
Queries with Incomplete Answers over Semistructured Data

Yaron Kanza
Institute for Computer Science

The Hebrew University

Jerusalem 91904, Israel

yarok@cs.huji.ac.il

Werner Nutt
German Research Center for

Artificial Intelligence GmbH

Stuhlsatzenhausweg 3

66123 Saarbriicken, Germany

Werner.Nutt@dfki.de

Yehoshua Sagiv
Institute for Computer Science

The Hebrew University

Jerusalem 91904,Israel

sagiv@cs.huji.ac.il

Abstract

Semistructured data occur in situations where information The growing need to integrate data from heterogeneous
lacks a homogeneous structure and is incomplete. Yet, up to sources and to access data sources with irregular or incom-
now the incompleteness of information has not been reflected plete contents is the main motivation for research into semi-
by special features of query languages for semistructured structured data models and query languages for them. Semi-
data. Our goal is to investigate the principles of queries that structured data do not comply with a strict schema and
allow for incomplete answers. We do not present, however, are inherently incomplete. Query languages for such data
a concrete query language. should ,reflect these characteristics.

Queries over classical structured data models contain
a number of variables and conditions on these variables.
An answer is a binding of the variables by elements of the
database such that the conditions are satisfied. In the pres-
ent paper, we loosen this concept in so far as we allow also
answers that are partial, that is, not all variables in the
query are bound by such an answer.

Partial answers make it necessary to refine the model of
query evaluation. The first modification relates to the satis-
faction of conditions: under some circumstances we consider
conditions involving unbound variables as satisfied. Second,
in order to prevent a proliferation of answers, we only ac-
cept answers that are maximal in the sense that there are no
assignments that bind more variables and satisfy the condi-
tions of the query.

Semistructured data models have been intensively stud-
ied recently [Abi97, Bun97]. They originated with work on
heterogeneous dataintegration [QRSS94, PGMW95, RU96].
Several models for representing semistructured data have
been proposed together with query languages for those mod-
els such as Lore1 [AQMt97, MAGS97, QWGt96] and UnQL
[BDHS96]. Further topics of research have been the design
of schemas for semistructured data [BDFS97] and the ex-
traction of schemas from the data [GW97, NAM98].

Our model of query evaluation consists of two phases, a
search phase and a filter phase. Semistructured databases
are essentially labeled directed graphs. In the search phase,
we use a query graph containing variables to match a maxi-
mal portion of the database graph. We investigate three dif-
ferent semantics for query graphs, which give rise to three
variants of matching. For each variant, we provide algo-
rithms and complexity results.

A particular motivation for this research has been to al-
low one to access heterogeneous sources on the World Wide
Web in an integrated fashion by providing a view of the web
as a semistructured database [AV97a, KMSS98]. For the
purpose of querying the World Wide Web several query lan-
guages and Web site management tools have been proposed,
such as WSQL [KS95, KS97], WebSQL [MMM97], Strudel
[FFK+98], Araneus [MAM+98], and others [LSS96, AM98j.
The growing use of the Web emphasizes the need of query-
ing semistructured data and retrieving partial answers when
complete answers are not found.

In the filter phase, the maximal matchings resulting from
the search phase are subjected to constraints, which may be
weals or strong. Strong constraints require all their variables
to be bound, while weak constraints do not. We describe a
polynomial algorithm for evaluating a special type of queries
with filter constraints and assess the complexity of evaluat-
ing other queries for several kinds of constraints.

We define a simple data model that is similar to OEM
[PGMW95, AQM+97], where databases are labeled directed
graphs. A node represents an object, a label an attribute,
and a labeled edge links a node to another one if the second
node is an attribute filler for the first node. Our queries,
too, are defined by graphs, which are to be matched by the
database. The idea to base a query language on graphs
appeared already in [CMW82]. In this paper we apply it to
semistructured data.

In the final part, we investigate the containment problem
for queries consisting only of search constraints under the
different semantics.

Permission to make digital or hard copies ol‘ all or part of this work i’ol
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists.
rcquircs prior specific permission andior a fee.
PODS ‘99 Philadelphia PA
Copyright ACM 1999 l-581 13-062-7/99/05...$5.00

In an abstract view, database queries consist of a set
of variables and constraints on the variables. A solution
to a query is a binding of the variables to objects in the
database such that the constraints are satisfied. In order
to be able to accept as solutions also assignments that do
not bind all variables, we refine the structure of a query.
We divide the constraints into search constraints and filter
constraints. The search constraints form a labeled directed
graph whose nodes are variables: they are a pattern that has
to be matched by some part of the database. We are only
interested in maximal matchings, because they contain max-

1 Introduction

227

http://crossmark.crossref.org/dialog/?doi=10.1145%2F303976.303999&domain=pdf&date_stamp=1999-05-01

imal information. The maximal ma.tchings are then filtered:
those that satisfy the filter constraints are called solutions.
We distinguish between strong and meak filter constraints.
A strong constraint is satisfied by an assignment if all vari-
ables of the constraint are bound *and their values comply
with the constraint, while a weak constraint is already sat-
isfied if one of its variables is not bound by the assignment.
Hence, it is important that only maximal matchings are fil-
tered, since this enhances the applicability of the weak con-
straints. Finally, solutions are restricted to a subset of their
variables, the output variables. Those restrictions are called
arasruers. ‘The roles of the different components of a query in
our modeI can be illustrated by setting up an analogy with
SQL-queries. The FROM-clause is the analogue of the search
constraints, the WHEliE-clause the analogue of the filter con-
straints, while the SELECT-clause specifies the output vari-
ables. Thus, with its search and filter constraints, a query is
conceptually evaluated in two phases: the first being struc-
tural matching for the retrieval, and the second filtering.
Query evaluation in this model is therefore non-monotonic:
the fuller an assignment, the more filter constraints it has
to satisfy.

We introduce different semantics for search constraints
and investigate query evaluation under them. Our queries
are essentially conjunctive queries. There is no explicit dis-
junction or negation, although some semantics give queries
a disjunctive flavor. Our language is also restricted in that
constraints on edges are only labels and not regular expres-
sions, as in Lore1 [AQMS97] and other query languages for
semistructured data. The generalization to regular path ex-
pressions as edge constraints will be a topic for further re-
search.

In this paper, we first define databases and queries in
our model. We exam.ine different semantics for the search
phase of query answering, give algorithms for computing the
maximal matchings of a query over a database with respect
to those semantics, and study the evaluation of titer con-
straints. As a basis for query optimization, we give criteria
for checking equivalence and containment of queries under
the various semantics.

2 Data Model

Our data model is a simplified version of the Object Ex-
change Model (OEM) of [PGMW95, AQM+97]. Both data
and queries are represented by labeled directed graphs. The
nodes in a database graph are either complex or atomic.
Complex nodes have outgoing edges, while atomic nodes do
not. Atomic nodes have values. In each database there is
one distinguished complex node, the root. It is the entry
point for browsing and querying the database. Therefore,
every node in the database must be reachable from it.

We assume that there is an infinite set A of atoms and
an infinite set L of labels. Atoms can be of type integer,
real, string, gifi etc. Each type comes with a set of decid-
able relations on the elements of the types, like comparisons
on numbers and strings. For simplicity of exposition, we
assume here that there is just a single type.

We give formal definitions and introduce the necessary
notation. A labeled directed graph or ldg over a set of nodes
N is a pair G = (N, .G), where .G associates with each
label I E 1: a binary relation 1 G E N x N between the
nodes. We will often v:iew a binary relation lG as a function
lG: N + 2*“. Note that in a labeled directed graph there
can be two nodes u and v such that in the graph there are
two distinct edges from u to u labeled with different labels.

The skeleton of G is the union of the binary relations in
G. Under the view of relations as functions, the skeleton is
defined as the function UG: N + 2N satisfying

uG(n) = {n’ E N (n’ E lG(n) for some 1 E L}.

The skeleton can be seen as the ldg where we ignore the
labeling.

A labeled directed graph G over N is rooted if there is a
designated node rG E N, the root, such that every node in
N is reachable from rG in UG. We denote a rooted ldg G as
a triple G = (N,v-G,.~). A node n in G is a terminal nod’?
if oG(n) = 8, and an inner node otherwise. We say that G
is finitely branching if us is finite for every node n.
A database consists of

1. a rooted finitely branching ldg (0, TD, .D) over a set of
objects 0, and

2. a function (Y that maps each terminal node to an atom.

We denote a database as a 4tuple D = (0, RC, .D, cr).
The graph in Figure 1 depicts a database containing infor-
mation about university departments, courses and staff at,
the Hebrew University. The nodes are the database objects.
and edges are annotated with their labels. We will use thr!
example database of Figure 1 later on in our examples.

Generally, databases may be infinite. However, since
they are finitely branching, there is only a finite number
of nodes that can be reached from the root in a given num-
ber of steps. In particular, for queries without regular]Fath
expressions, a database has to be explored only up to a fmlte
depth when answering the query, and therefore only a filnite
portion is relevant.

3 Overview of the Query Language

This section we formally define an abstract syntax of queries
and define their semantics. The definitions will be illustrated
by example queries over the university database.

We assume that there is an infinite set of variables. A
query is a triple Q = (G, F, z), where

G = (V, rG, .“) is a labeled directed graph, called the
query graph, whose nodes are variables;

F is a set of filter constraints, whose syntax will. be
precisely defined later on; and

zz is a tuple of variables occuring in V.

Search Constraints and Matchings

Let G = (V, rG, .G) be a query graph. We can view G also
as a set of constraints Cons(G) over V. There is a :root
constraint, singling out the root node, and for each pair of
variables u, V, such that v 6 ZG(u), there is an edge con-
straint ulv. Conversely, a set S of edge constraints over
V determines an ldg over V. If wo E V is singled out by
the root constraint, then S determines a rooted ldg if ev-
ery element of V is reachable from vo by a sequence of edge
constraints. The constraints in Cons(G) are called search
constraints and are used for searching data in the database
according to the structure they impose. Representing the
query graph as a set of constraints allows us to view the
entire query as a set of constraints. This makes the repre-
sentation of queries more uniform and relates our queries to

228

Universitv

Cohen Efrat 20 Ruth Efrat David Ben-Yishay Halevi

Figure 1: A university database

the well-known conjunctive queries. We also found that rep-
resenting queries as sets of constraints eases the development
and the descriptions of algorithms for query evaluation.

Let D be a database over 0 and V be the set of node
variables occurring in the query graph G. We say that a
D-assignment over V is a mapping p: V + 0 U {I), where
I is a new symbol, called null. If p(v) # I, we say that
the assignment p is defined for the variable ZJ, or that v is
bound. An assignment is total if it is defined for all variables
in V and partial otherwise.

2. every variable to which ~1 assigns a non-null value is
reachable from rG by a path in the graph C,.

We say that an assignment ~1 satisfies an edge constraint
ulv if p(v) E ZD(~(u)), i.e., the relation ZD in the database
contains the pair (p(u), p(v)). Note that ~1 has to be defined
for the variables u, TV in a constraint ulv in order to satisfy
the constraint. ’

We now define matchings of the query to the database
which are prematchings that only partially satisfy the search
constraints of the query. Let p be a prematching of Q. We
say that p is a weak matching if, whenever p is defined
for u and v, and G contains a constraint u/v, then p sat-
isfies ulv. That is, a weak matching has to satisfy every
constraint whenever it is defmed for the variables of that
constraint. Weak matchings are a natural generalization of
strong matchings to the case of partial assignments. The
rigid requirement that the assignment satisfy all constraints
is relaxed in so far as we expect a partial assignment only
to satisfy those constraints for which it binds all variables.

The assignment p is a strong matching for G if it satisfies
the following two conditions

1. ;(rzd= TD, i.e., p maps the root of G to the root of
I

2. 1-1 satisfies every edge constraint in G.

Thus, a strong matching is a total assignment.

In addition to weak matchings, we give two other defini-
tions of matchings that take into account the graph struc-
ture of a query. In a query graph G, the constraints of the
form ulv are called the incoming constraints of the vari-
able v. The prematching p is an AND-matching if it satisfies
all incoming constraints of u whenever /J(V) # 1. We also
say that a prematching p is an OR-matching of Q, since it
satisfies some incoming constraint of v whenever p(v) # 1.

The definition reflects the classical view of a conjunc- Intuitively, when computing OR-matchings, we view the
tive query and an answer to it. In order to generalize it to query graph as a description of a set of possible paths along
non-total matchings, we first single out assignments where, which to explore the database and to collect as much infor-
intuitively, the defined variables are connected to the root. mation as possible. By an OR-matching, a query variable
Under this restriction, only connected pieces of the database can be bound if there exists some path in the query from
can be matched against the query. Matchings, thus, contain the root to the variable such that the matching binds all the
only pieces of information that are related to each other, variables on the path and satisfies all edge constraints on the
and can be computed by traversing the database. path. Contrary to an OR-matching, an AND-matching can

Let p be a D-assignment over V, and let C, be the set only bind a query variable if for all paths from the root to
of edge constraints in Cons(G) satisfied by ,u. Then p is a that variable the matching binds all variables on the paths
prematching of Q if and satisfies all edge constraints.

1. p(rG) = rD, and
The sets of all strong, weak, AND, and OR-matchings of

229

Q over D are denoted as

Ma&(Q), Mat;(Q), Mat$(Q), Matki(Q),

respectively. Obviously, we have

Mat&(Q) s Mat:(Q) C Mat;(Q) s Mats(Q). (1)

If the query graph is a tree, then there is no distinction
between weak, AND, and OR-matchings. For * E {s, A, w, V}
we also refer to Math(Q) as matchings under strong, AND,
weak, and OR-semantics, respectively.

Let A be a set of assignments that range over the same set
of variables V and let ~1, p’ E A. We say that ~8’ subsumes p,
and write ~1 & p’, if, whenever ,u(v) is defined, then p’(u) is
defined and h(v) = b:‘(v). Intuitively, the subsuming assign-
ment cont,ains more information than the subsumed one. An
assignment p is a maximal element of A if for any element
~.r’ E A we have that ~1 C ~1’ implies ~1 = p’.

Given a query Q and a database D, we are interested
in matchings that have maximal information content. For
each * E {s, A, 20, V} we thus define MMatb(Q) as the set
of maximal elements of Mat&(Q). Obviously, MMat&(Q)
is the same as Mat”,(Q), but for the other types of match-
ings not all matchings are maximal. Hence, the analogue of
Equation (1) does not hold for the sets of maximal match-
ings. However, if Mat>(Q) C Math(Q), then for every
p E MMatb(Q) there is a 1-1’ E MMat’,(Q) such that p
is subsumed by p’. To illustrate our definitions, we consider
an example query graph for which we compute the different
kinds of maximal matchings over the university database.

University
t

? Department

Figure 2: Query graph Gr asking for course teachers and
lab instructors

Example 3.1 (Matchings under AND, Weak and
OR-Semantics) Figure 2 depicts the query graph Gr . We
evaluate G1 over the university database. Table 1 contains
the maximal matchings under AND, weak, and OR-semantics.
Note that all maximal matchings in the table are partial
assignments. Thus, under strong semantics we would not
retrieve any answer to our example query.

Under the different semantics, the query in Figure 2 has
different meanings. Under AND-semantics, it requests the
people that are both a course teacher and a lab instructor.
Under OR-semantics, we can use it to find those people that
are either a course teacher or a lab instructor. We can use
here also weak semantics instead of OR-semantics in order
to achieve more intuitive results as will be explained in Ex-
ample 3.2.

Semantics

AND

Weak

OR

=
t =
1
1
1
1
1
i
1
1
1
1
1
1
i
1
1
1
1
1
=

T

: -

Ll.2
3 9
4 11
4 12
5 12
5 14
3 9
3 9
3 I
4 11

i

4 12
5 12
5 14
3 9
3 9
4 11
4 12
5 12
5 14

=
w

75

l.
I

13
13
m
I
10
I
I
13
13
m
10
I
I
13
13
=

=
Y =
I
I
l.

23
I

-i
17
19
20
23
23
I

17
19
20
23
23
23
=

=
Xl
=

I
I
l.

32
I

-i
I
I

30
32
32
I

I
I

30
32
32
32
=

=
x2

=
I
I
I

33
I

-i-
26
28
31
33
33
I

26
28
31
33
33
33

=-
24 (

161

Table 1: Maximal matchings for the search graph (~1 in
Figure 2 over the university database

3.2 Filter Constraints and Solutions

Filter constraints reduce the set of maximal matchings to a
set of solutions. We now define the syntax and semantics of
filter constraints.
A type is a pair T = (‘D, R), where

1. ID is a set of values, called the domain of T, and

2. Z, is a set of decidable relations T 5 I) x . . . x 2> over
the domain V.

The elements of D are the atomic values or atoms of T. .Part
of a database in our model is a function a that maps the
terminal nodes to atoms and each atom is of some type. For
simplicity we assume for now that there is only one type T,
and that all atomic values are of this type.

We distinguish between three kinds of filter constraints:
atomic constraints, object comparisons, and existence con-
straints. An atomic constraint of arity n is an expression
r(s), where r is a relation of arity n, and H = (SI , . . . , So,) is
a tuple of variables and atomic values of V. Equality and
inequality of the atomic values attached to terminal nodes
are special atomic constraints and are denoted as

u + v and u 7% vi

respectively. Object comparisons are constraints of the form

u=,v and u#ov.

The hrst constraint is an object equality while the second
is an object inequality. Unlike equality and inequality ccon-
straints that are used for comparing atomic values, object
comparisons are used for comparing database objects for
identity and distinctness. Two objects can have equal val-
ues without being equal themselves. An existence constraint
has the form

!v.

The existence constraint !v requires the variable v to be
bound.

Filter constraints are applied to maximal matchings, in
which certain variables may be undefined. We take this into
account by distinguishing between two kinds of satisfaction
of a constraint by an assignment, which we call strong and

230

Semantics First Name Family Name Seniority Course Name Lab Name
And David Ben-Yishay Logics Logic Programming

Cohen 15 Spectography
Weak Efrat 20

Ruth
Polymers

Efrat Calculus
David Ben-Yishay Logics Logic Programming

Table 2: Maximal answers of Q1 over the university database under AND and weak semantics

weak satisfaction. An assignment p strongly satisfies an
atomic constraint r(sr, . . . , sn) if for every 3; that is a vari-
able

1. ~(3;) is defined and equal to an atomic database node;
and

2. the tuple (o(p(sr)), . . , a(p(s,,))) is in the relation r.

The assignment ~1 strongly satisfies the object equality
u so u if n(u) and p(w) are defined, and p(u) = /J(V). For
object inequalities the definition is analogous.

Thus, in order for an assignment to strongly satisfy a
constraint, it must be defined for all the variables occurring
in the constraint, and the values must be in the constraint
relation. An assignment zueakly satisfies a constraint if it
is undefined for one of the variables of the constraint, or
otherwise, if it strongly satisfies it. If ~1 strongly (weakly)
satisfies a set of constraints C, we write n b=9 C (n bw C).

We say that ~1 satisfies the existence constraint !v if
n(w) # 1. Here, we do not distinguish between strong and
weak satisfaction. Existence constraints can be used to turn
weak satisfaction into strong satisfaction. If cf is a filter
constraint with variables WI, . . . , on and p is an assignment,
then p Es {cf} if and only if n kw {cr, !wi,. . . , !wn}.

The set F of filter constraints in a query Q = (G, F, E) is
partitioned into sets F, and F,, to which we refer as strong
and weak filter constraints. For * E {s, A, UJ, V} we define
the set of strong, AND, weak and OR-solutions of Q over D
as

3.3 Answers

Up to now we have defined the role of the search and filter
constraints in the evaluation of a query Q = (G, F, Z) over
a database D. The result is the set of solutions Sol;(Q),
which depends on the semantics *.

Instead of all solutions, however, we are in general only
interested in the bindings of some of the variables in the
query. We select these variables as the output variables 3‘.
We define the set of strong, AND, weak and OR-anszuers of Q
over D as consisting of the tuples P(Z), where ~1 is a strong,
AND, weak, or OR-solution of Q respectively, and denote it
as An&(Q), where * E {s, A, w, V}.

3.4 Examples

We give now some examples to illustrate the previously de-
fined concepts.

Example 3.2 (Solutions and Answers) In Example 3.1
we saw the sets of maximai matchings over the university
database for the query in Figure 2. Since we intend to find

information about people with this query, we require the
variable y to be bound by adding the existence constraint
!y. As a result, we want the information about the person
contained in the variables ~1, ~2, 23, the information about
the course the teacher teaches in x4, and the information
about the lab for which the person is the instructor in 25.
Thus, we declare 21, x2, x3 x4, x5 as output variables.

Let Qi = (Gr , FI, Z) be the query, where Gr is the query
graph in Figure 2, FI = {!y}, and z = (zl,x2,x3,~4,x5).
Table 2 shows the maximal,answers to Qi under AND and
weak semantics. We see that under AND-semantics, we re-
ceive the one person who teaches a course and is also a lab
instructor, together with the information about the course
and the information about the lab. (Instead of the termi-
nal objects in the answer, the attached values appear in the
table.)

Under weak semantics we get information about all those
persons who teach a course or instruct a lab, and we get the
information about the lab they instruct or the course they
teach. If the person only teaches a course, we only get the
information about the course he teaches. If the person only
instructs a lab, we only get information about the lab he
instructs. If the person does both, we get the information
about the course and the lab that correspond to him.

If here we were using OR-semantics instead of weak se-
mantics, we would still get the information about people
teaching a course or instructing a lab, but in addition, we
may also get information about a person together with the
information about the course he does teach, but with infor-
mation about a lab in his department which he does not
instruct. For instance, under OR-semantics, David Ben-
Yishai together with the Logic Programming Lab and the
course on Databases may be returned as an answer, although
David does not teach Databases. A motivation for using OR-
semantics will be given in Example 3.4.

Example 3.3 (Weak Filter Constraints) Suppose, we
are interested only in those staff members with a seniority of
at least 20 years. We can add to query Qr a filter constraint
which requires that the atomic value of the database object
that is bound to the variable x3 will be greater or equal to
20.

However, some matchings are not defined for the vari-
able x3. It may be the case that some person has a seniority
greater than 20, but this information is not present in the
database. It may therefore be rash to dismiss them as solu-
tions.

In order to admit them as solutions, we treat the filter
constraint x3 > 20 as a weak constraint. Then x3 1 20
is satisfied if either we have positive information that the
seniority is at least 20, or if there is no information about
seniority.

The idea underlying OR-semantics is to use the query.
graph as a pattern of paths for traversing the database. Dur-

231

ing the search phase, we retrieve as many matchings that are
as full as possible, and we filter the unneeded matchings us-
ing the filter constraints.

University

Figure 3: Query graph Gz asking for the staff in the univer-
sity database

[IT
r

=
OR

-

t
1 3
1 3

1 4
1 4 1 1 5
1 5

1 5
1 5

li w I I Y
9 10 17 I
9 10 19 I

11 I 20 Ruth

-T-l-l-

12 I 23 David
12 13 23 David
14 13 23 David

Efi-at
Ben-Yishay
Ben-Yishay
Ben-Yishay

Halevi
Halevi

Table 3: Maximal OR-matchings for query graph Gz over
the university database

Example 3.4 (OR-Semantics) If we evaluate the query
graph Gz in Figure 3 under OR-semantics, we retrieve the
staff in the university database. We find all the people that
are either course teacher, lab instructor, or chairman of a de-
partment. We cannot use weak semantics for that purpose,
since in weak semantics, the variable u must be bound if z
is bound, and the bindiing must satisfy the edge constraint
u Chairman x. Thus, whenever x is bound in a weak match-
ing, then it is bound to the chairman of the department.

Table 3 shows the set of maximal OR-matchings for the
query graph in Figure :3. For terminal nodes, we have listed
the attached atoms instead of the identity of the object.

4 Computing Matchings

This section summarizes results about the computation of
sets of maximal matchings under the three semantics allow-
ing for partial matchings, i.e., weak, AND, and OR-semantics.

Matchings dkpend only on the query graph, which con-
tains the search constraints. They are the result of the (con-
ceptually) first phase of query evaluation. We distinguish
between three cases where the search graph of the query is
either a tree, an acyclic ldg, or a general ldg. According to
the form of the search graph, we call a query a tree query or
a dag query.

It will turn out that for acyclic graphs, the set of maximal
matchings can be computed in time polynomial in the size
of the query, the database, and the result.

4.1 Tree Queries

We have seen that there is no difference between the match-
ings under the three semantics if the query graph is a tree.
Consequently, the sets of maximal matchings are the same.
We sketch an algorithm EvalTreeQuery that computes them.

The algorithm proceeds by first topologically sorting the
nodes of the query graph, that is by establishing a linear
ordering ~0 < ~1 < . . < vn on the nodes with the property
that vi < v3 if there is an edge from vi to u3 in the graph.
Obviously, the first node vo in such an ordering is the root.
The algorithm then performs an iteration over the no,des
according to this order. It maintains a set S of assignments
of database objects to the variables visited. It starts by
assigning the root of the database to the root of the query.
Consider the step in which it processes variable vi with i ;p 0,
and suppose that the incoming edge of ZJ; is U’Zui. Then each
assignment /J E S is extended to vi by assigning objects
o E ZD(~(v’)) to it, if there are any, and by assigning 1. to
Vi otherwise. When all variables are processed, S is the set
of maximal matchings under AND, OR, and weak semantics.
It is easy to derive an upper bound for the runtime of the
algorithm that is polynomial in the size of the input and the
output.

Theorem 4.1 (Complexity of Tree Queries) Supl;‘ose
the algorithm EvalTreeQuery is called with a tree query Q
and a database D then it outputs the set of maximal match-
ings under AND, OR, and weak semantics, and has runtime
which is O(lDl * IQ1 * 1.5’1).

4.2 Acyclic Queries

The algorithm described above can be generalized to algo-
rithms for dags. In a dag query, there may be more than
one incoming constraint for a variable. Consequently, the
sets of matchings may vary according to the semantics.

We describe algorithms EvalOrDag and EvalAndDag for
AND and OR-semantics. Under OR-SemantiCS, a variable can
be bound if in the query some path from the root to the vari-
able is bound, and under AND-semantics it can be bound if
every path from the root to the variable is bound. The al-
gorithms differ from the one for trees in the iteration step
where objects are assigned to the variable vi. Suppose the
incoming edge constraints for a variable vi are the cron-
straints 24lZl v;, . . . , uklk vi. Suppose in addition that we have
an assignment ~1 that has already been processed for the
variables ug , . . . , vi-l, and that we want .to extend it to vi.
Now, EvalOrDag binds o to Vi if there is some uj such that

0 E ~,QM%)).
By the algorithm EvalAndDag, an object o is bound to

vi if o E 1T(p(u3)) for al2.j E l..k, and we consider ly(p(uJ))
to be empty if ,u is not defined for uJ.

Since the nodes in the query are topologically sorted,
the two policies for binding zti guarantee that the algorithms
compute the sets of maximal OR and AND-matChin@, respec-
tively. Again, it is easy to check that the computation takes

only time polynomial in the size of the input and output,.

Theorem 4.2 (Complexity of AND and of OR-Dlag

Queries) The algorithms EvalOrDag and EvalAndDag ,
when called with a dag query Q and a database D, output
the set of maximal matchings under AND and OR-.WnCI&CS,

respectively. They have runtime O(lDj2 * lQ12 * ISI).

An algorithm for computing the maximal weak match-
ings is more sophisticated. However, it is still possible to

232

compute the set of maximal weak matchings in time poly-
nomial in the size of the input and the output.

Theorem 4.3 (Complexity of Weak Dag-Queries)
There is an algorithm that, when called with a dag query Q
and a database D, outputs the set of maximal weak match-
ings. It has runtime O(1D12 * IQ]” * IS]).

4.3 General Queries

Clearly, the sets of maximal matchings under any of our
three semantics are computable in exponential time. The
interesting question is whether it is still possible to do it in
time polynomial in the size of the input and output. For
AND-semantics we can show that the existence of such an
algorithm is highly unlikely.

Theorem 4.4 If there is an algorithm that computes the set
MMat$(Q) for arbitrary query graphs Q in time polynomial
in the input and the output, then PTIME = NP.

Proof. We only provide a sketch. The proof is based on a
reduction of the Hamiltonian path problem. More precisely,
for a given graph G, we construct a query Q and a database
DG such that MMat;(Q) contains only the assignment ~0
that assigns the root of D to the root of Q and I to all
other variables if and only if G does not have a Hamiltonian
path. If there were an algorithm that computes MMatg(Q)
in time polynomial in the size of input and output, one could
derive a polynomial algorithm that returns ~0 if and only if
G does not have a Hamiltonian path. 0

5 Computing Solutions

In the previous section we saw how to compute the set of
maximal matchings for a query over a database. In this sec-
tion we examine the additional effect of filter constraints on
the complexity of query evaluation, considering separately
existence, inequality, and equality constraints.

5.1 Adding Existence Constraints

Existence constraints require query nodes to be bound in
the filtered solutions. This causes parts of the query graph
to be evaluated under strong semantics and turns some filter
constraints into strong constraints. We show that evaluating
tree queries with existence constraints is polynomial in the
size of input and output, while for dag queries no polynomial
algorithm exists, provided PTIME # NP.

Let Q = (G, F, 2) be a query, where G is a tree and
F contains only existence constraints. A node v in Q is
enforced if there is an existence constraint !v in F. In a
tree query, for a node to be bound by an assignment, all
its ancestors must be bound. Let V” be the set of enforced
nodes of Q, and V’ be the set of nodes such that there is
a path from the root to an enforced node in V”. Then we
call the restriction of G to the set of nodes V’ the strongly
evaluated subgraph of G.

The strongly evaluated subgraph of a query tree is the
part that must be evaluated under strong semantics. We
now sketch an algorithm EvaLStrongTree that evaluates tree
queries under strong-semantics. The algorithm is similar to
the computation of an acyclic join in relational algebra using
a semijoin program (full reducer) as in [BG81]. It consists
of the following steps:

1.

2.

3.

4.

5.

find a topological order for the edges of the tree;

traverse the tree according to the topological order and
compute for each edge constraint a relation by collect-
ing the pairs of database objects satisfying it;

reduce the relations using semijoins backwards with
respect to the topological order;

join the reduced relations;

create the set of assignments from the tuples in the
join.

Theorem 5.1 (Complexity of Strong Tree Queries)
The algorithm EvalStrongTree, when called with a tree query
Q and a database D, outputs the set S of strong solutions.
It has runtime O(]Q] * (IDI’ + ISI)).

The set of altered maximal solutions can now be com-
puted by first finding the strongly evaluated subtree of the
query, computing the set of strong solutions for this subtree
using EvalStrongTree, and extending the strong solutions to
the rest of the graph in a similar way as maximal matchings
are computed for a tree query (cf. Section 4).

Theorem 5.2 (Polynomiality of Tree Queries) When
adding only existence constraints a8 jilter constraints to tree-
queries, the set of maximal filter solutions under any of
strong, AND, weak, and OR semantics can be computed in
time polynomial in the size of the query, the database, and
the solution set.

There is no polynomial algorithm for evaluating dag-
queries with existence constraints, provided PTIME # NP.
We say that the evaluation problem for a fixed semantics
and a class of queries is to decide whether for a given query
and database the set of solutions under that semantics is
nonempty.

Theorem 5.3 The evaluation problem for dag queries with
existence constraints is NP-complete.

Proof. (Sketch) There is a classical reduction of 3SAT to the
problem of evaluating a conjunctive query over a database.
The reduction can be modified such that all the predicates
are binary. Hence, the query has the form of a graph. It
turns out, that the graph is even a dag. Evaluation of such
a conjunctive query is the same as evaluation under strong
semantics. Evaluation under strong semantics is enforced by
decorating all nodes of a query with existence constraints.
cl

Under AND-semantics, for a node to be bound all its
incoming constraints must be satisfied, and therefore all
its parent nodes must be bound. Hence, decorating only
the terminal nodes of a dag with existence constraints has
the same effect as decorating all nodes. Under weak and
OR-semantics, however, some nodes without existence con-
straints may remain unbound. One may ask whether this
has an effect on the difficulty of the evaluation problem.

Theorem 5.4 The evaluation problem for dag queries with
existence constraints under both, weak and OR-semantics, is
NP-complete, even if existence constraints occur only at the
terminal nodes of the query.

Proof. (Sketch) The proof is again by a reduction of 3SAT.
The disjunction in 3SAT is encoded into the different choices
that can be made among the paths leading to the con-
strained terminal nodes. 0

233

5.2 Adding Weak Eiquality and Inequality Constraints

Allowing weak equality or inequality constraint,s in the filter
constraints makes the evaluation of a query NP-hard. It
is interesting to note that this is already the case for tree
queries. Thus, the results do not depend on the semantics
under which the search constraints are evaluated.

Theorem 5.5 (Eqnalities and Inequalities) The evalu-
ation problem for tree-queries with either weak equality con-
straints or weak inequality constraints is NP-complete. The
NP-hardness holds for equalities and inequalities, both for
values and objects.

Proof. (Sketch) The proof for queries with equality con-
straints is by a reduction of One-In-All-Pos-3SAT, while
the proof for inequality constraints is by a reduction of 3-
colorability. cl

6 Containment of Search Queries

In this section, we examine containment and equivalence be-
tween queries without filter constraints, that is queries of the
form Q = (G, 8, z). For the sake of brevity, we denote such
a query as Q = (G, 3). We leave the study of more complex
queries to future research. Our definitions, however, apply
to the general case.

Since we are dealing with answers that are partial, that
is, which may contain the value I, we define containment
and equivalence modulo subsumption of answers. Let ii and
a’ be tuples of the sa.me length that contain either atoms
or 1. We say that a is subsumed by a’, and write ii C ai,
if a, = a: whenever ai # I for each component ai of ii and
a$ of a’. An answer in the set Ans>(Q) is maximal if it is a
maximal element of Ans>(Q) w.r.t. to the ordering “En.

The definition of containment is parameterized by the
semantics under which the search constraints are evaluated.
Consider two queries Q = (G, F, Z) and Q’ = (G’, F’, 3:) that
have the same output variables. Let d be one of the seman-
tics defined before-strong, AND, weak, or OR-semantics.
Then Q and Q’ are equivalent under a if for every database
they return the same maximal answers w.r.t. 6. We say that
Q is contained in Q’ under cr if over every database D, and
for every si E ADS;(Q) there is an a’ E Ansg(Q’) such that
a E a’. Obviously, two queries are equivalent under u iff
they subsume each other w.r.t. (T. We write Q&,Q’, where
* E {s, A, UJ, V}, if Q is contained in Q’ under strong, AND,
weak, or OR-semantics, respectively.

Under a semantics that allows for solutions with the
value I, not all variables in the query graph are needed for
computing answers. bdore precisely, a variable from which
there is no path to an output variable never needs to be
bound. By eliminating such nodes, we can cut down the
query graph so that it contains only nodes that are needed.

Let G be a query graph and I be a tuple of variables
appearing in G. By Prr(G) we denote the restriction of G
to those nodes which are on a path from fG to one of the
variables in i. We call PI-,(G) the pruned version of G. The
pruned version of a query graph G has rG as its own root,
and every node in it is reachable from the root. Thus, it is
a legal query graph. &ven a tuple of variables Z, we say
that a query graph is pruned if PI-$(G) = G. By extension,
if Q = (G, Z) is a query, we call the query Q’ = (Pr, (G), Z)
the pruned version of Q, and we say that a query is pruned
if its query graph is pruned.

Proposition 6.1 Let Q = (G,x) be a query and let Q’ =
(Pr,(G), 3) be its pruned version. Then for any database G’
and for * E (A, V, w) we have

Ans&(Q) = Ansh(Q’).

By the above proposition, in order to decide contain-
ment, it is sufficient to check the pruned versions of queries
for containment.

To characterize containment of queries, we need the con-
cept of a query homomorphism. Let Qr = (Gl, 2) and
Qs = (Gz,z) be two queries. A mapping cp from the vari-
ables of Qr to the variables of Qs is a homomorphism from
Ql to Qz if

1. it maps rOots to roots, that is, (P(rG1) = r&; *

2. it maps output variables to output variables, that is,
(~(2~) = xj for each xi E Z;

3. it maps edge constraints to edge constraints, that is,
cp(u)lp(v) is a constraint in Gz for each ulw in Gr.

We start by examining containment for t,he case of two
queries that are evaluated under AND-SemantiCS.

Theorem 6.2 (Containment under AND-Semantics)
Let Q1 = (G~,E) and Qa = (Gl, Z) be two pruned queries.
Then Q1 C,-, Qz, i.e., Q1 is contained in Qz under A.ND-

semantics,if and only if there is a homomorphism from: Qz
to QI.

Since the existence of a graph homomorphism is NP-
complete, it follows that containment of queries under A.ND-
semantics is NP-complete. For tree queries, AND, weak, and
OR-semantics coincide. Thus Theorem 6.2 implies that the
existence of a homomorphism is a sufficient and a necessary
condition for containment among pruned tree queries under
AND, weak and OR-semantics.

We now want to check containment under OR-semantics.
The basic idea in checking containment under OR-semantics
is to reduce containment of arbitrary queries to containment
of tree queries. Let G = (V, rG, .“) be a query graph. A
spanning tree of G is a subgraph T = (V, rr, .T) of G that
has the same nodes and the same root as G, and whose
skeleton is a tree. If Q = (G,z) is a query, then we define
the set of queries

-j?Q := T is a pruned spanning tree of G

We call 7~ the tree expansion of Q. Under OR-semantics, a
query can be evaluated by evaluating each query in its tree
expansion and taking the union of the results. We will use
this fact in order to characterize containment among queries
under OR-semantics.

Proposition 6.3 Let Q = (G,x) be a query and TQ its tree
expansion. Then we have for any database D that

Ansg(Q) = U Ansz(Q’).

Q’E7Q

Theorem 6.4 (Containment under OR-Semantics)
For two queries Q1 = (G~,E) and Qa = (Ga,x) the fol-
lowing are equivalent:

. 91 Cv Q2;

234

l for every query Q; E ‘7& there is a query Q$ E 78,

such that Qi 5 Q:.

Theorem 6.5 (Complexity of OR-Containment)

1. Containment of queries under o%semantics is in II:.

2. The problem is NP-complete if the containee is a tree.

3. It is polynomial if the container is a tree.

Proof. That containment is in II;, is clear from the charac-
terization in Theorem 6.4. The third statement is also clear,
since it can be decided in polynomial time whether there is a
homomorphism from a tree to an arbitrary graph. The sec-
ond claim can be shown by a reduction of the Hamiltonian
path problem. q

For weak semantics we have a characterization of con-
tainment resembling the one for OR-semantics that is given
in Theorem 6.4. The idea is to replace the set of spanning
trees by a set of pruned graph fragments, where a graph
fragment is a restriction of the query graph to a subset of
the variables in the query such that this subset contains
the root of the query and such that all the variables in the
fragment are reachable from the root.

Also, for weak semantics complexity results analogous to
those in Theorem 6.5 hold.

7 Conclusion and Related Work

Semistructured data models are distinguished from classical
“structured” data models by two characteristics: they do
not assume that data have a homogeneous structure, and
they do not assume that data are complete.

The query languages proposed for semistructured data so
far take only the first characteristic into account. In most
models for semistructured data, databases are essentially la-
beled directed graphs. Typically, one can formulate in the
languages proposed thus far navigational queries with regu-
lar path expressions, which apply to a wide range of graph
structures in a database, and are therefore not restricted to
one prespecified schema, see [AV97b, FLS98].

In the present paper, we have concentrated on the second
characteristic. In our opinion, a congenial query language
for incomplete data must allow incomplete answers as query
results. In this paper, we have presented some theoreti-
cal principles for such languages. We believe that maximal
partial answers can contain useful information in situations
where complete answers are not available.

The work on full disjunctions [GL94, RU96] is related
to our notion of maximal matchings under art-semantics.
However, the work on full disjunctions was couched in the
relational model, and the results are not the same as those
we have obtained for the semistructured data model. For
one, we have established a polynomial-time complexity in
the size of the input and output even for dag queries, while
from the results of [RU96] it only follows that full disjunc-
tions can be computed in polynomial time in the size of the
input and output when the relations are y-acyclic. More-
over, we have also investigated other semantics, and intro-
duced a two-phase evaluation process, consisting of search
constraints and filter constraints which is more expressive
than outerjoins. We have also investigated containment of
search queries under the various semantics.

In a project at Hebrew University, we have designed and
implemented a language based on the ideas expounded here.
The language is part of a system to facilitate the access

to the World Wide Web. As described abstractly in this
paper, queries are based on so-called query graphs, which
have to be matched against the database graph. In our
implementation, query graphs are edited with a graphical
user interface. Thus, they allow for more intuitive query
formulation than the text based query languages proposed
so far for semistructured data.

We have deliberately limited our investigation to queries
that do not allow regular path expressions. Regular ex-
pressions present an additional difficulty, one of the reasons
being that they cannot be modeled in first order logic. As a
consequence, reasoning problems like equivalence and con-
tainment for such a language have a significantly higher com-
plexity than in the case studied here. However, any practi-
cal query language for semistructured data will need regular
path expression. How to use them in a language that allows
for incomplete answers is an important and challenging re-
search problem.

Acknowledgments

This research was supported in part by the Esprit Long
Term Research Project 22469 “Foundations of Data Ware-
house Quality” (DWQ), and by Grants 8528-95-1 and 9481-
1-98 of the Israeli Ministry of Science.

References

[Abi97]

[AM981

[AMM97]

[A&M+ 971

[AV97a]

[AV97b]

[BDFS97]

[BDHS96]

S. Abiteboul. Querying semi-structured data. In
F.N. Afrati and Ph. Kolaitis, editors, International
Conference on Database Theory, volume 1186of Lec-
ture Notes in Computer Science, pages 1-18, Delphi
(Greece), January 1997. Springer-Verlag.

G.O. Arocena and A.O. Mendelzon. WebOQL: Re-
structuring documents, databases, and webs. In
Proc. 14th International Conference on Data En-
nineerina, oap;es 24-33, Orlando (Florida, USA).
kebruary’lG98. IEEE Computer Sodiety. ‘.

P. Atzeni, G. Mecca, and P. Merialdo. To weave
the Web. In Proc. 23nd International Conference
on Very Large Data Bases, pages 206-215, Athens
(Greece), August 1997. Morgan Kaufmann Publish-
ers .

S. Abiteboul, D. Quass, J. McHugh, J. Widom, and
J.L. Wiener. The Lore1 query language for semistruc-
tured data. International Journal on Digital Li-
braries, 1(1):68-88,1997.

S. Abiteboul and V. Vianu. Queries and computa-
tion on the web. In F.N. Afrati and Ph. Kolaitis,
editors, International Conference on Database The-
ory, volume 1186 of Lecture Notes in Computer Sci-
ence, pages 122-133, Delphi (Greece), January 1997.
Springer-Verlag.

S. Abiteboul and V. Vianu. Regular path queries
with constraints. In Proc. 16th Symposium on Prin-
ciples of Database Systems, pages 122-133, Tucson
(Arizona, USA), May 1997. ACM Press.

P. Buneman, S. Davidson, M. Fernandez, and D. Su-
ciu. Adding structure to unstructured data. In F.N.
Afrati and Ph. Kolaitis, editors, International Con-
ference on Database Theory, pages 336-350, Delphi
(Greece), January 1997. Springer-Verlag.

P. Buneman, S.B. Davidson, G.G. Hillebrand, and
D. Suciu. A query language and optimization tech-
niques for unstructured data. In Proc. 1996 ACM
SIGMOD International Conference on Management
of Data, pages 505-516, Montreal (Canada), June
1996.

235

[BFW98]

[BGSl]

[Bun971

[CAW98]

[CM771

[CMW82]

[FFK+ 981

[FLS98]

[FPS97]

[GL94]

[GW97]

[HMV96]

[KMSS97]

[KMSS98]

(KS951

P. Buneman, W. Fan, and S. Weinstein. Path con-
straints in semistructured and structured databases.
In Proc. 17th Symposium on Principles of Database
Systems, pages 129-138, Seattle (Washington, USA),
June 1998. ACM Press.

P.A. Bernstein and N. Goodman. Power of natural
semijoins. SIAM Journal on Computing, 10(4):751-
771,198l.

P. Buneman. Semistructured data. In Proc.
16th Symposium on Principles of Database Systems,
pages 117-,121, Tucson (Arizona, USA), May 1997.
ACM Press.

S. Chawathe, S. Abiteboul, and J. Widom. Rep-
resenting and querying changes in semistructured
data. In .Proc. 14th International Conference on
Data Engineering, pages 4-13, Orlando (Florida,
USA), February 1998. IEEE Computer Society.

A.K. Char&a and P.M. Merlin. Optimal implemen-
tation of conjunctive queries in relational databases.
In Proc. 9th Annual ACM Symposium on Theory of
Computing, 1977.

IS. Cruz, A..O. Mendelzon, and P.T. Wood. A graph-
ical query language supporting recursion. In Proc.
198.2 Interlaational Conference on Management of
Data, pages 323-330, Orlando (Florida, USA), June
1982.

M.F. Fernandez, D. Florescu, J. Kang, A.Y. Levy,
and D. Suciu. Catching the boat with Strudel: Expe-
riences with. a web-site management system. In Proc.
1998 ACM SIGMOD International Conference on
Management of Data, pages 414-425, Seattle (Wash-
ington, USA), June 1998. ACM Press.

D. Florescu, A.Y. Levy, and D. Suciu. Query con-
tainment for conjunctive queries with regular expres-
sions. In Proc. 17th Symposium on Principles of
Database Systems, pages 139-148, Seattle (Washing-
ton, USA), June 1998. ACM Press.

M.F. Fernandez, L. Popa, and D. Suciu. A structure-
based approach to querying semi-structured data. In
6th International Workshop on Database Program-
ming Languages, Estes Park (Colorado, USA), Au-
gust 1997. S,pringer-Verlag.

C.A. Galindo-Legaria. Outerjoins as disjunctions.
In Proc. 1994 ACM SIGMOD International Conjer-
ence on Management of Data, pages 348-358, Min-
neapolis (Minnesota, USA), May 1994. ACM Press.

Ft. Goldnmn and J. Widom. Dataguides: enabling
query formulation and optimization in semistruc-
tured datab.ases. In Proc. Pdnd International Con-
jerence on Very Large Data Bases, Athens (Greece),
.August 1997. Morgan Kaufmann Publishers.

M.Z. Hasan A.O. Mendelzon, and D. Vista. Ap-
plying database visualization to the world wide web.
SIGMOD Record, 25(4):45-49, 1996.

Y. Kogan, D. Michaeli, Y. Sagiv, and 0. Shmueli.
Utilizing the multiple facets of WWW contents. In
Proc. 2nd International Workshop on Ned Gener-
ation Information Technologies and Systems, Neve
llan (Israel), July 1997.

Y. Kogan, D. Michaeli, Y. Sagiv, and 0. Shmueli.
IJtilizing the multiple facets of WWW contents. Data
and Knowledge Engineering, 28(3):255-275,199s.

D. Konopni& and 0. Shmueli. W3QS: A query sys-
tem for the world-wide web. In Proc. ~1st Interna-
tional Conference on Very Large Data Bases, pages
54-65. Morgan Kaufmann Publishers, August 1995.

[KS971 D. Konopnicki and 0. Shmueli. W3QS-A system _ _

[LSS96]

for WWW querying. In Proc. 13th -Interna&ona,!
Conference on Data Engineering, page 586, Eiirm-

ingham (United Kingdom), April 1997. IEEE Com-
puter Society.

L.V.S. Lakshmanan, F. Sadri, and I.N. Subrama-
nian. A declarative language for querying and re-
structuring the web. In Proc. 6th International
Workshop on Research Issues on Data Engineering -
Interoperability of Nontraditional Database Systems,
pages 12-21, New Orleans (Louisiana, USA), Febru-
ary 1996. IEEE Computer Society.

[MAG+97] J. McHugh, S. Abiteboul, R. Goldman, D. Quass,
and J. Widom. Lore: A database management
system for semistructured data. SIGMOD Record,
3(26):54-66, 1997.

[MAM+98] G. Mecca, P. Atzeni, A. Ma&, P. Merialdo, and
G. Sindoni. The Araneus web-base management sys-
tem. In Proc. 1998 ACM SIGMOD International
Conference on Management of Data, pages 544-546,
Seattle (Washington, USA), June 1998. ACM Press.

[MM971 A.O. Mendelzon and T. Milo. Formal models of web
queries. In Proc. 16th Symposium on Principles of
Database Systems, pages 134-143, Tucson (Arizona,
USA), May 1997. ACM Press.

[MMM97] A.O. Mendelzon, G.A. Mihaila, and T. Milo. Query-
ing the world wide web. International Journal on
Digital Libraries, 1(1):54-67, 1997.

[NAM981 S. Nestorov, S. Abiteboul, and R. Motwani. Extract-
ing schema from semistructured data. In Proc. 1998
ACM SIGMOD International Conference on Han-
agement of Data, pages 295-306, Seattle (Washing-
ton, USA), Seattle (Washington, USA) 1998. ACM
Press.

[PGMW95] Y. Papakonstantinou, H. Garcia-Molina, and
J. Widom. Object exchange across heterogeneous
informationsources. In P.S.Yu and A.L.P. Chen, ed-
itors, Proc. 11th International Conference on L’ata
Engineering, pages 251-260, Taipei, March 1995.
IEEE Computer Society.

[QRS+94] D. Quass, A. Rajaraman,Y. Sagiv, J.D. Ulhnan, and
J. Widom. Querying semistructured heterogeneous
information. Unpublishedmemorandum, CSD, Stan-
ford University, 1994.

[QWG+96] D. Quass, J. Widom, Ft. Goldman, K. Haas, Q. Luo,
J. McHugh, S. Nestorov, A. Rajaraman, H. Rivero,
S. Abiteboul, J.D. Ullman, and J.L. Wiener. Lore:
A lightweight object repository for semistructured
data. In Proc. 1996 ACM SIGMOD International
Conference on Management of Data, page 549, Mon-
treal (Canada), June 1996.

[RU96] A. Rajaraman and J.D. Ullman. Integrating infor-
mation by outerjoins and full disjunctions. In Proc.
15th Symposium on Principles of Database Systems,
pages 238-248, Montreal (Canada), June 1996. ACM
Press.

236

