
Integration of Spatial Join Algorithms for Processing
Multiple Inputs

Nikos Mamoulis
Department of Computer Science

Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong

http://www.cs.ust.hkmamoulis/

ABSTRACT

Several techniques that compute the join between two spatial
datasets have been proposed during the last decade. Among these
methods, some consider existing indices for the joined inputs,
while others treat datasets with no index, providing solutions for
the case where at least one input comes as an intermediate result
of another database operator. In this paper we analyze previous
work on spatial joins and propose a novel algorithm, called slot
index spntialjoin (SISJ), that efficiently computes the spatial join
between two inputs, only one of which is indexed by an R-tree.
Going one step further, we show how SISJ and other spatial join
algorithms can be implemented as operators in a database
environment that joins more than two spatial datasets. We study
the differences between relational and spatial multiway joins, and
propose a dynamic programming algorithm that optimizes the
execution of complex spatial queries.

Keywords
Spatial Joins, Spatial Query Processing, Query Optimization.

1. INTRODUCTION
The large and steadily increasing availability of multidimensional
data in various forms (e.g., satellite images, digital video, multi-
media documents) has rendered spatial query processing as one of
the most active research areas in the database community. In ad-
dition to conventional applications, such as GIS, spatial query
processing techniques have been successfully employed in a num-
ber of domains including medical information systems and time
series databases. Several types of spatial queries have been stud-
ied; these include window queries (spatial selections) [Gut84],
relation-based queries [PTSE95], nearest neighbors [RKV95] and
similarity search [PM98]. Traditional methods used in relational
databases are not directly applicable for spatial queries due to the
fact that there is no total ordering of objects in space that pre-
serves spatial proximity [Gtin93]. As a result, a number of spatial
access methods (SAMs) have been proposed [GG98].

The most popular spatial access method is the R-tree [Gut84],
which can be thought of as an extension of B+-tree in multi-
dimensional space. Each R-tree node consists of a number of en-

Purnission to make digital or hard copies of all or part 01‘ this work thl
personal or classroom USC is granted without fu provided that cop&
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation WI the first page. To wpy
otherwise, to rcpuhlish, to post on servers or to redistrihutc to Ii\&.
requires prior specific permission and/or a fee.

SIGMOD ‘W Philadelphia PA

Copyright ACM 1999 l-581 13-084~8/99/05...$5.00

Dimitris Papadias
Department of Computer Science

Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong

http://www.cs.ust.hkl-dimibis/

tries of the form (MBR, ptr). At leaf node entries, MBR is the
minimum bounding rectangle of a data object and ptr is the id of
the object. At intermediate node entries, MBR is the minimum
bounding rectangle of all data objects under the R-tree node
pointed by ptr. Each R-tree node (except from the root) should
contain at least a number of entries (minimum R-tree node utilizu-
tion). The R*-tree [BKSS90] is an improved version of R-tree that
employs a sophisticated insertion algorithm, achieving best qual-
ity of intermediate nodes. The R-tree and R*-tree are dynamic
SAMs that build and maintain their structure incrementally, thus
serving as efficient index methods for spatial data. Packing algo-
rithms [RL85, KF93, vdBSW97] build optimal R-tree structures
from a static set of objects in space. The resulting packed R-trees
have full leaf nodes, and thus minimum number of nodes and
height, leading to minimization of search time.

Among the most important spatial queries is the spatial join,
which retrieves from two datasets all object pairs that satisfy a
spatial predicate (e.g., “find all pairs of cities and rivers that inter-
sect”). The first known work on spatial joins is by Orenstein
[Ore86], who proposes a l-dimensional ordering of spatial objects
that uses space-filling curves (z-ordering), and B+-trees to index
them. The spatial join is then performed in a merge join fashion,
whereas range queries can be answered using the B+-tree index.
Rotem [Rot911 describes the creation and maintenance of a spatial
join index, analogous to the relational join index, that indexes two
spatial relations and is especially used to compute their join.
Gunther [Gun931 proposes a method that joins two inputs, pro-
vided that they are both indexed by generalization trees. A gener-
alization tree can be either a spatial access method, or some hier-
archical conceptual structure.

Brinkhoff et al. [BKS93] describe an algorithm and some optimi-
zation techniques that compute the spatial join of two datasets
indexed by R-trees. This method, called R-tree join (RJ), syn-
chronously traverses both trees, excluding pairs of nodes that do
not intersect, based on the simple observation that such pairs can-
not contain overlapping MBRs. RJ is considered as one of the
most important spatial join methods, due to its efficiency and the
popularity of R-trees. Huang et al. [HJR97a] present a breadth-
first search optimized version of RJ that is very efficient when a
reasonably large buffer is available. After the RJ algorithm, re-
search interest focused on spatial join processing when no index is
available for some input.

Suppose that we have to join two inputs; the first is indexed by an
R-tree, while the second one is not indexed (e.g., it comes as re-
sult of another query operation). Lo and Ravishankar [LR94]
propose an algorithm, seeded tree join (STJ), that builds an R-
tree-like index (seeded tree) for the second set and then joins the
two trees using RJ. The same authors deal with the problem of

http://crossmark.crossref.org/dialog/?doi=10.1145%2F304181.304183&domain=pdf&date_stamp=1999-06-01

joining two sets, none of which is indexed. A hush-join based
method (H.7) is presented in [LR96]. HJ uses sampling informa-
tion to partition the first dataset, creating a number of buckets
which may overlap. The second set is then partitioned into buck-
ets with the same extents as the first set’s buckets, replicating an
object when it overlaps more than one bucket. The spatial join is
finally performed by joining the pairs of buckets that have the
same extent. These techniques are discussed and analyzed further
in section 2.

Pate1 and Dewitt [PD96] describe another hash-join based algo-
rithm, partition based spatial merge join (PBSM), that regularly
partitions the space and hashes both inputs into the partitions. It
then joins groups of partitions that cover the same area using a
plane-sweep technique [PS85] to produce the join results. Some
objects from both sets may be assigned in more than one parti-
tions, so the algorithm needs to sort the results in order to remove
the duplicate pairs. Another algorithm that uses a regular space
decomposition is the size s.eparution spatial join (S’J) [KS97]. S3J
avoids replication of objects during the partitioning phase by in-
troducing more than one partition layers. Each object is assigned
in a single partition, but one partition may be joined with many
upper layer partitions. The number of layers is usually small
enough for one partition from each layer to tit in memory, thus
multiple scans of the files during the join phase are avoided. S3J
uses Hilbert curve ordering to sort the partitions inside the layers,
and to avoid extra pointers between partitions of different layers.
A recent paper [APR+98] proposes an algorithm, called scalable
sweeping-based spatial join (SSSJ), that applies combination of
plane sweep and space partitioning to join the datasets, and works
under the assumption that in most cases the “horizon” of the
sweep line will tit in main memory. However, the algorithm can-
not avoid external sorting of both datasets which may lead to large
I/O overhead.

In summary, RJ should be used when both inputs are indexed by
R-trees, while there is a variety of good algorithms (HJ, PBSM,
S3J and SSSJ) for non-indexed inputs. Currently, however, there
does not exist an efficient method for joining two inputs out of
which only one is indexed. In section 2, we show that STJ is not
always applicable and oth.er methods like indexed nested loop
join, and packed R-tree building are, in general, inefficient. In
section 3, we propose an algorithm, called Slot Index Spatial Join
(SISJ), which is very efficient when only one input is indexed by
an R-tree. SISJ is motivated by STJ and HJ, but outperforms both
of them analytically and experimentally. Section 4 presents a gen-
eral method that computes the multiway join between more than
two spatial datasets by combining pairwise join algorithms. The
technique applies RJ when both inputs are indexed, SISJ when
only one R-tree exists, and HJ if no indexes are present. Query
optimization is performed through a dynamic programming algo-
rithm using cost models for the pairwise joins and analytical for-
mulae for the expected sizle of intermediate results. Finally, sec-
tion 5 concludes the paper with directions for future work.

2. BACKGROUND
Let A, B be two sets of objects in space out of which only A is
indexed by an R-tree RA. .Altemative methods that compute the
spatial join between A and IB include:

(i) probe each object from B against RA (indexed nested loop
join).

(ii)

(iii)

(iv)

build an on the fly R-tree index Ra for B, and then join FL,,
and Ra using RJ.

build a seeded R-tree for B, and then join the trees [LR94].

do not consider the index of the first input, and use a spatial
join algorithm for non-indexed inputs [LR96, PD96, KS9’7,
APR+98].

The indexed nested loop algorithm (i) is a viable choice, only
when the size of input B is small enough for the expected number
of accesses in RA not to exceed the total number of pages in the
index; in the general case it is too expensive. Pate1 and Dewitt
[PD96] use a bulk loading technique that builds a Hilbert packed
R-tree [KF93] for set B, under the assumption that the size of B is
smaller than the available buffer. For typical situations (i.e., the
size of B is greater than the buffer), however, method (ii) is ex-
pensive because of the large overhead of external sorting prior ~to
building Ra. [LR94] shows that method (iii) outperforms (ii) by a
wide margin but it does not consider bulk loading in the imple-
mentation of (ii). In [LR96], it is suggested that method (iv) using
HJ, can be more efficient than approaches that use indices. In the
sequel we describe in detail STJ and HJ.

2.1 Seeded tree join
The seeded tree method [LR94] joins two spatial inputs, provided
that only one is supported by an R-tree. This technique builds a
second R-tree using RA as a seed, and then applies RJ to join the
two R-trees. The motivation behind creating a seeded R-tree for
the second input, instead of a normal R-tree, is the fact that a
seeded tree with extents similar to RA nodes will be more efficient
during tree matching, as the number of overlapping node pairs
between the trees will be smaller. Thus, the seeded tree construc-
tion algorithm creates an R-tree that is optimal for spatial join and
not for range searching.

The seeded tree construction is divided in two phases: the seeding
and the growing phase. In the seeding phase the top k levels (k is a
parameter of the algorithm) of RA are copied to formulate the top
k levels of the seeded tree Sa. The entries of the lowest level of Ss
are called slots. After copying, the slots maintain the copied ex-
tent, but they point to empty (null) sub-trees. During the growing
phase, all objects from B are inserted into Sa. A rectangle is in-
serted under the slot that contains it, or needs the least area en-
largement. Figure 1 shows an example of a seeded tree structure.
The top 2 levels of the R-tree are copied to guide the insertion of
the second dataset.

Lo and Ravishankar propose some techniques that optimize the
structure of the seeded tree, and a filtering mechanism that rejects
rectangles from the second set that do not overlap any of the seed
slots. They also present a tree construction technique that reduces
I/O page accesses when the size of the tree exceeds the size of the
available memory buffer. If this happens, many pages may have to
be fetched and written back to disk during a single insertion, re-
sulting in a large I/O cost. In order to avoid buffer thrashing, thse
objects which are to be inserted under a slot are written in a tem-
porary file. After all objects are inserted, an R-tree is constructed
for each temporary tile, and is pointed by the corresponding slot
in the seeded tree. To implement this mechanism and minimize
random I/O accesses, at least one page is allocated in the buffer
for each slot. If the buffer is full, all slots that have more than a
constant number of pages flush their data to disk and memory is
freed.

2

A problem with STJ, however, is-that it cannot be applied in every
case. In order for the above algorithm to work efficiently, the
number of slots S should not exceed the number of pages M in the
system buffer. If Q&f, it is not possible to avoid buffer thrashing,
which may lead to a large I/O penalty. Thus the algorithm is inef-
ficient when the fanout of the R-tree nodes is large and the mem-
ory buffer is relatively small. Consider, for instance, a dataset of
100,000 objects which are indexed by a 8K page size R-tree (a
rather typical case). Under the assumption that each node entry is
20 bytes long (16 for the x- and y-coordinates, plus 4 for the ob-
ject id or block reference), the capacity of a tree node is 409; thus
the dataset can be indexed by a 2-level R-tree, with 245 leaf nodes
and 1 root. When trying to apply STJ, we have to copy the root
level of the R-tree to the seeded tree, which results in S=245. As a
consequence the algorithm cannot be applied for buffers smaller
than 1.96Mbytes.

2.2 Spatial Hash- Join
Spatial hash-join (HJ) [LR96], based on the relational hash-join
paradigm, computes the spatial join of two inputs, none of which
is indexed. Set A is partitioned into S buckets, where S is decided
using the system parameters. The initial extents of the buckets are
determined by sampling. Each object is inserted into the bucket
that is enlarged the least. Set B is hashed into buckets with the
same extent as A’s buckets, but with a different insertion policy;
an object is inserted into all buckets that intersect it. Thus, some
objects may go into more than one bucket (replication), and some
may not be inserted at all Cfiltering). The algorithm does not en-
sure equal sized’ partitions for A, as sampling cannot guarantee
the best possible slots. Equal sized partitions for B cannot be
guaranteed in any case, as the distribution of the objects in the
two datasets may be totally different. Figure 2 shows an example
of two datasets, partitioned using the HJ algorithm.

After hashing set B, the two bucket sets are joined; each bucket
from A is matched with only one bucket from B, thus requiring a
single scan of both files, unless for some pair of buckets none of
them fits in memory. If one bucket fits in memory, it is loaded and
the objects of the other bucket are prompted against it. If none of
the buckets fits in memory, an R-tree is built for one of them, and
the bucket-to-bucket join is executed in an indexed nested-loop
fashion.

Experiments in [LR96] show that HJ is better in terms of I/O than
building two seeded trees and joining them. It is also shown that
this algorithm is faster than spatial join with pre-computed R-tree
indices (RJ), if the difference between sequential and random disk
accesses is taken into account. We believe that this comparison of
HJ with RJ is unfair. First, as we show in section 3, RJ is signifi-
cantly faster than HJ in terms of CPU-time. Second, as shown in
[KC98], when a R-tree packing method that places sibling nodes
in sequence is used, the I/O performance of RJ in terms of I/O is
significantly improved. In the rest of the paper, we will not con-
sider the difference between random and sequential I/O accesses.

We cannot draw conclusive results about the relative performance
of HJ with respect to other algorithms that perform joins of non-
indexed inputs (i.e., PBSM, S3J, SSSJ). The experiments in
[KS971 suggest that S3J behaves best when the datasets contain

levels
levels

\ . . . I’
--_,

.

Figure 1: A seeded tree

(a) Objects from set A in three
partition buckets

L--------J

(b) Filtering and replication of
objects from set B

Figure 2: The partition phase of HJ algorithm

relatively large rectangles and extensive replication occurs in HJ
and PBSM. HJ is, in general, expected to perform better than
PBSM, because the latter requires sorting of the results in order to
remove duplicate solutions. In [APR+98] SSSJ is compared only
with PBSM, and was found inferior in the average case (but better
for skewed data). Furthermore, SSSJ requires sorting of both data-
sets to be joined, and therefore it does not favor pipelining and
parallelism of spatial joins. On the other hand, the fact that PBSM
uses partitions with fixed extents makes it suitable for processing
multiple joins in parallel [PYK+97].

3. THE SLOT INDEX SPATIAL JOIN
As shown in section 2, STJ is not always applicable due to buffer
size limitations. In this section we propose a novel algorithm,
called slot index spatial join (SISJ), which is very efficient when
only one R-tree index exists, and can be used independently of the
buffer size. The motivation behind SISJ is to apply hash-join,
using as buckets the entries of the topmost R-tree level that leads
to a desired number of partitions S. In order to overcome the
limitation of buffer size, (i.e., when the number of entries is larger
than the buffer size M), SISJ groups the entries of the selected tree
level to S (possibly overlapping) partitions called slots. Each slot
contains the MBR of the indexed R-tree entries, along with a list
of pointers to these entries. The algorithm uses the MBRs of the
slots to hash set B. Hash-join is then performed by joining each
bucket of set B with the data under the R-tree entries pointed by
the corresponding slot in the slot index. Figure 3 illustrates a 3-
level R-tree (the leaf level is not shown) and a slot index built
over it. If M=lO, the root level contains too few entries to be used
as partition buckets. As the number of entries in the next level are
over M, we have to partition them in S=9 (for this example) slots
(notice that STJ cannot be applied in this case).

As stated before, S should be smaller than M in order to avoid
buffer thrashing. The lower limit of S is such that the expected
number of data from set A in each slot will fit in memory. If PA is
the number of pages that can fit the first dataset (i.e. the number
of RA leaf nodes assuming that RA is packed), then:

’ The term “size of partition/slot” denotes the number of objects
inside the partition, and not its spatial extent.

3

<S<M (1)

in order for the data under each slot to tit in memory. There exist
some cases (when M is very small compared to PA) that the lower
limit PA/M should be ignored. Consider, for instance, that the
page size is 8K, the buffer size is 128K, and set A consists of
100,000 objects (=2Mbytes); then M=128/8=16 and PA = 245. Eq.
(1) results in 16 c S c 16, ,which does not provide a valid value for
5. Thus, the lower limit is ignored and the partitions are not guar-
anteed to fit in memory. More details about the choice of S are
given in section 3.3.

3.1 The SISJ algor:ithm
SISJ takes as parameter the desired number of slots S according to
eq. (1). The topmost tree level k with total number of entries nE >
P,/M is the level where partitioning will take place*. If na is
within the valid range for S, i.e. P,lM < na c M, S is exactly na
and the slots will have as (extents the MBRs of these entries. If na
2 M, we cannot directly use the entries na to partition and the slot
index should be built. A good partitioning mechanism will mini-
mize total area and overlap between the slots, and will evenly
distribute the entries. We consider 3 policies of partitioning the na
entries into S groups:

(i) SplitXL: sort entry MBRs with respect to their lower x-
coordinate and divide them into S equal sized groups. This
method is motivated by [RL85].

(ii) SplitHC: sort entry MBRs with respect to the Hilbert value
of their center and divide them into S equal sized groups.
SplitHC is motivated by [KF93].

(iii) IRS: insert the entries into S slots using the R*-tree insertion
algorithm [BKSS90].

From the above partitioning methods, SplitXL and SplitHC in-
clude just sorting and splitting. The third partitioning method, IRS
(insert, re-insert and splitj, is more sophisticated. Starting from a
single empty slot, for eaclh entry e, the following insertion algo-
rithm is called:

Algorithm ZRS(RTreeEntry e)
1. choose a slots, such that e.MBR is contained into s.MBR.

la. If more than one such slots exist, choose the one with the smallest
area.

lb. If no such slot exists., choose the one that causes the minimum
overlap enlargement (between the slots) when e is inserted to it.

2. insert e into s and update its MBR.
2a. If s overflows, and no other overflow has occurred during this in-

sertion:
. sort the entries in s according to their distance of their centers to
the center of s.MBR

. delete from s the 30% last (furthest) entries and update s.MBR

. re-insert the entries into the slots
2b. Ifs overflows, and overflow has reoccurred during this insertion:

. apply the R*-tree split algorithm to splits into 2 slots.

The first part of IRS is equivalent to the ChooseSubtree R*-tree
algorithm that determines the best leaf node when inserting a rec-
tangle. Part 2a is equivalent to the Forced Reinsert, whereas 2b is

* Under typical system conditions (e.g. page size 4K-8K, M=64)
usually k will be the root level, or the level under the root.

L
(a) level 2 (root) entries (b) level 1 entries (c) slot index over level 1

Figure 3: An R-tree and a slot index built over it

the R*-tree split algorithm. IRS does not guarantee slots of equal
size; the equal size splitting criterion is not considered in order to
favor the good shape criterion. To ensure that the final number of
partitions after IRS will be “around S’, and considering that the
slot utilization is 70% on the average [BKSS90] (given that slots
will be at least 40% full), we set as slot capacity (10/7)(na/S), :so
that the average number of entries in a slot will be na/S. The final
number of buckets may not be S but will definitely be between
7O%S (if all buckets are full) and (7/4)S (if all buckets are 40%
full). If these limits are out of the valid range, the maximum slot
capacity should be tuned correspondingly. Notice that the ex-
pected nn cannot exceed min(MCA, CA*), where CA is the node
capacity (maximum fanout) in RA, otherwise the upper tree level
should be used for partition. Therefore, all three partitioning po.li-
ties can take place in main memory with trivial CPU time cost. In
section 3.3 we empirically compare these three splitting policies.

After building the slot index, the second set B is hashed into
buckets with the same extents as the slots. As in HJ, if an object
from B does not intersect any bucket it is filtered; if it intersects
more than one buckets it is replicated. The join phase of SISJ is
also similar to the corresponding phase of HJ. All data from RA
indexed by a slot are loaded and joined with the corresponding
hash-bucket for set B. When the buffer does not permit the R-tree
data under a slot to fit in memory, it may be natural for the parti-
tions of the second set not to fit in memory, as well. If these sets
are small, external sorting + plane sweep [APR+98] or indexed
nested loop join (using as root of the R-tree the corresponding
slot), may work well, but for large sets the best solution is tlhe
recursive application of SISJ, in a similar way to recursive hash-
join [SKS97]. During the join phase of SISJ, when no data from B
is inserted into a bucket, the R-tree data under the corresponding
slot do not need to be loaded (slot filtering).

3.2 Analysis of SISJ
In this section we provide formulae for the cost of SISJ in terrns
of I/O, and analytically compare the algorithm with STJ and HlJ.
Let A be the first dataset, which is indexed by an R-tree R..+ and B
the second dataset, for which no index exists. TA denotes the
number of pages (blocks) of RA, and Pa is the number of pages of
B. Initially, the slots have to be determined from A. This requires
loading the top k levels of RA in order to find the appropriate slot
level. Let SA be the fraction of RA nodes from the root until k. The
slot index is built in memory, thus no additional I/O is required.
Set B is then hashed into the slots requiring Pa accesses for read-
ing, and Pa + raPa - faPa accesses for writing, where rn is tbe
fraction of replicated data and fa is the fraction of filtered data.
Thus, the cost of SISJ partition phase is:

Cpti = SA.TA + (2+ra-f&Pa (2)

Next, the algorithm will join the contents of the buckets from both
sets. If for each joined pair at least one bucket fits in memory,
then a single scan is required; the smaller partition is loaded in
memory and each object of the other partition is probed against it.
If no bucket fits in memory, pages may have to be fetched more

4

(a) California roads (Tl) (b) Leaf node MBRs of Tl (c) SplitXL partitioning (d) SplitHC partitioning (e) IRS partitioning

Figure 4: Tl slot index using three partitioning policies

than once from the disk. We consider the typical case, where the
buffer is large enough, for at least one partition to fit in memory.
For fairness, we make the same assumption when analyzing STJ
and HJ. The pages from set A that have to be fetched for the join
phase are the remaining (l-s,&T*, since the pointers to the slot
entries are kept in the slot index and need not be loaded again
from the top levels of the R-tree. Moreover, some of these will not
be fetched at all, if a slot is filtered. We consider the worst case
and ignore the possibility of filtered slots for dataset A. The num-
ber of I/O accesses required for the join phase is:

Cjoin = (~-sA).TA + (l+ra-f&Pa (3)

considering that the join output is not written back to disk. Sum-
marizing, the total cost of SISJ is:

Cs~sr = C,, + Cjoin = TA + (3+2ra-2fa)Pa

The cost of HJ (under the same assumptions as SISJ) is:

(4)

~HJ=&mpling + 3PA + (3+2ra-2fa)Pa (3

in accordance with the corresponding formuIa in [KS97]. HJ re-
quires Csamphg random accesses to determine the initial slots and
an extra reading and writing to hash A. After hashing A and de-
termining the final bucket extents, HJ follows the same procedure
with SISJ. From eq. (4) and (5), and given that for typical R*-tree
structures PA = 70%TA, SISJ clearly outperforms HJ in terms of
I/O.

Next, we provide an analysis of the seeded tree join (STJ). We
charge the same I/O for copying the seed levels, as for determin-
ing the slots in SISJ, i.e. sATA. For fairness to STJ, we assume that
a grown sub-tree can fit in memory. Thus the growing phase costs
3Pa + Ta because the second set has to be initially read and writ-
ten under the slots in sequential files; then the sequential files
have to be read to build the grown sub-trees, and finally, Ta tree
pages have to be written back (as the whole seeded tree is not
expected to fit in memory). The join phase for STJ is expected to
cost at least TA + Ta (all pages from both trees are read during RJ
[HJR97b]). Summarizing,

CSG, = (l+sA).TA + 3Pa + 2Ta (6)
From eq. (4), (6) we can conclude that the cost difference between
STJ and SISJ is: Csn - Cslsl = sATA+ 2Ta - (2ra - 2fa).Pa. For
reasonable filtering and replication ratios, the difference is sub-
stantial; STJ needs an extra read/write for the seeded tree (2Ta)
which is a considerable overhead. Furthermore, STJ is expected to
be more expensive than SISJ in terms of CPU-time, due to the
CPU-intensive seeded tree construction. In conclusion, SISJ re-
tains (i) the advantage of STJ, which avoids partitioning the first
set using information from the R-tree to decide the hash-bucket
extents and (ii) the advantage of HJ, which avoids on-the-fly R-
tree building, requiring to read the second set only twice.

3.3 Experimental evaluation of SIS J
In order to evaluate the performance of SISJ we conducted three
sets of experiments. We first compare the quality of the three par-
titioning policies (SplitXL, SplitHC and IRS), then we test the
effect of S in the performance of SISJ, and finally, SISJ is com-
pared with HJ and RJ. In our experiments we used several real
and synthetic data files, described in Table 1. Files AS, AL, AU,
and AH are publicly available at http://www.maproom.psu.edu/dcw/.
Tl and T2 [Bur89] are commonly used to benchmark spatial join
algorithms [BKS93, LR96, HJR97a, KC98]. The synthetic files
Gl and G2 were created according to a Gaussian distribution with
16 clusters. The centers of the clusters were randomly generated,
and the sigma value of the data distribution around the clusters
followed a random value between l/20 and l/10 of the map size.
The density of a dataset is defined as the total area of the rectan-
gles divided by the area of the workspace3. An R*-tree was built
for each dataset. The page size (equal to the tree node size) was
set to 8K, and the buffer size was set to 5 12K. Table 1 also shows
the height h of the corresponding R*-trees, the number P of pages
that fit the datasets in a sequential file and the number T of tree
nodes. All experiments were run on an UltraSparc2 workstation
(200 MHz) with 256MB of main memory.

Gl IGaussian distributed MBRs llOOOO0 10.5 12 1245 1328
G2 IGaussian distributed MBRs I100000 11 12 1245 1329

Table 1: Characteristics of the datasets used at the experiments

First, we test the quality of the three partitioning policies of SISJ.
Figure 4(b) shows the set of 466 level 1 entries of the Tl R*-tree
(the root contains just two entries). If we set S = 20, and follow
policies SplitXL, SplitHC, and IRS, we get the partitions of Fig-
ure 4(c), 4(d) and 4(e), respectively. The figures show that IRS
achieves better quality partitions (smaller overlap and total area)
than SplitXL and SplitHC. Figure 5 presents the effect of the three

3 Given a series of different layers of the same region (e.g. rivers,
streets, forests), its workspace is defined as the total area cov-
ered by all layers (not necessarily rectangular) including holes,
if any.

5

(a) CPU-time (set)

GSxGR ASYN TlXT2 “lx”* 01x02 GSXGR ASKAL TlXT2 “IX”2 01x02 Gzx”2

(b) page accesses (c) overall cost (set)

Figure 5: Performance of SISJ with the three partitioning policies

16 :25 33 44 5.5 6 17 24 32 42 54 7 18 25 20

(a) GS 1.d GR (b) AS b-1 AL (b) Tl H T2

Figure 6: Overall partition and join cost (in seconds) of SISJ for various values of S

policies on the performance of SISJ for various join pairs. The
overall time was computed after charging 1Oms for each page
access, a typical value for modem disks [SKS97]. In all cases IRS
is substantially better than the other two policies, with SplitXL
performing very bad because of the extensive replication it intro-
duces. The inferior performance of SplitXL and SplitHC is due to
the fact that the entries to be split have large spatial extents
[vdBSW97]. In the rest of the paper we adopt IRS as the standard
SISJ partitioning policy.

In the next experiment we test the effect of S on the performance
of SISJ. The overall cost of the three joins that involve real data-
sets is split to partitioning and join cost (Figure 6). Notice that
there is no significant difference in performance for the different
choices. The partitioning time grows slightly with S, as more
bucket extents have to be tested and more replication is intro-
duced. The join time is larger for small S when the datasets are
large (e.g., Tl 03 T2), bec:ause the chance that some buckets for a
hash partition will not fit in memory increases. As the differences
are trivial, a relatively large S, which will certainly lead to patti-
tions that fit in memory, is a safe choice.

In the final set of experiments, we compare SISJ with HJ and RJ.
The number of slots S in the experiments was set to 25 for both
HJ and SISJ. When SISJ was applied, the R-tree index for the first
set was used. Most pairs of buckets to be joined fitted in memory
and a fast plane sweep technique was utilized to perform the join.
For RJ, the page replacement policy in the buffer was LRU. Fig-
ure 7 illustrates the performance of all three algorithms. Because
STJ cannot be applied in the current experimental setting without
buffer thrashing (ns>M), we omit it from the evaluation.

From the charts we can conclude that SISJ is clearly the best
choice when only one index exists; it outperforms HJ in all cases.
RJ is the clear winner, if R-trees exist for both sets, a fact that was
expected. The CPU overhead of HJ in comparison to RJ is large,
thus, even if the difference between random and sequential I/O is
considered, RJ still outperforms HJ. In some cases (e.g. GS W CR,
AS HAL), the CPU-time overhead of HJ is very large. We ob-

served that in these cases HJ spends most of its time partitioning
the first dataset; if an object is not contained in any slot, the ap-
propriate slot has to be determined and updated based on some
factors (overlap, area) that are CPU-intensive. When the first da-
taset is clustered, the above situation is very common and the time
to partition the first set is considerable. In order to test the parti-
tioning overhead in HJ and SISJ, we decomposed the processing
of the first three joins into partition and join time for all algo-
rithms (Figure 8). Observe that HJ, SISJ and RJ require almost the
same time at join phase. This indicates that as long as partitions of
good quality have been constructed, the time to join them is close
to the optimal. The performance gap between HJ and SISJ is
mainly due to the difference between partitioning the first dataset
(for HJ) and constructing the slot index (for SISJ). The constmc-
tion of the slot index never exceeded 1% of the total CPU-time.

In summary, SISJ is a spatial hash join algorithm that achieves
very good performance when computing joins in the presence of a
single R-tree, based on the following properties:

.The hash-buckets are decided upon the tree structure and no
extra I/O for hashing the build input is needed.

.The partitions of the build input are guaranteed to have, ;ap-
proximately, the same number of objects, as they point to almost
the same number of R-tree entries. Thus, skewed data are han-
dled very efficiently.

In the rest of the paper we show how SISJ can be combined with
other spatial join algorithms to process complex spatial queries
involving multiple inputs.

4. PROCESSING OF MULTIWAY SPATIAL JOINS
In spatial database applications the user is not limited to sim,ple
selections and joins, but queries often involve processing of nu-
merous spatial sets, or combinations of spatial and non-spatial
attributes. Here, we deal with the problem of joining more than
two spatial inputs in a uni-processor, centralized environment. As
an example consider the query “find all cities that intersect a river
which also passes through an industrial area”. Such queries re-

6

(a) CPU-time (set)

HJ SW

(a) GS !Xl GR

OS&m Asxu TlXT2 UlX”2 01*OZ (1au2

(b) page accesses

Tigure 7: Performance of HJ, SISJ and RJ

35

HJ SISJ RJ w SW RI

(b) AS !X! AL (b)Tl WT.2

(c) overall cost (set)

Figure 8: Overall partition and join cost (in seconds) of the three algorithms

quire (i) determining a good execution plan that will minimize the
evaluation time and usage of resources, and (ii) an execution en-
gine that applies this plan, by effectively managing the synchroni-
zation between the spatial join operators.

Multiway spatial joins can be expressed by a query graph Q(V,E),
where each node V corresponds to a spatial relation, and each
edge E to a join predicate. Figure 9(a) shows the graph of a mul-
tiway join that involves four relations. The query can be processed
by applying several combinations of pairwise join algorithms. For
instance, the plan in Figure 9(c) may involve the execution of RJ
for determining R3 !X %. The intermediate result may then be
joined with Rz (using SISJ), and finally with Ri. On the other
hand, the plan of 9(d) corresponds to executing Ri W R2 and
Rs W Rq using RJ, and joining the intermediate results using HJ.
In this section we provide cost models and optimization tech-
niques for the processing of multiway spatial joins.

concurrent execution of many joins is not possible unless the in-
termediate results are sorted on the next join’s attribute (an un-
common situation). Left-deep plans are linear in nature and re-
strict the space of possible execution orders, making the optimi-
zation procedure faster. Later, the development of hash-join algo-
rithms shifted attention towards bushy and right-deep plans. The
trade-off is the explosion of the query optimization search space;
the excessive number of execution plans makes query optimiza-
tion a time-consuming task, and several hill-climbing techniques
that discover sub-optimal plans in reasonable time have been pro-
posed (e.g., [IK90]).

R3,

Rz ‘“., R;.,wxR, R;w‘k

b
RI ‘% RI ‘%

(a) query graph (b) left-deep plan (c) right-deep plan (d) bushy plan

Figure 9: a query and some alternative ways of processing

4.1 Special issues about multiway spatial joins

The techniques available for relational joins, however, are not
readily applicable to multiway spatial joins. The main difference
between relational and spatial queries is the non-transitivity of the
most common spatial predicate overlap, as opposed to the transi-
tivity of the equal (=) predicate in relational natural and equi-
joins. As a result, the following apply for multiway spatial joins:

. Cycles cannot be eliminated in the same way as in the relational
model. Cycle elimination in relational queries is based on the
transitivity of the equal predicate [BC81]. For instance, consider
three relations Ri, R2, Rs and the cycle ((Ri.A = R2.B), (R2.B =
R3.C) and (Ri.A = R3.C)). As the third clause is implied by the
first two, it can be safely ignored. On the other hand, if A,B,C
are spatial relations and the predicate is overlap instead of equal,
the third clause is not inferred from the first two and, therefore, it
cannot be removed.

Many techniques that deal with the optimization and execution of . The number of possible execution plans does not explode as fast
complex relational queries in centralized and distributed environ- as in relational joins. For instance, the relational query ((Ri.A =
ments have been proposed during the last 20 years (see [Gra93] R2.B) and (R2.B = Rs.C)), can be executed using the plan
and [JK84] for two surveys). Early query optimization methods (Ri W R3) DC] Rz. which is not valid for the corresponding spatial
considered only left-deep plans, because the first join algorithms query ((RI overlap R2) and (R2 overlap Rs)). The total number of
(nested loops and merge join) made other plans either impossible, plans when joining rr spatial inputs depends on the form of the
or very expensive. Furthermore, they did not allow for concurrent query graph. Complete graphs (cliques) may lead to a number of
execution of multiple joins. For instance, merge join calls for join plans comparable to the corresponding number for relational
writing and sorting of intermediate results, thus pipelining and queries, but in general, queries are simpler (i.e., with fewer edges

7

SISJ (assuming that left
input is the R-tree input)

HJ (assuming that left input
is the build input and right
input the probe input)

open tree files
open left tree tile: construct slot index; open right
(probe) input; call next on right input and hash
results into slots; close right input
open left input; call next on left and write the
results into intermediate file while determining
the extents of the hash buckets; close left input;
hash all results from intermediate file into left
buckets; open right input; call next on right and
hash all results into right buckets; close right

Iterator 1 Open 1 Next 1 Close

] input

Table 2: Iterator functions for spatial jo n algorithms

than complete graphs). Moreover, joining a large number of spa-
tial inputs (e.g., >lO) is uncommon, as opposed to relational que-
ries which have a broader number of applications. Thus, exhaus-
tive search in the whole space of possible plans is feasible.

4.2 Execution of multiway spatial joins
Following the relational query processing paradigm, multiway
spatial joins can be processed by implementing a set of join op-
erators. The algorithm used for a spatial join operator depends on
whether an index exists for the underlying inputs. Thus, RJ can be
applied only when the inputs are leaves in the execution plan, i.e.,
datasets indexed by R-trees. SISJ is employed when only one
input is indexed by an R-tree. Because of the symmetry of RJ and
SISJ, we only consider right-deep plans, where the left input is
indexed by an R-tree (each left-deep plan can be transformed to
an equivalent right-deep plan). In all other cases (i.e., bushy
plans), a spatial join algorithm which joins inputs with no index is
used. For simplicity, we employ HJ due to its common modules
with SISJ, even though other algorithms (e.g., PBSM, S3J and
SSSJ) could also be applied.

Multiway joins with cycles can be executed by transforming them
to tree expressions using the most selective edges of the graph and
filtering the results with respect to the other relations in memory.
For instance, consider the cycle (Ri overlap Rz). (Rz overlap R3),
(R3 overlap Ri) and the query execution plan Ri N (R2 cci R3).
When joining the tuples of (Rz 1*3 R3) with Ri we can use either
the predicate (edge) (Rz overlap Ri), or (R3 overlap Ri) as the join
condition. If (Ra overlap F$) is the most selective one (i.e., results
in the minimum cost), it is applied for the join and the qualifying
tuples are filtered with respect to (R3 overlap RI).

Table 2 shows the iterator functions [Gra93] for all three spatial
join algorithms in an execution engine running on a centralized,
uni-processor environment that applies pipelining. Since RJ is
employed for the leaves, it just executes the join and passes the
results to the upper operator. SISJ first constructs the slot index,
then hashes the results of the probe (right) input into the corre-
sponding buckets and finally executes the join passing the results
to the upper operator. HJ does not have knowledge about the ini-
tial buckets where the results of the left join will be hashed; thus,
it cannot avoid writing the results of its left input to disk. At the
same time it performs sampling to determine the initial extents of
the hash buckets. Then the results from the intermediate file are
read and hashed to the buc:kets. The results of the probe input are
immediately hashed to buckets.

Notice that in this implementation, the system buffer is shared
between at most two operators. Next functions never run concur-
rently; when join is executed at one operator, only hashing is

return next tuple 1 close tree tiles
perform hash-join and 1 close tree file; deallo-
return next tuple

perform hash-join and
return next tuple

cate slot index and
hash buckets
deallocate hash buckets

performed at the upper operator. Thus, given a memory buffer of
M pages, the operator which is currently performing join uses h&S
pages and the upper operator, which performs hashing, uses S
pages, where S is the number of slots/buckets. In this way, the
utilization of the memory buffer is maximized.

4.3 Plan cost estimation
In order to determine the optimal plan for a multiway spatial join,
we need accurate formulae for estimating the costs of the join
operators and the size and distribution of intermediate results. F’or
SISJ and HJ we use the cost formulae given in section 3.2. The
cost of RJ is difficult to estimate due to the implication of the
LRU buffer. Theodoridis et al. [TSS98] provide an analytical
formula that predicts the cost of RJ in terms of node accesses,
based on the properties (density, cardinality) of the joined data-
sets. In their analysis, no buffer, or a trivial buffer scheme is as-
sumed. In practice, however, the existence of a buffer affects the
number of page accesses significantly. Here we adopt the formula
provided in [HJR97b], which predicts actual page accesses in the
presence of an LRU buffer:

C~.J = TA + Ta + (NA(RA, Ra) - TA - Ta).P(node, M) (‘7)

where NA(RA, Ra) is the total number of R-tree nodes accessed by
RJ, and P(node, M) is the probability that a requested R-tree node
will not be in the buffer (of size M) and will result in a page fault.
More details about the computation of NA(RA, Ra) and P(nodle,
iV) can be found in [HRJ97b].

We tested the accuracy of eq. (4), (5) and (7) by calculating esti-
mated and actual I/O costs for the join pairs of Figure 7 using the
same experimental settings. When estimating the cost of HJ and
SISJ (eq (4) and (S)), we set fn = 0 and ra = 20% (typical ratios
for good hash buckets). Figure 10 illustrates the differences be-
tween the estimated and experimental values. The formulae for HJ
and SISJ are very precise (usually below 10% relative error). The
cost formula for RJ is also accurate and, since the joined f&es
cover the same area, the error is between 10% and 20% (in accor-
dance with the corresponding experiments in [HJR97b]). There-
fore, the analytical cost formulae for HJ, SISJ and RJ are preci:se
enough for inclusion in spatial query optimizers4.

In addition to the join cost, a query optimizer for multiway spatial
joins needs formulae for the expected size (i.e., number of solu-

4 The original formulas are slightly modified to capture pipelin-
ing; in particular, for HJ and SISJ, we exclude the cost of read-
ing the right input, and charge one extra write for the left input
of HJ, because it must be materialized.

8

(a) HJ (b) SISJ

Figure 10: Experimental and analytically estimated page accesses for the various joins

tions) of a join, in order to estimate the input size of upper joins. Pair
The size of a join output is determined by the following: size

. The size of the sets to be joined. If SizeA and Sizea are the sizes
of the inputs, the join may produce up to SizeASizea tuples
(Cartesian product).

. The density of the sets. Datasets with large density have rectan-
gles with larger average area, thus producing larger number of
intersections.

. The distribution of the rectangles inside the sets. This is the most
difficult factor to estimate, as in many cases the distribution is
not known, and even if known, its characteristics are very difll-
cult to capture.

Following the analysis in [TSS98] and [HJR97b], the number of
output tuples when joining two datasets A and B with uniform
distribution is:

In order to compute the output size of a join which takes interme-
diate results as input, we may apply eq. (8) for each pair of cells,
but now Size corresponds to the number of estimated intermediate
results in a cell, and rect is the average rectangle size in the cell of
the corresponding joined relation. Consider, for instance, the
multiway join ((Ri overlap Rz) and (R2 overlap Rs)). and the exe-

cution plan RI W (Rs LN Rs): Sizea in eq. (8) becomes Sizem was.
and recta = rectm.

SizeA w a = SizeaSizeA(rectA + recta)’ (8)

where rectA is the average side length of a rectangle in A, and the
rectangle co-ordinates are normalized to take values from [O,l). In
other words, the size of A W B is the number of rectangles in A
intersected by an average rectangle in B, multiplied by the number
of rectangles in B. Given the density DA of set A, the average side
length of a rectangle in A is:

rectA = dm (9)

When joining files with non-uniform distributions, eq. (8) is not
expected to provide an accurate join size estimation. Motivated by
an idea from [TSS98], we use statistical information for the distri-
bution of the datasets in order to estimate the join size. In par-
ticular, we partition the workspace into a grid of equal sized cells.
The criterion for assigning a rectangle to a cell is the enclosure of
the rectangle’s center, thus no rectangle is assigned to more than
one cells. For each cell, the number of rectangles and the normal-
ized average rectangle size is kept. The estimation of the join
output size is then done using eq. (8) for each cell and summing
up the results.

Although eq. (8) is accurate for pairwise joins and acyclic multi-
way joins, if the query graph contains cycles, it only provides an
upper bound for the size of the output. Analytical formulae that
estimate the output size of multiway spatial joins with tree and
clique graphs are provided in [PMT99]. These formulae can be
used in our case to estimate the intermediate results of query sub-
graphs that can be decomposed to trees and cliques. For instance,
all decompositions of a query that involves four inputs in a cycle
are tree subgraphs, thus (8) can be used to estimate their output
size.

4.4
In this section we show how the above analytical formulae can be
incorporated in a dynamic programming algorithm that generates
the optimal execution plan for multiway spatial joins. Even
though the proposed optimalglan algorithm can be applied for
the general case where spatial relations may not be indexed, for
simplicity of the pseudo-code we assume that all datasets are in-
dexed by R-trees.

Table 3 shows the estimated join sizes for various grids and the
average relative error, where relative error is defined as Iestimated
I/O-actual UOVactual I/O. For joins involving highly skewed data
(i.e. GS Kl GR) the accuracy of the join size grows with the size of
the grid, whereas in other cases even a small grid provides a good
prediction. The size of the grid is however crucial for the applica-
bility of the method. Since the grid is used to compute the size of
intermediate join results during query optimization, it should be
small enough to fit in main memory. In our implementation we
chose a 50x50 grid because it provides reasonable precision with-
out introducing significant overhead.

The optimal plan for a query is determined in a bottom-up fashion
from its subgraphs. Initially, the cost and output size of each
pairwise join (i.e., each graph edge) is computed, using equations
(7) and (8), respectively. At step i, for each connected subgraph Qi
with i nodes, optimalglan determines the best decomposition of
Qi to two connected parts, based on the optimal cost of executing
these parts and their size. When one of the parts consists of a sin-
gle node, SISJ is considered as the join execution algorithm,
whereas if both parts have at least two nodes, HJ is used. The
output size is estimated using the size of the plans that formulate
the decomposition.

~GSWGR~ASWAL IT1 Wn IV1 WUZlGlWG2 IG2D(1U2lenor
151617 120518 186094 1292080 1281689 6101416 1

Table 3: Join output size estimation using grids

Query Optimization

9

Algorithm optimalglun(Query Q, int n) l*n = number of inputs*/
For Each connected subgraph QZ E Q of size 2 Do

Ql.cost = &(A. B); ,‘*eq. (7)*/
Qz.size = Size(A, B); /*eq. (8)*/

EndFor I*: Qz *I
For i=3 to n Do

For Each connected .subgraph Qi E Q with i nodes Do
/*Find optimal plan for Qi*l
Qi.cost = m; Qi.plam = NULL,
For Each decomposition Qi + (Qk, Qi-k), Qk. Qi.k connected DO

If (k=l) Then I”Qb is a single node; SISJ will be used*1
(Qk. Qi-k).COJ;t=Qi.k.COSt~slsJ(Qk, Qi-k); /*eq. (‘f)*/

Else /*both components are sub-plans; HJ will be used*1
(ok. Qi-k).CO(;t=Qk.COSt+Qi.k.COSt+CHI(Qk, Qi-k); /*e@(J)*/

EndJf /*k=l */
If (Qk,Qi.k) .cost<Qi.cost Then /*better than former optimal*/

Qi.plan=(Qk, Qi.k) ; /*mark decomp. as Qi’s optimal plan */
Qi.COSt=(Qk, Qi.k).COSt; /*mark so far optimal COSY of Qi*/

EndIf/*mincosl’*/
EndFor /*decomposition Y
/*Estimate Qi’s output size from optimal decomposition*/
Qi.size = Size(Qi.plan);

EndFor /*Qi*/
EndFor /*i*/

End /*optimal-plan */

At the end of the algorithlm, Q.plun will be the optimal plan, and
Q.cost and Q.size will hold its expected cost and size. Due to the
bottom-up computation of the optimal plans, the cost and size for
a specific query subgraph is computed only once. The price to pay
is the storage requirements for the algorithm, which is manageable
for typical query graphs. The worst case of time and space re-
quirements, is when the graph is complete (clique). Then at level
i, the number of subgraphs to be tested is C(i,n) and the total stor-
age cost is:

n c

C-wceoptidgh() =
n

=I 1
. c 2”

i=2 ,I

(10)

Initially, optirnulglun will compute the costs of all pairwise joins
(C(2,n) for clique topology). Then at each level i, 2ciIn, all com-
binations C(i,n) of connected subgraphs must be decomposed in
order to find the optimal decomposition. Thus, the worst case time
requirement for the algorithm is:

C-timeoptimalglanO =
where the (worst case) number of possible decompositions at i is:

#decompositions&i) =

For a clique query with 10 variables, eq. (10) results in 1013, and
eq. (11) gives 24,070, which implies that optimization is very fast
compared to query execution time. In practice, query graphs usu-
ally contain fewer edges (than cliques) and the actual numbers are
much smaller than the above bounds. Among acyclic queries with
10 variables, the one thau generates the largest number of sub-
graphs (=5 11) has a star topology, while the one that generates
the smallest number (==45) has a chain topology. When cost and

size are estimated using a grid, this grid should be maintained and
updated for each connected subgraph. Typical queries of n$lO are
able to support a 50x.50 grid, given a reasonably large memory
buffer.

4.5 Experimental evaluation
We tested the accuracy of the cost formulae and the optimization
algorithm for several types of queries. We used the datasets pre-
sented in section 3, and created some extra synthetic sets, in order
to produce a variety of queries with reasonable output size’. Data-
sets U3, U4 (G3, G4) were generated in the same way as Ul, U2
(Gl, G2) but contain 50,000 rectangles, of density 0.1 and 0.5,
respectively. All datasets were indexed by R*-trees with the same
parameters as in section 3. The buffer size was set to 512K. We
did not consider non-connected query graphs since they can be
processed by computing the results of each connected subgraph
and then their Cartesian product.

In the experiments we ran 30 queries that involved 3 to 7 syn-
thetic datasets, and several queries with the four Germany layers.
We applied both cyclic and acyclic queries including chains (e.g.,
“find all supermarkets which are next to a bank, which is next to a
government building”) and stur queries (e.g., “find all cities
crossed by a river which also crosses some industrial area and
some forest”). The difference between estimated and experimental
cost never exceeded 15%, showing that the cost estimation, wh.ich
is a crucial factor for query optimization, is very accurate. In gen-
eral, the average prediction error grew with the number of joined
inputs due to accumulation of errors in the estimation of interme-
diate join results. For queries involving synthetic sets the estima-
tion was very precise, because they are less skewed than real ones.

Table 4 illustrates some example queries, and their optimal exe-
cution plan, as calculated by optimulglun using a 50x50 statistics
grid. The output size of the queries, the estimated and experi-
mental II0 cost, the (actual) overall cost (I/O cost + CPU time) in
seconds and query optimization time are provided. Notice that
optimization never exceeded 2% of the total cost (usually it
ranged between 0.5% and 1%). All right deep plans were proven
I/O bound, whereas for some bushy plans the CPU-cost was found
comparable to the I/O cost (e.g. query 1). This is due to the HJ
algorithm which in some cases is CPU-bound (e.g., see GS W GR
in Figure 7). In general, bushy plans (that use HJ) were preferred
to right-deep plans (where SISJ is applied), only when the number
of intermediate results that have to be hashed in slots created by
SISJ is very large and their materialization introduces significant
I/O overhead. Table 5 illustrates the above observation by pre-
senting the execution costs (I/O and overall time) of some plans of
the 1” query.

In this query, right-deep plans perform worse than the optimal
bushy plan due to the large size of intermediate results before the
last (SISJ) join. For instance, plan 5(d) is more expensive than
5(a), because the intermediate result G3 WG4 CQGl MU1 is
large. Considering the significant cost difference between alterna-
tive plans, optimization may achieve large performance gains
while adding minimal overhead. In the optimal plan 5(a), al-
though Ul 1>3 U3 produces more tuples than G3 W G4 W Gl, it is

5 Synthetic datasets U2 and G2 produced an excessive number (in
the order of millions) of output tuples when included with 271
and Gl in multiway joins.

10

l(chain) Z(star) 3(acyclic)

u3-Ul U?, ,U1 u3 -y1

Gl Gl Gl

Gi-G4
/\

G3 G4 Gi ‘G4
P\ w P\

w w w w

& \u3 Gl ,>,
“: ‘w

G/4 ‘W
,’ \

Ul “3 Gi \H

G3 G4 “$ ‘w G; 63
\

total time: 86.58

4(two cycles)

U{-Ul

Gi
G:-k4
w

.’ \
Ul w

,’ \

lJ3 /“,
01 W

ci; k4

output: 23970
Est I/O: 2766
Exp. I/O: 2868
total time: 54.48
opt. time: 0.5

S(chain)

AS -AL

I I
AU AH

w
AL ‘tQ

*’ \
AL ,FH,

AU .iS

output: 7007
Est. I/O: 835
Exp. I/O: 987
total time: 16.31
opt. time: 0.24

6(star)

AS -AL

iI
AU AH

output: 14735
Est I/O: 821
Exp. I/O: 924
total time: 16.02
opt. time: 0.27

7(single cycle)

AS -AL

I I
AH-AU

output: 2068
Est. I/O: 777
Exp. I/O: 960
total time: 17.19
opt. time: 0.25

8(clique)

AS-AL

IXI
AU- AH

output: 832
Est. I/O: 683
Exp. I/O: 8 13
total time: 14.78
opt. time: 0.29

Table 4: Optimal execution plans for various queries

68380 ,% 48938 55481,",117130 w Gl, ,wlo4952 w ix
w w w c-4 ,/ \ L4LLL5 , \~ IO4952

,4x511
“; ;3 G; b-4

,I45792

G; 63 U3 w

45511 , 68380 u3 w Gl W
w w , ‘\ 48938 ‘. 117130

G24 “331
u1 l-4 ~45511 Gi .M. 145792

G3 G4 Ul G4 Gl y u3 ,w

G3 64 Ul G4

I/O: 4082 I/o: 5587 I/O: 7274 Ilo: 5653 I/o: 6790
total time: 80.1 total time: 96.07 total time: 138.4 total time: 105.8 total time: 132.71

(a) (b) Cc) (4 Cd

Table 5: Costs of some execution plans for query 1 (the numbers over joins are the sizes of intermediate results)

used as the build input (left), because the tuples have smaller
length and, as a result, actual size of the materialized results is
smaller. Notice that if a semi-join was required (the intermediate
results were projected to a single column), G3 W G4 Ca Gl could
be the build input.

In order to test the accuracy of optimal-plan, we executed all
alternative plans for 20 of the tested queries. The algorithm found
the best plan in 18 cases. Whenever there was a better plan than
the generated one, the difference between the actual optimal and
the estimated plan was trivial, and it was due to size estimation
errors of intermediate results.

We also tested the effects of the statistical grid in the optimization
process. The cost and the optimal plan was estimated for various
grid sizes (No grid, 20x20, 50x50, 100x100). As expected, the
existence of the grid was of little importance for queries with
synthetic datasets. When real datasets were involved the differ-
ence was large, due to data skew and different area covered, with
the largest grids (50x50, 100~100) achieving more accurate cost
and size predictions. In some queries with many inputs and multi-
ple join conditions, the 100x100 grid for all possible subgraphs,
could not fit in main memory, rendering optimization inapplica-
ble. On the other hand, with the 50x50 grid the optimization
process was successful for all tested queries.

5. CONCLUSIONS
The goal of this paper is to provide an integrated approach to
processing pairwise and multiway spatial joins. First, we describe
and analyze previous work on spatial join algorithms, with and
without indexes on the input relations. Second, we propose a
novel spatial join algorithm, slot index spatial join, for the case
where only one of the two inputs is indexed by an R-tree. SISJ
achieves very good performance because (i) it avoids the expen-
sive building of an on-the-fly R-tree, (ii) determines the hash-

bucket extents from the R-tree structure, without hashing the build
input, and (iii) it guarantees partitions of equal size for the build
input, which, for typical buffers, fit in memory, and thus handles
skewed data very efficiently.

Finally, we demonstrate how SISJ and other join algorithms can
be implemented as modules of a query execution engine that uses
pipelining to process multiple spatial inputs. In addition to ana-
lytical formulae that accurately predict the cost of execution plans,
we provide a dynamic programming algorithm that determines the
optimal plan of multiway spatial joins. The precision of the cost
formulae and query optimization is confirmed through extensive
experiments with synthetic and real data.

SISJ can be applied for relational joins, provided that the build
input is indexed by a B+-tree. The entries of a high B+-tree level
are split into S partitions, and the hash-function for the probe
input is decided upon the bounds of these partitions. It is not clear
whether this method is faster than sorting the probe input and
applying merge-sort. A straightforward advantage of SISJ in com-
parison to merge-sort approaches, is when the probe input is an
output of an underlying database operator and merge-sort requires
materialization of the probe input prior to sorting.

Currently, we study the combination of pairwise join algorithms
with a generalization of RJ, that synchronously traverses more
than two R-trees [PMD98]. Some results [MP99] show that in
many cases this method is superior to cascading executions of
pairwise join algorithms. We are also interested in investigating
the inter-parallelism between spatial join operators. So far, PBSM
has been parallelized in Paradise project [PYK+97], while intra-
parallelism of RJ has been shown in [BKS96]. In addition, we
plan to test the applicability of relational query decomposition
methods (e.g. [BC81 J) for spatial query processing.

11

ACKNOWLEDGEMENT [KC981

The authors were supported by grant HKUST 6151/98E from
Hong Kong RGC and grant DAG97/98.EGO2. We would like to
thank the Greek Ministry for the Environment, Urban Planning &
Public Works for providing us with the GS and GR datasets.

w931

REFEI~ENCES [KS971

[APR’98] Arge, L., Procopiuc, O., Ramaswamy, S., Suel, T.,
Vitter, J.S. “Scalable Sweeping-Based Spatial Join”.
VZDB, 1998.

[LR94]

[BC8 l] Bernstein, P.A., Chiu, D.M.W. “Using semi-joins to
solve relational queries”. Journal of ACM, vol 28, no
1, pp. 2.540, 1981.

[LR96]

[MP99]
[BKSS90] Beckmann, N., Kriegel, H.P. Schneider, R., Seeger, B.

“The R*-tree: an Efficient and Robust Access Method
for Points and Rectangles”. ACM SIGMOD, 1990.

[BKS93] Brinkhoff, T., Kriegel, H.P., Seeger B. “Efficient
Processing of Spatial Joins Using R-trees”. ACM
SIGMOD, 1993.

[Ore861

[PD96]

[BKS96] Brinkhoff, T., Kriegel, H.P., Seeger, B. “Parallel
Processing of Spatial Joins Using R-trees”. IEEE
ICDE, 1996.

[PM981

[Bur89] Bureau of the Census. Tiger/Line Precensus Files:
1990 technical documentation, Washington, DC,
1989.

[PMD98]

[PMT99]
[Gra93] Graefe, G. “Query Evaluation Techniques for Large

Databases”. ACM Computing Surveys, vol. 25, no. 2,
pp. 73-170, 1993.

[Gun931 Gunther, 0. “Efficient Computation of Spatial Joins”.
IEEE ICDE, 1993.

[PSSS]

[Gut841 Guttman, A. “R-trees: A Dynamic Index Structure for
Spatial Searching”. ACM SIGMOD, 1984.

I(=981 Gaede, V., Gunther, 0. “Multidimensional Access
Methods”. ACM Computing Surveys, vol. 30, no. 2,
pp. 123-169, 1998.

[PTSE95]

[PYK+97]

[HJR97a] Huang, Y.W., Jing, N., Rundensteiner, E.A. “Spatial
Joins using R-trees: Breadth First Travesral with
Global Optimizations”. VLDB, 1997.

[HJR97b] Huang, Y.W., Jing N., Rundensteiner, E.A. “A Cost
Model for Estimating the Performance of Spatial Joins
Using R-trees”, International Conference on Scien-
tific and Statistical Database Management (SSDBM),
1997.

[Rot911

[RKV95]

FL851

[IK90] Ioannidis, Y., Kang, Y. “Randomized Algorithms for
Optimizing Large Join Queries”. ACM SIGMOD,
1990

[SKS97]

[TSS98]

[JK84] Jarke, M., Koch, J. “Query Optimization in Database
Systems”. ACM Computing Surveys, vol. 16, no. 2,
pp. 11 l-152, :1984. [vdBSW97]van der Bercken J., Seeger, B., Widmayer, P. “A Ge-

neric Approach to Bulk Loading Multidimensional
Index Structures”. VLDB, 1997.

Kim, K., Cha S.K., “Sibling Clustering of Tree-based
Spatial Indexes for Efficient Spatial Query Process-
ing”. ACM CIKM, 1998.

Kamel, I., Faloutsos, C. “On Packing R-trees”. ACM
CIKM, 1993.

Koudas, N., Sevcik, K. “Size Separation Spatial Join”.
ACM SIGMOD, 1997.

Lo, M.L., Ravishankar, C.V. ‘Spatial Joins Using
Seeded Trees”. ACM SIGMOD, 1994.

Lo, M.L., Ravishankar, C.V. “Spatial Hash-Joins”.
ACM SIGMOD, 1996.

Mamoulis N., Papadias, D. “Synchronous R-tree T’ra-
versal”. Technical Report, HKUST-CS99-03, 1999.

Orenstein, J.A. “Spatial Query Processing in an Gb-
ject-Oriented Database System”. ACM SIGMOD,
1986.

Patel, J.M., Dewitt D.J., “Partition Based Spatial-
Merge Join”. ACM SIGMOD, 1996.

Papadopoulos, A., Manolopoulos, Y. “Similarity
Query Processing Using Disk Arrays”. ACM SIG-
MOD, 1998.

Papadias, D., Mamoulis, N., Delis, V., “Querying by
Spatial Structure”. VLDB, 1998.

Papadias, D., Mamoulis, N., Theodoridis, Y.,
“Processing and Optimization of Multi-way Spatial
Joins Using R-trees”. ACM PODS, 1999.

Preparata, F, Shamos, M. Computational Geometry,
Springer, 1985.

Papadias, D., Theodoridis, Y., Sellis, T., Egenhofer,
M. “Topological Relations in the World of Minimum
Bounding Rectangles: a Study with R-trees”. ACM
SIGMOD, 1995.

Patel, J., Yu, J., Kabra, N., et al. “Building a Scalable
Geo-Spatial DBMS: Technology, Implementati,on,
and Evaluation”. ACM SIGMOD, 1997

Rotem, D. “Spatial Join Indices”. IEEE ICDE, 1991.

Roussopoulos, N., Kelley, F., Vincent, F. “Nearest
Neighbor Queries”. ACM SIGMOD, 1995

Roussopoulos, N., Leifker .D. “Direct Spatial Search
on Pictorial Databases Using Packed R-Trees”. ACM
SIGMOD, 1985

Silberschatz, A., Korth, H.F., Sudarshan, S. Database
System Concepts. McGraw-Hill, 1997.

Theodoridis, Y., Stefanakis, E., Sellis, T. “Cost Mod-
els for Join Queries in Spatial Databases”. IEEE
ICDE, 1998.

12

