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Over the past few years, domestic heating automation systems (DHASs) that optimize the domestic space heating con-
trol process with minimum user-input, utilizing appropriate occupancy prediction technology, have emerged as commercial
products (e.g, the smart thermostats from Nest and Honeywell). At the same time, many houses are being equipped with,
potentially grid-connected, intermittent energy resources (IERs), such as rooftop photovoltaic systems and/or small wind
turbine generators. Now, in many regions of the world, such houses can sell energy to the grid but at a lower price than the
price of buying it. In this context, and given the anticipated increase in electrification of heating, the next generation DHASs
need to incorporate advanced economic control (AEC). Such AEC can exploit the energy buffer that heating loads provide, in
order to shift the consumption of electricity-based heating systems to follow the intermittent energy generation of the house.
By so doing, the energy imported from the grid can be minimized and considerable monetary gains for the household can
be achieved, without affecting the occupants’ schedule. These benefits can be amplified still further in domestic coalitions,
where a number of houses come together and share their IER generation to minimize their cumulative grid energy import.
Given the above, in this work we extend a state-of-the-art DHAS, to propose AdaHeat+, a practical DHAS, that, for the

first time, incorporates AEC. Our work is applicable to both individual houses and domestic coalitions and comes complete
with an allocation mechanism to share the coalition gains. Importantly, we propose an effective heuristic heating schedule
planning approach for collective AEC which: (i) has a complexity that scales in a linear and parallelizable manner with the
coalition size, and (ii) enables AdaHeat+ to handle the distinct preferences, in balancing heating cost and thermal discomfort,
of the households. Our approach relies on stochastic IER power output predictions. In this context, we propose a simple
and effective formulation for the site-specific calibration of such predictions based on adaptive Gaussian process modeling.
Finally, we demonstrate the effectiveness of AdaHeat+ through real data evaluation, to show that collective AEC can improve
heating cost-efficiency by up to 60%, compared to independent AEC (and even more when compared to no-AEC).
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1. INTRODUCTION

In many countries, such as the UK and the US, the domestic sector accounts for more than 20% of
the total energy consumption and over 40% of this is related to space heating.1 As such, improv-
ing the energy efficiency of domestic space heating systems (both electricity and non-electricity
based) can lead to a major reduction in energy consumption and the corresponding CO2 emissions.
In general, there are many ways of improving space heating energy efficiency, ranging from better
insulation of the space to advanced heating technologies such as (air or ground) heat pumps and
storage heating technology (e.g., [Pacheco et al. 2012; Chua et al. 2010]). However, most of the
conventional approaches require considerable additional investments and/or building reconstruction
[Pacheco et al. 2012; Širokỳ et al. 2011]. In contrast, one approach to increasing space heating
efficiency, that has minimal additional cost and minimal retrofitting, is to optimize the heating con-
trol process [Širokỳ et al. 2011].2 To this end, programmable thermostats have been proposed as a
means to enable more efficient heating control compared to traditional static thermostats, enabling
the occupants to schedule the heating control process according to their requirements. In essence,
programmable thermostats assign the task of optimizing the heating control process to the user.
However, several field studies have shown that their potential gains are rarely realized in domes-
tic settings mainly due to user misconfigurations (e.g., [Peffer et al. 2011; Shipworth et al. 2010]).
For these reasons, their Energy Star specification was suspended in 2009 [Lu et al. 2010]. In this
context, energy systems research has been increasingly focused on domestic heating automation
systems (DHASs) which aim to optimize the heating control process with minimum user-input,
utilizing appropriate occupancy prediction technology (e.g., [Mozer et al. 1997; Scott et al. 2011;
Lu et al. 2010; Urieli and Stone 2013]). By limiting the human interaction, such systems aim to
overcome the limitations that arise in manual scheduling of programmable thermostats in domestic
settings. As such, in recent years, DHASs are also starting to emerge as commercial products, such
as the smart thermostats from Nest, Honeywell and British Gas Connected Homes.3
At the same time, many houses are now being equipped with, potentially grid-connected, inter-

mittent energy resources (IER), such as rooftop or stand-alone photovoltaic systems or small wind
turbine generators [Jacobson et al. 2015; Zahedi 2010].4 Moreover, in many regions, such as in sev-
eral European countries and US states,5 such houses can sell energy to the grid, but at a lower export
tariff than the import tariff (i.e., the price of buying energy from the grid). In general, this price dif-
ference motivates the usage of the own produced energy before buying any additional energy from
the grid (which is important for the smooth integration of IERs into the grid [Ramchurn et al. 2012])
and disables market manipulations.6 Due to these reasons, as well as due to its economic justifica-
tion (since the wholesale price is appropriately lower than the retail one), this pricing schema is
expected to become a standard practice around the world [Sioshansi 2016].7 Now, given the above,
and the fact that the power output of IERs is not human controlled, since it typically depends on the
prevailing weather conditions [Boyle 2012], these houses would be more economically efficient if

1According to “Annual Energy Review 2011”, US Energy Information Administration, available on-line at www.eia.gov/
totalenergy/data/annual/archive/038411.pdf (retrieved on 01/2016), and “United Kingdom Housing Energy Fact
File”, UK Depatment of Energy and Climate Change, available on-line at www.gov.uk/government/uploads/system/
uploads/attachment_data/file/274766/uk_housing_fact_file_2013.pdf (retrieved on 01/2016).
2In this work, space heating control refers to supervisory control (typically applied manually via thermostats) and not to the
low-level control used to maintain the indoor temperature close to set-point with minimum oscillations [Wang and Ma 2008].
3www.nest.com; www.honeywell.com; and www.hivehome.com
4This is also supported by the ever falling cost of such installations [Sioshansi 2016] and the numerous governmental policies
to promote respective investments employed around the world [Hawkey 2015; Sioshansi 2016].
5According to www.dsireusa.org and www.res-legal.eu/en (accessed on 01/2016)
6For instance, without appropriate control, if the export tariff is higher than the import tariff, grid entities with storage
capabilities can buy energy from the grid in order to sell it back for profit. Notably, the situation is the same in a variable-
tariff scenario in the case that the future export tariff is higher than the current import one.
7The alternative schemes used in practice, where the export tariff is equal (or even higher) than the import tariff, are generally
temporary and aim to promote respective investments [Sioshansi 2016].
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they: (i) store their produced energy to follow their demand, or (ii) shift their electricity demand to
follow their energy production. In either case, they would minimize their energy import and achieve
financial gains. However, appropriate energy storage technology,8 that could facilitate the former is
not available or cost efficient to install at the moment in domestic settings.9 Moreover, the latter ap-
proach is effective in domestic settings only when adequate energy capacity is available for shifting
loads, so that the individual households do not have to drastically alter their schedules [Ramchurn
et al. 2012]. Nevertheless, thermostatically controlled loads, such as refrigerators and space and wa-
ter heaters, can provide such a buffer as excess energy can be retained as heat [de Nijs et al. 2015].
In this context, and given the anticipated increase in electrification of heating [Hawkey 2015], the
next generation DHASs needs to incorporate advanced economic control (AEC). Such AEC can
exploit the aforementioned shifting potential in houses with electricity-based heating systems and
grid-connected IERs in order to minimize the energy import and achieve respective financial gains.
Importantly, these benefits of AEC can be amplified in domestic coalitions, where a number of
houses come together to share their energy generation and coordinately shift their heating con-
sumption in order to further minimize the energy drawn from the grid. Now, having this happen,
requires the market to allow such groups to act as an individual, and can be facilitated by forming a
micro-grid [Palizban et al. 2014], or, in a more general manner, by conducting appropriate contracts
through dynamic on-line energy exchange providers, utilizing the national grid and smart metering
[Niese et al. 2012]. That said, smart meters are already being installed in many countries [Krishna-
murti et al. 2012] and dynamic on-line energy exchange is being explored through initiatives such
as Piclo, Clickpower, and Powershop.10 Hence, direct facilitation of such coalition formation (i.e.,
without a micro-grid) is likely to be available in the near future [Niese et al. 2012].
To date, most of the proposed DHASs focus on efficiently balancing energy consumption and

thermal discomfort according to the occupant’s preferences, based on occupancy predictions esti-
mates. That is, simple (automated) heating control without considering any additional economic
aspects other than the amount of energy consumed (e.g., [Mozer et al. 1997; Gao and Keshav 2013;
Urieli and Stone 2013; Scott et al. 2011; Lu et al. 2010]). Nevertheless, in recent years, economic
control is starting to emerge as an integrated part of DHASs (e.g., [Panagopoulos et al. 2015; Shann
and Seuken 2014; Rogers et al. 2011; Halvgaard et al. 2012; Oldewurtel et al. 2010]), where the
systems appropriately balance heating cost and thermal discomfort, in the case of electricity-based
heating. However, all these works consider simple economic control, merely accounting for variable
energy import tariffs over the energy consumed, without considering grid-connected domestic IERs
and energy export. In essence, all these systems aim to shift the demand to time-slots where the im-
port tariff is favorable. Moreover, none of these works exploit the potential that coalitions provide
in (advanced) economic control. In particular, the potential of domestic coalitions in such a DHAS-
integrated economic control has not been exploited until now although: (i) coalition formation is a
considerably active research area within the energy sustainability agenda (e.g., [Alam et al. 2013;
Chalkiadakis et al. 2011]), and (ii) several works have discussed the potential of thermostatically
controlled load aggregations (including domestic space heating loads) for providing regulation ser-
vices to the grid (e.g., [Hao et al. 2013; Callaway 2009; de Nijs et al. 2015]). In addition, work that
deals with domestic space heating system aggregations typically assumes the same preferences in
balancing heating cost and thermal discomfort among the houses (e.g., [Dudley and Piette 2008;
Torriti et al. 2010]). However, this is impractical in realistic settings since the households have
diverse, and even time-varying, preferences on this balancing [Panagopoulos et al. 2012].
Against this background, in this work we propose a practical DHAS, AdaHeat+, that incorpo-

rates AEC. It considers, for the first time, issues associated with domestic grid-connected IERs and
export tariffs. Our work is applicable to both coalitions and single houses (as an extreme case of a

8Existing energy storage technologies include, among others, battery, flywheels and super-capacitors [Liserre et al. 2010].
9In particular, emerging products such as Tesla’s Powerwall (www.teslamotors.com) and BYD Auto’s energy storage
systems (www.byd.com), have received intense criticism as they are too expensive for domestic settings [Bulman 2015].
10www.openutility.com/piclo; www.clickpower.in; www.powershop.com.au
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single-house coalition). In particular, we propose the formation of coalitions of houses that coor-
dinate their heating system operation ahead of time, utilizing IER stochastic predictions, in order
to minimize their energy import (or, more formally, to buy and sell energy to the grid when the
tariffs are favorable),11 as an aggregate. To do so, we extend a state-of-the-art single-house DHAS,
AdaHeat [Panagopoulos et al. 2015], that considers simple economic control (i.e. accounting for
variable energy import tariffs) and tackles many of the respective challenges (as further discussed
in Sec. 2.1), to account for AEC (i.e., considering also domestic grid-connected IER generation ca-
pacity and export tariffs). We add to it by proposing an effective heuristic heating schedule planning
approach for AEC in domestic coalitions. Our solution: (i) has a complexity that scales in a linear
and parallelizable manner with the size of the coalition, and (ii) handles the distinct preferences,
in balancing heating cost and thermal discomfort, of the households. Our planning approach relies
on stochastic IER power output predictions. In this context, we utilize a state-of-the-art site-specific
calibration technique, to improve such predictions, based on Gaussian process (GP) modeling, and
propose a simple and effective respective formulation. Moreover, AdaHeat+ incorporates a practical
cost allocation mechanism to share the gains of the coalition that respects individual rationality and
allocation efficiency. Finally, we demonstrate the effectiveness of AdaHeat+ through real data eval-
uation in a contemporary market reality with flat import and export tariffs. Specifically, we show
that collective AEC can improve heating cost-efficiency by up to 60%, compared to independent
AEC, and even more when compared to AdaHeat’s independent simple economic/heating control.
In more detail, our main contribution to the state-of-the-art is as follows:

—We are the first to show how AEC that considers IER generation capacity of the house and export
tariffs (along with import tariffs), can be incorporated in DHASs. We also show, for the first time,
how to exploit the potential of coalitions in this context.

—We propose a new heuristic planning approach for collective AEC, that has a complexity that
scales in a linear and parallelizable manner with the coalition size. Moreover, our approach can
handle the diverse household preferences in balancing heating cost and thermal discomfort.

—We propose a practical DHAS that accounts for AEC and demonstrate its effectiveness through
evaluating with real data, in a contemporary market reality. We show that collective AEC can
significantly improve heating cost-efficiency compared to independent AEC, and even more when
compared to independent simple economic/heating control.

The remainder of this paper is organized as follows: First, in Sec. 2, we provide background material
and literature review, relevant to our work. In Sec. 3 we detail our DHAS approach. Then, in Sec.
4, we provide a thorough evaluation of our DHAS approach (providing also an instantiation of our
approach for our case study system) and, finally, Sec. 5 concludes. Table I summarizes the main
abbreviations and symbols used in this paper.

Table I. List of main abbreviations and symbols.

AEC Advanced Economic Control C Coalition set T IN Indoor air temperature
DHAS Domestic Heating Automation System CE f f Heating system efficiency TOUT Outside ambient temperature
GP Gaussian Process H Planning horizon intervals set TSP Set-point temperature
MPC Model Predictive Control J Optimization unifying cost u Heating action
NWP Numerical Weather Predictions PBuy Import tariff δ Interval length
SEC Simple Economic Control PSell Export tariff λ Weighting parameter
SHC Simple Heating Control R� Future power output τ Interval id

11Although our work is motivated by the use of flat tariffs it will work equally well in variable tariff settings (as further
discussed in Sec. 3). Nevertheless, evaluating the efficiency of our approach in such settings considers future work (Sec. 5).
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2. BACKGROUND MATERIAL

In this section we provide the background material and literature review that is relevant to our
work. In more detail, in Sec. 2.1, we provide a general discussion on space heating automation with
a specific focus on the particular challenges that arise in domestic settings and its importance in
facilitating AEC. Then, in Sec. 2.2, we provide a general discussion on IER stochastic prediction
and Gaussian processes which are the bases of our case study IER power output prediction approach.

2.1. Domestic Space Heating Control Automation and Advanced Economic Control

Energy systems research has long been preoccupied with developing heating automation systems for
non-domestic buildings (e.g., commercial, industrial, offices) (e.g., [Farris and Melsa 1978; Kum-
mert et al. 2001]). More recently, however, with the onset of ever-increasing house instrumentation,
more research has focused on domestic systems, DHASs, as well (e.g., [Mozer et al. 1997; Scott
et al. 2011]). Indeed, such systems are now commercial products. Nevertheless, DHASs provide
additional challenges over their, more explored, non-domestic counterparts.
In more detail, a particularly dominant challenge that arises in DHASs is tackling the occupancy

schedule uncertainty. In contrast to non-domestic buildings with a generally fixed occupancy sched-
ule, occupancy in domestic settings is highly dynamic. To this end, several approaches to predict
occupancy have been proposed over time. These can, in general, be classified as either schedule-
based or context-aware [Kleiminger et al. 2014]. The former predict occupancy based only on the
history of the occupancy schedule, while the latter (also) utilize observations of the current context
of the occupants. Although the latter have the potential to demonstrate higher predictive accuracy,
as more information is being considered, they are typically more complex and require additional in-
strumentation that is always a concern in domestic settings. Moreover, schedule-based approaches
have been shown to achieve high predictive accuracy and to be sufficient for effective domestic space
heating control automation [Kleiminger et al. 2014; Scott et al. 2011; Panagopoulos et al. 2015].
Even the most accurate occupancy prediction algorithm is likely to have a degree of uncertainty

over the predicted schedule. This is often modeled in the form of probabilistic occupancy estimates.
In this context, balancing thermal discomfort and heating cost is inevitable in order not to signifi-
cantly increase the heating cost. For instance, eliminating expected discomfort given very small (but
still non-zero) probabilistic occupancy predictions during a particular time period would require the
house to be heated at the set-point temperature during that period. However, this can significantly
increase the heating cost with very small (or not-existent) improvements in the realized discom-
fort. Given this, effectively balancing heating cost and thermal discomfort with respect to the occu-
pant preferences becomes an essential task for DHASs. In particular, only recent work in AdaHeat
[Panagopoulos et al. 2015] has effectively tackled this challenge through appropriate planning and
model predictive control (MPC), enabling an adaptive scheme to meet the occupant preferences.
We should note here that the wide family of MPC (or receding horizon control) [Camacho and Alba
2013] has been shown to be very efficient and has been extensively used in space heating control
automation (e.g., [Panagopoulos et al. 2015; Halvgaard et al. 2012; Oldewurtel et al. 2010; Scott
et al. 2011]). For these reasons, it is also employed in this work. The particular success of MPC can
be mainly attributed to two reasons: (i) an off-line computation of a control law is almost impossible
in this setting [Panagopoulos et al. 2015]; and (ii) the slow nature of building thermal processes do
not raise any of the stability issues that are often a concern with MPC [Širokỳ et al. 2011].
Now, a detailed model of the system under control is crucial in MPC [Camacho and Alba 2013].

In this context, thermal modeling is an essential part of MPC-based DHASs. In general, a ther-
mal model predicts the thermal response of a building based on: (i) the current thermal state of the
building; (ii) the heating control actions to be executed; and, potentially, (iii) information variables
regarding exogenous processes that affect the thermal process (e.g., incident solar radiation, outside
or adjacent buildings’ temperature). However, it is impossible to model all the factors that affect
the thermal response of a building. This becomes even more apparent in domestic settings where
the occupant’s activity can drastically alter the thermal dynamics (e.g., opening a window, cooking,
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or operating an auxiliary fan heater). That said, adaptive thermal modeling has been shown to be
resilient and effective in such highly dynamic settings and several adaptive thermal modeling ap-
proaches have been proposed over time (e.g., [Ruano et al. 2006; Reece et al. 2014; Alam et al.
2014]). These can be classified into either black-box or gray-box approaches [Prı́vara et al. 2013].
The former use statistical or machine learning techniques (e.g., simple polynomial curve fits, neu-
ral networks, or support vector machines) to model the thermal dynamics with minimum need for
prior knowledge of the space characteristics (e.g., [Huang et al. 2013; Ruano et al. 2006]). How-
ever, these approaches lack a physical interpretation and, hence, typically require a large amount of
training data in order to demonstrate adequate performance [Li and Wen 2014]. On the other hand,
adaptive gray-box approaches rely on simplified physical equations and, as such, do not suffer from
the above drawbacks [Li and Wen 2014]. Such approaches have already shown their potential for
thermal modeling in highly dynamic settings (e.g., [Reece et al. 2014; Alam et al. 2014]). Moreover,
AdaHeat demonstrates the value of such an approach within the context of a DHAS.
As outlined above, AdaHeat tackles many of the challenges that arise in domestic settings and,

hence, meets many of the requirements for facilitating advanced AEC: (i) it comes complete with
an adequate schedule-based occupancy prediction algorithm; (ii) it effectively and efficiently bal-
ances heating cost and thermal discomfort, respecting the occupant preferences; (iii) it considers a
robust gray-box adaptive thermal modeling; and (iv) it demonstrates high performance efficiency
when compared to state-of-the-art DHASs (see [Panagopoulos et al. 2015]). However, AdaHeat has
considerable limitations with respect to economic control: (i) it considers simple economic control,
merely accounting for variable energy import tariffs; (ii) it does not exploit the potential that coali-
tions provide in (simple or advanced) economic control, and considers a single-house system; as
such, (iii) it does not provide an effective approach in balancing thermal discomfort and heating
cost when houses share their cost within a coalition, and (iv) it does not provide a cost allocation
mechanism. Nevertheless, AdaHeat is the most suitable point of departure for this work.

2.2. Predicting IER Power Output and Gaussian Processes

An essential part of our AEC approach is a stochastic, short-term (up to 12 hours ahead), prediction
of the shared IER power output. In general, the power output of IERs depends on the prevailing
weather conditions. For instance, the power output of a photovoltaic system depends mostly on
the irradiance incident to the photovoltaic module and the operating temperature of the module. In
particular, the power output of a photovoltaic system increases with greater levels of incident solar
irradiance and lower ambient temperatures (that lead to generally lower operating temperatures)
[Luque and Hegedus 2011]. Furthermore, the power output of a wind turbine generator depends
mostly on the prevailing wind speed and wind temperature, generally favoring higher wind speeds
and lower wind temperatures (cooler air is denser, increasing power output) [Burton et al. 2011]. In
addition, advanced IER models exist to transform the weather variables into IER power output with
high accuracy [Panagopoulos et al. 2012]. As such, predicting the power output of IERs is tightly
linked with the task of predicting the main environmental variables that affect their operation.
Broadly speaking, existing approaches for IER power output prediction fall into three main cate-

gories [Soman et al. 2010; Paulescu et al. 2012]: (i) approaches based on physical numerical weather
prediction (NWP) models; (ii) statistical (or machine learning) approaches; and (iii) hybrid ap-
proaches that essentially combine the two former ones. In more detail, NWP-based approaches
(e.g., [Soman et al. 2010; Chen et al. 2014]) consider the analysis of numerous weather parame-
ters via complex models of the dynamics governing the motion of the fluids in the atmosphere to
derive the weather variable predictions. These predictions are then transformed into power output
predictions using models of the actual generator. In general, such approaches are limited by the
complexity of their advanced meteorological analyses, as well as the absence of historical obser-
vations for their site-specific calibration [Chen et al. 2014]. Nevertheless, many on-line providers
serve detailed weather forecasting reports based on such NWP models, free of charge, that can
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be used to facilitate NWP-based approaches in a straightforward manner.12 In contrast, statistical
approaches, use only historical readings of the IER power output, without including any physical
model, to predict future IER power output. In this context, several statistical methods have been
proposed, providing either stochastic or non-stochastic predictions, including autoregressive mod-
els [Brown et al. 1984], autoregressive–moving average models [Kamal and Jafri 1997], artificial
neural networks [Li and Shi 2010], support vector machines [Mohandes et al. 2004], and Bayesian
methods such as Kalman filters and Gaussian processes [Jiang et al. 2010; Chen et al. 2014]. Such
approaches provide accurate very short term predictions (up to 4 hours), by learning correlated
signals from the historical observations, but their mid-to-long term accuracy is generally limited
compared to NWP-based approaches [Soman et al. 2010; Paulescu et al. 2012]. Last, hybrid ap-
proaches combine the aforementioned statistical and NWP-based approaches, aiming to overcome
the respective limitations [Soman et al. 2010]. As such, they are also employed in this work.
Now, a well-known state-of-the-art approach for handling non-linear regression problems that has

widely and effectively been used for IER power output predictions (e.g., [Chen et al. 2014; Zamo
et al. 2014]) is Gaussian process (GP) regression. Apart form its demonstrated efficiency compared
to state-of-the-art hybrid IER power output prediction approaches ([Chen et al. 2014]), GP regres-
sion also provides stochastic predictions in a principled manner. Hence, it is also employed in this
work. Formally, a GP can be defined as a stochastic process defining a distribution over functions
f : X → Y ∈ R such that any finite subset X� ⊂ X is multivariate Gaussian distributed. Specifi-
cally, a GP is completely defined by a mean function, m(.) and a positive semi-definite covariance
function (or kernel), K(., .). If the observed values, y = y1 . . . yn, and a corresponding set on inputs
x = x1 . . . xn, are thought of as a noisy version of the true underlying function f , i.e., y = f (x) + �,
where � is assumed to be zero mean Gaussian noise,N(0, σ2), then a GP prior distribution on f can
be defined as f ∼ N

�
m(x|θ),K(x, x|θ) + σ2I

�
, where θ is the set of hyper-parameters that character-

ize the shape of the mean and covariance functions. Given the Gaussian likelihood of the GP, at any
set of test points, the corresponding predictive posterior distribution can be evaluated in closed form
as a multivariate Gaussian distribution, while the hyper-parameters are typically learned by max-
imizing the respective log marginal likelihood. This maximizer can be searched using a standard
gradient-based optimization method—for more details see Rasmussen and Williams [2005].

3. ADVANCED ECONOMIC CONTROL OF ELECTRICITY-BASED SPACE HEATING SYSTEMS

In this work we propose a practical DHAS, AdaHeat+, for AEC of electricity-based space heating
systems in domestic coalitions with shared IERs. In particular, we propose the formation of coali-
tions of houses that coordinate their heating system operation, ahead of time, so as to efficiently use
shared grid-connected IERs. In the proposed scheme, the coalition C is able to buy energy from the
grid (at any instance) at a higher import tariff, PBuy, than the export tariff, PSell. In essence, this price
difference motivates the coalition to use the shared IER generation to fulfill as much of its demand
as possible. Although our work is motivated by the use of flat import and export tariffs (that are
known in advance), our approach can work in conjunction with variable tariffs as well, even if they
are not generally known in advance [Jenner et al. 2013], as long as an appropriate tariff prediction
approach is considered. In this context, we propose a collective AEC scheme, where IER stochastic
predictions are used in order for the coalition members, indexed by i ∈ {1, 2, . . . , |C|}, to coordinate
their heating system operation ahead in time, in a collective manner. In particular, given derived
stochastic IER power output predictions along with detailed house models, we employ an adaptive
MPC approach for optimizing the heating control process of the coalition, that effectively consid-
ers up-to-date, weather variables, IER power output (and potentially PBuy and PSell) predictions, in
real time; and adaptive gray-box thermal modeling (to account for the dynamic domestic thermal
characteristics, as discussed in Sec. 2.1). In the context of our MPC, we utilize a heuristic heating

12That said, the accuracy of such reports generally deteriorates compared to commercial ones, while they are also limited in
the environmental variables that they consider (for instance, solar radiation, which is essential for photovoltaic system power
output prediction, is usually absent in free-of-charge reports), making the need for site-specific calibration more apparent.
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schedule planning approach, that we propose, which enables the practical applicability of AdaHeat+
(in contrast to optimal planning, as further discussed in Sec. 3.3). Finally, AdaHeat+ incorporates a
cost allocation mechanism to share the coalition gains that respects individual rationality. That said,
AdaHeat+ is applicable both to coalitions and individual houses (as single-house coalitions).
In the following sections, we first describe our stochastic IER prediction approach in general (a

specific instantiation is provided for our case study of shared wind turbine generators in Sec. 4.2.1).
Then we detail the house modeling which is used in our MPC approach. Finally, we detail our MPC
approach, along with the heuristic planning approach and the cost allocation mechanism.

3.1. Predicting the Power Output of the Shared IERs

Letting I stand for the set of the shared IERs owned by the coalition C, the cumulative power output
of the shared IERs can be modeled and predicted as a stochastic process RC . In essence, RC considers
the sum of |I| (potentially dependent) stochastic processes Ri where i ∈ {1, 2, . . . , |I|}. Each one of
these sub-processes considers the power output of each one of the shared IERs and is valued within
the range [0, rmaxi ], where rmaxi is the maximum power output that can be achieved, at any time, by
the IER indexed by i. Now, letting t stand for time, RC will be a collection of random variables
RC,t with the cumulative distribution function (CDF) FC(r; t) = P(RC,t ≤ r), which has support on
a subset of RN+ . The corresponding probability density function is denoted by fC(r; t). Furthermore,
we can define F−1C : [0, 1]← [0, rmaxC ] as the quantile function corresponding to CDF FC , where rmaxC
is the maximum power output that can be achieved in total, and at any time, by the shared IERs.
In this context, a variety of stochastic modeling approaches, including Kalman filters [Louka et al.

2008] and Gaussian processes [Jiang et al. 2010], can be used to model the power output of each one
of the shared IERs (or directly the cumulative IER power output) in order to provide probabilistic
estimates of the cumulative future power output, henceforth denoted R�C [Zamo et al. 2014] (as
discussed in Sec. 2.2). In Sec. 4.2.1 we provide an instantiation of IER stochastic prediction based
on adaptive GP modeling for our case study of shared wind turbine generators.

3.2. Modeling Individual Houses

A detailed model of the system under control is crucial in the context of MPC. Following the
component-based approach of AdaHeat, we modeled our system by deriving, for each house in
the coalition: (i) a thermal comfort model of the occupants (incorporating an appropriate occupancy
prediction algorithm), (ii) a thermal model of the house, and (iii) a heating cost model. We now
proceed to detail each of these components/models.

3.2.1. Thermal Comfort Model. Optimal thermal comfort has been defined as “the condition of the
mind in which satisfaction is expressed with the thermal environment”.13 In accordance with this
definition, thermal comfort is affected by several interacting and less tangible factors such as dif-
ferences in mood or activity, and environmental conditions [Djongyang et al. 2010]. For simplicity,
we follow the (piecewise linear) intuitive AdaHeat modeling, directly extending it to account for
the total comfort of the coalition. In particular, we assume comfort depends only on the inside air
temperature, T IN ; and any discomfort experienced, when the house is occupied, to be the absolute
deviation of T IN from the user-provided set-point temperature, TSP. More formally, assuming all
variables remain constant during interval τ of length δ, the expected thermal discomfort of C is:

E [DiscC(·τ)] =
|C |�

i=1

E [Disci(·τ)] , where E [Disci(·τ)] = Oi,t

���TSPi − T IN
i,t

��� δ (1)

where Oi,t and T IN
i,t is the occupancy probability and inside temperature at time t (the starting time of

interval τ) for each house i ∈ C, respectively (assumed constant during interval τ as noted above).14

13According to the ANSI/ASHRAE Standard 55, “Thermal Environment Conditions for Human Occupancy”, 2013.
14Note that TSPi is also defined according to house i, as different houses might have different set-point preferences.
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That said, more advanced comfort modeling (e.g, [Auffenberg et al. 2015; Langevin et al. 2013])
can be directly incorporated in AdaHeat+ by simply adjusting the above equation accordingly.15
In addition, different modeling approaches can be used for each household to maximally reflect its
preferences. Nevertheless, this particular choice does not generally affect the results of this work.
Now, to derive occupancy predictions, we employ the PreHeat approach which provides proba-

bilistic estimates based on an average of K past similar days (selected based on a Hamming distance
similarity estimation) [Scott et al. 2011]. We chose this scheduled-based approach (Sec. 2.1) since
it has low instrumentation requirements, and has demonstrated high efficiency (median predictive
accuracies of ∼80%) in comparison to the state-of-the-art [Kleiminger et al. 2014]. Moreover, it has
been shown to be adequate in the context of an advanced DHASs [Panagopoulos et al. 2015].

3.2.2. Thermal Model. As discussed in Sec. 2.1, the thermal characteristics of houses are highly dy-
namic (due to the occupants’ activity) and adaptive gray-box thermal modeling has been shown to
effectively account for this dynamism (as discussed in Sec. 2.1). As such, in this work we use an
adaptive gray-box thermal modeling approach. In particular, we employ a standard building thermal
modeling formulation, where heat leaks from the house at a rate that is proportional to the temper-
ature difference between the house, T IN

i,t , and the outside environment, T
OUT
i,t [Rogers et al. 2013;

Bacher and Madsen 2011]. More formally, the thermal model employed for each house, i, is:

T IN
i,t+1 = T

IN
i,t +

�
ui,trini − routi

�
T IN
i,t − TOUTi,t

�
+ ci
�
δ (2)

where, rini stands for the heat provided by the heater; r
out
i for the leakage rate; ui,t for the heating

action; and ci is a heat bias to capture additional non-modeled heat transfer sources (e.g., incident
solar radiation, occupant activity or adjacent buildings’ temperature). In essence rini , r

out
i and ci

consider time-varying parameters that can be estimated with a range of respective techniques (such
as Kalman filters, and appropriate least squares fitting [Soderstrom and Stoica 1989])—in Sec. 4.2.2
we provide a specific instantiation of our thermal modeling for our case study houses based on
moving training window least-squares estimation [Soderstrom and Stoica 1989]. We note that it
is possible to use a more complex formulation (and/or potentially a different formulation for each
house) within our general framework [Panagopoulos et al. 2015].15 Nevertheless, this choice does
not generally affect the results of this work as long as adequate thermal modeling is considered.

3.2.3. Heating Cost Model. In this work we extend the AdaHeat heating cost modeling to account
for IER power availability along with import and export tariffs. Specifically, the amount of energy
consumed by space heaters is the energy provided to the space over the efficiency of the system. As
such, the aggregate input power consumption of coalition C, at any time instance t, is:

ConsC(·t) =
|C |�

i=1

Consi(·t), where Consi(·t) =
Pwri

�
ui,t, T IN

i,t

�

CE f f
i

(3)

where Pwri(ui, T IN
i,t ) stands for the output power of the space heating system according to the heating

action and the building thermal state and CE f f
i stands for the heating system efficiency (for each

house i ∈ C).16 Given the export and import energy tariff difference, i.e., PBuy > PSell, and assuming
all variables remain constant to their value at time t (the starting time of interval τ) during interval
τ of length δ, the expected consumption cost of coalition C (given the predicted cumulative IER
power output R�C,t) is:

E [CostC(·τ)] = E
�
max
�
0,ConsC(·t) − R�C,t

�
PBuyt +min

�
0,ConsC(·t) − R�C,t

�
PSellt

�
δ (4)

15In contrast to heating automation systems that rely on complexity-specific (e.g., linear, quadratic and convex) programming
approaches for planning (e.g., [Halvgaard et al. 2012; Oldewurtel et al. 2010]), the dynamic programming planning approach
of AdaHeat+ (further discussed in Sec. 3.3) does not generally raise constraints on the form of the components’ modeling.
16CE f f

i can consider a simple scalar or be a function of the temperature difference between the heat source and the destination
to also account for the coefficient of performance variability when heat pump technology is considered [Chua et al. 2010].
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A closed form of Eq. 4 is provided in Appendix A.1 in accordance with our GP-based IERmodeling.

3.3. Controlling the Heating Systems of the Coalition

We now describe our control approach for collective AEC that utilizes the above components. As
outlined in Sec. 2.1, we employ an adaptive MPC approach, that works as follows. Every δ amount
of time, the controller plans a heating schedule over a fixed horizon into the future (utilizing the
above models and relevant predictions) and executes the first action of the planned schedule. Then,
new estimates of Oi,t, R�C,t, T

OUT
i,t (potentially, PBuy and PSell) and the thermal model parameters are

acquired and the procedure is repeated, shifting the planning horizon into the future.
In more detail, we plan for the MPC horizon, of length Δ, by breaking it down into a set of non-

overlapping intervals of length δ. As such, ensuring that Δ is an integer multiple of δ, it corresponds
to a set of intervals, noted H, where |H| = Δ/δ. During each interval, τ, all environmental condi-
tions are assumed constant. Now, balancing heating cost and thermal discomfort is a two-objective
optimization problem, and a weighted sum approach can be used to reduce the complexity and pro-
vide Pareto optimal solutions (although, potentially, not all) [Marler and Arora 2004]. As such, the
optimization objective is to find the action matrix, U, that is the sequence of heating control actions
for each house, that minimizes the expected unifying cost, J̄C , over the planning horizon, H:

minimize
U

J̄C(·) =
|H |�

τ=1

E [CostC(·τ)] +
|C |�

i=1

λi E [Disci(·τ)]


subject to Ui,τ ∈ Ui ∀(i ∈ C, τ ∈ H)
where Ui stands for the set of feasible heating control actions for each house i ∈ C, and λi is a
scaling parameter that defines the balancing between thermal discomfort and cost for each one of
the coalition members. Having a different scaling parameter for each house enables us to capture
diverse household preferences in balancing cost and discomfort which is vital in real settings.
Now, solving the above objective leads to the optimal plan for AEC and corresponds to a short-

est path finding problem in the emerging directed acyclic graph, G. In particular, each node of G
considers a distinct tuple that contains all the necessary information (i.e., the current thermal state
of the coalition and the interval id)17 to predict the next thermal state of the coalition according to
a coalition heating action combination. Furthermore, each of the graph edges considers a tuple that
contains the initial and successor node and a weigh corresponding to the expected unifying cost
of the coalition during the particular interval. As such, the optimal plan for AEC corresponds to
a shortest path finding problem in the directed acyclic graph G. In this context, the shortest path
can be found by exploiting the topological ordering property of G [Cormen et al. 2001], in linear
O(|VG | + |EG |) time, with respect to the number of edges, |EG |, and vertices, |VG |, as proposed in
[Panagopoulos et al. 2015]. However, even with this low complexity (with respect to the size of the
graph), the size of the problem leads to poor scaling performance, as the size of the graph scales
exponentially with the size of the coalition. Note that the branch factor of the graph, corresponds
to the size of the set of all possible heating action combinations of all houses in the coalition, i.e.,�|C |

i=1 |Ui |. As such, our experiments show that only two-house coalitions are feasible to solve in real
time. Moreover, the collective control of all heating systems via a common objective raises further
usability issues with respect to real settings. In particular, although different scaling parameters exist
for each household, the scalar adjustment of one household affects the cost-discomfort balancing in
all the others. This fact leads to a complex and non-linear outcome of the λ population that disables
their adjustment through an adaptive boolean feedback procedure (as achieved in [Panagopoulos
et al. 2015]). This, in turn, undermines the applicability of optimal planning in realistic settings.
Given the above, we propose a heuristic planning approach for collective AEC that enhances the

practical applicability of AdaHeat+. In particular, we divide equally all available IER energy among

17We note here that any exogenous information variables (such as the outside temperature, the occupancy and the future IER
power output estimates) can be inferred by the time interval alone, and, hence, need not to be included in the respective tuple.
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Fig. 1. AdaHeat+ heuristic approach flow diagram for each house. Our heuristic approach enables us to optimize the
heating control process of the coalition in a distributed manner. As such, at each house: 1 the controller plans a house-
specific heating schedule over a fixed horizon into the future utilizing the specific house models and respective predictions—
importantly, the controller utilizes stochastic predictions of the house-allocated share of the cumulative IER power output;
then 2 the first action of the heating schedule is executed; and 3 respective feedback is acquired and the system models
and predictions are updated. Finally, the procedure is repeated, shifting the planning horizon into the future.

the members and plan their heating schedule, given the respective IER predictions, independently.
More formally, the planning objective for each house i ∈ C is:

minimize
Ui

J̄i(·) =
|H |�

τ=1

E
�
Cost∗i (·τ)

�
+ λi E [Disci(·τ)]

subject to Ui,τ ∈ Ui ∀τ ∈ H
where E

�
Cost∗i (·τ)

�
, essentially, corresponds to Eq. 4 for single house coalitions, adjusted to consider

an even share of the total IER energy availability. In particular:

E
�
Cost∗i (·τ)

�
= E
�
max
�
0,Consi(·t) − R�C,t/C

�
PBuy +min

�
0,Consi,t(·t) − R�C,t/C

�
PSell
�
δ (5)

This optimization can be solved, independently for each house, as a shortest path finding problem
(similar to optimal planning, above). As such, the complexity of our heuristic approach scales in a
linear and parallelizable manner with the coalition size, that is O(|C|), enabling it to be executed in
separate units in each member (as further illustrated in Figure 1). Now, although an even share of
the total IER energy availability is allocated to each house, some might consume less than originally
allocated to them, while others might require more. Nevertheless, in the context of our collective
AEC, planning dictates the executed heating actions and not the energy exchange among the mem-
bers. As such, any excess of energy is shared among the members before buying from the grid. We
note here that a more sophisticated allocation of the IER energy among the members, in accordance
to their next-day expected needs, could be of value when the respective differences are large. Nev-
ertheless, our evaluation results, considering a wide range of typical houses in the UK (with distinct
occupancy patterns and thermal characteristics), illustrate that our approach has high efficiency (and
even near-optimal) in such a genuine domestic scenario (further discussed in 4.4).18
Apart from its efficiency (demonstrated in Sec. 4.4) this approach enables us to populate the λ

parameter of each house through a simple boolean feedback procedure. In particular, the expected
cost (based on the planned heating schedule) is a worst case scenario with respect to the realized
cost—since some houses might consume less energy than originally allocated to them, enabling
others to fulfill their needs with lower cost than expected. This worst-case cost is not affected by

18Considering coalitions where industrial or commercial entities are also participating (and, hence, the energy requirement
differences are expected to be significant among the members) is imminent future work (as further discussed in Sec. 5).
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the λ parameter population of other houses, and considers an upper bound limit that an occupant is
willing to pay for the discomfort experienced. As such, our heuristic approach enables the house-
holds to balance thermal discomfort and worst-case heating cost, independently and in an adaptive
manner for each house (as achieved in [Panagopoulos et al. 2015], further illustrated in Sec. 4.4).

3.4. Allocating Gains to Coalition Members

Our work incorporates a cost allocation mechanism to share the realized coalition gains that re-
spects individual rationality [Gibbons 1992], motivating, as such, the households to join a coalition.
Appropriately, the outside option that we compare to is independent AEC, where each household
optimizes its heating control process (considering both export tariffs and its own IER generation
capacity) independently.19 Now, in order to identify the gains of collective AEC compared to in-
dependent AEC (and subsequently allocate them), we follow the successive two-step procedure:
Initially we perform appropriate simulations to identify the λ population for each house where in-
dependent AEC leads to the same discomfort for the house as collective AEC. Subsequently, the
difference between the corresponding estimated heating cost of independent AEC (for all members,
in total) and the cost of collective AEC is calculated. This difference appropriately corresponds to
the gains of forming a coalition. Now, in order to guide our initial λ population search, and provide
a computationally practical mechanism, we exploit the fact that in the context of our weighted sum
formulation for independent AEC, λ is in a monotonous relationship with discomfort (also discussed
in Sec. 4.4). Hence, the specific λ value is identified by progressively increasing (or decreasing) its
value (in a hill climbing manner) until the desired discomfort (or a fair approximation) is reached.20
Given this initial identification of the gains of collective AEC compared to independent AEC, we

proceed with the respective allocation. Now, any allocation of the these gains where each member
receives a positive share respects individual rationality [Osborne and Rubinstein 1994]. In this con-
text, we allocate the gains of the coalition, at the end of each day, proportionally to the normalized
ratio of produced over consumed energy of each member i ∈ C, over the day (as realized following
collective AEC). More formally, we use the ratio:

�� t=D
t=0 Ri,t dt + θ0

�
/
�� t=D
t=0 Consi(·t) dt + θ1

�

�|C |
i=1

��� t=D
t=0 Ri,t dt + θ0

�
/
�� t=D
t=0 Consi(·t) dt + θ1

�� (6)

where D is the length of the day, and θ0 and θ1 are arbitrarily set small constants to ensure that
even the members with nonexistent IER generation still receive a share of the collective gains (mo-
tivating them, as such, to join a coalition),21 and avoid division by zero issues, respectively. This
ratio considers an intuitive ranking index of each member that aims to represent its contribution
to the collective gains. Notably, using this normalized ranking ensures that all the collective gains
are allocated. As such, we provide a computationally practical allocation mechanism that satisfies
individual rationality and allocation efficiency.

19Independent AEC considers AdaHeat+ for single-house coalitions and, hence, it is proposed for the first time in this work.
20In practice, these simulations can be carried out independently in separate units in each house/member, at the day’s end.
In the special case where the houses fall in the same region (which is expected if a micro-grid facilitates our approach) and
have the same IER capacity, there is no need for such simulations. In that case, our heuristic collective AEC reduces to
independent AEC, with the only difference being that the members share their energy before buying from the grid. As such,
the cost of independent AEC can be projected based on the realized consumption and IER production of each member.
21This choice is supported by the fact that the participation of such a member in a coalition that has spare generation (i.e.,
exports to the grid) leads to additional gains for the coalition. The risk of an opposite setting can be managed through
appropriately populating the θ0 and θ1 parameters and/or by choosing whether to accept such a member in the first place.
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Fig. 2. Instance of our GP-based hybrid wind turbine generator power output prediction approach.

4. EVALUATION

Here, we provide a thorough evaluation of AdaHeat+. We first describe the evaluation case study
and how we collected the necessary data. Then, we describe the respective instantiation of our
approach. Finally, we detail the experimental setup and the evaluation results.

4.1. Case Study and Data Collection

For our case study, we modeled 30 houses in Mablethorpe, Lincolnshire, UK, equipped (for sim-
plicity) with the same wind turbine generator nominal capacity WTGnom of 6kW and heating system
nominal power HSnom of 4kW. We choose the UK for our evaluation, since its weather climate leads
to a generally heavy usage of space heating systems (while the specific UK location is chosen ran-
domly). Due to the absence of concrete data for our particular region of interest, we modeled these
houses by combining real data coming from different datasets (considering the UK), i.e., our case
study considers fictional houses based on real data. In particular, we utilized a month of occupancy
data (3/2012) from the dataset of the original PreHeat deployment [Scott et al. 2011] considering
a family house in Cambridge, UK. Furthermore, we utilized the dataset of the original MyJoulo
[Rogers et al. 2013] deployment which considers one-week indoor and outdoor temperature read-
ings of hundreds of houses across the UK, randomly choosing 30 for our research. Finally, we ac-
quired 50 days (starting from 15/2/2011) worth of archival weather readings and forecasting reports
from on-line providers,22 for the location of our interest (i.e., Mablethorpe, UK).

4.2. Instantiating our Approach

In the following paragraphs, we detail the instantiation of AdaHeat+ for our case study: First, we
detail our IER stochastic prediction instantiation for our case of wind turbine generators; and, then,
we detail the instantiation of the individual member modeling and control.

4.2.1. Stochastic Wind Turbine Generator Power Output Prediction. The shared IERs of our case
study are wind turbine generators. To this end, we used the weather data considering the location of
our interest (Sec. 4.1) and the RENES23 simulation platform [Panagopoulos et al. 2012] to create
synthetic power output data. In more detail, we used the archival weather readings and the fore-
casting reports to derive power output “readings” and predictions, respectively. In essence, RENES
uses a well-known sigmoid function to transform wind speed into power output (see [Panagopoulos
et al. 2012]). The sigmoid parameters that we use are the ones suggested by RENES, and are con-
sistent with a typical commercial system. It should be noted here that since all houses are assumed

22www.uk.weather.com and www.wunderground.com
23www.intelligence.tuc.gr/renes
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to lie in the same region (and have the same WTGnom), we use the same ground truth and derived
NWP-based predictions, assuming the same sigmoid parameters (for simplicity) for all IERs.
Now, as discussed in Sec. 2.1, hybrid approaches can improve the (short term) accuracy of

NWP-based approaches due to their site-specific calibration, and GP regression is effective in
this context, providing also stochastic estimates. As such, in this work we combine the derived
NWP-based power output predictions with historical observations through a simple and effective
formulation, that we propose, within the context of adaptive GP regression. In particular, we fix
the mean of the GP to follow the NWP-based predictions and learn the fluctuations of the NWP-
based predictions compared to the ground truth, based on the historical observations, in real time.
More formally, given a set of observations (x1, y1), . . . , (xn, yn) and NWP-based prediction points
(x1, g1), . . . , (xn, gn), . . . (xm, gm) (where m is usually greater than n), we take the difference between
the two outputs, i.e., zi = yi − gi, to obtain a new time series (z1, x1), . . . (zn, xn). This new series,
defined over the same period as the historical observations i < n, essentially considers the fluc-
tuation of the NWP-based predictions compared to the observations. Now, we further extrapolate
these points using gradient descent in the context of a GP with a squared exponential kernel, i.e.,
KSE(x, x�) = σ2f exp

�
(x − x�)/2l2

�
, which is suitable for modeling our smoothly changing NWP-

based time series. Finally, in order to derive power output predictions, we add to the GP projected
series the NWP-based prediction. This procedure is repeated in time, as new observations and new
NWP-based predictions are acquired, shifting the training window (which considers a day’s worth of
data) and predictive horizon into the future. As such, we derive probabilistic estimates of the cumu-
lative future power output, R�C , at each instance, which follow a Gaussian distribution; R

�
C∼N(µ, σ).

However, the power output of a wind turbine generator is bounded within [0, rmaxC ]. As such, we
derive the corresponding truncated Gaussian distribution by bounding R�C within this range.
Following the above, we are able to increase the accuracy of the NWP-based predictions through

a simple and effective adaptive site-specific calibration technique. In particular, our approach sig-
nificantly improves the prediction accuracy for a short-term horizon, while for longer horizons it
progressively reduces to the NWP-based approach, as can be seen in Fig. 2, where an instance is
illustrated for 7 hours ahead predictive horizon. In order to evaluate our approach in a concrete man-
ner we calculated the RMSE of our predictions with respect to the predictive horizon for the 50 days
in our dataset (employing our approach every half an hour) modeling one of our case study wind
turbine generators. In this context, we also calculated a standardized mean square error (sMSE)
which considers the MSE over the GP predicted variance. This metric captures the accuracy of our
GP variance modeling. In particular, values closer to 1.0 indicate that the modeled variance is con-
sistent with the realized one, while values significantly over or under 1.0 mean that our approach’s
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(a) Wind turbine generator power output prediction.
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(b) Thermal model.

Fig. 3. Instantiation evaluation results.
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estimates are under or over confident, respectively. As can be seen in Fig. 3(a), the results indicate
that our hybrid GP approach significantly increases the accuracy of the NWP-based approach (es-
pecially for short term horizons) while the modeled variance closely follows the realized one—in
Sec. 4.4 we also evaluate the significance of our hybrid approach within AdaHeat+. It is worth not-
ing that the performance of our simple hybrid GP-based approach is in alignment to the literature
[Chen et al. 2014] and also outperforms far more complex GP-based approaches (in terms of RMSE
throughout the predictive horizon examined) evaluated in the proximity of our region of interest
(and, in particular, in Ireland) [Yan et al. 2016; Yan et al. 2014].

4.2.2. Individual Members Modeling and Control. Regarding thermal comfort modeling, we set the
set-point temperature, TSPi , of each house to the actual one as captured in the MyJoulo dataset for
all 30 houses (Sec. 4.1). Moreover, for the occupancy schedule we utilized the one-month’s worth
of data of the PreHeat original deployment (Sec. 4.1). In particular, we used each different day’s
realized occupancy and corresponding predictions to model the “ground truth” occupancy schedule
and the occupancy predictions for each one of the 30 case study houses, respectively.
Regarding thermal modeling, we trained our model using a moving-training-window least-

squares fitting on the 30 houses of the MyJoulo dataset (Sec. 4.1). Specifically, our thermal mod-
eling approach (Eq. 2), can be easily transformed in (least squares form) as

�
T IN
i,t+1 − T IN

i,t

�
/ δ =

ui,trini + r
out
i

�
TOUTi − T IN

i,τ

�
+ ci , where,

�
T IN
i,t+1 − T IN

i,t

�
/ δ is the dependent variable/quantity, ui,t and�

TOUTi − T IN
i,τ

�
the independent ones, and rini , r

out
i and ci the time-varying coefficients to be estimated.

For concreteness, we performed a simple evaluation of our approach, using the data for all 30 houses
in our dataset. In particular, we used the last day for our evaluation with a moving training window
of 6 days for all houses, and calculated the RMSE with respect to the predictive horizon. The re-
sults are reported in Fig. 3(b). It can be seen that this simple approach provides adequate predictive
accuracy for our MPC approach which is in alignment to the literature [Panagopoulos et al. 2015].
Now, in order to capture the thermal modeling inaccuracies in our simulation experiments, we used
the standard deviation of our fitted thermal models, as derived in the evaluation dataset for each
house, to model a zero-mean Gaussian distribution. A sample from this distribution was added to
the thermal model predictions, at each instance, to simulate the “ground truth” thermal response.
Regarding heating cost modeling, we assumed for simplicity that the heating systems do not

consider heating pump technology. As such, we set CE f f
i = 1 and Pwri

�
ui, T IN

i,t

�
= uiHSnom (i.e.,

Pwri
�
0, T IN

i,t

�
= 0, and Pwri

�
1, T IN

i,t

�
=HSnom) ∀i ∈ C.24 Furthermore, following the 2015 UKmarket

rates, we set PBuy = 11.25 p/kWh and PSell = 4.5 p/kWh (p is British penny) which correspond to
PBuy/PSell = 2.5. Now, given R�C∼N(µ, σ), RC ∈ [0, rmaxC ], and the straightforward conditions that
rmaxC > 0, and Cons(·t) ≥ 0, Eq. 4 can be transformed in closed form (Appendix A.1). Finally,
regarding the controller, the slow nature of building thermal dynamics [Širokỳ et al. 2011] dictates a
relatively long planning horizon, Δ, and allows a long planning interval, δ. As such, we set Δ = 3.5
hours and δ = 10 minutes after experimenting with various populations [Camacho and Alba 2013].25

4.3. Experimental Setup

In our evaluation procedure, we compare our heuristic collective AEC approach, in a contemporary
market reality with flat import and export tariffs, against two benchmark approaches: (i) indepen-
dent AEC, where the houses optimize space heating independently with respect to their own IER
generation, and (ii) simple economic/heating control where the houses optimize space heating (in-
dependently) disregarding their IER generation, using AdaHeat. As such, we evaluate the benefits

24We note that setting CE f f
i = 1 ensures that we do not favor our approach via modeling questionably inefficient systems.

25Notably, this choice does not set any particular restrictions on the billing interval of a house (or a coalition), since smart
meters generally enable the data acquisition interval within a home network to be set independently (and also provide
considerable flexibility in this respect) [Toledo 2013].
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Fig. 4. Initial evaluation results (two-house coalition)

of collective AEC, compared to independent AEC, as well as the benefits of independent AEC com-
pared to (independent) simple economic/heating control. We note here that although independent
AEC is used as a benchmark against heuristic collective AEC, it considers our approach for single
house coalitions. Moreover, in the case of flat import tariffs, simple economic control, that merely
considers import tariffs (see Sec. 1), reduces to simple heating control, as there is no variation in
the energy cost over time. Now, we evaluate all approaches for a typical winter day of Feb. 2011
(randomly chosen from our weather dataset), ensuring (via an iterative procedure) that the initial
and final thermal state, at the beginning and at the end of the day respectively, are the same for each
house in all our experiments. As such, our results consider long-term average performance evalua-
tion, assuming that the same day repeats over time (i.e., same occupancy schedule, environmental
conditions and predictions). By doing so, we are able to provide long term average evaluation results
considering a wide range of coalition sizes (1-30 houses) and a wide range of cost-discomfort bal-
ancing preferences for each house (sampling 100-10, 000 different combinations, depending on the
coalition size). In order to identify the potential improvement margin of our heuristic approach, we
also evaluated collective AEC considering optimal planning, for the case of a two-house coalition
(where the respective optimization is feasible, Sec. 3.4). In addition, in order to identify the benefits
of incorporating our hybrid wind turbine generator predictive approach in AdaHeat+, we also eval-
uated AdaHeat+, for the case of a single house coalition, using the NWP-based predictions. Note
here that for single house coalitions, heuristic collective AEC, optimal collective AEC, and indepen-
dent AEC become the same. Hence, we evaluate the benefits of our hybrid approach without being
affected by any heuristic planning losses. Finally, we also note here that since AdaHeat+ consid-
ers an extension of AdaHeat to account for AEC (and to exploit the respective coalition potential),
the general improvements of AdaHeat with respect to simple economic and simple heating control
(compared to the state-of-the-art) illustrated in Panagopoulos et al. [2015] are retained.

4.4. Evaluation Results

Fig. 4(a) illustrates our evaluation results for a two-house coalition (where optimal planning can
feasibly be used, as discussed in Sec. 3.3), considering the collective discomfort and cost of the
coalition per day (negative “cost” indicates profit). Given the fact that extreme discomfort prefer-
ences are not expected in real settings, Fig. 4(b) focuses on the region where the discomfort prefer-
ences are arguably more likely. We note here, that since this is a two-objective optimization, points
closer to the origin indicate higher Pareto efficiency. Within this context, Fig. 4 illustrates that our
heuristic collective AEC approach has considerably higher Pareto efficiency when compared to in-
dependent AEC and even higher when compared to AdaHeat, i.e, simple economic/heating control
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Table II. Cumulative evaluation results.

(a) Heating cost-efficiency of each approach (b) Hybrid contribution
Collective AEC Heuristic Independent AdaHeat Hybrid NWP-based
(optimal) collective AEC AEC (SEC/SHC) predictions predictions

Heating cost-efficiency 1.48 1.46 1.17 1.03 1.26 1.10
Standard mean error .002 .011 .010 .006 .081 .060

(denoted in all figures as SEC/SHC).26 Furthermore, independent AEC demonstrates a consistently
better Pareto efficiency compared to simple economic/heating control (even though not by a wide
margin). These results are not surprising since further information is considered as we proceed to
a more advanced system. In addition, our heuristic collective AEC approach demonstrates a Pareto
efficiency that is very close to the optimal one, which illustrates that there is not a big margin of
potential improvement (at least in the case of a two-house coalition). That said, in order to com-
pare the evaluated approaches in a more concrete manner we estimated the heating cost-efficiency
of each approach. To do so, we evaluate two simple static timer heating policies; namely static-on
and always-off, illustrated in Fig. 4(a) (for concreteness). In essence, always-off is the heating pol-
icy where there is no heating at all, while static-on is the policy where the indoor temperature of
each house is maintained as close as possible to the respective set-point temperature throughout the
day. Intuitively, always-off considers a possible worst-case scenario in terms of discomfort, Discmax,
while it considers the best-case scenario in terms of heating cost, Costmin. In contrast, static-on con-
siders a possible worst-case scenario in terms of cost, Costmax, and the best-case scenario in terms
of discomfort, Discmin. Now, we utilized these best-case and worst-case cost and discomfort val-
ues to estimate a utopia and a dystopia point of our approaches, respectively. These points, along
with the points captured by the static-on and always-off policies create a 4-point imaginary win-
dow that frames all solution points of our approaches (as seen in Fig. 4(a)). Given this window, we
normalized the points captured by the evaluated approaches within the emerging ranges. Finally,
using the supplementary fraction of the normalized discomfort (that essentially considers comfort)
we calculated the mean comfort to cost ratio for each one of our approaches, which considers the
heating cost-efficiency. More formally, given the set of all the solution points of an evaluated ap-
proach A:= {P1, P2, ...,P|A|}, where the coordinates of any given point Px is a tuple (CostPx ,DiscPx )
considering the respective cost and discomfort values, the heating cost-efficiency of the approach is

calculated as 1
|A |
�|A |
i=1

1−(DiscPi −Discmin)/(Discmax −Discmin))
(CostPi −Costmin)/(Costmax −Costmin)

. Table II(a) reports the heating cost-efficiency
of each approach. It can be seen that the results are consistent with the observations in Fig. 4(a)
which renders heating cost-efficiency a valid comparison metric—the bars correspond to standard
mean error capturing the diverse cost-discomfort preferences of the houses.
Now, the above results indicate a significant improvement in the heating cost-efficiency of

collective AEC compared to independent AEC (and even more when compared to simple eco-
nomic/heating control) which can lead to considerable monetary gains for the coalition members.
Fig. 6 illustrates the monetary gains of using collective AEC, for each one of the houses in the coali-
tion (after the cost allocation), compared to: (i) independent AEC and (ii) simple economic/heating
control. As can be seen, house A and B gain over £0.20 and ∼£0.30 (respectively) on average, each
day, by using collective AEC compared to independent (and even more when compared to simple
economic/heating control). These gains correspond to £5 − £10 per month, which is a considerable
saving, if one considers that they come only from efficient heating control. The bars correspond
to standard mean error capturing the diverse share of gains allocated to each house, as well as the
diverse cost-discomfort preferences of the houses. We note here that these preferences vary from
maximum interest in heating cost (with minimum interest in discomfort) to maximum interest in
discomfort (with minimum interest in cost). As such, the realized absolute gains of AEC fluctuate
considerably along with the heating cost (since, for instance, there cannot be any gains if heating is

26Fig. 4 also shows how our approach is able to capture a wide and smooth range of discomfort-cost balancing points (as
AdaHeat), enabling, as such, a wide range of user preferences to be met [Panagopoulos et al. 2015].
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Fig. 5. Two-house coalition energy exchange.
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switched off). These gains come along with providing respective regulation services to the grid (i.e.,
minimize the energy import as per the pricing motivation). Fig. 5 illustrates the mean energy import
and export (from and to the grid) for the two-house coalition—the shaded region considers (unbi-
ased estimation) of standard deviation capturing the diverse cost-discomfort balancing preferences.
As we can see, the energy consumption flattens significantly (towards 0) even for a small coalition of
only 2 houses, compared to independent AEC. Now, as discussed in Sec. 4.2.1 here we also identify
the benefits of incorporating our hybrid wind turbine generator predictive approach to AdaHeat+.
We do so by evaluating AdaHeat+ for a single house coalition both with NWP-based and our hybrid
approach (Table II(b)). Not surprisingly, we see that our hybrid approach considerably increases the
cost-efficiency of AdaHeat+, as more accurate predictions are considered.
As discussed in Sec. 3.3, AdaHeat+ also enables the coalition members to balance worst-case

heating cost and thermal discomfort through a simple boolean feedback procedure. To demonstrate
this, Fig. 7 illustrates worst-case cost and thermal discomfort against the balancing parameter λ for
the two houses in our two-house coalition case study. As can be seen, both worst-case cost and
discomfort are in a monotonous relationship with λ (irrespectively of the λ population of the other
house). This, in turn, suggests that a household can progressively adjust the single balancing param-
eter λ through a simple feedback procedure until the respective preferences are met. Nevertheless,
as discussed in Sec. 3.3, the realized heating cost depends also on the λ population of the other
coalition members. To demonstrate this, Fig. 8 illustrates the realized cost and discomfort balancing
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Fig. 10. Collective compared to independent AEC.

of each house given a fixed λ = 90 and for various λ populations for the other house.27 As can be
seen, the realized cost depends on the λ population of the other house. Nevertheless, it is always
lower (or equal) to the worst-case cost, enabling an informed decision. Evaluating the user behavior
with respect to this balancing requires a real world trial (that considers future work—see Sec. 5).
Regarding scalability, we evaluate how our approach scales with the size of the coalition. Fig. 9

illustrates how the heating cost-efficiency scales with the size of the coalition up to 30 houses (the
bars consider standard mean error). As we can see the cost-efficiency of simple economic/heating
control and independent AEC remain relatively constant with the size of the coalition, as there is
no energy exchange within the coalition. In contrast, the collective AEC cost-efficiency increases
rapidly with the size of the coalition until ∼9 houses and then remains generally constant. However, a
careful investigation of the relative improvement of collective AEC over independent AEC in Fig. 10
illustrates that the efficiency improvement flattens at around 27 houses, following a logarithmic
trend. As can be seen in Fig. 11, this is the size where the coalition is able, for the first time, to meet
its heating consumption from its own IER capacity with negligible energy import (the shaded region
considers standard deviation as per Fig. 5). Fig. 10 also illustrates the mean monetary gains of the
houses, compared to independent AEC (the bars consider standard mean error). We note here that
the gains of every coalition member are positive in all cases (by definition) in accordance to our cost
allocation mechanism that respects individual rationality (Sec. 3.4). As can be seen, the mean house
gains flatten relatively fast with the size of the coalition while they peak at a coalition of 3 houses.
The above observations are not surprising. In particular, the benefits of collective AEC are already
great for relatively small coalitions where the energy import is minimized considerably. Hence, as
we move forward larger coalitions it is progressively only the energy import of a new member that
is further minimized and, hence, it is progressively only the corresponding gains that are further
allocated among an ever-growing number of coalition members. Now, the above illustrate that a
coalition of 27 houses is already optimal in terms of flattening the demand, while the mean monetary
gains of the members are higher for smaller coalitions. Although these exact results are specific to
the peculiarities of our evaluation case study, they provide an indication of the required size of such
a coalition in a typical scenario (Sec. 4.1). Finally, in order to further identify the financial gains of
AdaHeat+, we evaluate a specific instance of our approach given fixed discomfort-cost preferences.
Fig. 12 illustrates how the mean cost of the houses scales with the size of the coalition given a fixed
discomfort preference of ∼12◦Ch for all houses. According to the houses’ occupancy schedule this
discomfort could corresponds to a 1-2◦C deviation (of the indoor temperature from the set-point)
per occupied hour which is a reasonable real-setting preference. It can be seen that collective AEC
leads to considerable savings (as a fraction of the daily heating cost) in this realistic scenario (the

27For the effective range of λ for each house consult Fig. 7.
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Fig. 11. 27-house coalition energy exchange.
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Fig. 12. Cost with fixed mean discomfort at ∼12◦Ch.

bars correspond to standard mean error capturing the diverse share of gains allocated to each house).
As a final note, our evaluation results suggest that, due to their shifting potential (as discussed in
Sec. 1), heating loads can effectively support collective AEC even if similar occupancy schedules
and/or household preferences are considered, even when the IER power output does not generally
follow the energy requirements of the households, and when a wide range of typical UK houses
(that translate to a wide range of thermal characteristics) are considered.

5. CONCLUSIONS

This work is the first to show how DHASs can be enhanced with AEC to increase the economic
efficiency of houses with electricity-based space heating systems and grid-connected IERs. It also
illustrates the potential of domestic coalitions in this context. Specifically, we propose AdaHeat+, an
advanced DHAS that extends a state-of-the-art DHAS (retaining its practical advantages) to account
for AEC and to exploit the respective coalition potential. Importantly, AdaHeat+: (i) is applicable
to both coalitions and individual houses, (ii) is able to handle different preferences in balancing cost
and discomfort of individual households, (iii) incorporates a computationally practical allocation
mechanism to share the collective gains that respects individual rationality and allocation efficiency,
and (iv) has a complexity that scales linearly and in a parallelizable manner with the size of the
coalition (due to an effective heuristic planning approach for collective AEC that we propose).
Our approach has efficiency and low computational complexity that allows it to be applicable in
real settings with limited computational resources, minimum instrumentation, and operating time
constraints. We demonstrate its effectiveness through real data evaluation and show that collective
AEC can improve heating cost-efficiency by up to ∼60% (leading to considerable monetary gains),
compared to independent AEC that we also propose, and even more when compared to simple
economic/heating control. In the context of our AEC schema we also propose a simple and effective
formulation for hybrid wind turbine generator stochastic prediction based on adaptive Gaussian
process modeling to improve the short-term accuracy of NWP-based predictions.
Imminent future work will involve a real world trial. In such a scenario we also intend to evaluate

broader and less homogeneous coalitions where also commercial and/or industrial members are
allowed to participate. By doing so we aim to identify the potential gains of AdaHeat+ for various
heating technologies (and particularly for heat-pumps) and evaluate different IER energy allocation
schemes within our heuristic approach that can potentially outperform our even allocation approach
in such settings (as discussed in Sec. 3.3). There, we also intend to collect valuable feedback from
the users and evaluate their behavior with respect to balancing worst-case heating cost and thermal
discomfort, and also explore the concept of optimal decision making regarding profitable coalition
formation and fairness. Considering variable export and import tariffs (and respective stochastic
price predictions in the context of AdaHeat+) is an additional future work direction.
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Astrid Niese, Sebastian Lehnhoff, Martin Tröschel, Mathias Uslar, Carsten Wissing, H Jürgen Appelrath, and Michael Son-

nenschein. 2012. Market-Based Self-Organized Provision Of Active Power And Ancillary Services: An Agent-Based
Approach For Smart Distribution Grids. In Complexity in Engineering. IEEE, 1–5.
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APPENDIX

A.1. Closed Form Expected Cost

Here, we provide a closed form of Eq. 4, given R�∼N(µ, σ):

E [Cost(·)] =
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where K = erf
�
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�
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�
and erf(x) is the Gauss error function, i.e., erf(x) = 2√

π

� x
0 e
−t2dt.
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