
Implicit Functions With Guaranteed Differential Properties 

Vadim Shapiro Igor Tsukanov 
Spat.ial Automation Laboratory t 

University of Wisconsin-Madison 

Abstract 

Theory of R-functions [ 121 provides the methodology 
for constructing exact implicit functions for any semi- 
analytic set. This paper systematically explores and 
compares the known constructions in terms of their 
differential properties and explains how such func- 
tions may be constructed automatically from CSG and 
boundary representations of solids. The constructed 
functions may be automatically differentiated and inte- 
grated and have many important applications in mesh- 
free engineering analysis, motion planning, and scien- 
tific visualization. 

1 INTRODUCTION 

1.1 Applications of Implicit Functions 

It is well known that every solid can be represented by a real-valued 
function f, such that 1’ > 0 for all points in the interior, f = 0 
for all points on the boundary, and f < 0 in the exterior of the 
representecl solid. Such functions were used to approximate geo- 
metric shapes in [8, 33, but the theory of R-functions[ II, 12, 151 
gives an algorithmic method for constructing functions that exactly 
represent virtually any geometric shape of interest in engineering. 
Specific constructions for solid modeling and computer graphics 
are described in numerous references, for example see [16,6,4]. 

In its simplest and most commonly used form, a function f 
serves as a characteristic function for the point set in the sense that 
its sign can be used to distinguish points belonging to the set from 
those points that are not in the set. For instance, one can assume 
that f 2 0 is true for points in the set, and f < 0 for all other 
points. This relaxed representation facilitates development of many 
popular algorithms in computer graphics and visualization [4], but 
allowing implicit functions with interior zeros’ compli’nates algo- 
rithms in solid modeling applications [ 171. 
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Implicit function representations of geometric domains. also 
have many other uses in engineering and scientific computations., 
provided that they possess additional mathematical properties. For 
example, it may be desirable that the absolute value of f(p)’ esti- 
mates the distance fromp to the boundary of the geometric pointset. 
Such functions have obvious uses in planning a motion that avoids 
an object’s boundaries [5]. By definition, such a function f is not 
differentiable at all points that are equidistant from the boundaries. 
A Euclidean distance function f is often called the normal function 
for the object, and the set of points where f is not differentiabbe 
corresponds precisely to the points on the medial axis [l] (FQur’: 
2(a)). 

Differential properties of the implicit defining functi0n.s are 
critical in many applications. Solutions to many engineering and 
scientific problems may be formulated in terms of level sets of 
such differentiable functions [ 141. In robotics and vision aplplica- 
tions f may be used to define a potential field, which implies that 
f should be at least twice differentiable everywhere [5, 11. When 
used to construct the solutions to boundary value problems, an im- 
plicit function may additionally be required to be normalized to 
m-th order. This means that along the direction Ti normal to the 
boundary 

af akf 
Y&=1; -gJ=o; k = 2,3,. . . , m (1) 

Intuitively, this condition implies that f approximates the distance 
function to the m-th order near the boundary of the object. Normal- 
ization is required in order to specify Neumann and mixed bound- 
ary conditions [12, p.3191, but it is also useful in constructing em- 

pirical models of various physical phenomena [IO]. Finally, man:! 
algorithms in computer graphics and visualization rely on differ- 
ential properties of normalized implicit functions, for example to 
improve the speed and the quality of rendering algorithms [2,26]. 

Ability to automatically construct implicit functions with guar- 
anteed differential properties - from any traditional solid mod- 
eling representations - paves the way towards imp1ementin.g the 
above techniques within the existing computer-aided design and 
solid modeling environments. 

1.2 Focus on Differential Properties 

From the above (necessarily brief) description of applications, it 
should be apparent that at least four distinct properties of implicit 
functions require further study: elimination of interior zeros, dis- 
tance properties, differentiability, and normalization. This paper 
focuses on the last three issues. We will examine the known prop- 
erties of R-functions and show that systematic application of R- 
functions allows constructing implicit functions with desired and 
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guaranteed differential properties that are suitable for variety of ap- 
plications. For discussion of automatic elimination of interior zeros 
the reader is referred to [ 171. 

It should also be clear that not all of the mentioned properties 
may be achieved simultaneously. Figures 2 and 3 show three dis- 
tinct functions and their gradients for the same two-dimensional 
shape in Figure 1. It is apparent that the distance function in Figure 
2(a) is not differentiable along the curves of points that are equidis- 
tant from the boundaries; by contrast the function in Figure 2(b) 
is differentiable everywhere, including all the comer points, but it 
is not normalized; finally the function in Figure 2(c) is normalized 
everywhere except the corner points and appears to be a good ap- 
proximation of the distance function near the boundary of domain. 

- 
X 

Figure 1: A two-dimensional solid domain 

We shall see that such functions may be built automatically for 
arbitrary (solid and non-solid) semi-analytic sets. 

1.3 Outline 

Differential properties of several popular systems of R-functions 
are summarized in Section 2. In Section 3, we show how these 
properties arise in the context of CSG representations, or more gen- 
erally, Boolean combinations of halfspaces. Section 4 extends the 
study of differential properties to implicit functions for trimmed 
curves and surfaces. Experimental results, including automatic dif- 
ferentiation and comparison of functions constructed from bound- 
ary and CSG representations are described in Section 5. The con- 
cluding section summarizes the significance of our findings and 
suggests several possibilities for further investigations. 

2 DIFFERENTIAL PROPERTIES of R- FUNC- 
TIONS 

2.1 Systems of R-functions 

A real valued function f(~i, x2,. . , 2,) is called an R-function if 
its sign is completely determined by the signs of its arguments zi. 
In other words, f works as a Boolean switching function, chang- 
ing its sign only when its arguments change their signs. For a de- 
tailed account of the theory the reader is referred to [ 121; a brief 

English introduction to R-functions is available as a Cornell tech- 
nical report[ 151. 

The main utility of the theory comes from a fact that every 
formal logical sentence has a corresponding class of R-functions, 
whose signs are essentially determined by the truth table of the log- 
ical sentence. Just as any logical function can be written using only 
three operations 7, A, and V, every R-function may be written as a 
composition of the three corresponding R-functions. For nonzero 
arguments, operation 7 is usually accomplished by changing the 
sign of the R-function. Thus, without loss of generality, we focus 
our attention on the differential properties of the binary R-functions 
corresponding to the logical disjunction V and conjunction A. 

It should be clear from the preceding remarks that R-functions 
are not unique and exhibit a rich variety of differential proper- 
ties. The following are some of the more popular systems of R- 
functions that have been identified by the founder of the theory, 
V. L. Rvachev[l2] and used in various applications: 

R L2: &Jx+yIfr x2 + y2 - 2cuxy) ) 
where cr(fi, fs) is an arbitrary symmetric function such that 
-1 < cu(fl,fi) I 1. 

Ro”: (z+yf~~)(~~+y~)~., 
where m is any even positive integer. 

Rp: f=z+yzt(zP+yp$, 
for any even positive integer p. 

In each case, choosing the (+I-) sign determines the type of R- 
function: (+) corresponds to R-disjunction and (-) sign gives the 
corresponding R-conjunction of the real-valued arguments z and 
y. We now briefly summarize the known differential properties of 
these R-functions. Additional details can be found in [ 12, 151. 

2.2 Properties of R, 
Setting (Y = 1, we see that this most popular class of R-functions 
includes the two simplest R-functions: R-conjuction min(z, y) 
and R-disjunction max(z, y). Both are continuous functions, and 
are fully normalized along the straight lines x = 0 and y = 0, 
but unfortunately, neither function is differentiable along the line 
z = y. This significantly limits use of these R-functions, and in 
fact Ricci functions [8] are constructed as smooth approximations 
to min and max. 

Another interesting special case is cx = 0. In this case we get a 
system of Ra-functions: 

f=x+y*Ji?q 
Differentiating, we get 

(2) 

which indicates that the functions are normalized to thejrst order 
whenever either z = 0 or y = 0. These functions are not differen- 
tiable in the corner point x = y = 0, but they are in fact analytic 
at any other point. For clarity, let us rewrite the partial in polar 
coordinates with x = T cos ‘p and y = T sin cp, and consider the 
directional derivative with respect to direction 7 in the neighbor- 
hood of the corner point (0,O): 

af=,*cos$q bf, 
8X 8Y 

1 fsincp; 

af af af 
(4) 

-Fi 
= ~cosp+-sinp=coscp+sincpfl 

3Y 
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(a) @I cc> 
Figure 2: Different typels of functions for two-dimensional domain shown in Figure 1: (a) Euclidean distance function; (b) c2 function ; (c) 
function normalized to the first order 

(a) @I (4 

Figure 3: Absolute value of gradient of (a) distance function; (b) two times differentiable function; (c) normalized function 

Thus, it is clear that the value of the directional derivatives in the 
corner depends on the direction ‘p of the approach to the comer 
point, but the magnitude of the gradient remains bounded: 

(Vf)2=(g)2-t(g)2 =3*2(coscp+sincp), 

and is equal to 1 in the directions perpendicular to x and y axes as 
follows: 

Conjunction : (Vf)2,,=, = (vf)21V=s = 1; 

Disjunction : (of)“,,,, = (vf)“l,=+ = 1 
(5) 

Figure 6(a) shows the computed plots of the gradients for both 
functions in the neighborhood of the origin. 

Sometimes it may be advantageous to choose LY to be a func- 
tion; for some situations described in Section 3.3, Rvachev [ 121 
proposed to choose cx in the form 

1 
a = 1+ x2 + y2 (6) 

It is easy to check that the resulting R,-conjunction and Ra- 
disjunction with (Y given by (6) are also analytic everywhere except 

the origin. Unfortunately, gradients of these functions may exhibit 
rapid oscillations. In particular, the plot in Figure 7 for the gra- 
dient of R,-conjunction suggests a near-singular behavior in the 
direction of line z = y in the neighborhood of the origin. 

2.3 Properties of IIT and A$, 

The main purpose of the Rk system of R-functions is to remedy 
the loss of differential properties in the comer points 2 = y q = 0. 
Multiplying Re-functions by a factor (x2 + y2) F, we can rewrite 
them in polar coordinates as 

f = rm+l (coscp+sincpfl) 

Differentiating, we see that the function is m times differenti(able 
everywhere, including the comer point z = y = 0 where all partial 
derivatives are identically zero. 

af af 
z = dr,T=o = (7) 
= (m + 1) P (cos ‘p + sin ‘p f l),r=o = 0 

The drawback of these R-functions is that, in contrast to the func- 
tions Ro, they are not normalized. 
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Figure 6: Square of gradient for R-functions in the neighborhood of the origin: (a) Rc-functions, (b) Rr,-conjunction 

Figure 4: (a) Isolines of Rc-conjunction; and (b) intersection of Figure 5: (a) Isolines of Rc-disjunction; and (b) union of two or- 
two orthogonal linear halfspaces thogonal linear halfspaces 

A system of R,-functions is another generalization of Ro- 
functions that achieves normalization to order p - 1. In this case, 

cl* 
xP- 1 

dX 
p--l; 

(x” + yp) p 

Ll* 
yP-’ 

3Y p--l 
(xp+yp) = 

(8) 

Changing to polar coordinates as before, 

(of)” = (g)‘+ (g)2 
= If 

( 
cosp- l 

2 

cp 
p--l 

(co@ ‘p + sinp ‘p) P ) (9) 

( 

sinP-l 

> 

2 

+ If YJ 

(cosp p + sinP cp) Y 

we see that the magnitude of derivatives in the neighborhood of the 
comer point remains bounded in all directions, and the gradient has 
unit magnitude in the same directions indicated by equations (5) 
(Figure 6(b)). Similar calculations verify that higher order deriva- 
tives up to order p - 1 vanish whenever either x = 0 or y = 0. 
The R,-functions are differentiable everywhere, except the comer 
point. 
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Figure 7: Square of gradient of R,-conjunction with CY = ,+r:+yz 
in the neighborhood of the origin 

3 COMPOSITION OF HALFSPACES 

3.1 From Set Operations to R-functions 

In the context of geometric modeling, logical operations, of A and 
V correspond to the standard (non-regularized) set operations on 
ha&spaces. If fi 2 0 and f2 2 0 are two primitive halfspaces, 
then they can be combined using any R-functions; we will denote 
then using their logical counterparts (A and V) from now on. The 
inequalities fi A fa 2 0 and fi V FU 2 0 respectively define the 
sets of points corresponding to the intersection and union of the 
two primitive inequalities. Thus, given any Boolean set expres- 
sion combining primitives defined by inequalities, a simple syntac- 
tic substitution results in a single implicit function and :mequality 
defining the composite region. 

Strictly speaking, the same procedure does not apply to CSG 
representations that rely on regularized set operations. Regulariza- 
tion has the effect of removing from the set all those points where 
the composite function .is zero but whose neighborhood does not 
contain any points in the solid’s interior. Furthermore, syntactic 
translation of a CSG into a single inequality as described above 
may produce zero points in the interior of the solid, whit h may be 
unacceptable for some applications [17, 121. Neither of these prob- 
lems arise if the CSG expressions are well-formed as defined in 
[17]. Well-formed CSG representations exist for every solid, arise 
naturally, and may be constructed automatically. We do not deal 
with the issue of well-formedness in this paper. 

Based on the material! in [ 121, differential properties ofthe com- 
posite functions constructed from well-formed CSG expressions 
are determined by differential properties of CSG primitives and the 
choice of R-functions. 

3.2 Linear Orthogonal Halfspaces 

Consider the simplest situation when fi = x and f2 = y. Then the 
inequalities 

xAy>O; and xvy20 

define respectively the regions of intersection and union of the tw3 
orthogonal linear halfplanes as illustrated in Figures 4(b) and 5(b). 
The differential properties of R-functions imply that in both cases 
the constructed functions are differentiable everywhere in and on 

the boundary of the two domains, except the comer point. Further- 
more, since both x = 0 and y = 0 are normal equations of tb: 
coordinate axis, normalization of the composite function is com- 
pletely determined by the properties of the R-functions A and V. 

In the case of intersection, the resulting region is convex, and 
the gradient in the neighborhood of the convex corner point doe:: 
not exceed unity; whereas in the case of the union, the gradient 
is significantly higher in the concave neighborhood defined by the 
reflex angle (Figure 3). 

3.3 General Smooth Halfspaces 

Differential properties of functions of the form f(hi, h2), wh,ere 1: 
is any R-function and hi (2, y) and hs(2, y) are arbitrary smooth 
normalized functions, can be observed through a simple coordinate 
transformation: 

x + hl(G Y) ; Y -,hz(x,Y); 

Then the partial derivatives of the composite function are given by 
the Jacobian transformation: 

where the partial derivatives $ of R-function f depends on the 
chosen system of R-functions. &IS, the magnitude of the gradient 
of f(x, y) at any point (x, y) is a scalar multiple of the gradient of 
the corresponding R-function f(ht , h2). The transformation (10) 
preserves normalization of the function f on boundaries of halfs- 
paces hi = 0 and ha = 0. For example, if hi = 0, then we have 
E = 1, z = 0, andconsequently (Of)“,,,=, = (z?: + 

$$$$a)2+($%+$%)2 = (%)“+(%)“. Because 
hr2is normalized’on the linz hl = 0, we get (Vf)2,h1=,, := 1. 
Results are similar for 112 = 0. 

Other differential properties of R-functions are also inherited 
by the composite functions. In particular, if f is an Re-function 
or Rr,-function, then the composite function is analytic everywhere 
except the comer points, and the normalization of hl and Ji:a is 
preserved to the corresponding order on all points where only one 
of hi = 0. The normalization property of Re-functions breaks 
down when the two halfspaces are identical, i.e. hi I ha, bjut is 
preserved by R,-functions with Q! defined by equation (6). Sim- 
ilarly, if f is an RZ;“-function, then the composite function is m 
times differentiable everywhere, including all comer points, but is 
not normalized. 

In a more general situation, the number of halfspaces hi need 
not be limited to two. Suppose the boundaries of n halfspaces {hi} 
intersect at a single point p and are combined by some R-function 
f(hl, ha,. . . , hn) to define a planar region S. If S is homoge- 
neous in dimension in the neighborhood of p, then some even num- 
ber of boundaries L%i form the boundary of S, while the rest of 
them do not contribute (see Figure 8). Then the properties of R- 
functions imply that those halfspaces that do not contribute to the 
boundaries of the region S have no effect on the differential proper- 
ties and magnitudes of derivatives at regular points of the boundary 
of S [12, pp.128-1371. 

The generalization to higher dimensions is straightforward. 
When a number of three-dimensional halfspaces {hi} are com- 
bined by an R-function, then the smoothness and normalization 
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Figure 8: Halfspace ha does not contribute to the boundary of the 
domain and does not affect the differential properties of the com- 
posite function 

properties are assured by the choice of the corresponding R- 
function on all regular points of the halfspace boundaries. If two 
or more surfaces (boundaries of halfspaces) intersect along some 
curve C, then taking a normal planar section at every point of C 
yields the two-dimensional situation described above. The behav- 
ior of the composite function is naturally extended to the vertex ‘u 
defined by intersection of three or more surfaces, where it is ei- 
ther m differentiable in the case of an Rr-function, or in the case 
of Ro- and R,-functions, has discontinuities in derivatives with 
bounded magnitude depending on the direction in the neighbour- 
hood of v. 

Example. The solid in Figure 9 is defined as the intersection of 
five halfspaces: two cylinderical, one conical, and two planar. To 
construct a normalized function for the solid, we apply the RO in- 
tersection to the normalized functions for each primitive halfspace: 

l Cylindrical: 

f1= 
1 - X2 - y2 

2 ; 

f2 = _ 0.252 o f2 - ~2 ; 

l Planar: 

f3 =z; 

f4 -2 = (x - 1) + 2 (y - 1) - 4 (z - 1) 

245 

l Conical: 

f5=?$- 

The plots for the composite function Ro-operations: 

w = fl A0 f2 A0 f3 A0 f4 A0 f5 (16) 

(11) 

(12) 

(13) 

(14) 

sectioned at z = 0.5 and z = 0 are shown in Figures 9(b) and (c) 
respectively. 

4 TRIMMED CURVES AND SURFACES 

4.1 Simple Trimming 

Every trimmed curve or surface can be constructed by some se- 
quence of set operations on unbounded primitives, which immedi- 
ately suggests that they too can be described by implicit functions 
using the theory of R-functions. First we need to describe an infi- 
nite curve or surface. The traditional representation by the equality 
h(p) = 0 is not acceptable, because only inequalities of the same 
type are suitable arguments for R-functions. If curve C is a bound- 
ary of halfspace h(~, y) 2 0, then it can also be defined as 

(h > 0) n (4 2 0), or (h A -h) 1 0. 

However, examination of the resulting expressions for derivatives 
shows that any choice of R-function A (except Ry) will result in a 
function that is not differentiable at all points of the curve. We can 
also rewrite the curve as an inequality --h’(p) > 0, but this func- 
tion is not normalized, even if h is. We can achieve normalization 
by defining the curve as --a 2 0 but again this function is not 
differentiable on all points of the unbounded curve. 

The above difficulties are bypassed by first using R-functions 
to construct the inequality for the trimmed entity, and then normal- 
izing it. Consider the construction for a semi-infinite curve as an 
unbounded curve h(z, y) = 0 trimmed by a halfspace x 2 0: 

(-h2 2 o)n(2 2 0) or f = (-h2) A 2 2 0. (17) 

The composite function f is negative everywhere except the points 
on the trimmed curve where it is zero. For systems RI, Ro, and Rp, 
it is analytic everywhere except the origin, where the magnitudes 
and directional properties of discontinuities of derivatives can be 
estimated using the methods described in Sections 2 and 3. The 
function is not normalized, and its normal derivatives are zero on 
all points along the curve. However, when h is normalized, it is 
shown in [ 12, p.1951 and [24, p.2061 that the normalized composite 
function fl can be obtained as: 

fl = n = & ((-h2) A z). (18) 

It should be clear that - fl 1 0 defines the same set of points 
because it preserves the zero and the negative points of f. The 

function defined by (18) is not differentiable on the points of the 
trimmed curve, but is analytic everywhere else. Furthermore, fl is 
normalized on both sides of the curve along the opposite normal 
vectors 5i and F (Figure 10). 

Figure 10: Opposite normal vectors of trimmed curve 

4.2 Normalized Trimming 

Because trimming relies on R-conjunction, any resulting function 
will exhibit rapid changes in gradient magnitude near the end point. 
Moreover, the square root in expression (18) implies that $& + co 
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(a) (b) (cl 
Figure 9: Solid object(a) and composite function f(z, y, z) plots in (b) section z = 0.‘5, (c) section x = 0 
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Figure 11: Normalized trimming of a curve 

as z + 0 when approaching the end point from outside OF the trim- 
ming halfspace. This type of anomaly can be observed in isolines 
- see Figure 12(a) - of a function fr defining the positive por- 
tion of the 3:-axis (i.e. h = y). Rvachev proposed a technique that 
normalizes the resulting function in all normal 2 directions near the 
end point, which we will call ‘normalized trimming’. Consider two 
functions wr and wa in the neighborhood of the point, such that WI 
gives distance from any point P to the line Lr; wa is identically 
zero in region 01 and be:haves as a distance function to the line La 
in Ra. Here, L2 is the local boundary of the trimming halfspace 
and Ll is the curve being trimmed. Then the function 

w= 
J 

wf+wz” 

defines the Euclidean distance from any point to the trimmed 
halfline [12]. If functions wr and wa are normalized to the first 
order then the function defined by (19) is normalized to the first 
order. If a function w; that describes the trimming region by the in- 
equality (wl > 0) is constructed using R-functions, then it is easy 
to construct the desired function wa: 

Substituting this expression into (19) we obtain: 

w= w,2+ 
J 

(IWZ’I - d2 
4 

‘For a point z E S direction i7 is normal if there exists a point p +T 5 such that p 
is closer to z than other points of S [IZ]. 

The isolines of w defining the positive z-axis, with wr = y and 
w; = z are shown in Figure 12(b). Though not visible in the plot, 
this construction leads to discontinuous second derivatives on the 
line where w; = 0. This can be remedied by further modifying the 
construction for ws as suggested in [12]: 

w2= JGiiW-w; 

Then expression (19) can be rewritten as follows: 

“&-G&7 (21) 

which gives the implicit function for the trimmed curve that is nor- 
malized in any normal direction in the neighborhood of the end 
point of the curve. The isolines of this function are shown in Fig- 
ure 12(c). 

Normalized trimming guarantees the normalization only if the 
lines Ll and L2 are orthogonal at their intersection point; otherwise 
expression (19) no longer gives the Euclidean distance to the point 
0 (Figure 11). For example, Figure 13(a) shows the loss of nor- 
malization at the end point when the z-axis is trimmed by a linear 
halfspace inclined at 45’. When normalization is important, it can 
be restored at non-orthogonal intersections by orthogonalizing of 
lines Ll and Lp at their intersection point. For example, replacing 
function wz with 

W;* =w; -w1vw;.vw1 (22) 

gurantees normalization even for non-orthogonal intersections [22, 
121, as is illustrated in Figure 13(b). 

4.3 General Trimming 

All of the above constructions generalize in a straightforward fash- 
ion. For example, let h(p) = 0 be an equality describing an un- 
bounded entity (curve or surface), and let 4(p) 2 0 define the 
“trimming” region containing some portion of the unbounded en- 
tity. Then the trimmed entity is given by the intersection of the 
unbounded entity and the trimming region, and is defined by the 
inequality 

f = -J- ((49) A I$) 2 0. (23) 

The composite function f is zero on points of the trimmed en- 
tity, and is strictly negative everywhere else. Normalized trimming 
(possibly with orthogonalization) may be also applied. 
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(4 (4 

0) 

Cc) 

Figure 12: Isolines of functions for the trimmed halfline shown in 
Figure 11: (a) simple trimming; (b) normalized trimming with 2nd 
order discontinuity; (c) normalized smooth trimming 

The differential properties of the composite function are deter- 
mined by the differential properties of h and 4 and the trimming 
method. In particular, if h and 4 are both smooth and normalized, 
then f is also smooth everywhere and normalized on all points of 
the trimmed entity, except the “border” points lying on the bound- 
ary of the trimming region. The notion of a trimming region is 
not new; for example [9] uses a similar concept in order to con- 
struct Boolean expressions for faces in the boundary representa- 
tions. Notice that a Boolean representation of the trimming region 
can be trivially translated into a single inequality 4 1 0 by syn- 
tactic substitution of R-functions for the Boolean set operations. 
The differential properties of 4 may be determined as described in 
Section 3. 

Example. Let us construct an implicit function for the cylin- 
drical face of the solid in Figure 9. The unbounded cylindrical 
surface is given by equation (11). The trimming region in this case 
is the intersection of the halfspaces (two planar and one conical); it 
is unbounded, but its restriction to a box that contains the solid is 
shown in Figure 15. The function defining the trimming region is 
constructed as 

(b) 

Figure 13: (a) The influence of non-orthogonality of lines Ll and 
Lz at point 0 (Figure 11); (b) The result of orthogonalization (22) 

and the implicit function for the trimmed cylindrical face (Figure 
16(a)) is obtained by applying the expression (23) to function fr 
defined in (11) and function I$ defined in (24). Figures 16(b) and 
f)=pr the resulting composite function in sections z = 0.5, and 

5 Experimental Results 

We implemented all of the above construction techniques in the 
SAGE (Semi-Analytic Geometry Engine) computational environ- 
ment that is being developed by the authors at the University of 
Wisconsin, and we experimented with variety of composite func- 
tions automatically constructed from boundary and CSG represen- 
tations. 

Figure 14: Angle between boundary of trimming region and 
trimmed line. 

d = f3 A0 f4 A0 f5, (24) 
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5.1 Boundary Representation vs CSG
Given a well-formed CSG representation, the corresponding im-
plicit function is obtained by a syntactic substitution of the desired
R-functions for the set operations in the CSG expression. The re-
sulting function will inherit the properties of the CSG primitives
and the R-functions. In particular, using RF-functions will en-
sure that the constructed functions are differentiable everywhere,
including edges and vertices. If all primitives are represented by
normalized functions and combined using Rp- or &-functions, the
resulting composite function will also be normalized and analytic
everywhere except the edges and vertices of the three-dimensional
solid. Figure 17(a) shows the isolines of the composite function
for Washington Island (Door County, Wisconsin) whose boundary
consists of 613 linear edges. A well-formed CSG representation
for this polygon was constructed automatically using the decreas-
ing convex hull algorithm [17] with one linear halfspace for every
edge in the boundary, and Ro functions were applied in place of

the CSG operations. It took 232 seconds 3 to constructed this plot,
by sampling the function on a 90 x 90 regular grid and bilinearly
interpolating the sampled values.

A boundary representation can be converted to a CSG repre-
sentation using the techniques described in [19, 20, 21]. But the
desired implicit functions may be also constructed directly from
the boundary representation. We already described the procedure
for constructing an implicit function for an individual face as inter-
section of an unbounded surface and a trimming region. Since the
boundary representation is a finite union of faces, the implicit func-
tion for the boundary of the solid may be constructed by “gluing”
the individual face functions together, using R-functions. Differ-
ential, normalization, and other properties of the composite func-
tion may be further affected by this construction [10, 12], but can
be controlled using methods summarized in this paper. For exam-
ple, if the ith face of the b-rep is defined by an implicit function
wi =o, i=l,2,... , n, then the function w = w1 A wz A. . . A w,,
is the implicit function defining the boundary of the solid. The re-
sulting function will be zero everywhere on the boundary of the
solid and strictly positive everywhere else; it does not distinguish
between the interior and exterior of the solid, but this information
is available from the boundary representation. In other words, if a
PMC function E(p)  returns 1, 0, or - 1 depending on whether point
p is in, on, or out of the solid respectively, then the function f =: [w
is the usual solid defining implicit function [16]. Figures 17(b) and
(c) show two functions for the same polygon constructed directly
from the boundary representation of Washington Island: using the
simple trimming in Figure 17(b) and using the normalized trim-
ming in Figure 17(c). By comparison, the functions constructed
from the boundary representation are composed of twice as many
primitives (because every linear edge was trimmed by a circular
halfspace) and the total evaluation time took 397 (Figure 17(b))
and 367 (Figure 17(c)) seconds, including point membership clas-
sification for all points on the grid.

It should be clear that computing time grows linearly with the
size of the constructed function. For example, it takes 11,400 sec-
onds (3 hours and 10 minutes) to compute the composite function
from the boundary representation of the entire state of Wisconsin
(20,748 edges) on the same uniform rectangular grid 90 x 90 (Fig-
ure 18).
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5.2 Normalization and Global Properties
Notice that the functions constructed from a boundary representa-
tion appear be qualitatively better than the corresponding functions
constructed from CSG. This is explained by the fact that construc-
tion from boundary representation relies on R-conjunction applied
to nonnegative arguments; recall that the gradient of R-conjunction
fluctuates significantly in the neighborhood of the comer points in
the zone where both arguments are negative. These local fluctua-
tions tend to compound and propagate, particularly in the presence
of small edges or faces. A similar qualitative difference is apparent
in comparing the functions constructed from the boundary repre-
sentation. Normalized trimming in Figure 17(c) results in a func-
tion that is smoother and is closer to the true distance function than
the function in Figure 17(b) constructed using simple trimming.

More generally, the higher degree of normalization near the
solid’s boundary, the better the resulting function will approximate
the distance function. Recall that &-functions can assure normal-
ization to order p - 1. We observe that as p increases, the con-
structed composite functions approach the true distance function

near the regular points on the solid’s boundary, and begin to resem-
ble the distance function globally. For example, compare the func-
tion constructed using &,-functions  with p = 12 on normalized
primitives in Figure 19 to the distance function in Figure 2(a); this
smooth function is not quite the distance function, but there is an
apparent correspondence between the set of points where functions
have the maximum curvature and the medial axis for the shown
domain.

Figure 19: The function constructed using Rp operations for p =
12

For another example of how normalization on the boundary
may affect the global behavior, let us compare the simple and nor-
malized trimming described in Section 4.3. Figures 20(a), (b), and
(c) show the effect of changing the angle cp between the boundary
of the trimming region and the line for every one of the four line
segments in the boundary representation of the rectangle in the case
of the simple trimming using equation (18). The test case geometry
is illustrated in Figure 14. Recall that the purpose of normalized
trimming is to assure that the function is normalized in all direc-
tions near the corner points. Figures 20(d), (e), and (f) show the
corresponding functions for the same geometry using normalized
(but not orthogonalized) trimming. Computations were performed
for three values of ‘p: ‘p = n/l0 (Figures 20(a)  and (d)); 9 = 7r/4
(Figures 20(b) and (e)); ‘p = rr/2 (Figures 20(c) and (f)). As the
angle ‘p increases, it should be obvious that normalized trimming
contains local defects in normalization much better than the sim-
ple trimming method that could lead to functions such as in Figure
20(a).
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5.3 Automatic Differentiation

Differential properties of the constructed functions may be useful
indirectly, for example to guarantee convergence or correctness of
sampling algorithms. But many more important applications (so-
lutions of differential equations, sensitivity analysis, control sys-
tems) require explicit computation of derivatives at various points
in space. Several differentiation techniques are known:

Symbolic differentiation may be used when we have closed-
form expressions for the function. Commercially available soft-
ware can produce symbolic expressions for partial derivatives of a
function with respect to independent variables. Once these expres-
sions are computed, they may be evaluated at any point of interest.
However, the symbolic computations are fairly intensive, and the
symbolic expressions quickly become unmanagable in their size
and complexity.

Numerical (approximate) differentiation uses either finite dif-
ference evaluation of derivatives or differentiation of the approxi-
mation of a given function by polynomials or splines. These tech-
niques may be particularly useful when the functions are defined by
(interpolation of) a discrete set of points. In some cases, numerical
differentiation may become unstable or inaccurate.

Automatic differentiation is a term used to describe the pro-
cess of exact differentiation that propagates values of derivatives
(as opposed to expressions in symbolic differentiation). For a re-
cent survey on automatic differentiation see [7].4 Of course, the

4Automatic differentiation is most commonly applied to a computer program and
user-specified dependent and independent variables - to produce another program to
compute the corresponding partial derivatives. But this technique is not very practical

numerical automatic differentiation process has to be repeated at
every new point of interest. The procedure uses forward appli-
cation of the chain rule - from independent to dependent vari-
ables. Such recursive procedures have been derived for all elemen-
tary functions. In each case, given values of functions fi and all
their partial derivatives through order k, the procedure computes
the values of all partial derivatives of the composite function that
combines f; . The recursive rules have been derived independently
by a number of researchers [7, 13,23,25].

Our particular implementation of automatic differentiation is
based on the procedure originally proposed in [13] and the formu-
lation in [23] that places no restrictions on the number of indepen-
dent variables and order of derivatives. Elementary and arithmetic
operations have been defined as friend functions of a class tuple
and overload the corresponding usual operators in C++. Each tu-
ple contains the values of functions and all of its partial derivatives
through the specified order at a single point. Overloading allows
preservation of the usual notation for mathematical expressions. In-
dependent variables are generated by function Argument(tuple  &n,
int dim, double value) that sets function’s value to value, and the

Other partial derivatives are zeros.
All pictures of gradients in this paper were produced using this

code. The time to compute a tuple at a point grows linearly in the
number of operations in the composite function, and exponentially
in the number of independent variables and the order of deriva-
tives.
when, as in our case, the functions being differentiated are constructed at run time.
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6 CONCLUSIONS 

The main contribution of this paper is the careful and systematic 
analysis and experimental studies of the constructive means of- 
fered by the theory of R-functions in the context of solid mod- 
eling representations. We conclude that implicit functions with 
guaranteed differential properties may be automatically constructed 
for any solid bounded by polynomial surfaces from the traditional 
solid modeling representations. It is not clear at this time how the 
described constructions may be extended to parametric surfaces. 
Automatic differentiation and integration of such functions can be 
carried out efficiently and robustly. Our results open new opportu- 
nities for scientific and engineering applications of solid modeling 
that can take advantage of such global functions. For example, we 
showed in [IS] that such functions allow meshfree simulation of 
engineering problems with deforming domains. 

Many other techniques and methods from the theory of R- 
functions remain to be investigated. For example, normalization 
of primitives or intermediate results may be difficult or computa- 
tionally expensive, and it could be advantageous to perform nor- 
malization as the last step in the construction process. A technique 
described in [ 121 transforms any function f into a function fi nor- 
malized to the first order as follows: 

The computational implications of this procedure require further 
investigation. The “gluing” of implicit functions for individual 
faces may be considered as a trivial case of transfinite interpola- 
tion. Further generalizations of the known interpolation techniques 
based on the theory of R-function appear promising and useful in 
the context of numerous applications. 
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