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ABSTRACT 
Despite the long history of research on feature recognition, its 
research results have rarely been transferred into indu:stry. One 
of the reasons may be the separation of feature recognition and 
process planning. This paper proposes to integrate the two 
activities, and presents efforts towards it: feature recognition 
for manufacturability and setup minimization, feature 
dependency construction, and generation of an optimal feature- 
based machining sequence. 

Keywords: feature recognition, process planning, 
manufacturability, feature dependency, machining sequence. 

1. INTRODUCTIlON 

Computer Aided Process Planning (CAPP) plays a ke:y role by 
linking Computer Aided Design (CAD) and Computer Aided 
Manufacturing (CAM). Given CAD data of a part, CAPP is to 
generate a sequenced :set of instructions to manufacture the 
specified part. In ordser to do that, CAPP has to extract 
manufacturing features of the part. Therefore, feature 
recognition acts as a front-end of CAPP and has been the 
subject of research for two decades. 
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(b) pocket, (c)pocket2 (d) ball end mill 

Figure 1: Manufacturability 

An important issue was raised by [Han97a]: “Feal:ure 
recognition has been considered as a front-end of process 
planning, but there has existed a wall between these two 
activities.” Let us take the example part in Figure l-(a), which 
is similar to the part discussed in [Gain98]. The part can be 
decomposed by either pocket, with the tool axis direction -4; as 
shown in (b), or pocket, with the tool axis’ direction +z: as 
shown in (c). The arrow associated with each pocket indicates 
the tool axis vector for machining the pocket. From the 
manufacturing viewpoint, pocket, and pocket, should be taken 
as different features even though their shapes are geometrically 
equivalent. Suppose that the heights of pocket, and pocket, 
(along their tool axis directions) are 5 and 3, respectively. 
Suppose also that we have a single ball end mill with a cutting 
length (depth) 4, as shown in (d). Then, pocket, is 
manufacturable with the ball end mill whereas pocket, is mot. 
(For simplicity of discussions, we assume that an end mill can 
intrude into the part material up to its cutting length.) Therefore, 
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the part should be decomposed into pocket,, not into pocket,. 
However, most of existing feature recognition systems generate 
a set of features primarily based on geometric information of 
the part solid model, and do not care about its 
manufacturability. 

This shows just an example of the high thick walls 
between feature recognition and process planning. This paper 
presents efforts to break the walls: features are recognized with 
manufacturability guaranteed, and simultaneously 
dependencies among features are analyzed. Finally, this paper 
shows how an optimal machining sequence can be generated 
by the aid of feature dependencies. 

The literature on feature recognition is huge, but not much 
work has been reported on the issues this paper will address. 
An integrated system for feature recognition and process 
planning was developed at the University of MarylandrGupt94, 
Reg195]. Feature recognition focused on manufacturability has 
been exploited at University of Illinois[Gain97, Gain98]. Their 
feature recognition system is made adaptive to resources 
(including tools) and does early process planning tasks. Dong 
and Vijayan’s system recognizes features such that maximum 
amount of material can be removed in each setup in order to 
minimize manufacturing cost[Dong97a, Dong97bl. 

It is widely accepted that generic process planning 
research is saturated, but research based on feature-based 
technique is required to enhance the state-of-the-art[Maro95]. 
In this paper, the research goal is not to resolve the general 
process planning problems, but to develop a feature recognition 
system in accordance with the requirements of process 
planning. 

2. GEOMETRIC REASONING FOR 
FEATURE RECOGNITION 

This section briefly overviews the geometric reasoning kernel 
of our feature recognition system, which has already been 
published in literature[Han97b, Han98a]. It is crucial to 
overview our system’s foundations in order to understand the 
research results presented at Sections 3 and 4. 

f 
rotntion 

,ti 

zj 
end-mill and sweep path pocket = pocket profile + rrreep 

Figure 2: Pocket Definition 

Figure 3: Through Pocket vs. Slab 

2.1 Hint-based Reasoning 

The first author of this paper designed and implemented 
Integrated Incremental Feature Finder (IF*) at USC. Since then, 
IF* has been extended along several directions at NIST and 
Sung Kyun Kwan University. IF* recognizes holes, slots and 
pockets. This paper will focus on pockets because a slot is a 
specific instance of a pocket and a hole can also be taken as an 
instance of a pocket if we consider only milling machine 
centers. In this paper, we restrict discussions on flat end milling 
and ball end milling. 

A pocket is machined by a series of cuts, as depicted in 
Figure 2. The pocket in Figure 2 is made by a flat end mill, and 
is represented by an arbitrarily-shaped planarproJle floor) and 
a sweeping vector. The sweeping vector is perpendicular to the 
profile and its length determines the pocket’s height. 

IF* is a hint-bused reasoning system. Conceptually, a hint 
is a suggestion that a specific machining feature might exist in 
a part. Vandenbrande and Requicha[Vand93] defined the so- 
called presence rule, which asserts, first of all, that a feature 
and its associated machining operation should leave a trace in 
the part boundary even when features intersect. Furthermore, 
the presence rule defines the minimal indispensable portion of 
a feature’s boundary that must be present in thepart. Consider a 
pocket. A pocket can leave, in the part, a floor set or a wall set. 
A floor is perpendicular to the tool axis direction. The wall set 
is composed of aligned faces, all of which are parallel to the 
tool axis direction. A recognizable pocket does not necessarily 
have both the floor set and the wall set. One of them can be 
missing. For example, a through pocket does not have a floor 
and a slab does not have a wall, as depicted in Figure 3-(a) and 
-(b), respectively. Therefore we have two types of hints for a 
pocket presence: floor and wall. 
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(a) stock; 

delta volume stock faces part faces 

(c) partition of delta volume faces 

Figure 4: Delta Volume 

stock (b) axis directions and associated opening regions 
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(c)floor update (d) pocket 

Figure 5: Floor-based Pocket Recognition Algorithm 

2.2 Pocket Recognition: Floor-based Algorithm 

The material to be removed by machining, called delta volume, 
is computed by subtract.ing the part from the stock. The faces of 
the delta volume are partitioned into ‘part faces’ to be produced 
by machining, and ‘stock faces’ to be removed (see Figure 4). 

Given a floor hint, completion proceeds as shown in 
Figure 5-(a) through -(I$. The plane of the floor is intersected 
with the delta volume, and a maximal, connected, non-intrusive 
extension of the floor is computed as shown in Figure 5-(a). 
The extended floor is swept along its normal vector beyond the 
delta volume, to produce a volume V. A pocket removal volume 
V* is proposed by intersecting V with the delta volume - see 
Figure S-(b). V* is tested to see if its boundary has any ‘part 
faces’ besides the floor and walls. If V* has none, we 
instantiate a valid pocket from it. A local coordinate system is 

(a) stock and part 

virtutll floor pocket 

(c) floorless pockets 

Figure 6: Wall-based Pocket Recognition Algorithm 

associated with it so that the floor normal coincides with the 
local Z axis. Computing an enclosing box for V* in its local 
frame provides us with the height of the pocket. 

If additional ‘part faces’ are found in the boundary of V*, 
they are projected on the extended floor, as shown in Figure 5- 
(c), and subtracted from the floor. We then sweep the upd,ated 
floor along the normal and intersect it with the delta volume. 
The height of the intersection is calculated as before, so as to 
instantiate a pocket, as shown in Figure 5-(d). 

2.3 Pocket Recognition: Wall-based Algoritb:m 

Not every pocket has a floor. Figure 6 shows two floorless 
pockets recognized by IF*. We have to recognize a floorless 
pocket starting from its walls. When features intersect, however, 
it is very hard to collect the complete set of walls of a floorless 
pocket from the part boundary. Therefore we have to be able to 
reason from its subset. 

Our procedures for recognizing floorless pockets begin by 
computing possible orientations for the axis of the mill. We 
look for cylindrical faces, or for pairs of non-parallel planar 
faces, which might be part of a floorless pocket’s walls. For the 
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cylindrical face’s axis vector A, or for the cross product A of 
two non-parallel planar faces’ normals, two hints are generated: 
one is A itself and the other is -A (opposite direction of A). For 
example, from the part in Figure 6, we obtain four floorless 
pocket hints: adf, ad2, ad3 and ad4. We will call them axis 
hints (whereas we call the hints in Section 2.2Joor hints). 

Given an axis hint A, a face is said to be visible if it has at 
least a point whose normal vector on the face makes a negative 
dot product with A. Planar or cylindrical faces parallel to A are 
considered invisible. In a delta volume, a connected set of 
‘stock faces’ which are visible along A constitutes an opening 
region. Figure 6-(b) shows the opening regions associated with 
three axis hints. The axis hint ad2 does not have an opening 
region, and therefore is discarded. Once an opening region is 
found, it is swept along the axis hint direction beyond the delta 
volume, and intersected with the delta volume to generate V*. 
In order to analyze V*, a procedure similar to that discussed in 
Section 2.2 is performed. For the detailed discussion for the 
wall-based algorithms, readers are referred to [Han96, Han98a]. 

2.4 Control Mechanism 

The set of features used to create a part is often called a feature 
model or an interpretation of the part. A part can be represented 
by more than one interpretation. Figure 1 shows a good 
example. Multiple interpretations of a part typically correspond 
to different ways to machine the part. Some research groups 
proposed to generate all possible interpretations or an optimal 
interpretationrShah94, Tsen94, Gupta941. Han showed that 
such an approach is subject to combinatorial explosion 
[Han97a], and proposed to generate satisfcing[Simo69] 
interpretations. 

IF2 generates all hints at a time and ranks them by 
assigning a heuristic strength to each hint[Han97b]. The ranked 
hints constitute a priority queue and guide the focus of 
attention of the system. 

Initially, the total volume to be removed is the entire delta 
volume. IF2 processes the ranked hints in order of decreasing 
strength until the delta volume is completely decomposed. If a 
hint does not lead to a valid machining feature, it is deleted and 
the next highest-ranked hint is extracted from the priority 
queue. Otherwise, IF* updates the total volume to be removed 
by subtracting from it the new feature, and checks for a null 
solid. If the result is null, IF’ stops because the delta volume is 
fully decomposed. Otherwise, IF’ takes the new top-ranked 
hint and repeats the same process. We call the repeated process 
recognize-test cycle. 

Note that IF’ ranks hints based on heuristics and generates 
a single interpretation using the ranked hints. IF* tries to 
generate a satisficing interpretation. However, the 
interpretation may not be satisficing to users. IF* provides 
users with the capability of alternative interpretations on 
demand, presented in [Han97a]. 

(a) stock 
X 0) pad 

Z 

Iheight, diameter]= [height, diameter]= [height, diameter]= 

I& 0.71 1490.71 I& 0.71 

(c) features 

~ 

(d) tool database 

Figure 7: Feature Recognition for Setup Minimization 

3. MANUFACTURABLE FEATURE 
RECOGNITION 

Section 2 overviewed IF*‘s geometric reasoning kernel and 
control mechanism. Sections 3 and 4 will present recent 
research results, implemented in IF*, towards the integration 
with process planning. 

3.1 Efforts for Setup Minimization 

In process planning, a smaller number of setups is preferred 
because setup operations are costly and adversely affect 
precision. IF* tries to generate an interpretation which requires 
as small number of setups as possible. Recall that all pockets in 
IF2 are associated with tool axis directions. In 3-axis machining, 
the number of setups is directly related with the tool axis 
directions. 

111 



We distinguish between closed pockets and open pockets. 
A closed pocket may or may not have a floor. (A good example 
of floorless closed pock.ets, is a through pocket that crosses the 
entire part.) Note that, to a closed pocket that has a.floor, an 
end mill has a singZe approachable direction, which is the 
opposite of the pocket’s floor normal. In other words,, the tool 
axis direction determined by such a pocket leads to an 
absolutely required setup in 3-axis machining’. For example, in 
Figure 7-(b), the closed pocket’s floorf, determines a required 
setup -y. In contrast, a part with open pockets may be 
machined in multiple setups. For the part of Figure 1 which can 
be decomposed into either pocket, or pocket,, we have three 
possible setups (-y and -l:z). 

The strategy of IF* for minimizing the number of setups is 
as follows. When collecting hints, IF’ pays special attention to 
the floor hints for closed pockets and obtains the albsolutely 
required setups determined by their floor normals. Floor hints 
for closed pockets can be easily found. If every edge of a floor 
is shared by a part face at a concave angle, the floor is a hint for 
a closed pocket. In the setup determined by the closed pocket 
hint, IF’ tries to recognize as many pockets as possible. When 
IF* recognizes all possible pockets that can be mac:hined at 
those absolutely required setups but the delta volume is not 
fully decomposed, the standard recognize-test cycle is repeated 
for unprocessed hints. 

3.2 Feature Verification for Manufacturability 

Given the part in Figure 7, IF* discovers the closed pocket hint 
f, and recognizes all pockets that can be machined by mills 
approaching along -y direction. IF* recognizes a closed pocket 
cp, from f4, as shown in Figure 7-(c). For cp,, [height, 
diameter] = [2, 0.71 indicates that cp,‘s height along -y is 2 and 
its cylindrical comer between walls has a diameter 0.7. 

At every iteration <of the recognize-test cycle, a Seature is 
tested if it is manufacturable with the available tool set. 
Manufacturability test is indispensable for gene:rating a 
satisticing interpretation, discussed in Section 2.4. Sup:pose that 
IF* is linked with a tool database such as the table shown in 
Figure 7-(d). For the closed pocket cp,, IF* finds the suitable 
tool t,. (Another flat end mill t2 is not suitable because its 
diameter is larger than that of the cylindrical face of cp,. The 
ball end mill t, cannot. be used because cp, needs flat end 
milling.) Therefore cp, is taken as a valid (manufacturable) 
feature, and the recognize-test cycle is repeated for the next 
hint fi, which leads to the open pocket op,. For op,, [height, 
diameter] = [4, 0.71 indicates that its height is 4 along -y and 

’ Even though we consider only pockets in this paper, h[oles act 
a similar role for determining required setups. For a hole with 
an axis vector A, either 11 or -A (opposite direction of A!) leads 
to the required setup. 

the cylindrical blend between the floor and wall has a diameter 
0.7. However, IF* cannot find any suitable tool set for op,. ‘The 
available ball end mill t,‘s cutting length (depth) is shorter tlhan 
the height of op,. Therefore, op, is rejected as an invalid feature. 

All hints have been processed along -y direction, but the 
delta volume is not fully decomposed. Therefore the standard 
recognize-test cycle is repeated. The floor hint f3 will then lead 
to the open pocket op2 shown in Figure 7-(c). Even though op, 
and op2 have an identical shape, they are different pockets with 
different tool axis directions. The ball end mill t,‘s dimensional 
parameters are appropriate for machining op,, and therefore op2 
is accepted as a valid feature. The delta volume is now 
completely decomposed by the interpretation {cp,, op2), ;and 
the recognize-test cycle is terminated. 

3.3 Feature Dependency 

Starting from a hint, IF* recognizes a maximally extended 
feature volume that is compatible with the hint. For examlple, 
given the stock and part shown in Figure S-(a) and m(b), 
respectively, the pocket hint fD leads to the maximally extenlded 
pocket D shown in (c). Notice that D is extended vertically up 
to the stock face. In feature recognition research, maxilmal 
extension method has been widely accepted due to flexibility 
provided for process planning[Vand93, Saku96, Reg195]. 

In Figure 8, the open pocket D’s height is 6 and its 
cylindrical comer’s diameter is 1, as denoted by [6, 11.. D 
should be machined by a flat end mill. However, as shown in 
the tool database of(d), the flat end mill with diameter 1 has a 
cutting length (depth) 3. Then, D would have to be rejected 
because it is not manufacturable with the available tool set. 
However, D turns out to be manufacturable if A is machined 
prior to it. This relation leads to feature dependency. 

In IF*, feature dependency construction is integrated with 
manufacturability test. In order to determine a feature’s 
manufacturability, IF’ computes the portions of its wall faces 
which contact the part. In Figure S-(e), such part-contacting 
portions of D are illustrated in a dark cola?. As discussed in 
Section 2.2, a local coordinate system is introduced so that a 
pocket’s floor normal coincides with the local Z axis. 
Computing an enclosing box for the part-contacting porti~ons 
along the local Z axis leads to the pocket’s so-called required 
volume range. It is called ‘required’ because it is required tal be 
machined even after A is machined prior to D. The other range 
is often called optional. 

2 IF* is implemented using the Boundary Representation 
(BRep) modeler Parasolid, a commercial system marketed by 
EDSAJnigraphics. Extraction of part-contacting portions is 
easily achieved through Parasolid’s Boolean operation and 
attribute facilities. 
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(a) stock 

A: [height, diameter] = [3,0] 

c: [6.5,2] D: [6, l] 

o-9 Pad 

B: (4.5,2] 

E: [S, lj 

(c) features 

ID Type Size(diameter) Cutting Length (depth) 
t, flat end mill 2 5 
s flat end mill 1 3 
f ball end mill 2 5 
t, ball end mill 1 3 

(d) tool database 

(e) part-contacting portions of D (f) feature dependencies 

Figure 8: Pocket Recognition Example 
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By checking the blends among boundary faces of a pocket 
P, we can determine whether P needs flat end milling or ball 
end milling. (For D, a flat end milling is needed.) For selecting 
appropriate milling processes, IF2 collects every milling tool 
with a diameter smaller than or equal to that of P’s blend. 
Those tools are candid(ates that could be used to remove P. (For 
D, t, is chosen.) For each tool T, collect every pocket Q whose 
floor position is between the top of P’s required volume range 
and the top of Irs cutting length (depth). (For D and t2, A is 
collected.) Check if the profile (floor) of Q overlaps P’s profile 
when they are projected along the tool axis direction.. (It is the 
case for D and A) If so, IF2 decides that P depends on Q with 
respect to T. In other words, Q should be machined prior to P if 
T is used for machiniqg P. (The pocket A should be machined 
prior to D if t2 is used for machining D.) We denote such 
dependency by Q-+P, and assign Ton the arrow. (An arrow is 
drawn from A to D, and assigned {t,>.) If we cannot find such 
Q, P cannot be machinled with T. If we cannot find such Q for 
every candidate tool (and there exists no tool that can directly 
machine the entire volume of P), we decide P is not 
manufacturable at all. 

All pairs of such feature dependencies result in a partially 
ordered graph, as shown in Figure S-(f). Let us take a more 
complex example in Figure 8. For machining C, t, and t, are 
collected as candidate tools. For t,, both A and B satisfy the 
above requirements, and so A+C and B+C hold with respect 
to t,. For h, B satisfies the above requirements, and so only 
B+C holds with respect to tZ. These can be combined into (1) 
A+C with respect to {t,} and (2) B+C with respect to (t,, a}. 
These dependencies imply that C can be machined with t, if A 
is removed first, or C can be machined with either t, or t2 if B is 
removed first. It is important to understand that both of’A and B 
are not pre-requisites for machining C. Instead, either .4 or B is 
a pre-requisite. In other words, C becomes manufacturable if 
either A or B is removed first. 

In the graph, CD rep:resents no pre-requisite and therefore A 
and B are taken as manufacturable with no dependency on 
other features. Even for such features, however, IF2 constructs 
feature dependency. For example, B can be immediately taken 
as manufacturable due to t,. Therefore, in the graph, (D-+B 
appears with respect to {&}. However, if we follow the 
dependency construction procedure, we can add in thle graph 
A+B with respect to (t,, t,}. These dependencies imply that B 
can be machined with f .without considering any other features, 
or B can be machined with either f or td if A is removed first. 
As demonstrated in this example, dependency construction for 
an already-manufacturab,le feature allows us to use one more 
tool (tJ and therefore helps us achieve optimization for process 
planning. 

4. MACHINING SIEQUENCE GENERATION 

Let us show how the feature dependency network can be used 

for machining sequence generation. In Figure 8, IF* recognizes 
five manufacturable pockets, A, B, C, D and E, and constructs 
the feature dependency graph. Let us generate a machining 
sequence based on the partial ordering described in the graph. 
We could adopt a simple topological sorting algorithm 
[Corm90] to get a total ordering such as A-+B--+C-+D+E. 
However, this sequence of machining may not be optimal. For 
example, this sequence requires four tool changes. (The 
installation of the first tool is also counted as a tool change.) In 
contrast, some other sequences require only three tool changes. 

In process planning, pursuit of optimality requires a 
number of considerations such as machining cost, tool change 
cost, setup cost, part reorientation cost, etc. In our work., all 
recognized features are associated with specific setups, and1 we 
pursue an optimal machining sequence in each setup. We may 
then measure optimal@ by the sum of machining cost and tool 
change cost, and try to minimize it. 

Given the part material, the feature type/dimensions and 
the tool material/dimensions, it is possible to select appropriate 
cutting parameters such as feed. Once the cutting parameters 
are determined, we can compute the machining cost using well- 
developed formulas such as that in [Khos94]. Machining cost 
estimation is now a regular part in process planning. At the 
time of writing this paper, however, the database (lookup table) 
corresponding to the machining data handbook is under 
construction, and therefore we focus on tool change cost in this 
paper. Note that, however, machining cost can be immediately 
incorporated in the scheme described below. 

If we pursue an optimal machining sequence, the problem 
becomes a search problem. The optimal path to a goal state in a 
search space can be found by A* algorithm which was first 
presented by [Hart et al., 19681. In A* algorithm, we need a 
heuristic function f’that evaluates each state we generate. The 
prime on f indicates that it is an approximation to a function f 
that gives the true evaluation of the state. The function f’ is 
defined as the sum of g and h ‘where g is a measure of the cost 
of getting from the start state to the current state and h ‘is an 
evaluation of the additional cost of getting from the current 
state to a goal state. In other words,f’is an evaluation of the 
cost of getting from the start state to a goal state along the path 
that generated the current path. In our application, g is a 
measure of “how many tool changes have occurred,” and h ‘its a 
guess of “how many tool changes will occur.” We reach a goal 
state when all features are manufactured (with the minimum 
cost). 

Adopting a search algorithm for process planning is noit a 
new idea. For example, Gupta used branch-and-bound 
algorithm[Gupt94], and Sormaz used A* algorithm for optimal 
process planning[Sorm94]. However, their approaches axe 
based on unrefined feature precedence relations, which could 
prevent an optimal plan from being generated. 

Figure 9 shows the search trees spanned until a goal is 
found. Initially, there is only one state: the start state. 
According to the feature dependency graph shown in Figure 8, 
we can start machining either A or B, which is pointed by @ 
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(a) feature-tool table 
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(e) when a goal is found 

Figure 9: Application of A* Algorithm 
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after machining A 

B: [4.5,2] B’: [1.5,2] 

(a) update of feature B 

after machining A after machining D’ 

- t 
E: [S, II] E’: [5, l] E’: [2, l] 

(b) update of feature E 

Fig;ure 10: Feature Volume Update 

and called a maximal element. According to the links from Q 
we can see that A can be machined by either t, or t, whereas B 
can be only by t,. Therefore, as shown in Figure 9-(b), the start 
state has three branch states: A(t,), A(tJ and B(t3), where, for 
example, A(t,) represents machining A with t,. For each state, 
we computef! The g component off’simply counts how many 
tools have been changed. For the state A(t,), g is 1 because the 
first tool installation is counted as a tool change. :For every 
state at the second level of the search tree, g is 1. 

For computing h: we repeatedly use a gree& heuristic 
[Corm90]. From the feature dependency graph, we can create 
the table in Figure 9-(al), where all possible tools are listed for 
each feature. This table is helpful for applying the greedy 
heuristic. The state A(t,) says that t, is selected for machining A. 
Our greedy heuristic proposes that, as t, is already selected, all 
remaining features that can be machined by t, should be 
machined by it. The table shows that C can be machined by t,. 
Then, A and C are assulmed to be machined out, and B, D and E 
remain. Computing h ‘ is to guess how many tool changes will 
be needed to manufacture these remaining features B, D and E. 
Let us again take the greedy strategy. Among the tool,s that can 
machine them, choose ;I tool with most occurrences. It is td that 
can machine B and E. Then, only D remains and it can be 
machined with t,. Our greedy heuristic sets h’to 2: ie. from t, 
to td, and then to 6. Therefore,f’is set to 3, which is sum of g 
andh! 

Let us compute /” for the state A(&), which says tz is 
selected for machining .A. Assuming that all remaining features 
that can be machined by t2 will also be machined by it, we 
decide that we can ma.chine out C and D with t2. Then, the 

remaining features will be B and E, both of which can be 
machined by td. Therefore, h ‘is set to 1, andf’to 2. 

For the right-most child B(t,) of the start state, J’ is 
computed to be 3. Therefore, among the three children, .4(tJ 
looks most promising and is chosen to be expanded at the next 
stage. Because A is machined out, the feature dependency 
graph is changed as shown in Figure 9-(c). Now the maximal 
elements are B : C ‘and D ! The prime on each feature indicates 
the updated feature volume resulting from machining A prior to 
the feature. For example, B is reduced to B’with height I.!!, as 
depicted in Figure IO-(a). Machining cost for the updated 
feature volume B’ is usually cheaper than that for B, and the 
cost for B’should be used when we computef’at the next stage 
(even though we do not include the machining cost for the 
current implementation). Without dynamically updating the 
feature volume and evaluating the machining cost for it, 
optimality cannot be achieved. 

B’can be machined by either t, or t,, C’only by t,, and D’ 
only by t,. Therefore, as depicted in Figure 9-(c), state A(\) has 
four branch states: B ItJ, B ‘(t,), C ‘(t,) and D ‘(Q. Let us traverse 
the search space. In Figure 9-(c), four states B ItJ, B ft.,), C It,) 
and Dft,) are assigned f’ values 4, 3, 4 and 2, respectively. 
Among all terminal nodes in the search tree, D’(t,) has the 
smallestf’value, and so is selected to be expanded at the next 
stage. When D’ is machined out, B: C’ and E” become new 
maximal elements as shown in Figure 9-(d), and therefore 
DftJ has four children B If), Btt,), Ctt,) and E’(t,). E” 
denotes the reduced feature volume resulting from machining A 
and D ‘, as depicted in Figure IO-(b). Figure 9-(d) shows theirf 
values. B I&), Cft,) and E ‘ItJ are assigned 3. Note that theirf 
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values are the same as those of A(t,) and B(tJ at the second 
level, and that of B’(t,) at the third level. We resolve this in 
favor of the path we are currently following such that we can 
avoid backtracking if possible3. At a level, let us choose the 
left-most state. Therefore, we select B ft&. If we keep searching 
this way, we will end up with the expanded tree shown in 
Figure 9-(e). We find an optimal path A-+D’+B’+E”+C” 
which requires only three tool changes: t,+t,+t,. 

If we can guarantee that h ‘never overestimates h, the A* 
algorithm is guaranteed to find an optimal path to a goal, if one 
exists milsSO]. It is very important to note that we do not take 
the feature dependencies into account when we compute h ! 
Instead, we simply use a greedy heuristic. Therefore, h should 
be greater than or equal to the value of h : i.e. h ‘can never be 
an overestimate. Consequently, application of A* algorithm in 
the machining sequence generation always generates an 
optimal solution, i.e. the minimum number of tool changes. 

5. DISCUSSION 

So far, feature recognition research has largely focused on 
finding all possible features, and the task of manufacturability 
analysis is shifted to process planners. Especially when a part 
has multiple interpretations, this often causes serious problems: 
an inefficient plan may be generated or it may be impossible to 
generate a feasible plan. Our system interacts with the tool 
database and does manufacturability analysis together with 
feature dependency construction. These are the main 
contributions of this paper. In many works on feature 
recognition, feature dependency relations are defined among 
nested features, and then the machining sequences are 
determined based on simple rules such as outer-feature-first. 
Such methods do not necessarily lead to efftcient/optimal plans. 
The feature dependency presented in this paper guides the state 
space search for an optimal machining sequence. 

Vandenbrande defined a feature’s optional volume to be 
the portion of the feature that is shared with other features and 
therefore may be removed as a side effect of machining the 
other features[Vand93]. For example, if two slots cross each 
other, both of them have common optional volumes in the 
middle. The main reason for partitioning a feature into required 
and optional volumes was to avoid unnecessary process on the 
optional volumes. However, it has not been clearly 
demonstrated how the process planner can utilize the 
information on optional volumes common to multiple features. 
In contrast, we define the required/optional volumes along the 
tool axis direction, and it is for determining feature dependency. 

3 If all of four states at the fourth level B tt3), B It,), C ‘(t,) and 
E’lt,,) had 4 as theirf’values, we would have to backtrack to 
B It,) at the third level. 

Two crossing slots do not have any optional volumes. 
Unnecessary process on the void region can be avoided by the 
aid of the feature volume update procedure, discussed in 
Section 4. 

We may often be unable to generate an interpretation 
when some features are not manufacturable with the available 
tool set. For example, pocket, shown in Figure 1 cannot be 
manufactured if all available mills’ radii are greater than the 
radius of the pocket’s cylindrical face (pocket corner). Suppose 
that, however, the tolerances of pocket, allow a milling 
operation with a mill whose radius is huger than that of the 
pocket comer. Then, pocket, turns out to be manufacturable. In 
actuality, manufacturability of a feature can be determined not 
only when the available tool set is known but also tolerances 
associated with the feature are examined. Note that tolerance 
can also affect feature dependency. IF* is currently being 
extended so as to be able to do tolerance analysis. 

6. IMPLEMENTATION 

The proof-of-concept implementation of the algorithms 
discussed in this paper was done. Originally IF” was written in 
a combination of C++ and LISP, and operated in Unix. 
However, we changed its base platform into Windows NT on 
PC, and rewrote the LISP portion of IF* in C++, primarily for 
speedup. In order to guarantee features’ manufacturability, we 
also added to IF* the capability of cooperating with the tool 
database. We use Microsoft ODBC APIs which are functions to 
access various DBMSs. IF* obtains geometric services from the 
Parasolid modeler. The interface between IF* and Parasolid is 
discussed in [Han98b]. 

7. CONCLUSION 

Features play a key role in achieving the goal of CAD/CAM 
integration. However, such a goal still seems remote despite 
two-decades of research on feature recognition. One of the 
reasons is that feature recognition is not guided by the 
requirements of downstream applications such as process 
planning. Much of the manufacturing knowledge, which is 
typically used in process planning, is rarely incorporated into 
feature recognition. After the output of a feature recognizer is 
fed into a process planner, there is little communication 
between these two activities. This paper proposes to integrate 
the two activities, and presents efforts towards it: feature 
recognition for manufacturability and setup minimization, 
feature dependency construction, generation of an optimal 
feature-based machining sequence, etc. 

However, more considerations are required for generating 
manufacturable/satisficing interpretations. They include 
tolerance analysis, fixturing analysis, etc. However, research 
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results on these issues have rarely been reported in the open 
literature. We believe that the research works reported in this 
paper provide a framework for the utilization of such 
information. 
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