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Abstract

User-level network interfaces (UNIs) have reduced the overheads of communication by
exposing the buffers used by the network interface DMA engine to the applications. This
removes the kernel from the critical path of message transmission and reception, and it
reduces the number of data copies performed on that path. Unfortunately, the fact that
UNIs require the application to manage buffers explicitly makes it difficult to provide
direct access to a UNI from Java, as the language explicitly prevents programs from
controlling the location or layout of objects.

This paper describes Javia, a Java interface to the Virtual Interface Architecture (VIA),
an emerging UNI standard in the industry. Javia implements a special buffer abstraction
that allows Java programs to allocate arrays in pinned memory and use them as
communication buffers without copy. The location and lifetime of these arrays are
controlled through small modifications to the garbage collector. Simple experiments
show that Java programs can achieve round-trip times of 21us for small messages and
bandwidths of 95Mbytes/sec for 4Kbyte messages.

1 Introduction

User-level network interfaces (UNIs) introduced over the last few years have reduced the overheads of
communication within clusters by removing the operating system from the critical path [PLC95, vEBB+95,
CMC98]. Intel, Compagq, and Microsoft have taken input from the numerous academic projects to produce
an “industry standard” UNI called the Virtual Interface Architecture (VIA) [VIA97]. At this point,
commercial VIA hardware is available (e.g. from GigaNet [GNN]) and studies demonstrate the
architecture’s potential for high performance [BGC98] as well as for supporting higher level
communication abstractions and clustered applications [SPS98, SSP99].

This paper examines how the performance of VIA can be made available to Java cluster applications. To
date, communication performance has not been a major focus of Java developers. To begin with, Java
programs run more slowly than comparable C or C++ programs, suggesting that the performance
bottleneck of networked Java applications may not yet be communication, but computation. Furthermore,
Java has been mainly used for applications over wide-area networks (i.e. Internet), where the kind of
performance delivered by user-level networking hardware is not particularly interesting.

We believe that recent advances in Java compilation technology and the growing interest in using Java for
cluster applications are making the performance of Java communication an interesting topic. Research in
JITs, static Java compilers, locking strategies, and garbage collectors [ACL+98, ADM+98, BKM+98,
FKR+98] have delivered promising results, gradually reducing the performance gap between Java and C
programs. Thus, providing access to VIA from Java may soon become an important building block for Java
cluster applications.

The important advances made by UNIs are (i) to enable the DMA engine to move data directly between the
network and buffers placed in the application address space, and to (ii) allow the application to manage
these buffers explicitly. The DMA access to application buffers eliminates the traditional path through the
kernel, which typically involves one or more copies. By managing buffers explicitly the application can
often avoid all copies and it can use higher-level information to optimize their allocation. Unfortunately,



requiring applications to manage the buffers in this manner is ill matched to the foundations of Java. Java
prevents the programmer from exerting any control over the layout and location of Java objects, which is
exactly what is required to use UNIs directly.

In this paper, we propose a two-level Java interface to VIA, called Javia, which overcomes these problems.
The first level of Javia (Javia-I) manages the buffers used by VIA in native code (i.e., hides them from
Java) and adds a copy on the transmission and reception paths to move the data into and out of Java byte
arrays. Javia-I uses native code and can be implemented in any JVM that provides a JNI-like native
interface.

The second level of Javia (Javia-II) introduces a special buffer class that, coupled with special features in
the garbage collector, eliminates the need for the extra copies. In Javia-1I, the application can create pinned
regions of memory and then allocate Java arrays in those regions. These arrays are genuine Java objects
(i.e. can be accessed directly) but are not affected by garbage collection as long as they need to remain
accessible by the network interface DMA engine. This allows Java applications to explicitly manage the
buffers used by VIA and to transmit/receive Java arrays directly. Simple performance benchmarks show
that programs using Javia-II can achieve round-trip latencies of 21us for small messages and bandwidths of
over 95 Mbytes/sec for large messages.

It should be clear that Javia solely provides efficient data transfer between hosts in a cluster and does not
implement or replace a complete message passing, RPC, or RMI interface. However, it is intended as a
building block for the construction of such complete communication libraries.

Section 2 provides background on the Virtual Interface Architecture and on the Marmot Java system used
in the paper. Sections 3 and 4 describe the Javia-I and Javia-II architectures, respectively. Section 5 relates
Javia to other efforts in improving Java’s communication performance and Section 6 discusses the results.

2 Background

This section provides background information on the VIA architecture and on the Marmot Java system.

2.1 The Virtual Interface Architecture

The Virtual Interface Architecture (VIA) defines a standard interface between the network interface
hardware and applications. The key feature of VIA is that the applications manage buffers explicitly and
that the network interface DMAs message data directly into and out of the application buffers located in
user-space. The target application area of VIA is cluster communication: VIA is connection oriented and it
assumes that the links have high reliability.

To access the network, an application opens virtual interfaces (VIs) which form the endpoints of
connections to VIs at the remote ends. Each VI has two associated queues—a send queue and a receive
queue—that are implemented as linked lists of message descriptors, each of which points to one or multiple
buffer descriptors. To send a message, an application composes the message in a buffer, builds a buffer
descriptor, and adds it to the end of the send queue. The network interface fetches the descriptor, transmits
the message using DMA, and sets a bit in the descriptor to signal completion. Eventually the application
dequeues the descriptor. For reception, the application adds descriptors for free buffers to the end of the
receive queue. The network interface fills these buffers as messages arrive and sets completion bits.
Incoming packets that arrive at an empty receive queue are discarded.

Protection is enforced by the operating system and by the virtual memory system. The key idea is that all
the buffers and descriptors used by an application are located in memory mapped in that application’s
address space. Other applications cannot interfere with communication because they do not have the
buffers and descriptors mapped into their address space.

A major difficulty in the design of user-level network interfaces is to handle virtual to physical address
translations in the network interface. This is required because pointers (e.g. to descriptors or buffers) are
specified as virtual addresses by the applications yet the network interface must use physical addresses to
access main memory with DMA. In VIA this is handled by placing all buffers and descriptors into memory
regions that are registered with the network interface before they are used. A memory region is a virtually
contiguous memory segment that an application allocates and registers with VIA. The registration is



performed by the operating system, which pins the pages underlying the region and communicates the
physical addresses to the network interface. The latter stores the translation in a table indexed by a region
number. While all addresses in descriptors are virtual, the application is required to indicate the number of
the region with each address (in effect all addresses are 64 bits consisting of a 32-bit region number and a
32-bit virtual address) so that the network interface can translate the addresses using its mapping table.

VIA also supports direct access to remote memory using so-called RDMA operations, however, Javia does
not support them.

A note on reliability: VIA assumes that the underlying network is basically reliable and that errors indicate
network failures. It nevertheless allows applications to choose between three levels of reliability:
unreliable, reliable delivery, and reliable reception, which correspond to the different stages at which
failures are signaled. In all these cases, a failure is catastrophic and all subsequent operations on that VI are
discarded and the VI is placed in an error state.

2.2 The Marmot Java System

Marmot [FKR+98] is a Java system developed at Microsoft Research that consists of a static optimizing
bytecode to native code compiler and a runtime system. The native compiler applies standard optimizations
(e.g., array bounds check elimination, common sub-expression elimination, and constant folding), object-
oriented optimizations (e.g., method inlining and type cast elimination), as well as Java-specific
optimizations such as array store check elimination. The multi-stage compilation process includes
converting bytecode to a custom intermediate representation in SSA form for high-level optimizations, and
then to a low-level representation for optimization prior to code generation. The compiler currently
generates x86 code and does not rely on any external compiler or back-end. Java programs compiled by
Marmot run roughly 1.5x to 5x faster than using Microsoft’s Visual J++ VM (5.0).

Most of Marmot’s runtime support is implemented in Java, including casts, instanceof, array store checks,
thread synchronization, and interface call lookup. Synchronization monitors are implemented as Java
objects, which are updated in native critical sections. Threads are also Java objects that are mapped onto
Win32 native threads. Marmot supports JDK1.1-compliant Java libraries, including most of java.lang,
java.util. java.io, java.awt, java.net, and java.lang.reflect. The garbage collector used in
this paper is a semi-space copying collector based on the Cheney scanning algorithm.

The Marmot native code interface is not JNI-compliant but possesses most of the features that are needed
for interfacing with VIA. In particular, it allows native code to enable and disable garbage collection during
the native call, provided that the thread is put in a “safe state” prior to garbage collection. Native code is
not allowed to retain Java pointers across garbage collections, but the per-thread state includes fields where
native code may place pointers that must be updated by the collector. This is essential for tracking byte
arrays posted in the receive queue across garbage collection occurrences, as explained in the next section.
Marmot’s native interface is fast: a call of a null native method costs only 0.27us on a 300Mhz Pentium-II.
Unfortunately acquiring and releasing a lock costs 1.2us compared to 0.4us with the Visual J++ VM.

3 Javia-I

Javia-I consists of a set of Java classes and a native library that allow Java applications to send and receive
byte arrays using VIA. All the VIA data structures are managed in the native code and are beyond the
control of the Java programmer. To send a Java byte array, Javia-I normally copies the data into a VIA
buffer and enqueues that on the send queue. For byte arrays over 8Kbytes, Javia-I makes the pages holding
the byte array into a VIA region, pins that, and sends the data without copy. In all cases, send is blocking
and returns when VIA indicates that the message has left the network interface. We experimented with
asynchronous sends but found that in virtually all cases the message is transmitted instantaneously and that
the extra completion check is more expensive than blocking in the native library.

For reception, Javia-I provides two interfaces for the sake of experimentation. The first interface conforms
to the Java mind-set: recv checks the reception queue for a message, allocates a Java byte array of the right
size, copies the data into it, and returns the array. While this interface is “natural”, it requires an allocation
and eventual garbage collection for every message received. The second interface provided in Javia-I is



closer to traditional C-style asynchronous message passing interfaces and avoids allocating within Javia-I.
recvPost adds a byte array to the receive queue and recvWait returns the next received byte array. This
second interface uses a descriptor (ViBATicket) to hold a reference to the byte array being filled, the
completion status, and the length of the received message.

The core Javia-I classes are shown below. The class Vi represents a connection to a remote VI and borrows
the connection set-up model from Java sockets (java.net .Socket). When an instance of Vi is created a
connection request is sent to the remote machine (specified by ViAddress) with a tag. A call to
ViServer.accept (not shown here) with a matching tag accepts the connection and returns a new Vi on
the remote end. If there is no matching accept, the vi constructor throws an exception.

public class Vi { /* connection to a remote VI, methods to send/receive */
public Vi (ViAddress mach, ViAttributes attr,
ViCompletionQ sendQ, ViCompletionQ recvQ, int tag) throws ViException {..}

/* send: send a sub-byte array, return when transmission completes */
public void send (byte[] b, int off, int len) throws ViException {..}

/* recv: wait for a message with timeout, return it in an allocated byte[] */
public byte[] recv (int microseconds) throws ViException, ViTimeout {..}

/* asynchronous recv: post adds a buffer to the receive queue and wait
* returns the next received message */
public void recvPost (ViBATicket t) throws ViException {..}
public ViBATicket recvWait (int microsecs) throws ViException, ViTimeout {..}

public void close () throws ViException {..}

}

public class ViBATicket { /* descriptor for a byte array buffer */
public ViBATicket (byte[] b, int off) ({..}
public boolean isDone() {..} /* true indicates send/recv completed */
public int getLength() {..} /* for recv: length of message received */
public byte[] getByteArray () {..}

Send: Recv:
Vi vi = new Vi(addr, attr, null, ServerVi sv = new ServerVi (123);
null, 123); Byte[] b = new byte[100];
byte[] b = new byte[100]; Vi vi = sv.accept();
/* send b */ ViBATicket t = new ViBATicket (b, 0);
vi.send (b, 0, 100); vi.recvPost (t);
e t = vi.recvWait (Vi.INFINITE) ;
vi.close(); b = t.getByteArray();
/* read b */
vi.close();

Table 1. Sample code for message transmission and reception using Javia-I

3.1 Performance

Two simple benchmark programs are used to evaluate the round-trip latency and the bandwidth achieved
between two hosts using Javia-I. The experimental set-up consists of two 300Mhz Pentium-II systems with
a 66Mhz system bus and running Windows NT 4.0 SP3. The VIA cards are two GigaNet’s 1.25Gbps
GNN1000 interfaces connected back-to-back.

Figure 1 shows the round-trip time for (i) a C program using the raw VIA library interface, (ii) Javia-I
when the messages are copied between the VIA buffers and the Java byte arrays, and (iii) Javia-I when the
Java byte arrays are pinned by Javia on every transmission. In both Javia programs the asynchronous
receive is used. The round-trip latency for a 4-byte message is 18us with C and 22us with Javia-I with the



copy, indicating a Javia-I overhead of 4s. Pinning the transmit buffer increases the latency to 32us, thus
pinning costs about 10us.

Figure 2 shows the bandwidth using the same three interfaces when sending a total of 15Mbytes of data.
Evidently pinning the transmission buffer is only advantageous when the message length exceeds 7000
bytes.
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3.2 Summary

Javia-I provides a simple interface to VIA by hiding all the VIA data structures in a native library and
copying all data between the VIA buffers and Java byte arrays. While this approach does not achieve the
best performance with large messages, it is attractive for small messages and it can be implemented on any
off-the-shelf Java system that supports a native interface similar to Java Native Interface 2 (JNI2).

4 Javia-IlI

Javia-II exposes the pinned buffers used by VIA to the Java application in order to eliminate the copies
performed by Javia-I. The pinned VIA buffers are abstracted by the ViBuffer class, which allows Java
applications to allocate, pin, use, and deallocate these buffers explicitly. Behind the scenes, a modified
garbage collector is aware of these pinned buffers and handles them specially.

Allocating a ViBuffer with the standard new operator causes the Javia-II native library to allocate a
communication buffer of the specified size outside the normal Java heap. The viBuffer object is a
descriptor to that communication buffer, which itself is still hidden from the Java application. The
register method pins the buffer to physical memory (so it can be used by VIA), associates it with a VI,
and sets its VIA attributes (e.g., read-only, RDMA enable). At that point the buffer is “initialized” and can
be used for communication. Note that the buffer can be unregistered, which unpins it, and later re-
registered with the same or a different VI. This means the application has direct control over the pinning
and VI association of memory.

public class ViBuffer {
/* constructor and finalizer */
public ViBuffer (int sizeInBytes) {..}
public void finalize() {..}

/* primitive-typed arrays */
public synchronized byte[] toByteArray () {..}
public synchronized boolean[] toBooleanArray () {..}



public synchronized int/[]

/* freeing a buffer */

public void free (BufferCallBack cb) {..

public ViBufferTicket register (Vi vi,
throws IOException {..}

public void unregister (ViBufferTicket ticket)

private int baseAddr;
private int size;
private int handle;

}

public class ViBufferTicket {
ViBufferTicket (ViBuffer b) {..}
public boolean isDone () {..}
public int getLength() {..}

}

public class Vi {
/* Javia-I methods */

/* Javia-II methods */

public void sendBufPost (ViBufferTicket t,
public ViBufferTicket sendBufWait (int microseconds)

public void recvBufPost (ViBufferTicket t,
public ViBufferTicket recvBufWait (int microseconds)

toIntArray ()

{..}

}
ViBufferAttributes attr)

throws IOException {..}

int off, int len)
throws ViException {..}

throws ViException {..}

int off) throws ViException {..}
throws ViException {..}

Send:
Vi vi = new Vi (addr, attr,
null, 123);
ViBuffer vb = new ViBuffer (100);
ViBufferTicket t =
vb.register(vi, attr);
byte[] b = vb.toByteArray();
/* write to b here */
vi.sendBufPost (t, 0,

null,

100);

t = vi.sendBufWait (Vi.INFINITE) ;
vb.unregister (t);
vi.close();

Recv:

ServerVi sv = new ServerVi (123);

ViBuffer vb = new ViBuffer (100);

byte[] b = vb.toByteArray();

Vi vi = sv.accept();

ViBufferTicket t =
vb.register (vi,

vi.recvBufPost (t, 0);

t = vi.recvBufWait (Vi.INFINITE) ;

/* read b */

vb.unregister (t);

vi.close();

attr);

Table 2. Sample code for message transmission and reception using Javia-1I

For transmission and reception the application has a number of options. In the simplest form of sending, the
application creates a primitive type array (byte([], char[], int[]) in the communication buffer by
calling the toByteArray, toCharArray, or toIntArray methods of the ViBuffer. This returns a
handle to a genuine Java array located in the communication buffer accessible to VIA. The application then
composes the message in this array and enqueues it for transmission using the sendBufPost method.
sendBufPost is asynchronous and takes a ViBufferTicket, which is used to signal completion. After
the send completes, the application can compose a new message in the Java array and enqueue it again for

transmission.

Reception can be handled similarly. The application posts buffers for reception with recvBufPost and
uses recvBufWait to retrieve received messages. For each message, it extracts the data from the Java

array and posts the buffer again.




These transmission and reception models have a number of limitations. First, once a Java array is allocated
in a communication buffer, it can never be changed to another array type as that would violate the type
safety of the language. Second, it is unclear how the memory allocated outside of the normal heap can ever
be freed. Finally, while no copy takes place between the Java array and the communication buffer, the data
still needs to be copied between the application data structures and the Java array.

The two first limitations can be overcome by involving the garbage collector in the buffer management.
The idea is to explicitly control when the Java array located in the communication buffer is collectable and
when it is not. As long as the Java array is used for transmission or reception, it must not be freed (or
moved in the case of a copying collector). But later, the array can be marked as collectable. When the
garbage collector determines that the Java array is unreferenced the communication buffer can be
reinitialized for reuse.

In the case of a non-copying garbage collector, only buffers holding unreferenced Java arrays can be reused
or freed. To do this, the application needs to drop all references to the Java array located in the buffer and
then call free on the viBuffer. This flags the Java array as collectable and causes a call-back to be
invoked when the collection actually occurs. At that point the application can unregister and free or re-
register the ViBuffer.

In the case of a copying garbage collector, the application does not even need to drop all references to the
Java array as the garbage collector will copy the array into fo-space in the normal heap at the next
collection. This means that, for example, the application can continue using the data received in the byte
array without keeping the buffer occupied and without performing an explicit copy.

While it may seem that this simply moves the copy into the garbage collector without eliminating it, this is
not necessarily the case. If the message data cannot be processed immediately by the application, it has to
allocate a second array to copy the data into. At the next garbage collection, the data in this second array is
copied again by the collector. The difficulty is that if the application forces a garbage collection because it
is running out of communication buffers, then this may be counter-productive.

4.1 Garbage collector modifications

The modifications made to the Cheney scanning copying garbage collector used in the Marmot system are
relatively minor. When following a reference, the collector copies the referenced object to fo-space if the
object lies in the from-space. The augmented Marmot collector keeps a list of memory regions that form
each of the semi-spaces and for each referenced object, it searches the from-space list to determine whether
to copy the object or not.

When Javia allocates communication buffers it does not place them into the collector’s from-space list,
with the effect that objects allocated in the buffers are not copied. When the application calls free,
however, Javia adds the buffer to the list. (Implementation details ensure that the collector does not follow
a long list when looking-up objects that are already in fo-space.)

4.2 Performance

Figures 3 and 4 show the round-trip latencies and bandwidths obtained with Javia-II. The performance is
very close to that of the raw C VIA library and significantly better than with Javia-I. The differences
between Javia-II and the raw library are due to native code crossings and to the overheads of managing the
ViBufferTickets, which involves acquiring and releasing locks.

5 Related Work

An alternative to developing Javia would have been to implement a minimal JNI2 wrapper library around
the VIA C library calls (in the style the MPI wrapper used in [GFH+98]) or to call that library directly
using the Microsoft VM JDirect feature. At best such an approach would have achieved performance
similar to Javia-I, with perhaps the advantage of reducing the size of the native code required to interface to
VIA. Using JNI could not have eliminated the copy that Javia-I performs. Microsoft’s JDirect could,
however, eliminate the copy (C arrays can be passed into Java without copy), but all Java accesses to the



buffer arrays would have undergone a level of indirection which is expensive. JDirect relies on source
annotations, which it propagates through the byte code to the JIT for special code generation.

120 450 - - .-
MBps us < - rraw
100 N~ - - 400 Javia-l copy T
- 350 —A—Javial [
80 R —{T 11— 300
. 250
60— > 200
' - = -raw
40 — Javia- copy [~ 150 J\/A/E/A/A
20 W —A—Javiall | 123 [ ﬁ/_o--o--O“""o
0 ! T T T bYteS\ 0 \A - T T T bYIeS\
0 2000 4000 6000 8000 0 2000 4000 6000 8000
Figure 3. round-trip latency using the Figure 4. bandwidth using the raw C
raw C VIA library, using Javia-I with VIA library, using Javia-I with message
message copy, and Javia-II. copy, and Javia-II.

The JNI2 specification further complicates attempts to interface Java to user-level network interfaces such
as VIA. The JNI2 specification isolates the details of the VM from native code to allow copying to be
performed at will by the JNI2 implementation. Even in cases where the VM might support pinning of
arrays, the JNI2 specifies that accesses to such pinned arrays have to be wrapped with calls to
GetPrimitiveArrayCriticalSection and ReleasePrimitiveArray- CriticalSection. The
understanding is that one should not run “for too long” in such a critical section and certainly not call any
system function that would block the current thread. These restrictions are plainly incompatible with the
pinned communication buffers used in user-level network interfaces.

A number of projects have provided interfaces to native code message passing libraries [GFH+98, GS98]
or have implemented traditional message passing standards in Java [F98]. The Javia interface presented
here should not be viewed as an attempt to compete with these libraries. Rather, it provides a building
block that offers high-performance data transfer and can be used to implement a number of different
message passing paradigms.

6 Summary

The research presented here pursues the simple goal of exposing user-level network interfaces to Java
applications. Unfortunately, the automatic memory management of Java makes it difficult to expose the
UNI concepts in a straightforward manner as explicit memory management by the application is at the core
of the UNI concept.

The implementation focuses on the Virtual Interface Architecture standard and proposes a two-level Java
interface to VIA, called Javia-I and Javia-II. Javia-I hides the management of the communication buffers
and descriptors entirely in a native code library and it copies all data sent or received between Java byte
arrays and the buffers used by VIA.

Javia-II exposes the management of the communication buffers. To do so, we modified a copying garbage
collector slightly to allow Java arrays to be allocated directly in the communication buffers and their
collection to be controlled explicitly. While the buffers are pinned, the Java arrays are not collected and
thus do not move. To reuse or free the buffers the arrays can be marked as collectable, in which case they
are copied into the normal heap (or freed altogether) during the next collection.

The performance achieved with Javia in simple host-to-host communication benchmarks is encouraging:
the overhead of the Javia interface is small compared to the round-trip latency and the peak bandwidth
using 4Kbyte messages is essentially the same as that achieved using the raw C VIA library. Of course this



is not all that surprising, given that Javia-II essentially provides a direct interface to VIA. However, the
results indicate it is worth eliminating the copies of Javia-I.

It is clear that Javia is not an end goal, but a building block towards a user-friendly high-performance
communication library for Java. It is fairly straight-forward to implement a library with MPI, PVM, or
similar interface. It is also possible to use object serialization and Javia to implement JavaRMI, although
the current overhead of serialization implementations would negate any performance benefits gained with
Javia. We are currently extending the flexibility of Javia’s viBuffers to allow arbitrary objects to be
allocated in the communication buffers.
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