skip to main content
10.1145/3041021.3053380acmotherconferencesArticle/Chapter ViewAbstractPublication PageswwwConference Proceedingsconference-collections
research-article

Knowledge Graph Embedding with Diversity of Structures

Published:03 April 2017Publication History

ABSTRACT

In recent years, different web knowledge graphs, both free and commercial, have been created. Knowledge graphs use relations between entities to describe facts in the world. We engage in embedding a large scale knowledge graph into a continuous vector space. TransE, TransH, TransR and TransD are promising methods proposed in recent years and achieved state-of-the-art predictive performance. In this paper, we discuss that graph structures should be considered in embedding and propose to embed substructures called "one-relation-circle" (ORC) to further improve the performance of the above methods as they are unable to encode ORC substructures. Some complex models are capable of handling ORC structures but sacrifice efficiency in the process. To make a good trade-off between the model capacity and efficiency, we propose a method to decompose ORC substructures by using two vectors to represent the entity as a head or tail entity with the same relation. In this way, we can encode the ORC structure properly when apply it to TransH, TransR and TransD with almost the same model complexity of themselves. We conduct experiments on link prediction with benchmark dataset WordNet. Our experiments show that applying our method improves the results compared with the corresponding original results of TransH, TransR and TransD.

References

  1. J. W. A. Bordes, X. Glorot and Y. Bengio. A semantic matching energy function for learning with multi-relational data. Machine Learning, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. R. C. A. Bordes, J.Weston and Y. Bengio. Learning structured embeddings of knowledge bases. AAAI, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. N. U. Alberto Garct'Asa-Durt'an, Antoine Bordes and Y. Grandvalet. Combining two and three-way embedding models for link prediction in knowledge bases. Journal of Artificial Intelligence Research, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. B. K. B. S. E. R. H. J. Andrew Carlson, Justin Betteridge and T. M. Mitchell1. Toward an architecture for never-ending language learning. AAAI, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. R. C. Antoine Bordes, JasonWeston and Y. Bengio. Learning structured embeddings of knowledge bases. AAAI, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. U. N. G.-D. A. W. J. Bordes, Antoine and O. Yakhnenko. Translating embeddings for modeling multi-relational data. NIPS, 2013b. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. S. B. Denis Krompa and V. Tresp. Type-constrained representation learning in knowledge graphs. ISWC, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. G. K. F. M. Suchanek and G. Weikum. Yago: a core of semantic knowledge. WWW, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. L. X. K. L. Guoliang Ji, Shizhu He and J. Zhao. Knowledge graph embedding via dynamic mapping matrix. ACL, 2015.Google ScholarGoogle Scholar
  10. M. H. Han Xiao and X. Zhu. Ssp: Semantic space projection for knowledge graph embedding with text descriptions. AAAI, 2017.Google ScholarGoogle Scholar
  11. P. P. T. S. K. Bollacker, C. Evans and J. Taylor. Freebase: A collaboratively created graph database for structuring human knowledge. SIGMOD, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. L. R. M. Nickel and P. Tomaso. Holographic embeddings of knowledge graphs. AAAI, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. V. T. M. Nickel and H.-P. Kriegel. A three-way model for collective learning on multi- relational data. ICML, 2011.Google ScholarGoogle Scholar
  14. B. R. F. C. G. D. M. K. Miller, G.A. Introduction to wordnet: An on-line lexical database. International journal of lexicography, 1990. Google ScholarGoogle ScholarCross RefCross Ref
  15. G. A. Miller. Wordnet: A lexical database for english. Communications of the ACM Vol. 38, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. F. P. Ni Lao, Amarnag Subramanya and W. Cohen. Reading the web with learned syntactic-semantic inference rules. EMNLP, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. A. B. G. O. R. Jenatton, N. Le Roux. A latent factor model for highly multi-relational data. AISTATS, 2010.Google ScholarGoogle Scholar
  18. H. Robbins and Monro. A stochastic approximation method. Annals of Mathematical Statistics, 1951.Google ScholarGoogle ScholarCross RefCross Ref
  19. Z. L. Ruobing Xie and M. Sun. Representation learning of knowledge graphs with hierarchical types. IJCAI, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. B. Shi and T. Weninger. Proje:embedding projection for knowledge graph completion. AAAI, 2017.Google ScholarGoogle Scholar
  21. G. J. Shizhu He, Kang Liu and J. Zhao. Learning to represent knowledge graphs with gaussian embedding. CIKM, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. C. D. M. C. D. Socher, Richard and A. Y. Ng. Reasoning with neural tensor networks for knowledge base completion. NIPS, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. M. Xiao, H.; Huang and X. Zhu. Transg: A generative model for knowledge graph embedding. ACL, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  24. Z. J. J. L. H. Xie, R.; Liu and M. Sun. Representation learning of knowledge graphs with entity descriptions. AAAI, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. H. L. X. J. Y. Jia, Y. Wang and X. Cheng. Locally adaptive translation for knowledge graph embedding. AAAI, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. M. S. Y. L. Y. Lin, Z. Liu and X. Zhu. Learning entity and relation embeddings for knowledge graph completion. AAAI, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Z. L. Y. Lin and M. Sun. Modeling relation paths for representation learning of knowledge bases. EMNLP, 2015. Google ScholarGoogle ScholarCross RefCross Ref
  28. M. S. Yankai Lin, Zhiyuan Liu. Knowledge representation learning with entities, attributes and relations. IJCAI, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. J. F. Z. Wang, J. Zhang and Z. Chen. Knowledge graph embedding by translating on hyperplanes. AAAI, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Knowledge Graph Embedding with Diversity of Structures

                                  Recommendations

                                  Comments

                                  Login options

                                  Check if you have access through your login credentials or your institution to get full access on this article.

                                  Sign in

                                  PDF Format

                                  View or Download as a PDF file.

                                  PDF

                                  eReader

                                  View online with eReader.

                                  eReader