
Linked Data Indexing of Distributed Ledgers

Allan Third
Knowledge Media Institute

The Open University
Milton Keynes, MK7 6AA

allan.third@open.ac.uk

John Domingue
Knowledge Media Institute

The Open University
Milton Keynes, MK7 6AA

john.domingue@open.ac.uk

ABSTRACT
Searching for information in distributed ledgers is currently
not an easy task, as information relating to an entity may
be scattered throughout the ledger with no index. As dis-
tributed ledger technologies become more established, they
will increasingly be used to represent real world transac-
tions involving many parties and the search requirements
will grow. An index providing the ability to search using
domain specific terms across multiple ledgers will greatly
enhance to power, usability and scope of these systems.

We have implemented a semantic index to the Ethereum
blockchain platform, to expose distributed ledger data as
Linked Data. As well as indexing block- and transaction-
level data according to the BLONDiE ontology, we have
mapped smart contracts to the Minimal Service Model on-
tology, to take the first steps towards connecting smart con-
tracts with Semantic Web Services.

Keywords
Linked Data, semantic indexing, blockchains, distributed
ledgers

1. INTRODUCTION
Distributed ledgers, based on blockchains [1] (described in

2), have been gaining significant attention in recent years,
and for a highly-diverse set of use cases. The attributes
which make a blockchain useful for underpinning cryptocur-
rencies – such as their distributed nature, proof by con-
sensus and secure transaction recording – also make them
useful in other contexts. [12] outlines a set of criteria to de-
termine when a blockchain may be useful for an application
scenario. Currently, the use of blockchains is being explored
in contexts as diverse as education, supply chain manage-
ment, recruitment, and so on. Ledgers such as Ethereum
[26] extend the initial Bitcoin blockchain [16] with features
such as smart contracts, which enable code to be distributed
and executed on the blockchain in a trusted way, extending
the possible uses of this technology even further.

c©2017 International World Wide Web Conference Committee
(IW3C2), published under Creative Commons CC BY 4.0 License.
WWW’17 Companion, April 3–7, 2017, Perth, Australia.
ACM 978-1-4503-4914-7/17/04.
http://dx.doi.org/10.1145/3041021.3053895

.

As distributed ledgers become more widely used for more
diverse forms of data, the need for efficient querying of such
data becomes more important, giving rise to the need for the
indexing of ledger entries. More importantly, there will be
increasing requirements to integrate distributed-ledger data
with other forms of data and for ledgers to work well with
existing technology stacks. Data stored (or hashed on) dis-
tributed ledger can relate to all kinds of content, meaning
and use, and there are needs to integrate these data with
arbitrary and diverse external data sources and to integrate
smart contracts with services available on the Web– in other
words, there is a need for Linked Data. This paper presents
our initial work on creating a Linked Data index for dis-
tributed ledgers, in order to support efficient access to data
and smart contracts stored on Ethereum blockchains via the
Semantic Web technology stack.

2. DISTRIBUTED LEDGERS AND INDEX-
ING

Distributed ledgers based on blockchains do not have a
central registry and, due to their structure, are not straight-
forward to search. Blockchains are organised into blocks,
which contain lists of ledger entries (transactions). Blocks
are organised into what is essentially a linked list structure
(the blockchain), a copy of which is held by every node on
the blockchain network. There is no central control. Blocks
are ordered by time. The initial element in the blockchain
structure is known as the genesis block and is manually cre-
ated; all subsequent blocks are added to the blockchain by
a process of consensus between nodes, which compete to
be accepted as having the network’s permission to add new
blocks. The specific consensus method can vary between
different blockchain systems – methods can include mecha-
nisms such as “proof of work”, “proof of stake”, and “proof of
elapsed time” – but the overall design ensures that a block
may be considered a trustworthy record of events provided
the network is suitably diverse (i.e., provided that no entity
controls more than 50% of all nodes).

The notion of account is also important. An account cor-
responds to an agent (a human user, perhaps) and has a
notion of a balance in the cryptocurrency associated with
the blockchain in question (e.g., Bitcoin, Ether). Accounts
may spend or receive cryptocurrency, with any such transfer
of value forming part of a transaction.

Systems such as Ethereum go beyond simply containing
lists of transactions. As mentioned earlier, an important in-
novation is the idea of the“smart contract”, which is a chunk
of code which is stored and executed on the blockchain.

1431



Smart contracts make it possible to have automated con-
trol of what happens with data and cryptocurrency on the
blockchain with native access to all of its capabilities with-
out involving untrusted external systems. Each Ethereum
smart contract has a corresponding account, of a special
“contract account” type, and can store and update data and
create transactions itself. Smart contracts can serve essen-
tially as functions, with inputs and outputs, the latter of
which in particular are written to the blockchain on execu-
tion, and are therefore subject to the same verifiability as
other blockchain transactions.

As indicated above, the key point to note is that block-
chains are strictly time-ordered structures. Where related
data exists across multiple blocks (as inevitably it must),
there is no inherent way to identify, group or query it. Thus
it is necessary to develop an index. By indexing smart con-
tracts themselves, where present, as well as both ordinary
and contract-created transactions, we gain the ability to
search and analyse the services available on a distributed
ledger, and potentially to expose them to the outside world
for interoperability.

There are different levels of granularity at which indexing
can be carried out. At a low level, it is necessary to index the
basic entities of the distributed ledger – blocks, transactions
and accounts, particularly. Aggregating data stored across
the blockchain requires the ability to locate and retrieve it,
and so an index at this basic level is fundamental to any
higher-level querying of the ledger.

At a higher, more functional level, smart contracts – more
specifically, their functional interfaces – embody a lot of the
extra functionality on ledger platforms such as Ethereum,
and the ability to discover and access smart contracts as
computational services is useful.

Smart contracts can also be indexed according to their
real-world applications. The current work, for example, is
taking place in the context of our ongoing experiments in
placing educational data on the blockchain. Details of these
experiments can be seen at [13]; the most notable and rel-
evant to the current work is the use of smart contracts to
represent Open Badges [11], where records relating to stu-
dents’ achievements studying with the Open University’s
OpenLearn platform [17] are stored in our private ledger.
Indexing the contracts, accounts and data relating to their
external semantics as educational records significantly in-
creases our ability to make use of this data, and to connect
it to relevant external sources.

3. VOCABULARIES

3.1 Vocabularies for distributed ledgers
To generate interoperable Linked Data, it would be help-

ful to use a standard ontology or vocabulary to represent
blockchain concepts.The intersection between the Semantic
Web and distributed ledgers is still in its infancy, and there
are as yet no widely-established ontologies or vocabularies
for describing these concepts. Proposed systems and vocab-
ularies which specify or implicitly define such a vocabulary
include FlexLedger [23], EthOn [19], and BLONDiE [5].

FlexLedger specifies an HTTP API designed to wrap in-
teractions with different types of blockchain in a common
Web-accessible format. Interfaces representing ledger cre-
ation, querying, appending, and so on, are defined, with a
data model described using JSON-LD [22], from which it is

possible to extract a vocabulary to describe this data model.
However, the vocabulary itself is not explicitly defined nor
given concrete semantics.

EthOn is an OWL [2] ontology designed to describe the
Ethereum blockchain. It describes classes such as block, ac-
count, message, network and state, as well as more specific
types such as“contract account” (each smart contract on the
Ethereum blockchain has an associated account) and rela-
tions such as “has parent block”. While actively developed,
EthOn is, at the time of writing, at a very early stage. It
has been proposed that EthOn in time be integrated with
the BLONDiE ontology.

BLONDiE (Blockchain Ontology with Dynamic Extensi-
bility) is another OWL ontology designed to describe block-
chain concepts, but unlike EthOn, it is intended to be generic
rather than tied to one particular type of blockchain. For
example, while BLONDiE, like EthOn, contains terms for
“block”, “transaction”, different types of account (“balance
account”, “contract account”) and terms for specific attri-
butes of each of these types, such as “transaction payload”
and “miner address”, have been defined. It also defines
specialisations of those concepts for particular blockchain
implementations – for example, “BitcoinBlockHeader” and
“EthereumBlockHeader” are defined differently while both
remaining subclasses of “BlockHeader”. It is therefore pos-
sible to use BLONDiE to link data describing transactions
in different blockchains together.

Of the existing candidates, BLONDiE is the most devel-
oped vocabulary for representing blockchain concepts, with
the most potential to enable reusable modelling across dif-
ferent distributed ledgers in the future. We therefore chose
to use it in building our Linked Data index.

3.2 Vocabularies for smart contracts
While both EthOn and BLONDiE contain terms relating

to the concept of a smart contract, these terms are generic in
both ontologies, covering only how a contract relates to other
blockchain concepts. Given that smart contracts themselves
are essentially executable software, it makes sense to rep-
resent their semantics using vocabularies which are already
defined for other forms of software. In particular, there is a
wealth of existing work on the semantic annotation of Web
services and HTTP APIs– see, for example, [10] – which
might be fruitfully adapted to annotate smart contracts on
a distributed ledger too. Of course, such contracts are not
in fact Web APIs, and the underlying implementation tech-
nology is quite different, but the core concepts do not differ
essentially. Both Web APIs and smart contracts can be seen
as executable functionality exposed in a distributed environ-
ment for arbitrary (suitably authorised) third-parties to call.
It seems likely that the vocabularies used to annotate Web
services should be usable to annotate smart contracts too.
If so, there are potential practical benefits in situations in-
volving a mix of distributed ledgers with smart contracts and
existing Web services, which we anticipate becoming com-
mon. Here, we use only the Minimal Service Model (MSM)
[14], a very lightweight ontology for describing Web services,
including lightweight HTTP APIs. As a“least commitment”
model compatible with the available SWS standards – that
is to say, being designed only represent the minimum nec-
essary aspects of a service, the MSM does not require any
Web-specific concepts which may not apply to smart con-
tracts. Figure 2 shows the MSM, which describes services

1432



Figure 1: Visualisation of the BLONDiE ontology (created with WebVOWL [15])

as collections of operations, with inputs, outputs and faults
being received or emitted as messages.

4. IMPLEMENTATION
The Linked Data index is implemented currently for the

Ethereum platform. Our initial motivation was to index the
data (including smart contracts) and transactions relating
to our ongoing work with the educational Open Blockchain
[21], which is implemented on Ethereum. This work is taking
place using a private blockchain, which additionally gives
the advantage of being a manageable size for experiments,
by contrast to the main public Ethereum blockchain which
(at the time of writing) contains over 3 million blocks [6]
occupying approximately 11Gb.

Our private blockchain network currently consists of 6
nodes (5 mining nodes and one “observation” node set up
for the index) which has been running since 28th of April,
2016 and with a current chain size of 2.8Gb, representing
1180460 blocks. The smart contracts deployed on this block-
chain represent our experiments and ongoing development in
the representation of educational achievements on the block-
chain.

The Go Ethereum implementation [7] provides a Javascript
[4] programming interface in the form of the web3 library
[9], which provides access to the block-level structure of
Ethereum. In particular, it is straightforward to develop
“listeners” in web3 – chunks of code which are executed when
new blocks are added to the blockchain – and also to iterate
over every block in the chain from the genesis block forward.

The nature of a blockchain is that “older” blocks are con-
sidered to be more reliable than “newer” ones, in that the
network has had time to establish a consensus about which

older blocks contain the correct transaction history. While
it is always theoretically possible that any block (and the
chain of blocks following it) can be challenged and replaced
with a different block (and subsequent chain), it is generally
agreed with Ethereum that blocks approximately 12 blocks
prior to the current block are reliable [3]. Depending on
the application scenario in mind, one can choose between
only indexing “reliable” blocks (minimising rewrites to the
index) or always indexing up to the latest block (or beyond:
pending transactions grouped into potential blocks are avail-
able to the network before even initial consensus has been
reached, and there may be a need to index these too). As
the current work is primarily a proof-of-concept with the
longer-term goal of stable query access to trustworthy data,
we currently do not index recent or pending blocks.

For the block-level data, we build a Linked Data index
one block at a time, iterating over the contents of the block
and generating RDF triples [25] using the BLONDiE on-
tology for each relevant piece of data, e.g., block header
fields (miner address, difficulty, parent block, and so on)
and transaction details. Each indexed entity is given an
identifying URI based on its address in the blockchain, en-
suring that all generated triples relating to the same entity
will use the same URI. Figure 3 shows an example of RDF
describing a block, while Figure 4 shows triples describing
a transaction. The generated RDF is stored in a standards-
compatible quadstore (RDF4J, [20]), where it can be queried
using, e.g., SPARQL [24].

Population of the index occurs in two different ways. A
listener is notified each time a new block is added to the
blockchain, which triggers the indexing of the most recent
“reliable” block (hardcoded to 12 blocks prior to the new

1433



Figure 2: Visualisation of the Minimal Service Model ontology (created with WebVOWL [15])

Figure 3: RDF describing a block

Figure 4: RDF describing a transaction

1434



block on the chain), ensuring that the index remains up
to date with new data. Simultaneously, a separate script
iterates backwards along the chain, beginning from the block
which was current at the time index generation was initiated,
ensuring that historical data is also indexed.

4.1 Semantic mappings
In order to generate RDF, it is necessary to map block-

chain entities to the relevant semantic terms. With block-
level concepts, this is straightforward according to the def-
initions in BLONDiE. In order to make querying more effi-
cient, we extend the BLONDiE schema in two ways. Firstly,
records relating to both block and transactions have been
augmented with a (string-valued) attribute for the hash of
each entity, in order to provide a more direct mapping be-
tween the contents of the index and the addressable entities
on the blockchain. Secondly, records relating to transactions
have been augmented with links to related entities such as
the containing block, the originating smart contract (if the
transaction is the result of contract execution) and the input
to the originating contract (again, where relevant).

The indexing of smart contracts themselves is a little more
involved. The blockchain only stores a compiled, binary
form of each contract, with very little metadata. In order
to interact with a contract, it is necessary to have the cor-
responding Application Binary Interface (ABI) specification
[8]. This specification is in the form of a JSON file gen-
erated when the smart contract is compiled and stored on
the blockchain. Figure 5 shows an example. The ABI file
specifies all functions associated with a contract, together
with descriptions (names and datatypes) of the input and
output parameters for each function. Given the ABI and
the blockchain address of a function, it is possible to invoke
or otherwise interact with the corresponding contract. In
particular for the purposes of the current work, without this
data it is not possible to parse contract execution logs and
transaction receipts.

Figure 5: Example of a smart contract ABI

In the presence of an ABI and an address, it is straightfor-
ward to generate RDF to index the corresponding smart con-
tract. We model each contract as an msm:Service, and each
function as an msm:Operation, related (by msm:hasInput or
hasOutput) as appropriate to an msm:MessageContent en-
tity representing the input and output parameter names
and datatypes. To retain an index into the actual block-
chain contents, we augment each msm:Service record with a
(string-valued) attribute containing the blockchain address.

Even with an ABI file, there is of course a limit to the
semantic annotation available for smart contract functions.

With more domain knowledge of a smart contract’s pur-
pose, it is possible to associate domain-specific terms with
a contract. For example, a contract representing an Open
Badge could be annotated/indexed with terms relating to
the Open Badge specification and the URI identifier of the
relevant course or student.

5. CONCLUSION AND FUTURE WORK
We have demonstrated the proof-of-concept for a Linked

Data index onto a distributed ledger. It is now possible
to query and retrieve data stored on the blockchain in dis-
parate locations, and, more interestingly, this data can be
easily linked to other sources of information using Semantic
Web approaches. For example, we have been able to make
blockchain smart contract functions discoverable using Se-
mantic Web Services tools such as iServe [18]. We can also
connect domain-specific data from sources external to the
chain – such as linking blockchain Open Badge information
with other Linked Data resources about courses.

The need for RDF entities to be identified by URIs which
can be dereferenced highlights some fundamental differences
between distributed ledgers and the Web. Where a Web re-
source can be given an identifier which contains the infor-
mation needed to locate it and retrieve it, such a scheme
is more difficult for blockchains. One can imagine a URI
schema which, for example, identified a ledger type, e.g.,
Ethereum, Bitcoin, and so on, but how best to refer to the
blockchain location? Identifying the hostname of a node
on the relevant blockchain is possible, but does not follow
the fully distributed approach, as it introduces a particular
point of contact for a resource which is neither unique nor,
in itself, necessary to locate that resource. If the node in
question ceases to exist, the ledger and resource may persist
on other nodes. By contrast, not using a node address and
simply assigning a unique generated identifier for a particu-
lar blockchain leaves the URI with no concrete dereferencing
information without the use of an external registry similar
to, e.g., DNS.

Indexing of the Ethereum distributed ledger is limited
with regard to smart contracts by the requirement to pos-
sess ABI information to interact with smart contracts. It is
only possible to index contracts in detail if its author has
shared the ABI – one cannot index third-party smart con-
tracts without permission, effectively.

Of course, more remains to be done. A full evaluation
is planned into performance, both raw and compared with
other (non-semantic) indexing approaches to distributed ledg-
ers. On the Linked Data side, it would be interesting to
develop an HTTP wrapper to support the dereferencing of
RDF URIs, as well as a layer to support the invocation of
smart contracts as Semantic Web Services, and it is vital
to look more deeply into the questions surrounding the URI
addressing of blockchain entities.

In terms of ledger interoperability, the next step should
be to extend this work to cover other blockchain platforms
beyond Ethereum, enabling cross-chain semantic indexing.
This is of course a large topic in its own right, with issues to
be solved regarding, e.g., identity of entities between ledg-
ers. But expressing complex relationships explicitly in a
machine-readable fashion is one of the main achievements
of the Semantic Web, and it is reasonable to suppose that
therefore a Semantic Web approach to these issues is likely
to be beneficial.

1435



It would also be interesting to investigate the performance
and cost requirements of making the index distributed in the
same manner as the distributed ledger itself. The model pre-
sented here relies on an observation node, to which the index
is local. While of course this can be duplicated in theory on
any node where it is required, without requiring any refer-
ence to a “central” index, it is not inherently distributed and
it would be useful to explore how to make it so.

As distributed ledger technologies become more estab-
lished, they are likely to be used increasingly to represent
real world transactions involving many parties. The ability
to search using domain specific terms across multiple ledgers
will greatly enhance to power, usability and scope of these
systems.

We have implemented a semantic index to the Ethereum
platform, to expose distributed ledger data as Linked Data.
As well as indexing block- and transaction-level data ac-
cording to the BLONDiE ontology, we have mapped smart
contracts to the Minimal Service Model ontology, to take
the first steps towards connecting smart contracts with Se-
mantic Web Services. This work has demonstrated that
such a semantic index is possible and can be useful, and
has highlighted the areas which need further attention in
future work.

6. REFERENCES
[1] BBC, January 2016.

[2] S. Bechhofer. Owl: Web ontology language. In
Encyclopedia of Database Systems, pages 2008–2009.
Springer, 2009.

[3] V. Buterin, 2016.

[4] E. ECMAScript, E. C. M. Association, et al.
Ecmascript language specification, 2011.

[5] M. English. Blondie, 2016.

[6] Etherchain, Jan 2017.

[7] Ethereum. Go ethereum, 2017.

[8] EthereumWiki. Ethereum contract ABI, 2016.

[9] EthereumWiki. Ethereum javascript api, 2016.

[10] D. Fensel, F. M. Facca, E. Simperl, and I. Toma.
Semantic web services. Springer Science & Business
Media, 2011.

[11] E. Goligoski. Motivating the learner: Mozilla’s open
badges program. Access to Knowledge: A Course
Journal, 4(1), 2012.

[12] G. Greenspan. Avoiding the pointless blockchain
project, November 2015.

[13] KMi, Jan 2017.

[14] J. Kopeckỳ, K. Gomadam, and T. Vitvar. hrests: An
html microformat for describing restful web services.
In Web Intelligence and Intelligent Agent Technology,
2008. WI-IAT’08. IEEE/WIC/ACM International
Conference on, volume 1, pages 619–625. IEEE, 2008.

[15] S. Lohmann, V. Link, E. Marbach, and S. Negru.
WebVOWL: Web-based visualization of ontologies. In
Proceedings of EKAW 2014 Satellite Events, volume
8982 of LNAI, pages 154–158. Springer, 2015.

[16] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash
system, 2008.

[17] OpenLearn, 2017.

[18] C. Pedrinaci, D. Liu, M. Maleshkova, D. Lambert,
J. Kopecky, and J. Domingue. iserve: a linked services
publishing platform. In CEUR workshop proceedings,
volume 596, 2010.

[19] J. Pfeffer, A. Beregszazi, C. Detrio, H. Junge,
J. Chow, M. Oancea, M. Pietrzak, S. Khatchadourian,
and S. Bertolo. Ethon - an ethereum ontology, 2016.

[20] RDF4J. RDF4J, 2017.

[21] M. Sharples and J. Domingue. The blockchain and
kudos: A distributed system for educational record,
reputation and reward. In European Conference on
Technology Enhanced Learning, pages 490–496.
Springer, 2016.

[22] M. Sporny, G. Kellogg, M. Lanthaler, W. R. W.
Group, et al. Json-ld 1.0: a json-based serialization for
linked data. W3C Recommendation, 16, 2014.

[23] M. Sporny and D. Longley. Flex ledger 1.0. W3C
Blockchain Community Group, 2016.

[24] W3C. SPARQL, 2008.

[25] W3C. Resource Description Framework, 2014.

[26] G. Wood. Ethereum: A secure decentralised
generalised transaction ledger. Ethereum Project
Yellow Paper, 2014.

1436




