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ABSTRACT
Predicting user response is one of the core machine learning
tasks in computational advertising. Field-aware Factoriza-
tion Machines (FFM) have recently been established as a
state-of-the-art method for that problem and in particular
won two Kaggle challenges. This paper presents some re-
sults from implementing this method in a production system
that predicts click-through and conversion rates for display
advertising and shows that this method it is not only effec-
tive to win challenges but is also valuable in a real-world
prediction system. We also discuss some specific challenges
and solutions to reduce the training time, namely the use of
an innovative seeding algorithm and a distributed learning
mechanism.

1. INTRODUCTION
Online advertising is a major business for Internet compa-

nies and one of the core problem in that field is to be able to
match the right advertisement to the right user at the right
time. Accurate click-through rate prediction is essential for
solving that problem and has been the topic of extensive
research, both for search advertising [11, 20] and display
advertising [5, 14]. Performance based advertisers measure
the performance of their campaigns not only with respect to
clicks, but also to conversions – defined as a user action on
the website such a purchase – and specific machine learning
models have been developed for conversion prediction [15,
23, 3, 26].

A prominent model for these prediction problems is lo-
gistic regression with cross-features [20, 5]. When all cross-
features are added, the resulting model is equivalent to a
polynomial kernel of degree 2 [2]. A Kaggle challenge was
hosted by Criteo in 2014 to compare CTR prediction algo-
rithms.1 Logistic regression with cross-features was indeed
quite successful in that competition: the 3rd place winner
solution was based on this technique [24]. But the winning
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solution is a variant of factorization machines [22] called
Field-aware Factorization Machines (FFM) [14]. The im-
pressive performance of FFM prompted us to implement it
and test it as part of our production system.

FFM.
Consider the case of categorical features – most features in

ad systems are either categorical or can be made categorical
through discretization. Let F be the number of features (or
fields) and v1, . . . , vF be the values of these features for a
given example. The FFM prediction on this example can be
written as:2

F∑
f1=1

F∑
f2=f1+1

wi1 ·wi2 ,

where i1 = Φ(vf1 , f1, f2), i2 = Φ(vf2 , f2, f1), (1)

with w ∈ Rd×k the weight matrix and wi ∈ Rk denotes
the embedding of the i-th entry. The mapping Φ(v, f1, f2)
maps a value v of feature f1 in the context of feature f2 to
an index from 1 to d. This may be any hash function or
based on dictionary. In the latter case, d will be equal to
F ×

∑F
f=1 cf , with cf the cardinality of the f -th feature.

In regular factorization machines, there is a unique embed-
ding for a given feature value; in other words, the indices in
(1) for FM are i1 = Φ(vf1 , f1) and i2 = Φ(vf2 , f2). But in
field-aware FM, there is a different embedding depending on
the other feature of the dot product. As argued in [14] this
gives additional modeling flexibility.

Related work.
A similar effort to ours has been reported by AdRoll in

a blog post:3 the author reports substantial gains after de-
ploying FMs in their CTR prediction system. Google [20]
and Facebook [12] may not use FMs but have reported some
specific challenges they encountered in productionizing their
large scale CTR prediction system, which are related to the
challenges for productionizing FFM. Factorisation Machine
supported Neural Network (FNN) and Sampling-based Neu-
ral Network (SNN) [28] are two learning algorithms related
to FMs that have also been applied a CTR prediction task.
They are both deep neural networks but differ in their em-
bedding layer: SNN uses a regular embedding layer while

2The prediction here is specific to categorical features while
[14] handles the more general case of continuous features.
3http://tech.adroll.com/blog/data-science/2015/08/
25/factorization-machines.html
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FNN is initialized with the result of a factorization machine.
The recent interest in factorization machines have led to the
development of distributed solvers [18] for these techniques.
Finally a hierarchical version of factorization machines has
been introduced in [21].

Even though FFM have been shown to be a state-of-the-
art method for computational advertising by winning two
Kaggle challenges, it is still unclear if they are well suited
in a production environment. The Netflix challenge is a re-
minder that a production system has some specific set of
constraints and goals that differ from the ones of an aca-
demic competition: ultimately Netflix decided not use the
winning solution.4

This paper discusses our attempt at implementing FFM
in a production system that predicts click-through and con-
version rates on display advertisements. Section 2 presents
offline and online (A/B test) results and provides some in-
sights on the benefits of this method over standard logistic
regression as well as the challenges for using FFM in a pro-
duction system. These positive results further led us to ad-
dress one of the main bottleneck encountered with our FFM
implementation: training speed. Section 3 investigates how
to train FFM in a distributed environment. And Section
4 offers an innovative model seeding procedure to further
solve that problem, resulting in a more accurate model with
a shorter training time and using less computation resources.
Finally Section 5 presents conclusions and future work.

2. FFM IN A PRODUCTION SYSTEM
In this Section, we describe how we use FFM in our pro-

duction system, present our offline and online results, and
discuss the benefits and challenges of using FFM in such a
setting.

2.1 Baseline
As discussed in Section 1, state-of-the-art advertising sys-

tems are based on click-through rate (CTR) and conversion
rate (CR) prediction models. In this paper, we consider both
CTR and CR prediction models used for bidding in real-time
auctions (see, e.g., [5, 26]). To predict the probability of a
sale given a display, we use a multiplicative model between
a model of the probability of a click given a display and a
model of the probability of a sale given a click, as discussed
in [3]. So, in the rest of the paper we call these two models
CTR and CR.

Our baseline system for training these models is based
on previous work [1, 5, 26]. Indeed, following [1, 5], we
use the hashing trick [27] to reduce the dimensionality of
our data and to thus reduce the number of parameters to
fit. We use logistic regression (LR) with cross-features fitted
with L-BFGS warm-started using SGD [1, 5]. Following [26],
we also use cost-sensitive learning for the CR model and
weight each sale depending on the value of the sale for the
advertiser, as this was shown to increase the performance
for the CR model both offline and online. We use Hadoop
AllReduce for distributing the learning of our models [1].

Below, we investigate the usage of FFM instead of LR
for training our CTR and CR prediction models. We still
use the hashing trick. So, the mapping Φ(v, f1, f2) in (1) is

4http://techblog.netflix.com/2012/04/netflix-
recommendations-beyond-5-stars.html

based on a hash which a fixed hashing space (of the order
of tens of millions).

2.2 Offline comparison
We now present results comparing FFM to the state-of-

the-art baseline on an offline dataset.

Offline metrics.
We use two offline metrics. First, we use the normalized

log loss (NLL). This metric shows the relative improvement
in log loss (LL) of the model to be evaluated versus a baseline
predictor, in our case the average empirical CTR or CR of
the dataset, similar to the normalization in [12, 16, 26]. This
metric is defined formally for any prediction p as follows,
where we denote p̄ the best constant predictor on the test
set and N the number of impressions in our dataset.

LL(p) = −
N∑
i=1

yi log(pi) + (1− yi) log(1− pi) (2)

NLL(p) =
LL(p̄)− LL(p)

LL(p̄)
(3)

We also use the Utility5 metric [4, 26], which allows to
model offline the potential change in profit due to a predic-
tion model change. Since the observed profit in historical
data is fixed, this metric makes the assumption that the dis-
play costs are determined by the highest second bids coming
from a second price auction and that they are generated ac-
cording to a distribution conditioned on the observed display
cost. This metric is defined as follows, where vi is the reward
of the ith impression.

Utility =
∑
i

∫ p(xi)vi

0

(yi · vi − c̃) Pr(c̃ | ci)dc̃ (4)

The distribution Pr(c̃ | c) specifies what could have been
the second price instead of the observed cost c; [4] suggests
a Gamma distribution with α = βc + 1 and free parameter
β. The motivation for selecting this distribution is that it
interpolates nicely between two limit distributions: a Dirac
distribution centered at c (as β → +∞) and a uniform dis-
tribution (as β → 0). It can be shown that the utility with
a uniform distribution is equivalent to a weighted squared
error [13].

Experimental setup.
We use internal data from Criteo to do our experiments.

Note, however, that, as discussed in Section 1, FFM have
been shown to be better than existing methods on many
public data sets already [14]. Moreover, the goal of this
section is to show we can improve upon our baseline using
FFM in a real-world online advertising system, which uses
its own data. We need offline experiments to ensure that
FFM are performing well in our system (both in terms of
predictive performance and scalability) and for parameter
tuning, before we can perform a live experiment (A/B test).

We use a variant of progressive validation, similar to [20],
for our experiments. The day following the training period
serves as a validation set. As shown on Figure 1 below,

5This metric is called expected Utility in [4], but we refer to
it as Utility in this paper.



the process is repeated N times, shifting the learning period
(indicated by ”tr”) by 1 day at each step. The final results
are the average metrics over all the test sets (indicated by
”te”).

tr #1 te #1

tr #2 te #2

...

Figure 1: Progressive validation

Parameter tuning is done on a separate temporal slice
of data from the data of 1 used for the final experiments.
Following [14] the following parameters are tuned: the reg-
ularization parameter, the learning rate, and the number of
latent factors. We use early-stopping to avoid over-fitting.

Below and in the rest of the paper, we use confidence
intervals computed using bootstraps [10] at the 90% level.
Finally the learning of FFMs is multi-threaded as in [14] to
reduce the learning time.

Latency & memory consumption.
One potential drawback of using FFM in a production

system is that they require more CPU time for inference [14].
This may lead to increased latency online when responding
to bid requests and therefore come more timeouts. FFM also
require more memory for storing the model as the number
of latent factors and/or the number of fields increase, which
may lead to a much larger memory consumption than LR.

To solve the memory issue, we propose to reduce the size of
the hashing space of FFM models (compared to our baseline)
so that FFM models have the same size as the LR models
(the exact value depends on the number of fields and on the
number of latent factors). Note that if we had not reduced
the size of the hashing space, but kept it constant, the size
of FFM models would be more than a 100 times larger than
our baseline, which would make it impractical. Therefore,
in the results below, FFM and LR models have the same
number of parameters (unlike in [14]).

To solve the latency issue, we propose to reduce the num-
ber of latent factors as much as possible without significantly
degrading the performance of FFM. Using these two solu-
tions, FFM and LR consume the same amount of memory
and we can limit the impact on latency to handle the re-
quirement of our production system, as we will see below.

Offline results.
We compare LR and FFM on our CTR and CR predic-

tion tasks in terms of NLL (Table 1) and Utility (Table 2).
FFM achieves significantly better results with a large effect
compared to LR, both in terms of NLL and of Utility for
our CTR model, thus confirming the results from [14] on
our data. We also observe large gains on our CR model,
thus extending the results from [14] to CR models on all our
offline metrics.

We also observe that the improvements are even larger
on small advertisers, which represent a significant portion of
our traffic, for both our CTR and CR models on all metrics.
Our hypothesis to explain these results has to do with sparse
data and unobserved cross-features: LR is unable to predict
the value associated with a cross-feature that is not part
of the training data; on the other hand, FFMs are able to

better generalize through their latent representation (see de-
tailed explanation and example in [14, Section 2]). For large
advertisers LR has enough data to learn a good model, but
for small advertisers FFMs handle this data sparsity issue
better than LR.

During the tuning of the hyper-parameters, we observed
very similar results as in [14] in terms of performance w.r.t
each hyper-parameter. The most important parameter is
the number of epochs and we use early-stopping to auto-
matically tune it.

We also investigated the prediction time of FFM com-
pared to the baseline model, which is expected to increase
despite the fact that we constrained our FFM models to be
of the same size of the baseline. This is because the number
of operations to compute the prediction (1) is O(F 2k) while
LR with all cross-features requires only O(F 2) operations.
We observed that the slowdown of FFM is indeed propor-
tional to the number of latent factors k. It turns out that
k = 2 is a good trade-off: it hardly degrades the accuracy
results compared to the results above which were obtained
with 4 latent factors (0.1% in NLL) and a 2x in prediction
time in our system is acceptable since prediction is is not
the most time-consuming part of processing a request (com-
pared to extracting raw features, pre-processing them, etc.).

2.3 Online comparison
As the offline results were quite promising, we decided to

run an A/B test using FFM for both CTR and CR pre-
dictions models. Although FFM require more time for the
inference (see above), we did not observe any significant im-
pact on our timeouts while serving live traffic. So, we were
able to A/B test FFM on a large portion of our live traffic.
This A/B test served ∼5B displays (∼2.5B for each popula-
tion).

During the A/B test, we ensured that both the baseline
model and FFM were refreshed online synchronously since
different refresh rates might bias the results. Even with
multi-threading, the learning time of FFM is indeed much
higher than for our distributed optimization baseline. In
Section 3 and 4, we will see how to reduce this learning time,
but now we focus only on the performance improvements we
can get online with FFM. The results we obtained are the
following.

Results are shown in Table 3. We observed an increase in
the number of displays (+4.59%), while the overall display
cost stayed almost constant. We observed less clicks, but
more conversions leading to more advertiser value for the
same cost. Our change therefore resulted in a significant
positive impact: +0.97% of Return On Investment (ROI),
that is of advertiser value over cost, which is substantial.
We also observed that the improvements were even larger
on small advertisers (defined as the ones with less than 30
sales per day), which represent a significant portion of our
traffic. On small advertisers, we observed an increase in the
number of displays (+4.85%), while the overall display cost
stayed almost constant too. We also observed less clicks, but
even more conversions leading to even more advertiser value
for the same cost and to +2.61% of Return On Investment
(ROI), which is remarkable.

This confirms our offline results and shows that one of
the strengths of FFM is indeed their ability to generalize
better than logistic regression through their use of a latent
representation.



Table 1: Offline relative comparison between Logistic Regression (baseline) and FFM on our CTR and CR prediction tasks
in terms of the NLL metric (3). We present results on all advertisers and on small advertisers – defined as advertisers with
less than 30 sales per day on average. NLL of the CTR (resp. CR) model is the NLL of the probability of a click (resp. sale)
given a display. Statistical significance is indicated by N.

Prediction model with FFM
NLL NLL

on all advertisers on small advertisers

CTR +3.71%N +5.9%N
CTR + CR +1.21%N +6.2%N

Table 2: Offline relative comparison between Logistic Regression (baseline) and FFM on our CTR and CR prediction tasks
in terms of Utility metrics (4). We report the Utility of our model for the expected number of sales given display, which uses
our CTR and CR models as sub-models. Statistical significance is indicated by N.

Prediction model with FFM
Utilityβ=10 Utilityβ=10 Utilityβ=1000 Utilityβ=1000

on all advertisers on small advertisers on all advertisers on small advertisers

CTR +6.29%N +9.70%N +2.22%N +4.39%N
CTR + CR +11.42%N +38.44%N +5.43%N +18.34%N

2.4 Discussion
Our positive online results motivate us to use FFM in

production instead of LR. To do so, the code change is rather
small if SGD is already available. However, there are a few
challenges to keep in mind when using FFM instead of LR
in a production system.

The main concern with rolling out FFM is the learning
time, which is much higher than the baseline as discussed
before. This means that our models would be refreshed less
often with FFM, at the cost of reducing the performance
of the system. All our offline experiments to improve our
models would also take much longer. This is not acceptable
and we will discuss in the next two sections how to tackle this
problem to handle the scale of a large production system, in
particular by distributing the learning on multiple machines.

There are also other challenges. Above, we discussed the
memory consumption and prediction latency issues and we
showed how to manage them. Another potential problem is
the non-convexity of the objective function of FFM, which
may lead to some instability in the performance of FFM due
to local minimums. To investigate this, we learned multiple
FFMs on the same dataset initialized with random weights
as in [14]. We observed that all the models have similar per-
formance (±0.05% of NLL) despite the different initializa-
tions. The local minimum issue is thus not a major concern.

We also saw above that the number of hyper-parameters
in FFM is larger than for LR with the addition of the learn-
ing rate (as we use L-BFGS for training our LR models) and
of the number of latent factors, while we only had the regu-
larization parameter to tune for LR. This means that tuning
takes more time when improving our models. However, and
as discussed in [14], this is not a major problem for multiple
reasons. First, the performance is not very sensitive to the
number of latent factors and to the regularization parame-
ter, while a good value for the learning rate is easy to find.
We also found the performance of FFM to be stable over
time w.r.t to the hyper-parameters (no need for constant
re-tuning).

As we have not been able to find a satisfying regularizer
for FFM, we use early-stopping to avoid over-fitting [14]—
the only solution we have. So, some monitoring should also

be added to ensure that we are not under-fitting or over-
fitting despite using early stopping (e.g., if the small amount
of data used for testing and deciding when to stop is not
representative).

Note finally that for efficient regression testing [16], we
need to fix the seed used for randomizing the initial weights
[14].

3. A SIMPLE DISTRIBUTED SETTING
In the previous section, we discussed that the training

time of FFM is too slow to meet our production requirement,
even after applying the parallelization approach mentioned
in [14] on a multi-core machine.

To get more speed-up, a natural option is to train FFM
on a distributed system. Generally speaking, for sequential
algorithms such as SGD or dual coordinate descent, the con-
vergence of their parallelization depends on how often each
worker can access the model. In shared-memory systems,
because each thread can access the model in real-time, it is
possible that the convergence remains the same, as shown in
[14]. However, in distributed systems, where we need to use
the network for communication, we can no longer share the
model among machines in real-time (due to network over-
head). There are two main ways of distributing a stochastic
gradient algorithm, synchronously and asynchronously. In
both cases, each machine has a subset of the data and its
own local model and it updates the global model after a
batch of data points has been processed. The asynchronous
training is often referred to as the parameter server approach
[17, 18, 7]: some machines are dedicated to storing the global
model and the workers are continuously reading and updat-
ing that model with their local model. The synchronous
training on the other hand is referred to as iterative param-
eter mixing (IPM) [19, 29, 1]: all the models are averaged
after a certain amount of data has been processed (e.g. ev-
ery epoch). From an engineering point of view, simplicity is
one of the most important factors we consider when choos-
ing an algorithm. A complicated algorithm requires more
time for development, is harder to maintain, and is more
likely to introduce bugs. Therefore, in practice, if a simpler
algorithm can solve our problem, we would not go for a more



Table 3: Online relative comparison between Logistic Regression (baseline) and FFM on our CTR and CR prediction models
in terms of Return On Investment (ROI), i.e. advertiser value over cost, during our A/B test. Statistical significance is
indicated by N.

Prediction model with FFM
ROI ROI

on all advertisers on small advertisers

CTR + CR +0.97%N +2.61%N

Algorithm 1 Iterative Parameter Mixing (IPM) for Ada-
Grad

1: Split m data points across k machines
2: Initialize w
3: Initialize Gi ← I ∀i ∈ {1, · · · , k}
4: for t ∈ {1, · · · , T} do . T : number of epochs
5: Let wi ← w ∀i ∈ {1, · · · , k}
6: for i ∈ {1, · · · , k} parallel do
7: for each data point do
8: Calculate the gradient g
9: Update Gi: Gi ← Gi + diag(ggT )

10: Update wi: wi ← wi − ηG−1/2
i g

11: w ←
∑k
i=1 wi/k

complicated one. As we will see, with IPM we are already
be able to speed-up the training time 12x with 32 machines.
This already meets our requirement, so we do not investigate
the parameter server approach in this paper. IPM for the
AdaGrad learning algorithm [9] is described in Algorithm 1.

The speed-up of a distributed algorithm can be modeled
by the following equation

speed-up = #machines× #epochs with multiple machines

#epochs with one machine

This equation is based on two assumptions:

1. Each machine finishes the computation at almost the
same time.

2. The communication cost among machines is negligible.

In our case, both assumptions indeed hold. The first as-
sumption holds, because we equally distribute the training
data to all machines and make sure that each machine has
similar computing power. The second one holds because
IPM only requires synchronization at the end of each epoch,
making the synchronization time much less than computa-
tion time.

The “real” distributed algorithm is embedded in our in-
ternal system and run on our internal datasets, therefore we
are not able to release it. For experimental reproducibility,
in this paper we use multi-threading to simulate machines,
and use the dataset obtained from Criteo’s CTR Prediction
Challenge described in Section 1. This simulation is close
to reality because the speed-up of a distributed algorithm
depends only on the number of machines used and on the
slow down in convergence, which can be exactly simulated
by multi-threading.

If we directly apply IPM, then the convergence gets slower
and slower when we keep adding machines. The experiment
result is shown in Table 4. Suppose we use 32 machines in-
stead of 1, although the computation is 32 times faster, it

# machines #epochs log loss
1 8 0.44552
2 15 0.44548
4 29 0.44549
8 47 0.44560
16 100 0.44554
32 157 0.44585

Table 4: The number of epochs required to reach the best
log loss with different number of machines. Algorithm 1 is
applied. The learning rate η is 0.2.

also needs 20 times more epochs. Therefore, the speed-up
is only 32/(157/8) ≈ 1.6. A natural way to make the con-
vergence faster is to increase the learning rate η. Though
increasing the learning rate indeed makes the algorithm con-
verge faster, it also make the log loss worse. This result is
shown in Table 5a.

η #epochs log loss
0.2 157 0.44585
0.5 70 0.44569
1.0 37 0.44590
2.0 26 0.44622
3.0 21 0.44654
4.0 19 0.44688
5.0 18 0.44721

(a) Algorithm 1

η #epochs log loss
0.2 200 0.44819
0.5 130 0.44600
1.0 55 0.44578
2.0 31 0.44565
3.0 22 0.44577
4.0 18 0.44592
5.0 16 0.44608

(b) Algorithm 2

Table 5: With 32 machines, the number of epochs required
to reach the best log loss with different learning rates.

We propose the following approach to solve this issue. Re-
member that, following [14], we use AdaGrad [9] to boost the
performance of SGD. AdaGrad records the squared gradient
sum (G) to dynamically adjust the learning rate for each
dimension. In Algorithm 1, G is not synchronized among
machines. It may make G on each machine very small and
make the effective learning rate too large. Based on an idea
similar to [1], we aggregate G among each machine at the
end of each epoch. This new algorithm is described in Algo-
rithm 2. The experiment result is shown in Table 5b. The
log loss is much better when a large learning rate is used.

Under this setting, if we choose η = 3.0, the speed-up we
can achieve is 32×(8/22) ≈ 12. Indeed, after we applied this
setting in our system, we observe a similar speed-up, which
enables us to train a model as fast as our current system.

4. WARM-START
As described in Section 2, we regularly re-train models.

In Figure 1, suppose each training set contains several days
of data, and we move a few hours forward at each step,



Algorithm 2 Improved IPM for AdaGrad

1: Spread m data points into k machines
2: Initialize w
3: Initialize G← I
4: for t ∈ {1, · · · , T} do . T : number of epochs
5: Let wi ← w ∀i ∈ {1, · · · , k}
6: Let Gi ← G ∀i ∈ {1, · · · , k}
7: for i ∈ {1, · · · , k} parallel do
8: for each data point do
9: Calculate the gradient g

10: Update Gi: Gi ← Gi + diag(ggT )

11: Update wi: wi ← wi − ηG−1/2
i g

12: w ←
∑k
i=1 wi/k

13: G←
∑k
i=1Gi

Algorithm 3 A naive warm-start

Require: an initial model w0

w← w0

calculate the validation loss L0

for t ∈ {1, . . . , T} do
update w
wt ← w
calculate the validation loss Lt
if Lt > Lt−1 then

return wt−1

there will be a large amount of overlap between training sets
#1 and #2. This means that the model obtained from #1
may be very similar to one obtained from #2. For logistic
regression, the training time to obtain model #2 can be
significantly reduced by initializing model #2 with model
#1. This technique is known as warm-start [6, 25, 8].

For logistic regression, a convex optimization problem, the
model will eventually converge to the global optimum no
matter warm-start is used or not.6 Warm-start only in-
fluences the convergence speed. However, this is not the
case for FFM. To explain why, we first review an undesired
property of FFM that has been investigated in [14] – we do
not have a good regularization method for FFM, and hence
need to rely on early-stopping to prevent over-fitting. We
visualize this property in Figure 2. To obtain the best test
accuracy, the number of epochs must be carefully selected
– with insufficient epochs, the model can be under-fitting;
on the other hand, with too many epochs, the model can
be over-fitting. To determine the best number of epochs,
we usually use a validation set to monitor the model perfor-
mance at each epoch. Once the validation loss goes up, we
stop the training process. We define three phases to indicate
the “maturity” of the model.

• Pre-mature: the model is trained with too few epochs

• Mature: the model is trained with enough epochs

• Post-mature: the model is trained with too many epochs

The use of early stopping, however, makes warm-start dif-
ficult to be applied. If we seed a mature model to the next
step and keep training, then the new model can be post-
mature. This problem can be demonstrated in the following

6Assuming an appropriate optimization method and a tight
stopping criteria are applied.

epochs

lo
ss

pre-mature mature post-mature

test loss

training loss

Figure 2: An illustration of over-fitting problem.

Figure 3: The test log loss of using FFM with different seed-
ing approaches. The y-axis is the difference of log loss com-
pared with the baseline (FFM without warm-start).

experiment. We again use Criteo’s CTR Prediction Chal-
lenge dataset for reproducibility. We split the data set into
90 blocks, and at each step, 44 blocks are used for training,
1 block for validation, and 1 block for test. Therefore, the
entire experiment starts from the 46th block (as test set),
moves one block forward at each step, and ends at the 90th
block (as test set). The validation set is used to determine
the number of epochs. We first compare a baseline setting,
which did not use any warm-start approach, with a naive
warm-start described in Algorithm 3, which simply seeds
the model obtained in the end of each step into the next
step.

The experiment result shown in Figure 3 indicates that
the post-mature problem indeed happens seriously – the test
accuracy is getting worse and worse when the experiments
move forward. Again note that the goal of a warm-start
technique is to reduce training time while keep the same
predictability of the model. Clearly, by using a naive warm-
start for FFM, this goal is not achieved.

In this paper, we propose a new warm-start approach
named pre-mature warm-start. The idea is that instead of
seeding a mature model to the next step, a pre-mature model
is used as the seed. At each step, since the new model is ini-
tialized with a pre-mature model, it may be able to learn



Algorithm 4 Our proposed “pre-mature” warm-start

Require: an initial model w−1

w← w0 ← w−1

calculate the validation loss L0

for t ∈ {1, . . . , T} do
update w
wt ← w
calculate the validation loss Lt
if Lt > Lt−1 then

return (wt−1, wt−2)

Figure 4: Number of epochs used in eash step. Both settings
use 44 blocks of training data.

from the new data without over-fitting to the old data. For
example, if the mature model comes at the 6th epoch, then
this model will be used for prediction, but the model ob-
tained at the 5th epoch will be seeded to the next step.
The algorithm of pre-mature warm-start is described in Al-
gorithm 4. Here, wt−1 is used for prediction and wt−2 is
seeded.

Offline results.
The experiment results in Figure 3 and 4 show that with

pre-mature warm-start, the test performance is not worse
than the baseline any more, and the number of epochs re-
quired is significantly reduced.

It is noteworthy that the log loss of FFM with warm-
start is getting lower as the experiment moves forward. This
suggests that FFM may have some ability to remember the
information learnt in the past. Inspired by this observation,
we tried reducing the size of training set. Figure 5 shows the
comparison among different training sizes with pre-mature
warm-start. We see that after sufficient number of steps,
pre-mature with only 4 blocks of training set is still better
than the baseline using 44 blocks. By using smaller training
set, the training becomes much faster. The comparison of
training time is shown in Table 6. If we use 4 blocks for
training, then it is 20 times faster than the baseline.

An extreme case is to reduce the size of training set to
only one block. In this case, because there is no overlap
between two consecutive steps, we do not have to use pre-

Figure 5: The log loss difference between baseline and differ-
ent warm-start approaches and training sizes. The baseline
(without warm-start) and pre-mature use 44 blocks as train-
ing data at each step. Note that we change the training size
from the second step. For the first step, all settings use 44
previous blocks as training set, so the log loss are the same.

#epochs time / epoch total time
baseline 315 236s 20.6hr
pre-mature 103 236s 6.8hr
pre-mature (8 blks) 115 47s 1.5hr
pre-mature (4 blks) 128 26s 0.9hr
pre-mature (2 blks) 136 13s 0.5hr

Table 6: Total number of epochs, average time per epoch,
and total training time of the entire experiment. Both base-
line and pre-mature use 44 blocks as training data.

mature warm-start. (The purpose of pre-mature warm-start
is to prevent over-fitting old data.) We illustrate this setting
in the following figure, and refer to it as online.

tr #1 va #1 te #1

tr #2 va #2 te #2

...

Figure 5 shows FFM still can memorize the information un-
der this setting, as it still out-performs the baseline. How-
ever, we do not use this setting because of two reasons. First,
our proposed approach can achieve better log loss. Second,
conceptually, if we only use a very small portion of data for
training, the model can be very sensitive to the quality of
this small set. Indeed, for example, at the 36th epoch in
Figure 5, we see that online is worse than baseline while our
proposed approach still out-performs baseline.

Discussion.
We have proposed two different ways to reduce train-

ing time. Distributed learning reduces the training time
by adding more machines, but at the same time also in-
creases the amount of computation. (In our previous exper-
iments, when 32 machines are used, we needed roughly 3
times more epochs.) On the other hand, warm-start reduces



the training time by initializing a model wisely and require
less training epochs, which means the amount of computa-
tion is decreased. In a sense, warm-start seems to be a bet-
ter approach than distributed learning. However, we cannot
completely replace distributed learning with warm-start, be-
cause sometimes a cold-start is required, which means we
need to train an entirely new model. In practice, this can
happen when the code is updated or the system encounters
unexpected error. In the cold-start scenario, we still need to
rely on distributed learning to make sure we can learn the
model on time.

5. CONCLUSION
In this paper, we showed that Field-aware Factorization

Machines can be successfully deployed in large scale ad-
vertising system, and that it significantly improves busi-
ness metrics, in particular for small advertisers. One of the
strengths of FFM is indeed their ability to generalize better
than logistic regression through their use of a latent repre-
sentation.

Further, we proposed two ways to make training FFM
faster: distributed learning and warm-start. The code for
the experiments in Section 3 and 4 is available online.7 As
future works, we plan to try our warm start method on our
other non-convex problems that are difficult to regularize,
such as a deep neural network.
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