC2|be as shown in Figure 1.
The decision tree consists of three leaf nodes. The class dis-
tribution at each leaf node is shown beside it (on the left
side) with the top (bottom) number denoting the fraction of
database tuples that belong to classC1 (C2, respectively). For
instance, the fractions of database tuples that belong to the
classesC1 andC2 in the leaf node (1) are0:0 and0:3, respec-
tively. Each leaf node in the decision tree corresponds to two
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regions (one region for classC1 and one region for classC2),
and each region is associated with the fraction of tuples in the
dataset that map into it; this fraction is called themeasureof
the region. Generalizing from this example, each leaf node of
a decision tree fork classes is associated withk regions in the
attribute space each of which is associated with its measure.
Thesek regions differ only in the class label attribute. In fact,
the set of regions associated with all the leaf nodes partition
the attribute space.

We call the set of regions associated with all the leaf nodes
in thedt-model thestructural componentof the model. We
call the set of measures associated with each region in the
structural component themeasure componentof the model.
The property that a model consists of structural and mea-
sure components is called the2-componentproperty. Figure 2
shows the set of regions in the structural component of the de-
cision tree in Figure 1 where the two regions corresponding to
a leaf node are collapsed together for clarity in presentation.
The two measures of a leaf node are shown as an ordered
pair, e.g., the ordered pairh0:0; 0:3i consists of the measures
for the two collapsed regions of the leaf node (1) in Figure 1.

We now illustrate the idea behind the computation of devi-
ation between two datasets over a set of regions. LetD1 and
D2 be two datasets. Given a region and the measures of that
region from the two datasets, thedeviationbetweenD1 and
D2 w.r.t. the region is a function (e.g., absolute difference) of
the two measures; we call this function thedifference func-
tion. A generalization to the deviation over a set of regions
is a “combination” of all their deviations at each region; we
represent this combination of deviations by a function called
theaggregate function, e.g., sum.

If two datasetsD1 andD2 induce decision tree models
with identical structural components, we can combine the two
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ideas|the 2-component property and the deviation w.r.t. a
set of regions|to compute their deviation as follows: the de-
viation betweenD1 andD2 is the deviation between them
w.r.t. the set of regions in their (identical) structural compo-
nents.

However, the decision tree models induced by two distinct
datasets typically have different structural components, and
hence the simple strategy described above for computing de-
viations may not apply. Therefore, we first make their struc-
tural components identical by “extending” them. The exten-
sion operation relies on the structural relationships between
models, and involves refining the two structural components
by splitting regions until the two sets become identical. In-
tuitively, the refined set of regions is the finer partition ob-
tained by overlaying the two partitions of the attribute space
induced by the structural components of both decision trees.
We call the refined set of regions thegreatest common refine-
ment(GCR) of the two structural components. For instance,
in Figure 5,T3 is the GCR of the two treesT1 induced byD1

andT2 induced byD2. In each region of the GCRT3, we
show a hypothetical set of measures (only for classC1) from
the datasetsD1 andD2. For instance, the measures for the re-
gion salary � 100K andage < 30 for the classC1 from
D1 andD2 are0:0 and0:04, respectively. The property that
the GCR of two models always exists, which we establish
later for decision tree models, is called themeet-semilattice
property of the class of models.

To summarize, the deviation between two datasetsD1 and
D2 is computed as follows. The structural components of the
two dt-models are extended to their GCR. Then, the deviation
betweenD1 andD2 is the deviation between them over the
set of all regions in the GCR. In Figure 5, if the difference
function is the absolute difference and the aggregate function
is the sum then (part of) the deviation betweenD1 andD2

over the set of allC1 regions is given by the sum of deviations
at each region inT3: j0:0�0:0j+ j0:0�0:04j+ j0:1�0:14j+
j0:0� 0:0j+ j0:0� 0:0j+ j0:005� 0:1j = 0:175.

2.2 lits-models

Paralleling the above example computation using the class of
decision tree models, we now illustrate the deviation compu-
tation through the class of frequent itemset models.

Figure 3 shows a simple itemset model whereI = fa; bg.

It has three interesting regions identified by the frequent item-
setsfag, fbg, andfa; bg. Each itemset (equivalently, the cor-
responding region) is associated with its support:fag with
0:5, fbg with 0:4, andfa; bg with 0:25. The measure of a
region identified by an itemset is the support of the itemset.
Generalizing from this example, each frequent itemsetX in
a lits-model represents a region in the attribute space (where
the support is higher than the threshold) whose measure is the
support ofX . The set of all frequent itemsets is thestruc-
tural componentand the set of their supports is themeasure
component.

As in the case of decision trees, if the structural compo-
nents of two models are identical we compute the deviation
between them to be the aggregate of the deviations between
the measures at all regions in either structural component.
However, if the structural components are different, we first
make them identical by extending both models to theirgreat-
est common refinement. For thelits-models, the GCR is the
union of the sets of frequent itemsets of both models. For
example, Figure 6 shows the GCR of twolits-models L1 in-
duced byD1 andL2 induced byD2. Then, the deviation be-
tween the datasets is the deviation between them over the set
of all regions in the GCR. The measures (or supports) from
D1 andD2 for each itemset in the GCR are shown below it.
If the difference function is the absolute difference, and the
aggregate function is the sum then the deviation betweenD1

andD2 is j0:5 � 0:1j + j0:4 � 0:3j + j0:1 � 0:5j + j0:25 �
0:05j+ j0:05� 0:2j = 1:125.

2.3 Focussed Deviations

In the above examples, we computed the deviation between
two datasets over the entire attribute space. In cases where
an analyst is interactively exploring two datasets to find re-
gions where they differ considerably, it is necessary to “fo-
cus” the deviation computation w.r.t. a specific regionR. The
FOCUSframework covers such requirements. The compu-
tation is focussed w.r.t. regionR by first intersecting each re-
gion in the GCR withR and then combining (using the aggre-
gate function) the deviations over these intersected regions.
The intersection withR ensures that the deviation is com-
puted only over regions contained inR. In Figure 5, suppose
the analyst is interested only in the difference betweenT1 and
T2 over the regionR: age < 30. The regions in the GCRT3
intersected withR are the three leftmost regions that satisfy
the conditionage < 30. The deviation betweenT1 andT2
w.r.t.R is: j0:0� 0:0j+ j0:0� 0:04j+ j0:1� 0:14j = 0:08.

A complementary approach is to declaratively specify a
set of “interesting” regions in terms of the structural compo-
nents of the two models and then rank the interesting regions
in the order of their deviations. In Section 5, we introduce a
set of structural operators and a ranking operator for declar-
ative specification of interesting regions and region-ranking,
respectively.



2.4 Additional Comments

A cluster-model induced by a dataset identifies a set of non-
overlapping regions. Even though the set of regions in the
structural component of acluster-model may not be exhaus-
tive, the discussion forcluster-models is a special case ofdt-
models. Due to space constraints, we do not discusscluster-
models in the rest of the paper.

Note that the derivation of the GCR of two models depends
on the class of models being considered. We formalize this
dependence in a later section. The computation of the devi-
ation requires the measures fromD1 andD2 over all the re-
gions in the GCR to be computed; therefore, both the datasets
need to be scanned once.

Suppose the deviation betweenD1 andD2 is 0:005, and
that betweenD1 andD3 is 0:01. From just the deviation val-
ues, we are able to say the data characteristics ofD1 andD2

are more similar than those ofD1 andD3. But, we still do not
know whether they have “different” data characteristics; a de-
viation of 0:01 may not be uncommon between two datasets
generated by the same process. In other words, is the devia-
tion value statistically “significant”? We answer these ques-
tions rigorously using statistical techniques in Section 3.4.

We instantiate the misclassification error metric (from Ma-
chine Learning and Statistics) and the chi-squared goodness
of fit statistic (from Statistics) from theFOCUSframework.
Both metrics only consider the class ofdt-models; thus, our
FOCUSframework which covers other classes of models as
well is more general than the current approaches in Machine
Learning and Statistics.

3 FOCUS

In this section, we describe theFOCUSframework for com-
puting deviations between the “interesting characteristics” of
two datasets.FOCUScan be applied to any class of data min-
ing models that satisfy the 2-Component and meet-semilattice
properties. In Section 4, we will prove that these proper-
ties are satisfied bylits-models, dt-models, and cluster-
models.

3.1 Preliminaries

We now introduce our notation, beginning with some standard
terms. Apartially orderedsethP ;�i consists of a non-empty
setP and a reflexive, antisymmetric, transitive binary relation
� onP . Let hP ;�i be a partially ordered set and letH � P .
An elementa 2 P is called alower boundof H if a � h for
all h 2 H . A lower bounda of H is thegreatest lower bound
of H if, for any lower boundb of H , we haveb � a. We
denote the greatest lower bound ofH by

V
H . A partially

ordered sethP ;�i is a meet-semilatticeif for all a; b 2 P ,V
fa; bg exists.
Let I = fA1; : : : ; Ang be a set of attributes. LetDi be the

domainof the attributeAi, i 2 f1; : : : ; ng.

Definition 3.1 The attribute spaceA(I) of I is the cross
product of the domains of all attributes:D1�� � ��Dn. A re-

gion
 is a subset of the attribute spaceA(I); t = ht1; : : : ; tni
is ann-tuple onI if t 2 A(I). Each region
 has a corre-
sponding predicateP
 such thatfP
(t)=true iff t 2 
g. A
datasetD is a finite set ofn-tuples.

In contrast to a region, a dataset is an enumerated set of
tuples in the attribute space. LetI = fA1; A2g with domains
[1; 10]; [1; 10] respectively.A1 � 5 andD = fh1; 1i; h2; 1ig
are examples of a region (defined by the predicate) and a
dataset respectively.

Definition 3.2 Theselectivity�(
;D) of a region
 � A(I)
w.r.t. a datasetD is the fraction of tuples inD that map into


: �(
;D)
def
= jft:t2D ^ t2
gj

jDj .

3.2 2-Component, Meet-semilattice Models

The main idea behindFOCUSis that a modelM has a struc-
tural component�M that identifies interesting regions of the
attribute space, and that each such region is summarized by
a measure (e.g., a count). If the structural component sat-
isfies some properties that allow us to “refine” two models
naturally, we have the basis for an intuitive and quantitative
deviation measure.

We already discussed the 2-component property of models
in Section 2. We now describe the meet-semilattice property,
which captures the structural relationship between models in
a class of modelsM. Figure 5 illustrates the relationship be-
tween two decision treesT1 andT3. The structure ofT3 is
“finer” than that ofT1 because we can deduceT1’s measure
component with respect to any datasetD if the measure com-
ponent ofT3 with respect toD is known. Intuitively,T3 cap-
tures information at a finer level thanT1. Similarly, among the
two sets of frequent itemsetsL1 andL3 shown in Figure 6,L3

is “finer” thanL1 because we can deduce the measure com-
ponent ofL1 from that ofL3. We capture this relationship
between the structural components of two models inM us-
ing a binary relation called therefinementrelation.

For the classes of models we consider, given two mod-
elsM1 andM2, the greatest lower bound of their structural
components�M1

;�M2
under the refinement relation always

exists; we call this thegreatest common refinement (GCR)of
�M1

and�M2
, and denote it by�V(M1;M2)

. The set of all

structural components of models inM along with the refine-
ment relation thus forms ameet-semilattice.

Definition 3.3 A class of modelsM is said to satisfy the2-
componentproperty if anyM 2 M induced by a datasetD
can be described ash�M ;�(�M ; D)i where�M = f
iM :
1 � i � lg is a set of regions inA(I) and�(�M ; D) =
f�(
iM ; D) : 
iM 2 �Mg. We use�M to denote the set of
structural components of all models inM.

Definition 3.4 Let �M1
;�M2

2 �M. We say that a set of
regionsf
j1 ; : : : ; 
jkg refinesa region
i if for any dataset
D, �(
i; D) =

Pk
i=1 �(
ji ; D). We say that�M1

refines



�M2
(denoted�M1

� �M2
) if for every region
jM2

2 �M2

there exists a set of regionsf
j1M1
; : : : ; 


jkj
M1
g � �M1

which

refine
jM2
. We call� a refinement relation.

Observation 3.1 Let M be any one of the following three
classes of models:lits-models, dt-models, cluster-models.
ThenM satisfies the 2-component property and there exists
a refinement relation� on�M such thath�M;�i is a meet-
semilattice.

This observation summarizes results in Sections 4.1 and 4.2.

3.3 Measuring Deviations

We now develop our measure of deviation between two mod-
els M1 andM2, and thereby, between the underlying two
datasets. Intuitively, the difference between the models is
quantified as the amount of work required to transform one
model into the other, which is small if the two models are
“similar” to each other, and high if they are “different.”

When the structural components are identical we can trans-
form the measure component of one model to the other by
making the measure at each region under the first model
agree with that under the second model. Let�M1

= �M2
.

Then, the amount of work for transforming�(�M1
; D1)

into �(�M2
; D2) is the aggregate of the differences between

�(
iM1
; D1) and�(
iM2

; D2), i = 1; : : : ; j�M1
j. We assume

that the difference, at a region, between the measures of the
first and the second models is given by adifference function
f (not necessarily the usual difference operator “-”), and that
the aggregate of the differences is given by anaggregate func-
tion g. We discuss these functions, which enhanceFOCUS’s
ability to instantiate deviation functions for specialized appli-
cations, in Section 3.3.2. For now, it suffices to say thatf

andg are model-independent parameters ofFOCUSwith the
signaturesf : I4+ 7! R+, andg : P(R+) 7! R+

1.
We now formally define the deviation when the structural

components of the two models are identical.

Definition 3.5 Let f be a difference function,g an aggre-
gate function, andM1;M2 2 M be two models induced by
the datasetsD1; D2 respectively, such that�M1

= �M2
=

f
1; : : : ; 
lg. For j 2 f1; 2g, let �iDj
= �(
i; Dj) � jDj j de-

note the absolute number of tuples inDj that are mapped into

iMj

2 �Mj
. The deviation betweenM1 andM2 is defined as

follows:

�1(f;g)(M1;M2)
def
=g(ff(�1D1

; �1D2
; jD1j; jD2j);

: : : ; f(�lD1
; �lD2

; jD1j; jD2j)g)

In general, two models induced from different datasets
have significantly different structural components. Therefore
we first have to reconcile the differences in the structural com-
ponents of two models to make them comparable. To do this,
we rely on the meet-semilattice property exhibited by many

1I+ andR+ denote the sets of non-negative integers and non-negative real numbers
respectively.

classes of data mining models (see Observation 3.1). The
idea is to “extend” both models to the GCR of their structural
components, and then compare the extensions. Intuitively, to
extend a modelM to�M 0 (� �M ) we find the measure com-
ponent�(�M 0 ; D) for �M 0 using the datasetD, i.e., we find
the selectivity of each region in�M 0 w.r.t.D.

Definition 3.6 LetM1;M2 2 M be two models induced by
D1; D2 respectively. We define the deviation�(f;g)(M1;M2)

betweenM1 andM2 as follows:�(f;g)(M1;M2)
def
=

�1(f;g)(h�
V

(M1;M2)
;�(�V(M1;M2)

; D1)i;

h�V(M1;M2)
;�(�V(M1;M2)

; D2)i)

Usually, we dropf andg because they are clear from the
context.

For certain choices off and g (identified in Sec-
tions 4.1 and 4.2), using the GCR gives the least value for
� over all common refinements. This property of the least
deviation then corresponds to the least-work transformation
between the two models.
Summarizing, the instantiation ofFOCUSrequires:

1. A refinement relation�.

2. A difference functionf and an aggregate functiong.

3.3.1 Computational Requirements for �

The computation of�(M1;M2) requires the selectivities of all
regions in�V(M1;M2)

to be computed w.r.t. both the datasets

D1 andD2. For the three classes of data mining models we
consider, this requiresD1 andD2 to be scanned once.

3.3.2 Di�erence and Aggregate Functions

In this section, we motivate the use of parametersf andg in
theFOCUSframework. We then present two example instan-
tiations each forf andg.

We first considerf . Let L1 and L2 be two lits-
models induced byD1 andD2. Without loss of general-
ity, let us assume thatL1 andL2 have identical structural
components�. (Otherwise, we can extend them to their
GCR.) Consider two itemsetsX1 andX2 in �. Suppose
�(
X1

L1
; D1) = 0:5; �(
X1

L2
; D2) = 0:55, and�(
X2

L1
; D1) =

0:0; �(
X2

L2
; D2) = 0:05. So,X1 varies between a “signifi-

cant” 50% and a “more significant” 55% whereasX2 varies
between a “non-existent” 0% and a “noticeable” 5%. For
some applications, the variation inX2 is more significant than
that in X1 because noticing an itemset for the first time is
more important than a slight increase in an already signif-
icant itemset. For some other applications which just con-
centrate on the absolute changes in support, the variations in
X1 andX2 are equally important. To allow both cases, our
first instantiationfa finds the absolute difference between the



supports, while the second instantiationfs “scales.” We now
define the two instantiations.2

Definition 3.7 Let �1; �2; N1; N2 2 I+ such that�1 < N1

and�2 < N2. Theabsolute difference functionand thescaled
difference functionare defined as follows:

fa(�1; �2; N1; N2)
def
= j

�1

N1
�

�2

N2
j

fs(�1; �2; N1; N2)
def
=

(
j
�1
N1
�
�2
N2
j

(
�1
N1

+
�2
N2

)=2
; if (�1 + �2) > 0

0; otherwise

The aggregate functiong takes as input a set of values.
The two most commonly used aggregate functions aresum
andmax. Since the instantiations off andg are independent
of each other, these example instantiations generate four dif-
ferent instantiations of�.

3.4 The Quali�cation Procedure

Is the deviation sufficiently large that it is unlikely that the
two datasets are generated by the same generating process?
The availability of a quantitative deviation measure makes it
possible to answer such questions rigorously. If we assume
that the distributionF of deviation values under the hypoth-
esis that the two datasets are generated by the same process
is known, we can use standard statistical tests to compute the
significancesig(d) of the deviationd between two datasets.
We usebootstrappingtechniques from Statistics [14] to com-
puteF . We omit the details due to space constraints. (See the
full paper for details of the bootstrapping procedure and the
statistical tests [18].)

4 Instantiations

In this section, we instantiate theFOCUSframework forlits-
models, dt-models, andcluster-models. Wherever possi-
ble, we analyze the properties of the instantiated deviation
functions.

4.1 lits-models

We first show that the class oflits-models exhibits the meet-
semilattice property. Next, we analyze the deviation functions
and discuss interesting characteristics that arise due to the use
of the GCR. We then derive an upper bound for the deviation
functions�(fa;g) whereg 2 fgsum; gmaxg.

The refinement relation between the structural components
of two sets of frequent itemsets is defined by thesupersetre-
lation. Let�M1

= Lms

D1
and�M2

= Lms

D2
be two sets of

frequent itemsets3. Formally,�M1
�L�M2

if Lms

D1
� Lms

D2
.

2The signaturef : R+ �R+ 7! R+ for f where the two arguments correspond
to the selectivities of a region w.r.t. both datasets suffices for most purposes. However,
some functions require absolute measures. We give one such example in Section 5.2.2.
Therefore, we use absolute measures.

3Lms
D1

is the set of itemsets inD1 with support greater thanms.

The powerset of a set of objects (here,I) along with the su-
perset relation forms a meet-semilattice [22]. (In fact, it forms
a lattice.)

Proposition 4.1 The class oflits-models M on the set of
itemsI exhibits the 2-component property andh�M;�Li is
a meet-semilattice.

Once again, consider the example in Figure 6.L3 is the
GCR ofL1 andL2. The supports fromD1 andD2 for each
itemset in the GCR are shown below it.�(fa;gsum)(L1; L2) =
0:4+0:1+0:4+0:2+0:15 = 1:125, and�(fa;gmax)(L1; L2) =
0:4.

We now show that using the GCR of two models rather
than any common refinement gives the least deviation.

Theorem 4.1 Let f 2 ffa; fsg andg 2 fgsum; gmaxg. Let
�M be a common refinement of�M1

and�M2
. Then,

�(M1;M2) � �1(f;g)(h�M ;�(�M ; D1)i; h�M ;�(�M ; D2)i)

4.1.1 Upper Bound �� for �

In an exploratory, interactive environment where� is repeat-
edly computed, we can typically work with just estimates of
the actual answers, but require fast responses. For the case
where the difference function isfa, we now derive an up-
per bound�� of � that can be computed fast using just the
two models (which will probably fit in main memory, unlike
the datasets). Using the upper bound�� instead of� is safe;
we will not ignore significant deviations.�� also satisfies the
triangle inequality, and can therefore be used to embed a col-
lection of datasets in ak-dimensional space for visually com-
paring their relative differences.

Definition 4.1 Let M be the class oflits-models and
M1;M2 2 M be two models at minimum support level
ms induced byD1 and D2. Let �1; �2 2 I+. Let
f�(�1; �2; jD1j; jD2j)

def
=

8><
>:

fa(�1; �2; jD1j; jD2j); if �1
jD1j

; �2
jD2j

> ms

fa(�1; 0; jD1j; jD2j); if �1
jD1j

> ms and �2
jD2j

< ms

fa(0; �2; jD1j; jD2j); if �1
jD1j

< ms and �2
jD2j

> ms

We define��(g)(M1;M2)
def
= �(f�;g)(M1;M2).

Theorem 4.2 Let M1;M2 2 M be two models induced by
D1; D2 and letg 2 fgsum; gmaxg. Then the following prop-
erties hold:

(1) ��(g)(M1;M2) � �(fa;g)(M1;M2)

(2) ��(g) satisfies the triangle inequality.
(3) ��(g) can be computed without scanningD1 orD2.



4.2 dt-models

For the rest of the section, letM1;M2 2 M be two dt-
models induced byD1; D2 respectively, andP
 denote the
predicate identifying a region
.

Definition 4.2
�M1

�T�M2
if, 8
iM2

2 �M2
; 9 f
i1M1

; : : : ; 

iji
M1
g � �M1

:
f(P



i1
M1

_ � � � _ P


iji
M

) iff P
i
M2

g.

Intuitively, the GCR of the structural components of two
dt-models is the finer partition ofA(I) obtained by overlay-
ing the two structural components�M1

and�M2
. The corre-

sponding set of predicates is obtained by “anding” all possi-
ble pairs of predicates from both the structural components.
For example, Figure 5 illustrates the finer partition formed
by overlaying the partitions of the modelsT1 andT2. For the
sake of clarity, we show the measures only for regions of class
labelC1 in the GCR. (An identical structure exists for the sec-
ond class label.) Formally, the GCR�V(M1;M2)

of �M1
and

�M2
is:

f
 : 
 is identified byP
1 ^P
2 3 
1 2 �M1
^ 
2 2 �M2

g

Proposition 4.2 Let M be the class ofdt-models with re-
finement relation�T . ThenM exhibits the 2-component
property andh�M;�T i is a meet-semilattice.

Once again, we consider the example in Figure 5.T3’s
structural component is the GCR of the structural compo-
nents ofT1 andT2. For the sake of clarity, only the mea-
sures of classC1 from bothD1 andD2 are shown inT3.
�(fa;gsum)(T1; T2) over regions corresponding to classC1 is:
j0:1 � 0:14j + j0:0 � 0:04j + j0 � 0j + j0 � 0j + j0 � 0j +
j0:005� 0:1j = 0:175.

The following theorem shows that using the greatest com-
mon refinement, rather than any common refinement, gives
the least deviation value for the caseg = gsum.

Theorem 4.3 Let �M be a common refinement of�M1

and �M2
. Let g = gsum, and f 2 ffa; fsg. Then,

�(f;gsum)(M1;M2) �
�1(f;g)(h�M ;�(�M ; D1)i; h�M ;�(�M ; D2)i)

Observe that this theorem is less general than Theorem 4.1
for lits-models. (For a counter example to see that the above
lemma is not valid forg = gmax, see the full paper [18].)

5 Focussed Deviations

In this section, we illustrate the power of theFOCUSframe-
work by applying it to two different scenarios:exploratory
analysisandchange monitoring. The objective in the first set-
ting is to interactively explore and understand the differences
between two datasets, similar to the drill-down and roll-up
strategies in OLAP databases [12] and thead hoc miningap-
proach emphasized in [26, 30]. The objective in the second

setting is to check how well a model built from an old dataset
fits a new dataset.

For both application scenarios, a very useful property of
FOCUSis that we can compute deviations w.r.t. a specific re-
gion 
 � A(I). Each region in the structural component
�M = f
iM ; i = 1; : : : ; j�M jg of the modelM can be inde-
pendently focussed w.r.t.
 by taking its intersection with
.
The measure w.r.t. a datasetD for each region
iM focussed
w.r.t. 
 is �(
 \ 
iM ; D).

Definition 5.1 Let M 2 M be a model induced by the
datasetD and
 � A(I) be a region, called thefocussing
region. Then thefocusof M w.r.t. 
 is defined as:

M
 def
= h�
M ;�(�
M ; D)i

where�
M = f
 \ 
iM : 
iM 2 �Mg. We useM
 and�
M to
denote the sets of all models inM and structural components
in �M focussed w.r.t.
.

The following theorem shows that all the theory developed
for the class of modelsM can be applied toM
 as well.

Theorem 5.1 LetM be one of the following three classes of
models: lits-models, dt-models, andcluster-models. Let
� be a refinement relation such thath�M;�i forms a meet-
semilattice. Let
 � A(I) be the focussing region. Then
h�
M;�i is a meet-semilattice.

Definition 5.2 Let f be a difference function,g an aggregate
function, andM1;M2 be two models induced byD1; D2, re-
spectively. The deviation�
(f;g)(M1;M2) betweenM1 and
M2 focussed w.r.t. a region
 � A(I) is defined as:

�


(f;g)(M1;M2)

def
= �(f;g)(M1


 ;M2

)

We emphasize that the deviation function may not be
monotonic, i.e., if
 � 
0 then the deviation over
 may not be
less than that over
0. For example, ifM1;M2 are two models
constructed fromD1; D2 respectively andg 2 fgsum; gmaxg

then
 � 
0 ) �


(fa;g)

(M1;M2) � �

0

(fa;g)
(M1;M2). How-

ever, the same is not true for�(fs;g)(M1;M2).
The ability to compute region-specific deviations is en-

hanced by adding operators to manipulate sets of regions. We
now introduce a small collection of such operators, divided
into two groups:structuralandrankoperators.

1. Structural Union ( t): The structural union of
two sets of regions�1 and �2 is given by their
GCR

V
(�1;�2).

2. Structural Intersection ( u): The structural
intersection of�1 and�2 is the set of regions� such that
each region in� is a member of both�1 and�2. This is
identical to the standard intersection operation on sets.



3. Structural Difference 	: The structural dif-
ference of�1 and�2 is (�1 t �2)� (�1 u �2).

4. Predicate p: The predicate region is a subset of the
attribute space identified byp.

Given a set of regions, the rank operator orders them by
the “interestingness” of change between the two datasets. The
interestingness of a region is captured by a deviation function.

� Rank: Given a set of regions�, two datasetsD1; D2,
and a deviation function�(f;g), the rank operator

�(�; �(f;g); D1; D2)
4 returns as output a list~� of regions

in the decreasing order of interestingness.

� Select: Given the output of the rank operator, the se-
lection operator selects a subset of the output. For exam-
ple, top-region , top-n regions , min-region ,
andbottom-n regions are common selections; we
denote these selections by�top, �n, �min, and��n re-
spectively.

5.1 Exploratory Analysis

The objective in exploratory analysis is to find a set of in-
teresting regions in terms of the differences between the two
datasets. Consider the decision treesT1 andT2 constructed
fromD1 andD2 shown in Figure 5. Suppose that deviations
above0:05 are considered significant.D1 andD2 differ con-
siderably in the shaded regions(1) and(2) . If f = fa then
these regions have a deviation (w.r.t. classC1) of 0:08 and
0:095 respectively. Note that region(1) is a leaf node ofT1
but region(2) is a sub-region of a leaf node inT2. More-
over, the sub-regions of(1) in T3 do not cause significant
differences betweenD1 andD2. Therefore, we have to find
regions that are significantly different at all levels of the tree
in addition to the regions ofT3. The following expressions
find the regions(1) and(2) respectively:

�top(�(�T1[�T2 ; �(fa;gsum))); �top(�(�T1t�T2 ; �(fa;gsum)))

Next, consider an example in the frequent itemset domain.
The shoes and clothes departments in the Walmart super mar-
ket sell sets of itemsI1 andI2 respectively. SupposeD1 and
D2 are datasets collected at two different outlets. An analyst
compares the top-10 itemsets in each department to see if the
popular itemsets are similar across the two departments. Let
L1 andL2 be the sets of frequent itemsets computed fromD1

andD2 respectively. Letf andg be chosen appropriately.
The following expressions return the top-10 lists from each
department, and the combined top-20:
�(�10(�(P(I1) \ (�L1 t �L2)); �) [

�10(�(P(I2) \ (�L1 t �L2))); �)
�20(�(P(I1) [ P(I2)) \ (�L1 t �L2); �)

4SinceD1 andD2 are usually clear from the context, we omit them from the
notation.

5.2 Monitoring Change

The objective in this setting is to know how well the model
constructed from the old dataset fits the new dataset. There-
fore, the structural component for the model on the new
dataset is expected to be that of the old dataset, and the ques-
tion can be cast as “By how much does the old model misrep-
resent the new data?” For decision trees, the misclassification
error is widely used for this purpose; as we show, the chi-
squared metric can also be adapted (using bootstrapping) to
address this question. We show that these two traditional mea-
sures can be captured as special cases of theFOCUSframe-
work by appropriate choices off andg. Thus,FOCUSgen-
eralizes change monitoring in two ways: (1) to models other
than decision trees, and (2) to change monitoring over specific
regions.

5.2.1 Misclassi�cation Error

Let T = h�T ;�(�T ; D1)i be adt-model constructed on the
datasetD1, and letD2 be an independent dataset. For each
tuple t 2 D2, let C 0 = T (t) be the class label predicted by
T for t. If the true classC of t is different fromC 0 then t
is said to bemisclassifiedby T . The misclassification error
MET (D2) of T w.r.t. D2 is the fraction of the number of
tuples inD2 misclassified byT .

MET (D2)
def
=
jft 2 D2 andT misclassifiestgj

jD2j

We define thepredicted datasetDT
2 ofD2 w.r.t.T to be the

set of tuples formed by replacing the class label of each tuple
t 2 D2 with T ’s prediction fort. Denoting the replacement
of the class label of a tuplet with c by tjc,

DT
2

def
= ft0 : t0 = tjT (t); t 2 D2g

The following theorem shows thatMET (D2) is the devi-
ation betweenD2 andDT

2 at�T .

Theorem 5.2 Let T be adt-model induced byD1. Let D2

be another dataset. ThenMET (D2)=

1

2
�(fa;gsum)(h�T ;�(�T ; D2)i; h�T ;�(�T ; D

T
2 )i)

5.2.2 Chi-squared Goodness of Fit Statistic

The computation of the chi-squared statisticX2 assumes that
the entire space is partitioned into cells each of which is as-
sociated with “expected” and “observed” measures. (See [13]
for details.) To apply the chi-squared test todt-models, we
use the regions associated with a decision treeT as the cells
since these regions partition the entire attribute space. The ex-
pected and observed measures are:E(
i; D2) = �(
i; D1) �
jD2j; O(
i; D2) = �(
i; D2) � jD2j. The statisticX2 can now
be computed in a straightforward way except for two prob-
lems:



Sample Fraction 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Significance 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 -

Table 1:lits-models:% significance of increase in representativeness with sample size fromsi to si+1
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Figure 7: SD vs SF Figure 8: SD vs SF Figure 9: SD vs SF

(1) For the chi-squared statistic to be well-defined,E(
i; D2)
should not be zero. We follow the standard practice in Statis-
tics and add a small constantc > 0 (0.5 is a common choice)
to ensure this [13].
(2) At least80% of the expected counts must be greater than 5
in order to use the standardX2 tables. In a decision tree, this
condition is often violated. For example, if all tuples in node
n are of classi, the expected measures for regions
nj ; j 6= i

will be zero. The solution to this problem is to use an exact
calculation for the probability distribution of theX2 statis-
tic under the null hypothesis, i.e., distribution ofX2 values
when the new dataset fits the old model [13]. The procedure
(see Section 3.4) to estimate the exact distribution using the
bootstrapping technique can be used to perform the test.

It is easy to show that chi-squared statistic, adapted as de-
scribed above, can be instantiated fromFOCUS.

Proposition 5.1 Let T be the decision tree induced byD1,
and letD2 be another dataset. Letc be a (small) constant.
Then the chi-squared statisticX2 is given by:

X2 = �(f;gsum)(hT;�(T;D1)i; hT;�(T;D2)i) where

f(v1; v2; jD1j; jD2j) =

8<
:

jD2j(
v1

jD1j
�

v2
jD2j

)2

v1
jD1j

, if v1 > 0

c; otherwise

6 E�ect of Sample Size

In this section, we address the following question.While con-
structing a model using a random sample of the dataset, do
bigger sample sizes necessarily yield better models?We ap-
ply FOCUSto quantify the notion of “representativeness” of
a random sample in inducing the “true” model induced by the
entire dataset.

The intuition behind our approach is as follows. The de-
viation obtained from an instantiation ofFOCUSquantifies
the difference between the models induced by two datasets.

If one of the datasets is a sample randomly drawn from the
other, the deviation between the models they induce is then a
measure of therepresentativenessof the sample in inducing
the true model.

LetM be the model induced byD, andMS the model in-
duced by a random sampleS drawn fromD. We define the
sample deviation (SD)of S to be�(M;MS). The smaller the
SD of S, the more representativeS is of D. This definition
gives us a handle to study the influence of the size of the sam-
ple on its representativeness.

Using the SD, we now address two questions. Does in-
creasing the size of the sample decrease its SD? If so, by how
much? If the answer to the first question is affirmative, then
the SDs of two sample sizes can be compared to answer the
second question; in Sections 6.1.1 and 6.1.2, we carry out this
comparison for a wide variety of datasets and models. If the
answer to the first question is negative, then the second ques-
tion is irrelevant. We now describe a procedure that returns
the statisticalsignificanceof the decrease in SD due to an in-
crease in the sample size. The significance is the percentage
confidence100(1� �)% with which the null hypothesis that
the two sample sizes are equally representative is rejected.

The basic intuition behind the procedure is as follows.
Consider two sets of random samples where the first setS1
contains samples of sizesi+1, and the second setS2 contains
samples of sizesi (< si+1). If the SD measures for sizesi+1

is smaller than that ofsi (< si+1) then we expect a large num-
ber of SD values forS1 to be smaller than those forS2. We
use the Wilcoxon two-sample test to check the significance of
this hypothesis [7]. (We omit the details due to space con-
straints. See the full paper for details [18].)

6.1 Empirical Study

In this section, we present an empirical study of the repre-
sentativeness of a sample versus its size forlits-models and
dt-models.



Sample Fraction 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Significance 99.99 99.99 99.99 99.97 99.69 79 99.22 99.93 95.25 -

Table 2:dt-models:% significance of decrease in sample deviation with sample fraction fromsi to si+1
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6.1.1 lits-models

We used the synthetic data generator from the IBM Quest
Data Mining group5. We useNM.tlL.jIjI.Nppats.pplen to
refer to a dataset withN million transactions, average trans-
action lengthtl, jIj thousand items,Np thousand patterns,
and average pattern lengthp. We used the Apriori algorithm
[5] to compute the set of frequent itemsets from a dataset.

We studied all four combinations off andg. Due to space
constraints, we only present the results of�(fa;gsum). (The
remaining plots are given in the full paper [18].) We var-
ied two parameters: the size of the dataset and the minimum
support level. The datasets used for this study have three dif-
ferent sizes: 1 million, 0.75 million, and 0.5 million trans-
actions. All other parameters to the data generator are set
as follows: jIj = 1000; tl = 20; Np = 4000; p = 4. Fig-
ures 7, 8, and 9 show the sample deviation (SD) versus the
sample fraction (SF) values. We draw the following conclu-
sions. (1) As the minimum support level decreases, the size
of the sample required to achieve a certain level of represen-
tativeness increases. This is to be expected because the lower
the minimum support level the more difficult it is to estimate
the model. (2) For a given SF value, the representativeness of
samples of a fixed size increases with the dataset size. Again,
this is as expected.

Table 1 shows the significance of the decrease in SD
for the dataset1M.20L.1I.4pats.4plen as we increase
the sample size. We measured the significance using the
Wilcoxon test on sets of 50 sample deviation values for each
size. We conclude that the representativeness of samples in-
creases with the size of the sample. However, from Fig-
ures 7, 8, and 9 we see that the decrease in SD is not high
when the sizes of the sample relative to the dataset size (SF)
are larger than 30%.

5Available from http://www.almaden.ibm.com/cs/quest/syndata.html.

6.1.2 dt-models

We use the synthetic generator introduced in [2]. It has sev-
eral classification functions to generate datasets with different
characteristics. We selected four functions (Functions F1, F2,
F3, and F4) for our performance study. We useNM.Fnum to
denote a dataset withN million tuples generated using clas-
sification functionnum. We used a scalable version of the
widely studied CART [8] algorithm implemented in the Rain-
Forest framework [20] to construct decision tree models. We
used�(fa;gsum) to compute the deviation between two mod-
els.

Table 2 shows the significance of the decrease in sample
deviations for the dataset1M.F1 as the sample size is in-
creased. The significance is measured using the Wilcoxon
test on sets of 50 sample deviation values for each sample
size. The decrease in sample deviation values is quite signifi-
cant even at SF=70%.

Figures 10, 11, and 12 show the plots for different classifi-
cation functions (F1, F2, F3, and F4) in the IBM data genera-
tor and for varying dataset sizes.

6.1.3 Conclusions from this study

For both classes of models, based on the significance values
from the Wilcoxon tests, we conclude that it is better to use
larger samples because the decrease in sample deviations is
statistically significant even for sample sizes as large as 70-
80%. On the other hand, the SD versus SF plots suggest that
the rate of additional information obtained decreases with in-
creasing sample size, and for many applications, it may be
sufficient to take a sample of size 20-30% of the original
dataset.

7 Experimental Evaluation

In this section, we evaluate the deviation computation and
significance detection algorithms in two parts: first forlits-



Dataset � % sig(�) �� Time for � Time for ��

D(1) 0.0913 1 0.0913 0 0.01
D(2) 3.2198 99 3.6893 46.27 0.01
D(3) 6.0957 99 6.60874 46.16 0.01
D(4) 6.0096 99 6.4435 44.19 0.01
D + �(5) 0.1511 2 0.1610 17.37 0.0
D + �(6) 0.2760 99 0.3645 19.53 0.01
D + �(7) 0.2784 99 0.3668 18.86 0.0

Figure 13: Deviation with D: 1M.20L.1I.4pats.4plen

ID � % sig(�)
D(1) 0.0022 10
D(2) 1.2068 99
D(3) 0.8146 99
D(4) 1.4819 99
D + �(5) 0.0569 99
D + �(6) 0.03722 99
D + �(7) 0.0689 99

Figure 14: Deviation with D: 1M.F1

models and then fordt-models. The datasets we used for
this study are also generated from the IBM data generators
described in Section 6.1, and the naming conventions are the
same as in Section 6.1.

7.1 Set of Frequent Itemsets

In this section, through controlled experiments on synthetic
datasets, we first evaluate the procedure for detecting signifi-
cant deviations. We then evaluate the quality and speed of the
upper bound of the deviation function��.

Let D=1M.20L.1I.4pats.4plen . We compute de-
viations betweenD and a variety of datasets. All datasets
D(1) �D(7) are generated with an average transaction length
20, and 1000 items;D(1) consists of 500K transactions,
D(2) � D(4) consist of a million transactions each, and
�(5) � �(7) consist of 50K transactions each. The number
of patterns and the average pattern length for each dataset
is as follows. D(1): (4K,4); D(2); �(5): (6K,4); D(3); �(6):
(4K,5); D(4); �(7): (5K,5). In each case, we set the mini-
mum support level to 1% to compute the set of frequent item-
sets from both datasets. Figure 13 shows the deviation val-
ues and their significance. The deviation value�(fa;gsum) and
its significance in row(1) reflect the fact thatD(1) has the
same distribution as that ofD. As expected,D(2); D(3); D(4)

differ significantly fromD. Moreover, the deviation values
suggest that the parameterpatlen has a large influence on
data characteristics. The addition of�(5) and�(6) toD (rows
(6),(7) ) cause significant deviations because they differ in
the patlen parameter whereas the addition of�(7) which
differs only in the parameterpats does not cause a signifi-
cant deviation (row(5) ).

The last three columns in Figure 13 show that�� delivers
a good estimate instantaneously. The equality of the times in
the row(1) is due to the fact thatD andD(1) have identi-
cal distributions. Therefore, the sets of frequent itemsets were
identical; so all the measures necessary to compute the devi-
ation are obtained directly from the models.

7.2 Decision Tree Classi�ers

We evaluate the significance detection procedure (see Sec-
tion 3.4) fordt-models using the same experimental frame-
work as in Section 6.1.2. In this experiment, we com-
pute the deviations using�(fa;gsum) and their significance
values betweenD=1M.F1 and a variety of datasets. The
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datasets for the first four rows are generated using the func-
tions F1, F2, F3, and F4 respectively. The datasets used
for the last three rows are obtained by extendingD with a
new block of 50000 tuples generated usingF2; F3; andF4.
D(1)=0.5M.F1, D(2)=1M.F2, D(3)=1M.F3, D(4)=1M.F4,
D(5)=D+�(5)=D + 0.05M.F2,D(6)=D+�(6)=D + 0.05M.F3,
andD(7)=D+�(7)=D + 0.05M.F4.

The significance of the deviation forD(1) in row (1) is
low because it has the same distribution as that ofD. The
significance of deviations in rows(2),(3),(4) are high,
as expected. From rows(5),(6),(7) , we see that even
the addition of new blocks of size 50K toD causes significant
deviations.

In Figure 15, we plot the misclassification error (ME) for
the tree constructed fromD w.r.t. a second dataset (chosen
from �(5)-�(7) andD(2)�D(4)) against the deviation between
the two datasets. We see that they exhibit a strong positive
correlation.

8 Related and Future Work

A lot of research on clustering concentrated on detecting “out-
liers” within the dataset as noise and devised special strategies
to handle them [15, 23, 29, 35, 38]. In contrast to the work on
clustering, [6, 25, 27] concentrated primarily on discovering
outliers in a dataset.

Interestingness measures to monitor variation in a single
pattern were proposed in [36]. A similar problem of moni-
toring the support of an individual itemset was addressed in
[4, 10]. Given a pattern (or itemset) their algorithms propose
to track its variation over a temporally ordered set of transac-
tions. However, they do not detect variations at levels higher
than that of a single pattern.

In future work, we intend to apply our framework to ap-
proximate query answering.
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