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Abstract 

Semistructured data occur in situations where information The growing need to integrate data from heterogeneous 
lacks a homogeneous structure and is incomplete. Yet, up to sources and to access data sources with irregular or incom- 
now the incompleteness of information has not been reflected plete contents is the main motivation for research into semi- 
by special features of query languages for semistructured structured data models and query languages for them. Semi- 
data. Our goal is to investigate the principles of queries that structured data do not comply with a strict schema and 
allow for incomplete answers. We do not present, however, are inherently incomplete. Query languages for such data 
a concrete query language. should ,reflect these characteristics. 

Queries over classical structured data models contain 
a number of variables and conditions on these variables. 
An answer is a binding of the variables by elements of the 
database such that the conditions are satisfied. In the pres- 
ent paper, we loosen this concept in so far as we allow also 
answers that are partial, that is, not all variables in the 
query are bound by such an answer. 

Partial answers make it necessary to refine the model of 
query evaluation. The first modification relates to the satis- 
faction of conditions: under some circumstances we consider 
conditions involving unbound variables as satisfied. Second, 
in order to prevent a proliferation of answers, we only ac- 
cept answers that are maximal in the sense that there are no 
assignments that bind more variables and satisfy the condi- 
tions of the query. 

Semistructured data models have been intensively stud- 
ied recently [Abi97, Bun97]. They originated with work on 
heterogeneous dataintegration [QRSS94, PGMW95, RU96]. 
Several models for representing semistructured data have 
been proposed together with query languages for those mod- 
els such as Lore1 [AQMt97, MAGS97, QWGt96] and UnQL 
[BDHS96]. Further topics of research have been the design 
of schemas for semistructured data [BDFS97] and the ex- 
traction of schemas from the data [GW97, NAM98]. 

Our model of query evaluation consists of two phases, a 
search phase and a filter phase. Semistructured databases 
are essentially labeled directed graphs. In the search phase, 
we use a query graph containing variables to match a maxi- 
mal portion of the database graph. We investigate three dif- 
ferent semantics for query graphs, which give rise to three 
variants of matching. For each variant, we provide algo- 
rithms and complexity results. 

A particular motivation for this research has been to al- 
low one to access heterogeneous sources on the World Wide 
Web in an integrated fashion by providing a view of the web 
as a semistructured database [AV97a, KMSS98]. For the 
purpose of querying the World Wide Web several query lan- 
guages and Web site management tools have been proposed, 
such as WSQL [KS95, KS97], WebSQL [MMM97], Strudel 
[FFK+98], Araneus [MAM+98], and others [LSS96, AM98j. 
The growing use of the Web emphasizes the need of query- 
ing semistructured data and retrieving partial answers when 
complete answers are not found. 

In the filter phase, the maximal matchings resulting from 
the search phase are subjected to constraints, which may be 
weals or strong. Strong constraints require all their variables 
to be bound, while weak constraints do not. We describe a 
polynomial algorithm for evaluating a special type of queries 
with filter constraints and assess the complexity of evaluat- 
ing other queries for several kinds of constraints. 

We define a simple data model that is similar to OEM 
[PGMW95, AQM+97], where databases are labeled directed 
graphs. A node represents an object, a label an attribute, 
and a labeled edge links a node to another one if the second 
node is an attribute filler for the first node. Our queries, 
too, are defined by graphs, which are to be matched by the 
database. The idea to base a query language on graphs 
appeared already in [CMW82]. In this paper we apply it to 
semistructured data. 

In the final part, we investigate the containment problem 
for queries consisting only of search constraints under the 
different semantics. 
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In an abstract view, database queries consist of a set 
of variables and constraints on the variables. A solution 
to a query is a binding of the variables to objects in the 
database such that the constraints are satisfied. In order 
to be able to accept as solutions also assignments that do 
not bind all variables, we refine the structure of a query. 
We divide the constraints into search constraints and filter 
constraints. The search constraints form a labeled directed 
graph whose nodes are variables: they are a pattern that has 
to be matched by some part of the database. We are only 
interested in maximal matchings, because they contain max- 
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imal information. The maximal ma.tchings are then filtered: 
those that satisfy the filter constraints are called solutions. 
We distinguish between strong and meak filter constraints. 
A strong constraint is satisfied by an assignment if all vari- 
ables of the constraint are bound *and their values comply 
with the constraint, while a weak constraint is already sat- 
isfied if one of its variables is not bound by the assignment. 
Hence, it is important that only maximal matchings are fil- 
tered, since this enhances the applicability of the weak con- 
straints. Finally, solutions are restricted to a subset of their 
variables, the output variables. Those restrictions are called 
arasruers. ‘The roles of the different components of a query in 
our modeI can be illustrated by setting up an analogy with 
SQL-queries. The FROM-clause is the analogue of the search 
constraints, the WHEliE-clause the analogue of the filter con- 
straints, while the SELECT-clause specifies the output vari- 
ables. Thus, with its search and filter constraints, a query is 
conceptually evaluated in two phases: the first being struc- 
tural matching for the retrieval, and the second filtering. 
Query evaluation in this model is therefore non-monotonic: 
the fuller an assignment, the more filter constraints it has 
to satisfy. 

We introduce different semantics for search constraints 
and investigate query evaluation under them. Our queries 
are essentially conjunctive queries. There is no explicit dis- 
junction or negation, although some semantics give queries 
a disjunctive flavor. Our language is also restricted in that 
constraints on edges are only labels and not regular expres- 
sions, as in Lore1 [AQMS97] and other query languages for 
semistructured data. The generalization to regular path ex- 
pressions as edge constraints will be a topic for further re- 
search. 

In this paper, we first define databases and queries in 
our model. We exam.ine different semantics for the search 
phase of query answering, give algorithms for computing the 
maximal matchings of a query over a database with respect 
to those semantics, and study the evaluation of titer con- 
straints. As a basis for query optimization, we give criteria 
for checking equivalence and containment of queries under 
the various semantics. 

2 Data Model 

Our data model is a simplified version of the Object Ex- 
change Model (OEM) of [PGMW95, AQM+97]. Both data 
and queries are represented by labeled directed graphs. The 
nodes in a database graph are either complex or atomic. 
Complex nodes have outgoing edges, while atomic nodes do 
not. Atomic nodes have values. In each database there is 
one distinguished complex node, the root. It is the entry 
point for browsing and querying the database. Therefore, 
every node in the database must be reachable from it. 

We assume that there is an infinite set A of atoms and 
an infinite set L of labels. Atoms can be of type integer, 
real, string, gifi etc. Each type comes with a set of decid- 
able relations on the elements of the types, like comparisons 
on numbers and strings. For simplicity of exposition, we 
assume here that there is just a single type. 

We give formal definitions and introduce the necessary 
notation. A labeled directed graph or ldg over a set of nodes 
N is a pair G = (N, .G), where .G associates with each 
label I E 1: a binary relation 1 G E N x N between the 
nodes. We will often v:iew a binary relation lG as a function 
lG: N + 2*“. Note that in a labeled directed graph there 
can be two nodes u and v such that in the graph there are 
two distinct edges from u to u labeled with different labels. 

The skeleton of G is the union of the binary relations in 
G. Under the view of relations as functions, the skeleton is 
defined as the function UG: N + 2N satisfying 

uG(n) = {n’ E N ( n’ E lG(n) for some 1 E L}. 

The skeleton can be seen as the ldg where we ignore the 
labeling. 

A labeled directed graph G over N is rooted if there is a 
designated node rG E N, the root, such that every node in 
N is reachable from rG in UG. We denote a rooted ldg G as 
a triple G = (N,v-G,.~). A node n in G is a terminal nod’? 
if oG(n) = 8, and an inner node otherwise. We say that G 
is finitely branching if us is finite for every node n. 
A database consists of 

1. a rooted finitely branching ldg (0, TD, .D) over a set of 
objects 0, and 

2. a function (Y that maps each terminal node to an atom. 

We denote a database as a 4tuple D = (0, RC, .D, cr). 
The graph in Figure 1 depicts a database containing infor- 
mation about university departments, courses and staff at, 
the Hebrew University. The nodes are the database objects. 
and edges are annotated with their labels. We will use thr! 
example database of Figure 1 later on in our examples. 

Generally, databases may be infinite. However, since 
they are finitely branching, there is only a finite number 
of nodes that can be reached from the root in a given num- 
ber of steps. In particular, for queries without regular ]Fath 
expressions, a database has to be explored only up to a fmlte 
depth when answering the query, and therefore only a filnite 
portion is relevant. 

3 Overview of the Query Language 

This section we formally define an abstract syntax of queries 
and define their semantics. The definitions will be illustrated 
by example queries over the university database. 

We assume that there is an infinite set of variables. A 
query is a triple Q = (G, F, z), where 

G = (V, rG, .“) is a labeled directed graph, called the 
query graph, whose nodes are variables; 

F is a set of filter constraints, whose syntax will. be 
precisely defined later on; and 

zz is a tuple of variables occuring in V. 

Search Constraints and Matchings 

Let G = (V, rG, .G) be a query graph. We can view G also 
as a set of constraints Cons(G) over V. There is a :root 
constraint, singling out the root node, and for each pair of 
variables u, V, such that v 6 ZG(u), there is an edge con- 
straint ulv. Conversely, a set S of edge constraints over 
V determines an ldg over V. If wo E V is singled out by 
the root constraint, then S determines a rooted ldg if ev- 
ery element of V is reachable from vo by a sequence of edge 
constraints. The constraints in Cons(G) are called search 
constraints and are used for searching data in the database 
according to the structure they impose. Representing the 
query graph as a set of constraints allows us to view the 
entire query as a set of constraints. This makes the repre- 
sentation of queries more uniform and relates our queries to 
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Universitv 

Cohen Efrat 20 Ruth Efrat David Ben-Yishay Halevi 

Figure 1: A university database 

the well-known conjunctive queries. We also found that rep- 
resenting queries as sets of constraints eases the development 
and the descriptions of algorithms for query evaluation. 

Let D be a database over 0 and V be the set of node 
variables occurring in the query graph G. We say that a 
D-assignment over V is a mapping p: V + 0 U {I), where 
I is a new symbol, called null. If p(v) # I, we say that 
the assignment p is defined for the variable ZJ, or that v is 
bound. An assignment is total if it is defined for all variables 
in V and partial otherwise. 

2. every variable to which ~1 assigns a non-null value is 
reachable from rG by a path in the graph C,. 

We say that an assignment ~1 satisfies an edge constraint 
ulv if p(v) E ZD(~(u)), i.e., the relation ZD in the database 
contains the pair (p(u), p(v)). Note that ~1 has to be defined 
for the variables u, TV in a constraint ulv in order to satisfy 
the constraint. ’ 

We now define matchings of the query to the database 
which are prematchings that only partially satisfy the search 
constraints of the query. Let p be a prematching of Q. We 
say that p is a weak matching if, whenever p is defined 
for u and v, and G contains a constraint u/v, then p sat- 
isfies ulv. That is, a weak matching has to satisfy every 
constraint whenever it is defmed for the variables of that 
constraint. Weak matchings are a natural generalization of 
strong matchings to the case of partial assignments. The 
rigid requirement that the assignment satisfy all constraints 
is relaxed in so far as we expect a partial assignment only 
to satisfy those constraints for which it binds all variables. 

The assignment p is a strong matching for G if it satisfies 
the following two conditions 

1. ;(rzd= TD, i.e., p maps the root of G to the root of 
I 

2. 1-1 satisfies every edge constraint in G. 

Thus, a strong matching is a total assignment. 

In addition to weak matchings, we give two other defini- 
tions of matchings that take into account the graph struc- 
ture of a query. In a query graph G, the constraints of the 
form ulv are called the incoming constraints of the vari- 
able v. The prematching p is an AND-matching if it satisfies 
all incoming constraints of u whenever /J(V) # 1. We also 
say that a prematching p is an OR-matching of Q, since it 
satisfies some incoming constraint of v whenever p(v) # 1. 

The definition reflects the classical view of a conjunc- Intuitively, when computing OR-matchings, we view the 
tive query and an answer to it. In order to generalize it to query graph as a description of a set of possible paths along 
non-total matchings, we first single out assignments where, which to explore the database and to collect as much infor- 
intuitively, the defined variables are connected to the root. mation as possible. By an OR-matching, a query variable 
Under this restriction, only connected pieces of the database can be bound if there exists some path in the query from 
can be matched against the query. Matchings, thus, contain the root to the variable such that the matching binds all the 
only pieces of information that are related to each other, variables on the path and satisfies all edge constraints on the 
and can be computed by traversing the database. path. Contrary to an OR-matching, an AND-matching can 

Let p be a D-assignment over V, and let C, be the set only bind a query variable if for all paths from the root to 
of edge constraints in Cons(G) satisfied by ,u. Then p is a that variable the matching binds all variables on the paths 
prematching of Q if and satisfies all edge constraints. 

1. p(rG) = rD, and 
The sets of all strong, weak, AND, and OR-matchings of 
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Q over D are denoted as 

Ma&(Q), Mat;(Q), Mat$(Q), Matki(Q), 

respectively. Obviously, we have 

Mat&(Q) s Mat:(Q) C Mat;(Q) s Mats(Q). (1) 

If the query graph is a tree, then there is no distinction 
between weak, AND, and OR-matchings. For * E {s, A, w, V} 
we also refer to Math(Q) as matchings under strong, AND, 
weak, and OR-semantics, respectively. 

Let A be a set of assignments that range over the same set 
of variables V and let ~1, p’ E A. We say that ~8’ subsumes p, 
and write ~1 & p’, if, whenever ,u(v) is defined, then p’(u) is 
defined and h(v) = b:‘(v). Intuitively, the subsuming assign- 
ment cont,ains more information than the subsumed one. An 
assignment p is a maximal element of A if for any element 
~.r’ E A we have that ~1 C ~1’ implies ~1 = p’. 

Given a query Q and a database D, we are interested 
in matchings that have maximal information content. For 
each * E {s, A, 20, V} we thus define MMatb(Q) as the set 
of maximal elements of Mat&(Q). Obviously, MMat&(Q) 
is the same as Mat”,(Q), but for the other types of match- 
ings not all matchings are maximal. Hence, the analogue of 
Equation (1) does not hold for the sets of maximal match- 
ings. However, if Mat>(Q) C Math(Q), then for every 
p E MMatb(Q) there is a 1-1’ E MMat’,(Q) such that p 
is subsumed by p’. To illustrate our definitions, we consider 
an example query graph for which we compute the different 
kinds of maximal matchings over the university database. 

University 
t 

? Department 

Figure 2: Query graph Gr asking for course teachers and 
lab instructors 

Example 3.1 (Matchings under AND, Weak and 
OR-Semantics) Figure 2 depicts the query graph Gr . We 
evaluate G1 over the university database. Table 1 contains 
the maximal matchings under AND, weak, and OR-semantics. 
Note that all maximal matchings in the table are partial 
assignments. Thus, under strong semantics we would not 
retrieve any answer to our example query. 

Under the different semantics, the query in Figure 2 has 
different meanings. Under AND-semantics, it requests the 
people that are both a course teacher and a lab instructor. 
Under OR-semantics, we can use it to find those people that 
are either a course teacher or a lab instructor. We can use 
here also weak semantics instead of OR-semantics in order 
to achieve more intuitive results as will be explained in Ex- 
ample 3.2. 

Semantics 

AND 

Weak 

OR 

= 
t = 
1 
1 
1 
1 
1 
i 
1 
1 
1 
1 
1 
1 
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1 
1 
1 
= 
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13 
13 
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I 
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I 
13 
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= 
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I 
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l. 

23 
I 

-i 
17 
19 
20 
23 
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I 

17 
19 
20 
23 
23 
23 
= 

= 
Xl 
= 

I 
I 
l. 

32 
I 

-i 
I 
I 

30 
32 
32 
I 

I 
I 

30 
32 
32 
32 
= 

= 
x2 

= 
I 
I 
I 

33 
I 

-i- 
26 
28 
31 
33 
33 
I 

26 
28 
31 
33 
33 
33 

=- 
24 ( 

161 

Table 1: Maximal matchings for the search graph (~1 in 
Figure 2 over the university database 

3.2 Filter Constraints and Solutions 

Filter constraints reduce the set of maximal matchings to a 
set of solutions. We now define the syntax and semantics of 
filter constraints. 
A type is a pair T = (‘D, R), where 

1. ID is a set of values, called the domain of T, and 

2. Z, is a set of decidable relations T 5 I) x . . . x 2> over 
the domain V. 

The elements of D are the atomic values or atoms of T. .Part 
of a database in our model is a function a that maps the 
terminal nodes to atoms and each atom is of some type. For 
simplicity we assume for now that there is only one type T, 
and that all atomic values are of this type. 

We distinguish between three kinds of filter constraints: 
atomic constraints, object comparisons, and existence con- 
straints. An atomic constraint of arity n is an expression 
r(s), where r is a relation of arity n, and H = (SI , . . . , So,) is 
a tuple of variables and atomic values of V. Equality and 
inequality of the atomic values attached to terminal nodes 
are special atomic constraints and are denoted as 

u + v and u 7% vi 

respectively. Object comparisons are constraints of the form 

u=,v and u#ov. 

The hrst constraint is an object equality while the second 
is an object inequality. Unlike equality and inequality ccon- 
straints that are used for comparing atomic values, object 
comparisons are used for comparing database objects for 
identity and distinctness. Two objects can have equal val- 
ues without being equal themselves. An existence constraint 
has the form 

!v. 

The existence constraint !v requires the variable v to be 
bound. 

Filter constraints are applied to maximal matchings, in 
which certain variables may be undefined. We take this into 
account by distinguishing between two kinds of satisfaction 
of a constraint by an assignment, which we call strong and 
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Semantics First Name Family Name Seniority Course Name Lab Name 
And David Ben-Yishay Logics Logic Programming 

Cohen 15 Spectography 
Weak Efrat 20 

Ruth 
Polymers 

Efrat Calculus 
David Ben-Yishay Logics Logic Programming 

Table 2: Maximal answers of Q1 over the university database under AND and weak semantics 

weak satisfaction. An assignment p strongly satisfies an 
atomic constraint r(sr, . . . , sn) if for every 3; that is a vari- 
able 

1. ~(3;) is defined and equal to an atomic database node; 
and 

2. the tuple (o(p(sr)), . . , a(p(s,,))) is in the relation r. 

The assignment ~1 strongly satisfies the object equality 
u so u if n(u) and p(w) are defined, and p(u) = /J(V). For 
object inequalities the definition is analogous. 

Thus, in order for an assignment to strongly satisfy a 
constraint, it must be defined for all the variables occurring 
in the constraint, and the values must be in the constraint 
relation. An assignment zueakly satisfies a constraint if it 
is undefined for one of the variables of the constraint, or 
otherwise, if it strongly satisfies it. If ~1 strongly (weakly) 
satisfies a set of constraints C, we write n b=9 C (n bw C). 

We say that ~1 satisfies the existence constraint !v if 
n(w) # 1. Here, we do not distinguish between strong and 
weak satisfaction. Existence constraints can be used to turn 
weak satisfaction into strong satisfaction. If cf is a filter 
constraint with variables WI, . . . , on and p is an assignment, 
then p Es {cf} if and only if n kw {cr, !wi,. . . , !wn}. 

The set F of filter constraints in a query Q = (G, F, E) is 
partitioned into sets F, and F,, to which we refer as strong 
and weak filter constraints. For * E {s, A, UJ, V} we define 
the set of strong, AND, weak and OR-solutions of Q over D 
as 

3.3 Answers 

Up to now we have defined the role of the search and filter 
constraints in the evaluation of a query Q = (G, F, Z) over 
a database D. The result is the set of solutions Sol;(Q), 
which depends on the semantics *. 

Instead of all solutions, however, we are in general only 
interested in the bindings of some of the variables in the 
query. We select these variables as the output variables 3‘. 
We define the set of strong, AND, weak and OR-anszuers of Q 
over D as consisting of the tuples P(Z), where ~1 is a strong, 
AND, weak, or OR-solution of Q respectively, and denote it 
as An&(Q), where * E {s, A, w, V}. 

3.4 Examples 

We give now some examples to illustrate the previously de- 
fined concepts. 

Example 3.2 (Solutions and Answers) In Example 3.1 
we saw the sets of maximai matchings over the university 
database for the query in Figure 2. Since we intend to find 

information about people with this query, we require the 
variable y to be bound by adding the existence constraint 
!y. As a result, we want the information about the person 
contained in the variables ~1, ~2, 23, the information about 
the course the teacher teaches in x4, and the information 
about the lab for which the person is the instructor in 25. 
Thus, we declare 21, x2, x3 x4, x5 as output variables. 

Let Qi = (Gr , FI, Z) be the query, where Gr is the query 
graph in Figure 2, FI = {!y}, and z = (zl,x2,x3,~4,x5). 
Table 2 shows the maximal,answers to Qi under AND and 
weak semantics. We see that under AND-semantics, we re- 
ceive the one person who teaches a course and is also a lab 
instructor, together with the information about the course 
and the information about the lab. (Instead of the termi- 
nal objects in the answer, the attached values appear in the 
table.) 

Under weak semantics we get information about all those 
persons who teach a course or instruct a lab, and we get the 
information about the lab they instruct or the course they 
teach. If the person only teaches a course, we only get the 
information about the course he teaches. If the person only 
instructs a lab, we only get information about the lab he 
instructs. If the person does both, we get the information 
about the course and the lab that correspond to him. 

If here we were using OR-semantics instead of weak se- 
mantics, we would still get the information about people 
teaching a course or instructing a lab, but in addition, we 
may also get information about a person together with the 
information about the course he does teach, but with infor- 
mation about a lab in his department which he does not 
instruct. For instance, under OR-semantics, David Ben- 
Yishai together with the Logic Programming Lab and the 
course on Databases may be returned as an answer, although 
David does not teach Databases. A motivation for using OR- 
semantics will be given in Example 3.4. 

Example 3.3 (Weak Filter Constraints) Suppose, we 
are interested only in those staff members with a seniority of 
at least 20 years. We can add to query Qr a filter constraint 
which requires that the atomic value of the database object 
that is bound to the variable x3 will be greater or equal to 
20. 

However, some matchings are not defined for the vari- 
able x3. It may be the case that some person has a seniority 
greater than 20, but this information is not present in the 
database. It may therefore be rash to dismiss them as solu- 
tions. 

In order to admit them as solutions, we treat the filter 
constraint x3 > 20 as a weak constraint. Then x3 1 20 
is satisfied if either we have positive information that the 
seniority is at least 20, or if there is no information about 
seniority. 

The idea underlying OR-semantics is to use the query. 
graph as a pattern of paths for traversing the database. Dur- 
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ing the search phase, we retrieve as many matchings that are 
as full as possible, and we filter the unneeded matchings us- 
ing the filter constraints. 

University 

Figure 3: Query graph Gz asking for the staff in the univer- 
sity database 

[IT 
r 

= 
OR 

- 
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1 3 
1 3 

1 4 
1 4 1 1 5 
1 5 

1 5 
1 5 

li w I I Y 
9 10 17 I 
9 10 19 I 

11 I 20 Ruth 
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12 I 23 David 
12 13 23 David 
14 13 23 David 

Efi-at 
Ben-Yishay 
Ben-Yishay 
Ben-Yishay 

Halevi 
Halevi 

Table 3: Maximal OR-matchings for query graph Gz over 
the university database 

Example 3.4 (OR-Semantics) If we evaluate the query 
graph Gz in Figure 3 under OR-semantics, we retrieve the 
staff in the university database. We find all the people that 
are either course teacher, lab instructor, or chairman of a de- 
partment. We cannot use weak semantics for that purpose, 
since in weak semantics, the variable u must be bound if z 
is bound, and the bindiing must satisfy the edge constraint 
u Chairman x. Thus, whenever x is bound in a weak match- 
ing, then it is bound to the chairman of the department. 

Table 3 shows the set of maximal OR-matchings for the 
query graph in Figure :3. For terminal nodes, we have listed 
the attached atoms instead of the identity of the object. 

4 Computing Matchings 

This section summarizes results about the computation of 
sets of maximal matchings under the three semantics allow- 
ing for partial matchings, i.e., weak, AND, and OR-semantics. 

Matchings dkpend only on the query graph, which con- 
tains the search constraints. They are the result of the (con- 
ceptually) first phase of query evaluation. We distinguish 
between three cases where the search graph of the query is 
either a tree, an acyclic ldg, or a general ldg. According to 
the form of the search graph, we call a query a tree query or 
a dag query. 

It will turn out that for acyclic graphs, the set of maximal 
matchings can be computed in time polynomial in the size 
of the query, the database, and the result. 

4.1 Tree Queries 

We have seen that there is no difference between the match- 
ings under the three semantics if the query graph is a tree. 
Consequently, the sets of maximal matchings are the same. 
We sketch an algorithm EvalTreeQuery that computes them. 

The algorithm proceeds by first topologically sorting the 
nodes of the query graph, that is by establishing a linear 
ordering ~0 < ~1 < . . < vn on the nodes with the property 
that vi < v3 if there is an edge from vi to u3 in the graph. 
Obviously, the first node vo in such an ordering is the root. 
The algorithm then performs an iteration over the no,des 
according to this order. It maintains a set S of assignments 
of database objects to the variables visited. It starts by 
assigning the root of the database to the root of the query. 
Consider the step in which it processes variable vi with i ;p 0, 
and suppose that the incoming edge of ZJ; is U’Zui. Then each 
assignment /J E S is extended to vi by assigning objects 
o E ZD(~(v’)) to it, if there are any, and by assigning 1. to 
Vi otherwise. When all variables are processed, S is the set 
of maximal matchings under AND, OR, and weak semantics. 
It is easy to derive an upper bound for the runtime of the 
algorithm that is polynomial in the size of the input and the 
output. 

Theorem 4.1 (Complexity of Tree Queries) Supl;‘ose 
the algorithm EvalTreeQuery is called with a tree query Q 
and a database D then it outputs the set of maximal match- 
ings under AND, OR, and weak semantics, and has runtime 
which is O(lDl * IQ1 * 1.5’1). 

4.2 Acyclic Queries 

The algorithm described above can be generalized to algo- 
rithms for dags. In a dag query, there may be more than 
one incoming constraint for a variable. Consequently, the 
sets of matchings may vary according to the semantics. 

We describe algorithms EvalOrDag and EvalAndDag for 
AND and OR-semantics. Under OR-SemantiCS, a variable can 
be bound if in the query some path from the root to the vari- 
able is bound, and under AND-semantics it can be bound if 
every path from the root to the variable is bound. The al- 
gorithms differ from the one for trees in the iteration step 
where objects are assigned to the variable vi. Suppose the 
incoming edge constraints for a variable vi are the cron- 
straints 24lZl v;, . . . , uklk vi. Suppose in addition that we have 
an assignment ~1 that has already been processed for the 
variables ug , . . . , vi-l, and that we want .to extend it to vi. 
Now, EvalOrDag binds o to Vi if there is some uj such that 

0 E ~,QM%)). 
By the algorithm EvalAndDag, an object o is bound to 

vi if o E 1T(p(u3)) for al2.j E l..k, and we consider ly(p(uJ)) 
to be empty if ,u is not defined for uJ. 

Since the nodes in the query are topologically sorted, 
the two policies for binding zti guarantee that the algorithms 
compute the sets of maximal OR and AND-matChin@, respec- 
tively. Again, it is easy to check that the computation takes 

only time polynomial in the size of the input and output,. 

Theorem 4.2 (Complexity of AND and of OR-Dlag 

Queries) The algorithms EvalOrDag and EvalAndDag , 
when called with a dag query Q and a database D, output 
the set of maximal matchings under AND and OR-.WnCI&CS, 

respectively. They have runtime O(lDj2 * lQ12 * ISI). 

An algorithm for computing the maximal weak match- 
ings is more sophisticated. However, it is still possible to 
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compute the set of maximal weak matchings in time poly- 
nomial in the size of the input and the output. 

Theorem 4.3 (Complexity of Weak Dag-Queries) 
There is an algorithm that, when called with a dag query Q 
and a database D, outputs the set of maximal weak match- 
ings. It has runtime O(1D12 * IQ]” * IS]). 

4.3 General Queries 

Clearly, the sets of maximal matchings under any of our 
three semantics are computable in exponential time. The 
interesting question is whether it is still possible to do it in 
time polynomial in the size of the input and output. For 
AND-semantics we can show that the existence of such an 
algorithm is highly unlikely. 

Theorem 4.4 If there is an algorithm that computes the set 
MMat$(Q) for arbitrary query graphs Q in time polynomial 
in the input and the output, then PTIME = NP. 

Proof. We only provide a sketch. The proof is based on a 
reduction of the Hamiltonian path problem. More precisely, 
for a given graph G, we construct a query Q and a database 
DG such that MMat;(Q) contains only the assignment ~0 
that assigns the root of D to the root of Q and I to all 
other variables if and only if G does not have a Hamiltonian 
path. If there were an algorithm that computes MMatg(Q) 
in time polynomial in the size of input and output, one could 
derive a polynomial algorithm that returns ~0 if and only if 
G does not have a Hamiltonian path. 0 

5 Computing Solutions 

In the previous section we saw how to compute the set of 
maximal matchings for a query over a database. In this sec- 
tion we examine the additional effect of filter constraints on 
the complexity of query evaluation, considering separately 
existence, inequality, and equality constraints. 

5.1 Adding Existence Constraints 

Existence constraints require query nodes to be bound in 
the filtered solutions. This causes parts of the query graph 
to be evaluated under strong semantics and turns some filter 
constraints into strong constraints. We show that evaluating 
tree queries with existence constraints is polynomial in the 
size of input and output, while for dag queries no polynomial 
algorithm exists, provided PTIME # NP. 

Let Q = (G, F, 2) be a query, where G is a tree and 
F contains only existence constraints. A node v in Q is 
enforced if there is an existence constraint !v in F. In a 
tree query, for a node to be bound by an assignment, all 
its ancestors must be bound. Let V” be the set of enforced 
nodes of Q, and V’ be the set of nodes such that there is 
a path from the root to an enforced node in V”. Then we 
call the restriction of G to the set of nodes V’ the strongly 
evaluated subgraph of G. 

The strongly evaluated subgraph of a query tree is the 
part that must be evaluated under strong semantics. We 
now sketch an algorithm EvaLStrongTree that evaluates tree 
queries under strong-semantics. The algorithm is similar to 
the computation of an acyclic join in relational algebra using 
a semijoin program (full reducer) as in [BG81]. It consists 
of the following steps: 

1. 

2. 

3. 

4. 

5. 

find a topological order for the edges of the tree; 

traverse the tree according to the topological order and 
compute for each edge constraint a relation by collect- 
ing the pairs of database objects satisfying it; 

reduce the relations using semijoins backwards with 
respect to the topological order; 

join the reduced relations; 

create the set of assignments from the tuples in the 
join. 

Theorem 5.1 (Complexity of Strong Tree Queries) 
The algorithm EvalStrongTree, when called with a tree query 
Q and a database D, outputs the set S of strong solutions. 
It has runtime O(]Q] * (IDI’ + ISI)). 

The set of altered maximal solutions can now be com- 
puted by first finding the strongly evaluated subtree of the 
query, computing the set of strong solutions for this subtree 
using EvalStrongTree, and extending the strong solutions to 
the rest of the graph in a similar way as maximal matchings 
are computed for a tree query (cf. Section 4). 

Theorem 5.2 (Polynomiality of Tree Queries) When 
adding only existence constraints a8 jilter constraints to tree- 
queries, the set of maximal filter solutions under any of 
strong, AND, weak, and OR semantics can be computed in 
time polynomial in the size of the query, the database, and 
the solution set. 

There is no polynomial algorithm for evaluating dag- 
queries with existence constraints, provided PTIME # NP. 
We say that the evaluation problem for a fixed semantics 
and a class of queries is to decide whether for a given query 
and database the set of solutions under that semantics is 
nonempty. 

Theorem 5.3 The evaluation problem for dag queries with 
existence constraints is NP-complete. 

Proof. (Sketch) There is a classical reduction of 3SAT to the 
problem of evaluating a conjunctive query over a database. 
The reduction can be modified such that all the predicates 
are binary. Hence, the query has the form of a graph. It 
turns out, that the graph is even a dag. Evaluation of such 
a conjunctive query is the same as evaluation under strong 
semantics. Evaluation under strong semantics is enforced by 
decorating all nodes of a query with existence constraints. 
cl 

Under AND-semantics, for a node to be bound all its 
incoming constraints must be satisfied, and therefore all 
its parent nodes must be bound. Hence, decorating only 
the terminal nodes of a dag with existence constraints has 
the same effect as decorating all nodes. Under weak and 
OR-semantics, however, some nodes without existence con- 
straints may remain unbound. One may ask whether this 
has an effect on the difficulty of the evaluation problem. 

Theorem 5.4 The evaluation problem for dag queries with 
existence constraints under both, weak and OR-semantics, is 
NP-complete, even if existence constraints occur only at the 
terminal nodes of the query. 

Proof. (Sketch) The proof is again by a reduction of 3SAT. 
The disjunction in 3SAT is encoded into the different choices 
that can be made among the paths leading to the con- 
strained terminal nodes. 0 
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5.2 Adding Weak Eiquality and Inequality Constraints 

Allowing weak equality or inequality constraint,s in the filter 
constraints makes the evaluation of a query NP-hard. It 
is interesting to note that this is already the case for tree 
queries. Thus, the results do not depend on the semantics 
under which the search constraints are evaluated. 

Theorem 5.5 (Eqnalities and Inequalities) The evalu- 
ation problem for tree-queries with either weak equality con- 
straints or weak inequality constraints is NP-complete. The 
NP-hardness holds for equalities and inequalities, both for 
values and objects. 

Proof. (Sketch) The proof for queries with equality con- 
straints is by a reduction of One-In-All-Pos-3SAT, while 
the proof for inequality constraints is by a reduction of 3- 
colorability. cl 

6 Containment of Search Queries 

In this section, we examine containment and equivalence be- 
tween queries without filter constraints, that is queries of the 
form Q = (G, 8, z). For the sake of brevity, we denote such 
a query as Q = (G, 3). We leave the study of more complex 
queries to future research. Our definitions, however, apply 
to the general case. 

Since we are dealing with answers that are partial, that 
is, which may contain the value I, we define containment 
and equivalence modulo subsumption of answers. Let ii and 
a’ be tuples of the sa.me length that contain either atoms 
or 1. We say that a is subsumed by a’, and write ii C ai, 
if a, = a: whenever ai # I for each component ai of ii and 
a$ of a’. An answer in the set Ans>(Q) is maximal if it is a 
maximal element of Ans>(Q) w.r.t. to the ordering “En. 

The definition of containment is parameterized by the 
semantics under which the search constraints are evaluated. 
Consider two queries Q = (G, F, Z) and Q’ = (G’, F’, 3:) that 
have the same output variables. Let d be one of the seman- 
tics defined before-strong, AND, weak, or OR-semantics. 
Then Q and Q’ are equivalent under a if for every database 
they return the same maximal answers w.r.t. 6. We say that 
Q is contained in Q’ under cr if over every database D, and 
for every si E ADS;(Q) there is an a’ E Ansg(Q’) such that 
a E a’. Obviously, two queries are equivalent under u iff 
they subsume each other w.r.t. (T. We write Q&,Q’, where 
* E {s, A, UJ, V}, if Q is contained in Q’ under strong, AND, 
weak, or OR-semantics, respectively. 

Under a semantics that allows for solutions with the 
value I, not all variables in the query graph are needed for 
computing answers. bdore precisely, a variable from which 
there is no path to an output variable never needs to be 
bound. By eliminating such nodes, we can cut down the 
query graph so that it contains only nodes that are needed. 

Let G be a query graph and I be a tuple of variables 
appearing in G. By Prr(G) we denote the restriction of G 
to those nodes which are on a path from fG to one of the 
variables in i. We call PI-,(G) the pruned version of G. The 
pruned version of a query graph G has rG as its own root, 
and every node in it is reachable from the root. Thus, it is 
a legal query graph. &ven a tuple of variables Z, we say 
that a query graph is pruned if PI-$(G) = G. By extension, 
if Q = (G, Z) is a query, we call the query Q’ = (Pr, (G), Z) 
the pruned version of Q, and we say that a query is pruned 
if its query graph is pruned. 

Proposition 6.1 Let Q = (G,x) be a query and let Q’ = 
(Pr,(G), 3) be its pruned version. Then for any database G’ 
and for * E (A, V, w) we have 

Ans&(Q) = Ansh(Q’). 

By the above proposition, in order to decide contain- 
ment, it is sufficient to check the pruned versions of queries 
for containment. 

To characterize containment of queries, we need the con- 
cept of a query homomorphism. Let Qr = (Gl, 2) and 
Qs = (Gz,z) be two queries. A mapping cp from the vari- 
ables of Qr to the variables of Qs is a homomorphism from 
Ql to Qz if 

1. it maps rOots to roots, that is, (P(rG1) = r&; * 

2. it maps output variables to output variables, that is, 
(~(2~) = xj for each xi E Z; 

3. it maps edge constraints to edge constraints, that is, 
cp(u)lp(v) is a constraint in Gz for each ulw in Gr. 

We start by examining containment for t,he case of two 
queries that are evaluated under AND-SemantiCS. 

Theorem 6.2 (Containment under AND-Semantics) 
Let Q1 = (G~,E) and Qa = (Gl, Z) be two pruned queries. 
Then Q1 C,-, Qz, i.e., Q1 is contained in Qz under A.ND- 

semantics,if and only if there is a homomorphism from: Qz 
to QI. 

Since the existence of a graph homomorphism is NP- 
complete, it follows that containment of queries under A.ND- 
semantics is NP-complete. For tree queries, AND, weak, and 
OR-semantics coincide. Thus Theorem 6.2 implies that the 
existence of a homomorphism is a sufficient and a necessary 
condition for containment among pruned tree queries under 
AND, weak and OR-semantics. 

We now want to check containment under OR-semantics. 
The basic idea in checking containment under OR-semantics 
is to reduce containment of arbitrary queries to containment 
of tree queries. Let G = (V, rG, .“) be a query graph. A 
spanning tree of G is a subgraph T = (V, rr, .T) of G that 
has the same nodes and the same root as G, and whose 
skeleton is a tree. If Q = (G,z) is a query, then we define 
the set of queries 

-j?Q := T is a pruned spanning tree of G 

We call 7~ the tree expansion of Q. Under OR-semantics, a 
query can be evaluated by evaluating each query in its tree 
expansion and taking the union of the results. We will use 
this fact in order to characterize containment among queries 
under OR-semantics. 

Proposition 6.3 Let Q = (G,x) be a query and TQ its tree 
expansion. Then we have for any database D that 

Ansg(Q) = U Ansz(Q’). 

Q’E7Q 

Theorem 6.4 (Containment under OR-Semantics) 
For two queries Q1 = (G~,E) and Qa = (Ga,x) the fol- 
lowing are equivalent: 

. 91 Cv Q2; 
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l for every query Q; E ‘7& there is a query Q$ E 78, 

such that Qi 5 Q:. 

Theorem 6.5 (Complexity of OR-Containment) 

1. Containment of queries under o%semantics is in II:. 

2. The problem is NP-complete if the containee is a tree. 

3. It is polynomial if the container is a tree. 

Proof. That containment is in II;, is clear from the charac- 
terization in Theorem 6.4. The third statement is also clear, 
since it can be decided in polynomial time whether there is a 
homomorphism from a tree to an arbitrary graph. The sec- 
ond claim can be shown by a reduction of the Hamiltonian 
path problem. q 

For weak semantics we have a characterization of con- 
tainment resembling the one for OR-semantics that is given 
in Theorem 6.4. The idea is to replace the set of spanning 
trees by a set of pruned graph fragments, where a graph 
fragment is a restriction of the query graph to a subset of 
the variables in the query such that this subset contains 
the root of the query and such that all the variables in the 
fragment are reachable from the root. 

Also, for weak semantics complexity results analogous to 
those in Theorem 6.5 hold. 

7 Conclusion and Related Work 

Semistructured data models are distinguished from classical 
“structured” data models by two characteristics: they do 
not assume that data have a homogeneous structure, and 
they do not assume that data are complete. 

The query languages proposed for semistructured data so 
far take only the first characteristic into account. In most 
models for semistructured data, databases are essentially la- 
beled directed graphs. Typically, one can formulate in the 
languages proposed thus far navigational queries with regu- 
lar path expressions, which apply to a wide range of graph 
structures in a database, and are therefore not restricted to 
one prespecified schema, see [AV97b, FLS98]. 

In the present paper, we have concentrated on the second 
characteristic. In our opinion, a congenial query language 
for incomplete data must allow incomplete answers as query 
results. In this paper, we have presented some theoreti- 
cal principles for such languages. We believe that maximal 
partial answers can contain useful information in situations 
where complete answers are not available. 

The work on full disjunctions [GL94, RU96] is related 
to our notion of maximal matchings under art-semantics. 
However, the work on full disjunctions was couched in the 
relational model, and the results are not the same as those 
we have obtained for the semistructured data model. For 
one, we have established a polynomial-time complexity in 
the size of the input and output even for dag queries, while 
from the results of [RU96] it only follows that full disjunc- 
tions can be computed in polynomial time in the size of the 
input and output when the relations are y-acyclic. More- 
over, we have also investigated other semantics, and intro- 
duced a two-phase evaluation process, consisting of search 
constraints and filter constraints which is more expressive 
than outerjoins. We have also investigated containment of 
search queries under the various semantics. 

In a project at Hebrew University, we have designed and 
implemented a language based on the ideas expounded here. 
The language is part of a system to facilitate the access 

to the World Wide Web. As described abstractly in this 
paper, queries are based on so-called query graphs, which 
have to be matched against the database graph. In our 
implementation, query graphs are edited with a graphical 
user interface. Thus, they allow for more intuitive query 
formulation than the text based query languages proposed 
so far for semistructured data. 

We have deliberately limited our investigation to queries 
that do not allow regular path expressions. Regular ex- 
pressions present an additional difficulty, one of the reasons 
being that they cannot be modeled in first order logic. As a 
consequence, reasoning problems like equivalence and con- 
tainment for such a language have a significantly higher com- 
plexity than in the case studied here. However, any practi- 
cal query language for semistructured data will need regular 
path expression. How to use them in a language that allows 
for incomplete answers is an important and challenging re- 
search problem. 
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