Sharing Databases on the Web with Porter Proxy

Xin Wang
School of Electronics and Computer Science
University of Southampton
xwang@soton.ac.uk

Eugene Siow
School of Electronics and Computer Science
University of Southampton
eugene.Siow@soton.ac.uk

ABSTRACT

With large number of datasets now available through the
Web, data-sharing ecosystems such as the Web Observatory
have emerged. The Web Observatory provides an active de-
centralised ecosystem for datasets and applications based on
a number Web Observatory sites, each of which can run in
a different administrative domain. On a Web Observatory
site users can publish and securely access datasets across do-
mains via a harmonised API and reverse proxies for access
control. However, that API provides a different interface
to that of the databases on which datasets are stored and,
consequently, existing applications that consume data from
specific databases require major modification to be added
to the Web Observatory ecosystem. In this paper we pro-
pose a lightweight architecture called Porter Proxy to ad-
dress this concern. Porter Prozy exposes the same interfaces
as databases as requested by the users while enforcing access
control. Characteristics of the proposed Porter Proxy archi-
tecture are evaluated based on adversarial scenario-handling
in Web Observatory eco-system.

CCS Concepts

eSecurity and privacy — Distributed systems secu-
rity; eNetworks — Cloud computing; eComputer sys-
tems organization — Cloud computing;

Keywords

security, access control, data sharing, proxy, web observa-
tory

1. INTRODUCTION

In the past a few years an increasing number of datasets
have been shared on Web Observatory. Some datasets are
distributed as files and more as databases such as MySQL
and MongoDB. While enables users to access (e.g. query)

(©2017 International World Wide Web Conference Committee
(IW3C2), published under Creative Commons CC BY 4.0 License.

ACM 978-1-4503-4914-7/17/04.
http://dx.doi.org/10.1145/***Add your assigned DOI**

(c0) @

1673

Aastha Madaan
School of Electronics and Computer Science
University of Southampton
A.Madaan@soton.ac.uk

Thanassis Tiropanis
School of Electronics and Computer Science
University of Southampton
tt2@soton.ac.uk

these databases, Web Observatory also protect them from
unauthorised access. Similar to a reverse proxy, Web Obser-
vatory 1) hides the addresses and credentials of the under-
lying databases; 2) provides an authentication and access
control layer (based on OAuth 2.0') that is independent
from the underlying databases; and 3) enables authorised
users to query the underlying databases via an API. How-
ever, the Web Observatory API authenticates and commu-
nicates with user clients via the HT'TP protocol, while many
databases adopts their own protocols based on the TCP pro-
tocol. Since existing programming libraries and applications
are built around those proprietary protocols, their code can-
not be easily reused with the Web Observatory API.

To encourage user engagement and enable the reuse of
existing application code, we need to expose the same inter-
faces as those of the databases shared on Web Observatory in
addition to the Web Observatory API, while not to weaken
the protection of the databases. A TCP reverse proxy can ef-
fectively exposes databases while hiding their addresses and
credentials, but it relies on the underlying databases to man-
age who are authorised to access the databases. We require
a reverse proxy that can mimic databases’ protocols (for
both authentication and query) and separate access control
from the underlying databases. We propose Porter Proxy to
achieve this goal.

2. RELATED WORK

The community of users engaging with the Web Obser-
vatory may share their artifacts, datasets (or datastreams)
and applications in a variety of ways. For example, some
of them may allow other users to download a copy of their
datasets (in form of files). While another set of users may
share end-points to their databases through which the users
can query the given datasets. The former method though
simple to share the datasets but may be expensive in terms
of storage required and also not secure. On the contrary,
the latter method enables users to access the latest available
datasets, avoids complicated data exchanges but also raises
systemic concerns for the Web Observatory infrastructure.
These include, providing a uniform access interface for au-
thentication on the Web Observatory which is compatible
with the underlying databases.

Addressing this issue is important as, in contrast to lim-
ited number of databases available, now a data is avail-
able through an increasing number of databases. These

"https://tools.ietf.org/html/rfc6749

https://tools.ietf.org/html/rfc6749

databases have their own authentication and access proto-
cols and can make the re-use of database complex. More-
over, it may not be necessary that all of these datasets
support public access. There are very limited, almost no
studies in the existing literature that directly address these
concerns. However, draw our related work on web observa-
tories, secure and trusted data sharing, lightweight access
control for mobile and cloud environments and we consider
the studies done in the area of heterogeneous authentication
methods.

Web Observatory is a distributed infrastructure capable of
harvesting, querying, and analysing multiple real-time and
historic heterogeneous data, whilst providing data owners
access control to their resources [1] [2], [3]. A building pillar
of the Web Observatory is that access to some datasets can
be restricted for licensing, privacy or other reasons. The
Web Observatory allows its users to list or host datasets that
are public or private. Access to private datasets is managed
by the user who hosts them on the Web Observatory [2].

Datasets on the Web Observatory are in various types
of stores including, SQL, NoSQL, and triple (RDF) stores,
non-structured formats such as CSV [2]. Resources can be
queried using the Web Observatory API, which uses a
JSON structured query language, and the mappings to the
various types of data-stores is handled by the Web Obser-
vatory API, and processed server-side. Unlike a distributed
database architecture which can be considered as a single
logical database, we wish to provide a middle layer which
provide a NoSQL like query syntax that uses the Web Ob-
servatory API to query multiple data-stores solutions [2].
This API acts as a secure middle layer between the dataset
locations, and the end-user connections, whether this be via
direct access on the Web Observatory portal, or via pro-
grammatic use via the development of third party applica-
tions and visualisations [2], [4].

3. ARCHITECTURE OF PORTER PROXY

Porter Proxy adopts a lightweight architecture to sepa-
rate credential management from databases and at the same
time exposes the same interface as the databases it repre-
sents, which allows the reuse of existing application code.
It manipulates connections between sockets of clients and
databases at different stages to achieve its goal. As shown
in Figure 1, for a protected database Porter Proxy runs
an authentication database of the same type, and an au-
thentication client that can communicate with the protected
database. Each client is registered as a user of the authenti-
cation database and managed by Porter Proxy. Credentials
to access the protected database are securely kept by Porter
Proxy and only used by the authentication client. Modifica-
tions made to credentials at the authentication database (i.e.
client credentials) do not affect credentials of the protected
database, and vice versa. When a client initiates a request
to access the protected database, it authenticates against
the authentication database. At the same time the authen-
tication client authenticates against the protected database
to establish a trusted connection. If both pass the authen-
tication respectively, the client socket is detached from the
authentication database and connected to the socket of the
protected database (as shown in the right half of Figure 1).
After the sockets switch, TCP packets representing requests
from the client are redirected to the protected database.
This redirection is transparent to both the client and the

1674

Authentication Switch sockets

Client socket

Client Socket

Auth DB Auth DB
Auth Protected Auth Protected
Client DB DB

Client

Figure 1: Porter Proxy architecture.

protected database, and can be easily integrated with inter-
mediate functionalities that work with the TCP protocol,
such as IP address filtering and load balancing.

4. IMPLEMENTATION

A prototype of Porter Proxy is implemented in Node.js,
which has native support for the TCP protocol and the po-
tential to build resilient applications. In the prototype we
take MongoDB as an example, but all other databases can
be supported alike.

This implementation has the following components:

e A database management module that registers databases
and randomly assigns a unique id to each database.
Users browse and request access to databases using
these ids to prevent leaking identities of the underly-
ing databases.

A user management module that provides an interface
for user to register, authenticate and manage their ac-
cess to databases. In addition, users can manage all
the databases to which they have access. When a user
(e.g. Bob) is granted access to a database, this mod-
ule creates a new user (e.g. Bob:passBob) in the Auth
DB and generates a databases address based on the
database id, user profile and a random string. The gen-
erated address is unique for each user-database com-
bination, and it is independent from the true address
of the underlying database. Both the newly created
user credentials and the generated address are shown
to the user, as shown in Figure 2.

The Auth DB, that stores user credentials and au-
thenticates user connections. It is worth noticing that
the Auth DB only cares about whether the credentials
used to establish a connection are valid, but does not
know which database the user connects to. It is not
necessary to use a complete MongoDB as the Auth DB
since only the authentication function is required. In
this prototype we implement the MongoDB authenti-
cation protocol as a standalone component and use it
as the Auth DB to reduce resource usage.

A MongoDB client as the Auth Clien, that holds the
real addresses and credentials of underlying databases
and connects them. This client is implemented using
the native MongoDB Node.js driver?.

https://mongodb.github.io/node-mongodb-native

https://mongodb.github.io/node-mongodb-native

Auth DB Users (MongoDB)

Username Password

Bob passBob

Bob's DB Profile

i Username Password Address

001 Bob passBob mongodb: //Ym9iMDAXYWJ j . pproxy . com

Alice's MongoDB

Address: mongodb://db.alice.me
User: readOnly
Pass: passrO

Figure 2: An example user profile demonstrating the
unique database address and credentials generated
for each user-database combination. In the profile
the ID column refers to Alice’s MongoDB; Entries
under Username and Password are registered in the
Auth DB.

e A connection coordination module that manages 1) the
connection and authentication between a user client
and the Auth DB; 2) the connection and authenti-
cation between the Auth Client and the underlying
database, and 3) reconnects the user client to the un-
derlying database after authentication. The coordi-
nation module resolves an alias database address to
retrieve the id of the underlying database, and then
resolves the database id to its real address and cre-
dentials. It is the only module that know which user
connects to which database.

One challenge we encounter is at the implementation of
the MongoDB authentication protocol. MongoDB supports
several authentication mechanisms, and SCRAM-SHA-1? be-
comes the default one after MongoDB 3.0. In a SCRAM-
SHA-1 conversation the client and the server exchange four
messages (two round trips) that involve several hashing and
verification. MongoDB serialises the SCRAM messages into
binary data and transports them along with some metadata
(such as a conversation id) over the TCP protocol*. Since
every message is transported as several TCP data chunks,
we need to trace the start and end of each message and
reconstruct it from data chunks. The first 4 bytes of a mes-
sage gives the total length of the message in bytes. We
implement a buffer to store all received data chunks. In
the beginning we wait until there are 4 bytes data to calcu-
late the total length of the message. Once there are enough
chunks (the size of all chunks is equal or greater than the
total length of the message) we recover the message and re-
move consumed data from the buffer (it could be that a data
chunk is partially consumed and only the consumed part is
removed). By repeating the above procedure we manage to
recover SCRAM conversations from TCP data stream.

3https://docs.mongodb.com/v3.0/core/
security-scram-sha-1

4https://github.com/mongodb /specifications /blob/
master/source/auth/auth.rst#scram-sha-1

1675

S. USE CASES OF PORTER PROXY
5.1 Sharing a MongoDB with Porter Proxy

Alice wants to share a large volume of social network data
in a MongoDB so colleagues can query her data. Alice fol-
lows two steps: 1) she creates an read-only account (read-
Only:passrO) in her MongoDB; 2) she provides the creden-
tial of the read-only account and her MongoDB’s address to
Porter Proxy. Porter Proxy sets up the Auth DB and the
Auth Client internally.

Via Porter Proxy Bob requests permission to query Al-
ice’s database. Porter Proxy asks Alice for approval. Once
approved, Porter Proxy creates an account (Bob:passBob)
in the Auth DB, and gives Bob the credentials and an alias
address to Alice’s database (in his profile). Bob can con-
nect to Alice’s database with a MongoDB client with the
information in his profile.

5.2 Updating Existing Applications

Before registered with Porter Proxy, Alice’s MongoDB are
used by a few internal applications (whose credentials are
manually managed by Alice). Similar to Bob, owners of
these applications can request access to Alice’s MongoDB
from Porter Proxy and find the generated credentials and
alias addresses from their profile pages. By only updating
the database credentials and addresses used in their appli-
cation code, these applications would function as normal.

5.3 Building Applications with Porter Proxy

Alice’s data (in the MongoDB) turns out to be useful not
only internally but also among users outside her institute.
As the MongoDB is on Porter Proxy, external users can
follow the same procedure to request access to the Mon-
goDB and have their own unique database credentials and
addresses. Since Porter Proxy exposes the MongoDB with
its own interface and protocol, users can build their appli-
cations using existing database drivers, libraries in different
programming languages. They do not need to learn new
APIs and write data retrieval functionalities from scratch.

6. CONCLUSION AND DISCUSISON

In this paper we describe a lightweight architecture called
Porter Proxy to enable securely sharing databases on the
Web. Porter Proxy exposes the same interfaces as the un-
derlying databases to enable the reuse of existing applica-
tion code, and separates access control from the underly-
ing databases to reduce credentials management cost. We
implement a prototype of Porter Proxy in Node.js and we
demonstrate and evaluate Porter Proxy using several use
cases.

Porter Proxy can encourage users to share databases in
an easy and secure way, and improves the ability to build
analytics in a decentralised manner. Based on the same
sockets manipulation technique we work towards generalis-
ing Porter Proxy to incorporate various access control and
authentication mechanisms and integrating it with common
proxy functionalists. On the Web Observatory platform it
allows for the reuse of applications developed using native
database APIs.

Nevertheless, there are challenges and trade-offs that need
to be considered. On the one hand, programmers can de-
velop applications using existing libraries based on native
database APIs, on the other hand it does not encourage the

https://docs.mongodb.com/v3.0/core/security-scram-sha-1
https://docs.mongodb.com/v3.0/core/security-scram-sha-1
https://github.com/mongodb/specifications/blob/master/source/auth/auth.rst#scram-sha-1
https://github.com/mongodb/specifications/blob/master/source/auth/auth.rst#scram-sha-1

exposure of data resources using harmonised HTTP APIs [2] R. Tinati, X. Wang, T. Tiropanis, and W. Hall.

that can be used by pure client-side web applications. It is Building a real-time web observatory. IEEE Internet
possible that both approaches will be accommodated on the Computing, 19(6):36-45, Nov 2015.

Web Observatory ecosystem: data resources will be exposed [3] Thanassis Tiropanis, Wendy Hall, Jim Hendler, and
via native database APIs (using architectures such as Porter Christian de Larrinaga. The web observatory: a middle
Proxy) and via harmonised HTTP APIs at the same time. layer for broad data. September 2014.

[4] Thanassis Tiropanis, Xin Wang, Ramine Tinati, and
7. REFERENCES Wendy Hall. Building a connected web observatory:

[1] Aastha Madaan, Thanassis Tiropanis, Srinath architecture and challenges. June 2014.

Srinivasa, and Wendy Hall. Observlets: Empowering
analytical observations on web observatory. In
Proceedings of the 25th International Conference
Companion on World Wide Web, WWW ’16
Companion, pages 775-780, 2016.

1676

	Introduction
	Related Work
	Architecture of Porter Proxy
	Implementation
	Use Cases of Porter Proxy
	Sharing a MongoDB with Porter Proxy
	Updating Existing Applications
	Building Applications with Porter Proxy

	Conclusion and Discusison
	References

