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Abstract

Nearly all major commercial computer-aided design systems have
adopted a feature-based design approach to solid modeling. Mod-
els are created via a sequence of operations which apply design
features to incremental versions of a design model. Even surfac-
ing, free-form surface shaping, and deformation operations are in-
ternally represented in modeling systems as features in a “history
tree” that generates the final design. Much in the same manner that
Constructive Solid Geometry (CSG) trees for an individual model
can be non-unique, these design feature histories for solid models
might be ordered in a number of ways and still result in the same
final geometry and topology.

We formulate this problem symbolically and present geomet-
ric reasoning techniques to generate a canonical form for certain
classes of design feature histories. We define this representation as
aModel Dependency Graph(MDG) and show how it can be used as
a basis for developing techniques for managing databases of solid
models. Using the MDG, we introduce algorithms that can assess
the similarity of solid models based on design features. We believe
these techniques can be used to build intelligent CAD knowledge-
bases and to identify meaningful part families from large sets of
designs. Lastly, we describe experimental results and performance
metrics for our approach.

Keywords: Modeling Families of Geometric Objects, Feature-
based modeling, Computer-Aided Design, Constraint-Based and
Parametric Modeling, Engineering Knowledge-bases, Product Data
Management

1 Introduction

Nearly all major commercial computer-aided design systems have
adopted a feature-based design approach to solid modeling. Models
are created via a sequence of operations that apply design features
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to incremental versions of a design model. Surfacing, free-form sur-
face shaping, and deformation operations are internally represented
in modeling systems as features in a “history tree” that generate the
final design. However, much in the same manner that Constructive
Solid Geometry (CSG) trees for an individual model can be non-
unique, these design feature histories for CAD models might be
ordered in a number of ways and result in the same final geometry
and topology.

One of the goals of this research is to develop algorithmic tech-
niques to manage databases of CAD and Solid Models. As pictured
in Figure 1, CAD databases and knowledge-bases are at the core of
the modern engineering enterprise. These emerging digital libraries
store all information relevant over a product’s life-cycle (geometry,
topology, features, revisions, etc.). While the lack of standard rep-
resentation schemes for CAD data and features data is under signif-
icant study, little work has been done to address how to handle the
great diversity that remains even in a turn-key CAD environment.

In order to efficiently store and retrieve solid models from a CAD
knowledge-base, one requires a more uniform representation for
the feature information used to describe the artifact. Note that we
are not introducing yet another feature library—rather, this paper
presents techniques for dealing with ambiguity and variation that
are independent of feature definition. Given that, with a fixed fea-
ture library, one might be able to design an artifact in several alter-
native ways, we present techniques to convert these orderings into
canonical form that is unique over several classes of variation in the
design feature history. Once reduced to a unique form, solid models
can be more efficiently hashed or indexed for storage.

We formulate the non-uniqueness symbolically and present geo-
metric reasoning techniques to generate a canonical representation
of a CAD model’s design feature history. We call this representa-
tion aModel Dependency Graph(MDG). Based on the MDG, we
introduce algorithms that can assess the similarity of solid models
based on design features; measure the “distance” between two CAD
models; index models for database storage; and identify meaning-
ful part families from large sets of designs, such as are stored in en-
gineering databases. Lastly, we describe experimental results and
performance metrics for our approach.

This paper is organized as follows: Section 2 provides an
overview of related work in solid modeling and feature-based mod-
eling. Section 3 presents our formulation of the problem of ambigu-
ous design history trees and introduces our approach to addressing
it based on constraint and graph algorithms. Section 4 describes
our experimental results and Section 5 presents our conclusions and
plans for future work.



Figure 1: The Design Knowledge-Base Scenario: Engineers ac-
cessing libraries of project data to identify ideas and solutions to
new problems. One aspect of this problem is how to retrieve simi-
lar designs and index CAD databases.
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Figure 2: Examples of CSG trees: two different trees that create the
same solid model.

2 Background and Related Work

2.1 Constructive Solid Geometry (CSG)

Constructive Solid Geometry (CSG) is a volumetric representation
scheme for three-dimensional solid geometric models. Solids are
represented as a set-theoretic boolean expression of primitive solid
objects, of a simpler structure [8]. Regularized set boolean oper-
ations and motion operations are used to represent a composition
of primitive geometric shapes. The standard primitives that are
used in the CSG representation scheme are the parallelepiped or
block, the triangular prism, the sphere, the cone, the cylinder, and
the torus [8]. The set boolean operations that may be used are reg-
ularized union, regularized difference, and regularized intersection.
The regularized boolean set operations are extensions of the typi-
cal boolean operations that prevent dangling edges and faces from
resulting. A CSG representation of a solid model can be viewed as
a tree. The primitive shapes used in representing the solid are the
leaves of the tree; the boolean set operations and motion operations
are the interior nodes, as shown in Figure 2 (a). A CSG represen-
tation of a three-dimensional solid model lacks uniqueness. There
may be several ways to represent a single solid model with multiple
CSG representations. One solid may be representable by several
valid CSG representations, as shown in Figure 2 (b).

2.2 Boundary Representation (B-rep)

A solid can be represented unambiguously by describing its surface
and topologically orienting it in such a way so that at any point one
can tell on which side the solid interior lies. The boundary repre-
sentation (B-Rep) consists of a topological description of the con-
nectivity and orientation of the faces, edges, and vertices and a ge-
ometric description for embedding these surface elements in space.
The vertices, edges, and faces are specified abstractly with their in-
cidences and adjacencies indicated in the topological description.
And in the geometric description, the equations of the surfaces of
which the faces are a subset are specified [8].

The boundary representation (B-Rep) scheme represents three-
dimensional solid objects by a hierarchical description of the faces,
edges, and vertices that form the boundary of the model. A face is
specified by the edges by which it is bounded. An edge is specified
by the curve on which it lies and its vertices are points in three-
dimensional coordinate space. The B-Rep representation scheme is
unique, unlike that of the CSG representation [9].

2.3 Features

A feature can be defined differently depending on the context in
which it is to be used. Machining features may differ from forging
features [10]. Features of a solid geometric model are dependent
on the use of the model. In the application of machining, some
example features are holes, slots, and pockets. Each such feature of
the solid model may correspond to some manufacturing procedure
or step of the design process.

2.4 Feature Recognition from Three-dimensional
Solid Models

Much research has been done in the area of automatic feature recog-
nition from three-dimensional solid models [7, 14, 11, 12, 18].
Although there are other representation schemes, the most com-
monly used representations in systems that perform automatic fea-
ture recognition are the B-Rep and the CSG. This is in part due to
the fact that a majority of solid modeling and CAD systems make
use of either the B-Rep or the CSG in their representations. Some
systems may incorporate both into the representation of the solid
models. Boundary representations are often used for rendering and
display purposes, while CSG-tree-like structures supply the design
history of the operations performed in designing an artifact.

One technique used for feature recognition is through the use
of attributed adjacency graphs (AAG) that are generated from the
B-Rep of the solid model and is described in detail in [10]. In an
AAG, each node represents a face of the solid model. Each edge in
the solid model becomes an arc in the AAG where the endpoints are
the nodes that represent the faces that share the edge. Each arc in
the AAG is attributed and specifies whether the faces correspond-
ing to the edge are concave or convex. The technique for feature
recognition described in [10] uses graph-based techniques to search
the AAG of the solid model in question for subgraphs which corre-
spond to the AAG representations of primitive elements, and incor-
porates some special techniques for detecting interacting features.
The use of AAGs for feature recognition is limited to polyhedral
parts with polyhedral features [10].

Another technique for feature recognition similar to the use of
AAG is presented in [11]. The approach presented incorporates
what is termed a cavity graph. A cavity graph consists of nodes rep-
resenting the faces of the solid. Links between two nodes represent
nonconvexity of the corresponding faces. And each node is labeled
to show the relative orientation of the faces in space. The method
proposed uses a hypothesis generation and elimination approach.
The hypotheses are generated by decomposing the cavity graph of



the object into maximal subgraphs and searching searching these
subgraphs for the known cavity graphs of primitive components.
Rule-based methods are used to eliminate incorrect hypotheses and
generate new hypotheses. The methods described also incorporate
the idea of using “virtual links” to aid in finding interacting features
(i.e., additional links are added to the cavity graph) [11].

Convex-hull techniques use volumetric properties of solid mod-
els rather than surface features to extract features. The convex-hull
technique relies on finding the materials that must be removed from
a solid to form the model of the part. The feature extraction pro-
cess uses convex decompositions. An object is represented as a set
of convex components with alternating addition and subtraction of
volumes. The convex decompositions are sometimes known as al-
ternating sum of volumes (ASV) [9]. The technique first finds the
convex hull of the object and then finds the set difference between
the object and its convex hull. The technique is applied recursively
to find the full decomposition of the object. The domain of geomet-
ric objects that ASV can handle is limited, however, as ASV will
not always terminate. The removed volumes also do not always
represent features. Volumes that may be shared by two or more
interacting features will only be applied to one, for example [9].

In addition to the techniques for feature recognition that use B-
rep as input, there exist techniques that use the CSG representation
of the solid model to extract the features. These techniques must
first overcome the problem that CSG representations are not unique.
A single solid model may be representable by several different CSG
trees. Another problem is that nearby nodes in the CSG tree do not
necessarily correspond to features. In fact, it is possible that the
nodes corresponding to one feature may be scattered about the tree.
The set difference operation also does not necessarily correspond
to the removal of manufacturing material, and some removal oper-
ations may be implicit without the use of a set difference operation.
Most methods of performing feature recognition from the CSG rep-
resentation begin by converting it to some other representation first.
Although the potential exists for the CSG representation to more
closely resemble machining operations, in practice there appears to
be a lack of a general relationship between the primitives of a CSG
and the features of the design [9].

2.5 Feature-based Modeling and Design

Modeling and design are typically performed by the addition and
subtraction of primitive shape components from the solid model.
Using this approach, features would be extracted later using a fea-
ture recognition process. However, this is not the only approach
that may be used. Modeling by using design features is an alternate
approach. This is known as feature-based modeling [15, 5].

In [15], it is pointed out that feature-based design has the ad-
vantage of keeping relevant information for applications during the
design process. It is also pointed out that manufacturing concerns
can be considered early in the design process. Using feature recog-
nition, this may not have been possible. A model may have been
designed with features that would be difficult to actually manufac-
ture. In feature-based design, functional meaning is assigned to the
parts of an object during the design phase rather than during the
feature recognition [1].

[13] discusses a combined approach of feature-based design and
design recognition. The feature-based design part of the described
approach incorporates a feature library, consisting of predefined de-
sign features and user-defined design features. The predefined fea-
tures consist of features such as cylindrical holes, rectangular pock-
ets, and slots. User-defined features can be created by the designer
to make up for a deficiency in the features in the library. These
user-defined features can be created with either the feature modeler
or a solid modeler.

Torpedo
Motor

Feature History Tree

Figure 3: An illustration of a model of a torpedo motor housing and
a snapshot of the design feature history tree for the torpedo motor
(each box is a feature or operation on the model). This history tree
was generated when the motor was modeled using Bentley Sys-
tems’ MicroStation Modeler. The over one hundred features and
operations make the history tree difficult to present in detail—for
requiring more detail, this model is available through the National
Design Repository athttp://repos.mcs.drexel.edu/ .

3 Problem Statement and Technical Ap-
proach

The same artifact may be designed in several different ways. One
designer may do things in one order, and another designer in a dif-
ferent order. These different orderings of operations will result in
history trees that can be drastically different and yet represent the
same thing. For example, Figure 3 shows a solid model for a tor-
pedo motor housing consisting of about one hundred design feature
instances. Figure 3 also shows one possible design feature history
tree for this model that can be used to define this part in a commer-
cial CAD environment (there may be many other ways of designing
this part). The non-uniqueness of the history tree poses a problem
as to how to effectively index and retrieve CAD and solid model
data based on feature information.

This problem is similar to that of the non-uniqueness of CSG
models. In the feature recognition techniques that use CSG models
rather than the B-reps, methods of converting the CSG to another
representation or an ordered representation are usually incorporated
to get around this disadvantage [16]. We will incorporate similar
techniques in our use of history trees for similarity comparisons.

Some operations performed on the design are dependent on other
previous operations and must be performed in a specific order. For
example, it is not possible to create a hole in a block that does not
yet exist. But there may be other operations that may be indepen-
dent of all other operations that have been performed on a design.
For example, if we had a block and wanted to subtract out a hole in
one side and create a slot in the other side with no interaction occur-
ring between this slot and hole, then it would make no difference to
the final product which of these two operations occurred first.

The history tree is initially sorted in the relative order of when
each operation was performed in time relation to each other. This
ordering has no bearing on the order of operations performed during
the manufacturing of the component. For example, a designer may
take a block and subtract out a hole in one side and then a hole in
the other side. The designer may then subtract out a second hole



in the first side. When the manufacturing plan is later devised by a
machinist, he or she may decide that the two holes on the first side
can be drilled at the same time, rather than following the exact steps
taken in the design phase.

Hence, to retrieve engineering data from knowledge-bases using
the design history as part of the retrieval probe, it becomes neces-
sary to transform the design history tree in such a way that it is now
ordered solely on the basis of dependencies rather than on an order
based on temporal position.

3.1 Problem Formalization

A design,D, is defined as a tupleD = hT; P; F i where:T is the
history tree of the artifact (a representation of the steps taken in the
design phase of the modeling process);P is the geometric and topo-
logical model of the artifact (including the boundary representation
of the component);F is a finite setF = ff0; : : : ; fng of design
features. In the context of this paper,T can be thought of as a type
of CSG tree and design features are local or global operations on
part geometry.

The boundary representation (B-rep) of a component (or part),
P , is a representation of the geometric and topological model of
the artifact.T is another representation of the geometric model—
related in some way to the steps that were involved in the design.
Most CAD and three-dimensional geometric/solid modeling pack-
ages use either B-rep or CSG representations, and in some cases
both. There also exist techniques for converting (1) CSG to B-Rep;
(2) certain classes of solids from B-Rep and CSG; and (3) feature
identification from solid models. Hence, history information is ei-
ther readily available or can be produced, to a degree, via automated
feature identification techniques [17, 6, 16].

The setF of design features is a finite set defined asF =
ff0; : : : ; fng. These design features can include any volumetric
or surface operation typically used in a commercial CAD environ-
ment (i.e., holes, pockets, slots, bosses, etc.). A history tree,T ,
can be either a tree structured representation of the design phase
of an engineering artifact or it can simply be a linear ordering of
the steps taken to design the artifact. The nodes of this tree repre-
sent the primitive elements added to or subtracted from the com-
ponent during the design phase, such as blocks, cones, and cylin-
ders, operations on those primitives, and operations on the com-
ponent as a whole entity. Some of the possible operations include
blends, chamfers, fillets, extrusions, contouring, and free-form sur-
face modeling.

3.2 Approach

We divide the problem into two phases:

Phase I: Defining a structure called aModel Dependency Graph
using the history tree data;

Phase II: Creating algorithms for comparing models based on
their Model Dependency Graphs.

3.2.1 Phase I: Model Dependency Graphs

As discussed earlier, design history trees, like CSG trees, are non-
unique. That is, for a given solid model, there may be several ways
to design it and result in the same final product, and thus there may
be different design history trees that represent the same design.

To deal with this problem, we create aModel Dependency
Graph (MDG). This graph is a directed acyclic graph which has
some unique characteristics. The model history,1 M , is defined as

1This concept is similar to that of a “design history” which has been
much addressed in the engineering design community.

M = fm0; : : : ;mng. Themi is the complete model at stagei of
the design. That is,mi represents the solid model after featurefi
is applied to the model. There is an ordering inherent in the de-
sign history graph. In the case where it is not clear which operation
or feature came before the other we impose a left-to-right ordering
on the operations. Themi may be generated and stored at design
time. Or they may be easily generated from the design history. Let
vol(fi) represent the “solid” volume that is either added or removed
from the complete model by the application of featurefi.

Figure 4: Pictured is a single solid model and several alternative de-
sign feature histories, and one possible CSG tree, that can produce
it. On the right are the MDGs for each of these alternatives—note
that they are all D-morphic to one another.

Definition 1: Model Dependency Graph- basic definition
A Model Dependency Graph(MDG) is defined asG = (V;E).

The vertex set is defined asV = ff0; : : : ; fng. The indices on
thefi represent the order that the features were applied during the
design process. The edge set can be defined asE = f(fi; fj) such
thati > j; vol(fi)\ vol(fj) 6= ;g. Note that\ is not a regularized
intersection.

One limitation with the MDG as it has been defined in Definition
1 is that it assumes an explicit ordering on the features or design op-
erations. In many cases this may be captured in the solid modeling
application in the form of a design history. But can the MDG be
used when dealing with CSG trees? The answer is yes and can be
obtained by extending the definition of the MDG to work recur-
sively down the CSG tree.

Definition 2: Model Dependency Graph- non-linear definition
Let T = (op left right) be a CSG tree or some non-linear de-

sign history whereop is an operation andleft andright are CSG
subtrees or primitives shapes. LetG1 = (V1; E1) be the MDG of
left that results from either the basic definition or the non-linear



definition. LetG2 = (V2; E2) be the MDG ofright that results
from either the basic definition or the non-linear definition. Then
the MDG ofT can be defined asG = (V;E) such thatV = V1[V2
andE = E1 [ E2 [ E3 whereE3 = f(v2; v1); v1 2 V1; v2 2 V2
such thatvol(v1) \ vol(v2) 6= ;g. Note that\ is not a regularized
intersection.

An example of a solid model with different possible design fea-
ture histories is shown in Figure 4. There is a property of the MDG
that we will exploit in our similarity assessment of solid models:
digraph D-morphism. For a given pair of graphsG1 = (V1; E1)
andG2 = (V2; E2) a D-morphismis formally defined in [4] as
a functionf : V1 ! V2 such that for all(u; v) 2 E1 either
(f(u); f(v)) 2 E2 or (f(v); f(u)) 2 E2 and such that for all
u 2 V1 and v0 2 V2 if (f(u); v0) 2 A2 then there exists a
v 2 f�1(v0) for which (u; v) 2 A1.

Theorem 1: D-morphisms of Model Dependency Graphs.Let
G1 andG2 be two MDGs for the same solid model resulting from
different orderings of a feature setF = ff0; : : : ; fng (such as
shown in Figure 4).G1 andG2 are D-morphic.

Proof: Pick any two orderings of the setF = ff0; : : : ; fng
arbitrarily. Let these orderings beL = fl0; : : : ; lng andH =
fh0; : : : ; hng where 8fi 2 F; 9lj 2 L; hk 2 H such that
fi = lj = hk and9i; 0 <= i <= n such thatli 6= hi. Let
G1 = (V1; E1) be the MDG that results fromL and letG2 =
(V2; E2) be the MDG that results fromH. It is clear thatV1 = V2.
By the definition of the MDG, these vertex sets must be equal to
the setF . Now take any two verticesvk; vl 2 V1. Pick out the
verticesvm; vp 2 V2 such thatvk = vm = fi andvl = vp = fj .
Note thatvol(vk) = vol(vm) andvol(vl) = vol(vp). Therefore,
vol(vk) \ vol(vl) = vol(vm) \ vol(vp). Hence, from the defini-
tion of the MDG, if there is an edge(vk; vl) 2 E1 wherek > l
then either(vm; vp) 2 E2 wherem > p or (vp; vm) 2 E2 where
p > m. Therefore,G1 andG2 are D-morphic.

Some questions may arise given the definition of MDG and the
proof of D-morphism. One such question is how to generate the
MDG of a given model. A possibility is to generate the MDG at
design time. Upon the addition of a feature to the design, a node
must be added to the MDG. Along with this new node, edges must
be added from the newly added node to any previously added node
corresponding to any features for which there is a non-empty inter-
section with the newly added feature.

Another question that will arise is how to handle the possibility
of the same model being designed two different ways or with dif-
ferent feature sets. The same model designed with different feature
sets will have MDGs that are not necessarily D-morphic. And re-
lated to this question is the question of what to do if a design history
is not available for a given model. One solution is to use a feature
extraction system such as F-Rex [14] or Allied Signal’s FBMach [2]
to extract the features. In this way you can use one common set of
features across the entire collection of models. Performing this fea-
ture extraction will result in a unique set of features for the given
model. This set of features will become the node set of the MDG.
You can then order this set arbitrarily and generate the edge set of
the MDG by making use of feature interactions detected during the
feature extraction phase.

3.2.2 Phase II: Comparison and Retrieval

We compare the similarity of 2 solid models by testing for a D-
morphism or for a subgraph D-morphism. The general problem of
determining if there exists a D-morphism for a given pair of di-
rected graphs is NP-complete [4]. However, there are two aspects

of this problem domain that we can exploit to significantly reduce
this complexity:

� First, it is not necessary to completely solve the D-morphism
problem: Since we are only concerned with similarity, know-
ing if two MDG’s are “almost” D-morphic is sufficient.
Hence, we can use a heuristic method for the D-morphism
test. Specifically, we will develop an algorithm that is a vari-
ant of gradient descent (or hill-climbing) that exploits the fea-
ture information we have in the design feature history.

� Second, there is a great deal of domain knowledge present in
the CAD model and in the feature history that can reduce the
search space. For example, we will only consider mappings
that compare similar feature types (i.e., holes map to holes,
not to pockets). Additional constraints about vertex degree
and size, location, and orientation can also be considered.

In testing for a D-morphism, we arbitrarily choose an initial set
of pairings between the nodes of the two graphs (i.e., for each node
of G1 we choose at random a node ofG2 such that no two nodes
of G1 are “paired” with the same node ofG2). We then swap the
pairings of the two nodes that reduce the value of our evaluation
function the most. If there is no swap that reduces the value of the
evaluation function, but there are swaps that result in the same value
(i.e., we have reached a plateau), we choose one of those at random.
The algorithm ends when either every possible swap increases the
value of the evaluation function or it makesP random moves on the
plateau. We are currently usingP = jV1j

2 (whereV1 is the vertex
set in the smaller graph) but are experimenting with this value.

We use as our evaluation function the count of the number of
mis-matched edges. That is, the evaluation function,H = jEj
such thatG1 = (V1; E1) is the smaller of the two graphs be-
ing compared,G2 = (V2; E2) is the larger of the two graphs,
andE = f(u; v) 2 E1 such that((paired(u); paired(v)) 62
E2 ^ (paired(v); paired(u)) 62 E2)
_ label(u) 6= label(paired(u)) _ label(v) 6= label(paired(v)g.
As a measure of similarity we employ the valueH� =
minfH1;:::;Hng

jE1j
whereH1; : : : ; Hn are the values ofH from up

to n random restarts of the algorithm andE1 is the edge set of
the smaller graph. The function “paired(x)” above returns the node
y 2 V2 that is currently paired with the nodex 2 V1. The function
“label(x)” used above returns the label of the nodex.

Algorithm 1: D-Morphism Test
Input: G1 = (V1; E1); G2 = (V2; E2), the two graphs being
tested.P is the number of moves to make on a plateau before giving
up.
Output: H = 0 if the graphs are found to be D-morphic or if one
is found to be subgraph D-morphic to the other. Otherwise,H is
returned whereH is the number of mis-matched edges when the
algorithm halts.
D-MORPHISM(G1; G2; P )
(1) Pairings = GETRANDOMPAIRINGS(G1 ; G2)
(2) i = 0

(3) BestResult =H(G1; G2;Pairings )

(4) while (BestResult > 0) ^ (i < P )

(5) if H(G1; G2,APPLYSWAP(Pairings ,BestSwap )) < BestResult
(6) Pairings = APPLYSWAP(Pairings ,BestSwap )
(7) i = 0

(8) BestResult = H(G1; G2, Pairings )

(9) else
(10) if H(G1; G2, APPLYSWAP(Pairings ,BestSwap )) = BestResult
(11) Pairings = APPLYSWAP(Pairings,BestSwap )
(12) i = i + 1

(13) else
(14) i = P

(15) return BestResult



(a) TEAM

(b) TEAM-2

Figure 5: Two of the test parts from the DOE TEAM Project. Both
of these parts are available from the National Design Repository at
http://repos.mcs.drexel.edu .

The node labels may contain as little or as much information as
you choose. For our experiments, the node labels were simply the
type of feature, such as “hole” or “pocket”. However, by incorpo-
rating more information into the node labels such as dimensions or
orientation, you may restrict allowable pairings which will increase
the algorithm’s performance by reducing the search space. Incorpo-
rating more information in the node labels will also obtain a more
meaningful similarity measure. For example, if some notion of di-
mension was incorporated into the labels then a really large block
with a tiny hole will not be found similar to a little block with a
larger hole.

Algorithm 1 is the algorithm we developed and described for the
D-Morphism Test using gradient descent. In the algorithm,Pair-
ings refers to the set of pairings between the nodes of the two
graphs. And GETRANDOMPAIRINGS returns a random set of pair-
ings as described above.H is the evaluation function that counts
the number of mis-matched edges given two graphs and a set of
pairings between the nodes in these two graphs.BestSwap is the
swap from the set of all possible swaps between pairings that results
in a set of pairings with the smallest value forH. APPLYSWAP re-
turns the set of pairings that results from applying the given swap to
the given set of pairings. To obtain a similarity measure, the small-
est result ofn executions of this algorithm is divided by the number
of edges in the smaller of the graphs.

4 Experimental Results

We generated a family of solid 50 models using the ACIS 3D
Toolkit running on 200MHz Pentium running Microsoft Windows
NT 4.0. These models were pseudo-random variations on the US

Figure 6: Two randomly generated query models with their design
feature histories.

Department of Energy’s Technologies Enabling Agile Manufactur-
ing (TEAM) Project test parts pictured in Figure 5. These parts have
a variety of standard feature types, such as pockets, slots, holes,
counterbore holes, and bosses; in addition, many of the features in-
teract and intersect, leading to a variety of different possible order-
ings for design feature histories and manufacturing process plans.
The two parts pictured have several subtle differences that make
them a useful target domain for experimentation.

Our random “TEAM part” generator is based on the work of
Alexei Elinson at the University of Maryland at College Park [3].
It operates by varying the number of features, the location features,
and the number of different feature types over the part ( depressions
and protrusions, pockets, holes). For each of 50 models generated,
we stored the design feature history of each model along with the
intermediate�fi and the��fi models. Using this information, we
calculated the MDG for each model.

Next, we selected two arbitrary Query Models from the set of
50 random models—these are shown in Figure 6. The figure shows
the design histories of these parts; their MDG graphs are shown
in Figures 7 (a) and 7 (b). Each of the query parts was compared
to each part from the set randomly generated parts. To perform
MDG comparison, a random restart gradient descent algorithm was
used (as described in Section 3) with number of restarts fixed at
20. These matching tests searched for a subgraph of the larger of
the query MDG and the given MDG from the set of 50 that was D-
morphic to the smaller. The matching algorithms are implemented
in C++ using the LEDA graph library. The tests were performed on
a Sun UltraSPARC 30 workstation running Sun Solaris 2.6.

Figure 8 shows the results of these two queries. The histograms
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Figure 7: The MDGs for the randomly generated Query Models.

show that each query model partitioned the set of 50 random parts
into distinct subsets, based on the result of the D-morphism test.
For both query parts, there was a high percentage of parts found to
be “similar.” This is to be expected, since the set of parts consist of a
family of parts generated at random from a limited set of operations
based on the TEAM parts. For both queries, the query models were
each was among the set of models D-morphic to the query.

Results for Query Model 1. For Query Model 1, 18 mod-
els were found such that they were subgraph D-morphic to the
query model or that the query model was subgraph D-morphic to
it. Among this set was the query model itself. Also among this set
was model (a) in Figure 8. If you look at this model you will see
that, likeQuery Model 1, it consists of two slanted faces, one with
2 holes and the other with 3 holes. Also common to bothQuery
Model 1 and (a) is a removal volume adjacent to one of the slanted
faces. These two parts are very much alike. In fact, in this case,
the parts were not only subgraph D-morphic, but were actually D-
morphic.

Next, notice model (b). This model was among 12 models where
the ratio of “mis-matched” edges to total edges at the completion
of the matching test was greater than 0 but less than or equal to
0.125. The actual value of this particular case was 0.07. Aside from
the interaction between one of the slanted faces and the removal
volume inQuery Model 1, the MDG for the query model would be
D-morphic to that of model (b).

Models (c), (d), and (e) were in the next three groups shown on
the histogram for query 1 respectively. Model (c) has an additive
feature on one of its side faces while the query model had no such
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Figure 8: Example output data from examining D-morphism over
the database of 50 solid models for the two query models in Fig-
ure 6. The histogram shows the number of models (from the 50
in the database) that fall into distance categories based on the D-
morphism test. Read from left-to-right, the returned models are in
order of decreasing similarity to the query model.

feature. Model (d) has 5 slanted faces and holes in each and lacks
the slot that theQuery Model 1 has. Model (e) has two additive
features on two of its side faces while theQuery Model 1 has no
such additive features.

Results for Query Model 2. For Query Model 2, 14 mod-
els were found such that they were subgraph D-morphic to the
query model or that the query model was subgraph D-morphic to
it. Among this set was the query model itself. Also among this set
was model (f) in Figure 8. If you examine these two models, you
will see that each has an additive feature on one side face and each
has two slanted faces with holes in each. They are very much alike.

Model (g) is one of 20 models with a ratio of mis-matched edges
to total edges greater than 0 and less than or equal to 0.125. This
ratio for model (g) was actually 0.09. The difference between these
two models is that (g) has a subtractive feature whileQuery Model
2 has an additive feature on on of its side faces.

Models (h), (i), and (j) are in the next three groups on the his-
togram. Model (h) has two subtractive features not in the query
model and the query model has the additive feature on one of the
side faces. Model (i) is the same model as (d). This model was
about the same in dissimilarity as both query models. Every edge
in the MDG for model (j) was mis-matched when compared to that
of Query Model 2. Model (j) has a trench in two of its side faces
and no other features.

Statistics. All 50 models used in this experiment along with
their design history are available as ACIS.sat files at http:
//repos.mcs.drexel.edu/SM99-DATA.



To compareQuery Model 1 against all 50 models took a total
of 243.77 seconds of CPU time on the Sun UltraSPARC 30. For
the 18 comparisons that resulted in a D-morphic match, the median
number of operators required to find the match was 4. The highest
was 1364 moves. In that case, a number of restarts were necessary
before the match was found. This case was actually the comparison
of the query model to itself.

To compareQuery Model 2 to all 50 models took a total of
187.37 seconds of CPU time on the Sun UltraSPARC 30. For the
14 comparisons that resulted in a D-morphic match, the median
number of moves made to find the match was again 4. However,
the highest was only 6 moves. For the second query, no restarts
were necessary for any of the comparisons.

5 Discussion and Conclusions

This paper has presented an approach to the problem of han-
dling variation and non-uniqueness of design feature histories in-
formation. In particular, we introduced a data structure called a
Model Dependency Graphand show how it can be used to manage
knowledge-bases of CAD and Solid Modeling data.

Research Contributions.

Data Structures to Resolve Ambiguity: The MDG can be used
to resolve certain classes of ambiguity in representation of the
design feature histories of CAD and solid models. The MDG
can then be used as a basis for interesting comparison among
solid models.

Index and Query Scheme: The MDG is a useful mechanism for
archival and retrieval of models in CAD databases. Using
algorithms for detecting graph D-morphism, and introducing
some engineering domain knowledge, we have created a gen-
eral technique for archiving large numbers of solid models
and retrieving them based on the similarity of their design fea-
tures. We believe that this technique can be refined and will
have impact on how CAD data is stored and managed.

Detection of Part Families: Based on the MDG, one can create
query artifacts that partition the database of solid models into
different D-morphism classes—based on how similar in struc-
ture each model is to the query model. We believe that this
approach can be refined to detect meaningful part classes and
families in large sets of engineering models. This can form the
basis for more intelligent Product Data Management (PDM)
systems and tools for variational design and variant process
planning.

Future Directions.

Exploiting Geometry and Topology: Information about the fea-
ture locations, dimensions, and orientations have to be ex-
ploited fully. By leveraging some earlier work [3], we hope
to incorporate additional feature attribute information into our
indexing and comparison algorithms.

Use of Engineering Information: Currently, we are considering
plain solid models. In future, we believe that additional do-
main knowledge can be used to refine our techniques. In-
formation about engineering tolerances, surface finishes, con-
straints and parametrics, etc. all can be used to augment the
basic techniques presented here.

Application to CSG trees: We believe that these techniques
might have applicability to the well-known problem of the

non-uniqueness of CSG trees. We conjecture that the MDGs
for different CSG-based descriptions of the same solid model
are D-morphic under different permutations of the same vol-
umetric primitives and boolean operations.

Use of features extracted through feature recognition:If oper-
ating inside a CAD environment, one could plan to retain the
design feature histories as new models are created. However,
for legacy data and for solid models that are converted be-
tween modeling systems, there may not be any ready feature
information. One avenue of future study will be to use auto-
matic feature recognition techniques (such as FBMach from
Allied Signal Inc. [2, 6]) to generate feature data to be used in
the indexing algorithms.

Larger-Scale Experiments: Using the National Design Reposi-
tory, along with feature information generated automatically
via feature recognition (as noted above), we plan to per-
form larger-scale experiments involving a database containing
thousands of solid models.

The authors anticipate having additional results over the com-
ing months—in particular in the area of larger-scale experiments
and extracted features. It is our hope that this research expands
the understanding of this new problem domain in CAD and Solid
Modeling and lays the foundation for exploring new techniques to
enhance our ability to search and retrieve 3D CAD and solid model
data.
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