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Abstract 

Computing multidimensional aggregates in high dimensions 
is a performance bottleneck for many OLAP applications. 
Obtaining the exact answer to an aggregation query can be 
prohibitively expensive in terms of time and/or storage space 
in a data warehouse environment. It is advantageous to have 
fast, approximate answers to OLAP aggregation queries. 

In this paper, we present a novel method that provides 
approximate answers to high-dimensional OLAP aggregation 
queries in massive sparse data sets in a time-efficient and 
space-efficient manner. We construct a compact data cube, 
which is an approximate and space-efficient representation 
of the underlying multidimensional array, based upon a mul- 
tiresolution wavelet decomposition. In the on-line phase, each 
aggregation query can generally be answered using the com- 
pact data cube in one I/O or a small number of I/OS, de- 
pending upon the desired accuracy. 

We present two I/O-efficient algorithms to construct the 
compact data cube for the important case of sparse high- 
dimensional arrays, which often arise in practice. The tradi- 
tional histogram methods are infeasible for the massive high- 
dimensional data sets in OLAP applications. Previously de- 
veloped wavelet techniques are efficient only for dense data. 
Our on-line query processing algorithm is very fast and ca- 
pable of refining answers as the user demands more accuracy. 
Experiments on real data show that our method provides sig- 
nificantly more accurate results for typical OLAP aggregation 
queries than other efficient approximation techniques such as 
random sampling. 
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1. Introduction 

Computing multiple related group-bys and aggregates is one 
of the core operations in On-Line Analytical Processing 
(OLAP) applications. A particular characteristic of the data 
sets-and the primary concern of this paper-is that they are 
massive and sparse. 

Let D = {Dl,Dz,.. . , Dd} denote the set of dimensions, 
where each dimension corresponds to a functional attribute. 
We represent the underlying data by a d-dimensional array S 
of size IDl( x IDz( x ... x (Ddl, where IDi[ is the size of 
dimension Di. Without loss of generality, we assume that 
each dimension Di has an index domain (0, 1, . , IDil - 1). 
For convenience, we call each array element a cell. A cell 
contains S(il, i2, . . . , id), the value of the measure attribute 
for the corresponding combination (il, i2, . , id) of the func- 
tional attributes. We let N = n,.,i,d (Di( denote the total 
size (i.e., number of cells) of array S, and we define N, to 
be the number of populated (nonzero) entries in S. We also 
refer to N, as the size of the raw data. The density of array S 
is defined as _- 

density(S) = $$. (1) 

The sparse (ROLAP) representation of S is 

{(il,iZ,...,id,s(il,i2 ,..., id)) 1 s(il,iZ ,..., id)#0} (2) 

and is used extensively in practice for sparse data. 
An important class of aggregation queries are the so-called 

(general) range-sum queries, which are defined by applying 
the Sum operation over a selected contiguous range in the 
domains of some of the attributes [HAMS97]. A range-sum 
query can generally be formulated as follows: 

Sum(ll: hl,. ..,ld:hd) = c “. c s(il,..., id). 

l15ilSh1 ld<id<hd 

An interesting subset of the general range-sum queries are 
d’-dimensional range-sum queries in which d’ << d. Ranges 
are explicitly specified for only d’ dimensions, and the ranges 
for the other d - d’ dimensions are implicitly set to be the 
entire domain all; = (0,. . . , [Dil - 1). The d’ dimensions 
with explicit ranges can be any subset of the d dimensions 
and can vary from query to query. For simplicity in notation, 
for any given query, let us write the d’ dimensions first SO 

that the d’ explicit ranges are on dimensions D1 , DZ , . . . , D& 
and the last d - d’ dimensions have implicitly defined ranges 
over the entire domain (i.e., Zj = 0 and hj = IDjl - 1, for 
d’ + 1 5 j 5 d). Using the above notation, these queries 
have the form Sum(ll: hl, . . . , ld,: hd,, a&jl+l, . . , a&). For 
brevity, we simply write Sum(ll: hl, . . . , l& : h&). 
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The popular data cube operator [GBLP96] can be viewed 
as computing the special case of all range-sums with singleton 
ranges, ,%m(li:hi,. . ,Zd,: hd,), in which 0 5 1; = hi < [Di], 
for 1 < i < d’. In traditional approaches of answering range- 
sum queries using data cube, all the subcubes of the data 
cube need to be precomputed and stored. When a query is 
given, a search is conducted in the data cube and relevant 
information is fetched. The search results may or may not 
need to be further processed, depending upon the type of the 
given query, and a final exact answer is output. 

In this paper we take a different approach. As usual, we 
preprocess the original array S. But instead of computing 
and storing all the subcubes, we compute and store one much 
smaller co,mpoct data cube, which usually fits in one or a small 
number of disk block;s, depending upon the desired accuracy 
for the queries. In the on-line phase, for any given query, 
the compact data cube is consulted to give an approximate 
answer. 

Our approach is preferable to the traditional approaches 
in two important respects. First of all, the traditional ap- 
proaches require a huge amount of storage space for both 
the precomputation and the storage of the precomputed data 
cube. As we all know, the size of the precomputed data 
cube is much larger than that of the underlying raw data, 
especially when S is high-dimensional (e.g., more than six 
dimensions) [PC98]. In some applications there may be 100 
dimensions! Even in moderately sized scenarios, there are 
usually many tables (in a ROLAP system) or multidimen- 
sional arrays (in a MOLAP system), and most of them are 
already very large in size by themselves. Since a query may 
be issued against any table (array), we have to compute and 
store one data cube for each of them. This fact would easily 
make the task infeasible even for moderately sized applica- 
tions. Our approach in this paper does not have the storage 
space problem. The size of each compact data cube is very 
small. 

Secondly, even when a huge amount of storage space is 
available and all data cubes can be stored comfortably, it 
may take too long to answer a range-sum query, since all 
cells covered by the range need to be accessed. The prob- 
lem persists even if the partial-sum technique is used (see 
Section 3). However, our new approach does not have this 
problem at all. A query can be answered by retrieving the 
compact data cube, which in typical cases takes just one or 
a small number of I/OS. 

There are a number of scenarios in which a user may prefer 
an approximate answer in a few seconds over an exact answer 
that requires tens of minutes or more to compute. An exam- 
ple is a drill-down query sequence in data mining [HHW97]. 
Another consideration is that sometimes the base data are 
remote and unavailable, so that an exact answer is not an 
option until the data again become available [FJS97]. 

In developing our wavelet-based techniques to approxi- 
mately answer OLAP range-sum queries, we resolve the fol- 
lowing four important issues in this paper: 

1. I/O-e.fici,ency of the compact data cube construction, 
especially when the underlying multidimensional array 
is very sparse. Our earlier wavelet approach [VW1981 
requires a dense storage representation during the con- 
struction of the compact data cube, which is infeasi- 
ble for very large sparse data sets. Histogram tech- 
niques [PI97, PlHS96] usually require excessive I/O 
costs when the data size is large and the dimension- 
ality is high. Our new wavelet approach is fast and 
space-efficient even for massive sparse data. 

2. Response time in answering an on-line query. Generally 
one or a small number of I/OS suffice, and the CPU time 
is small. 

3. Accuracy in answering typical OLAP queries. The per- 
formance of the algorithm is generally superior to that 
of random sampling. 

4. Progressive refinement of the approximate answers in 
case more accuracy is desired. 

In the next two sections we describe our model of I/O 
performance and summarize previous work on the problem. 
We describe our new wavelet approach in Section 4. The 
details of the construction process are given in Section 5. We 
show how to process on-line queries in Section 6. We present 
our experimental results in Section 7 and draw conclusions in 
Section 8. 

2. I/O Model 

We use the conventional parallel disk model, popularized in 
[VS94, VitSS]: 

Block I/d 
size B 4 

Y 

The parameters (in units of items) are 

M = size of internal memory; 

B = size of disk block; 

I = number of independent disks. 

Data are transferred in large units of blocks of size B so 
as to amortize the latency of moving the read-write head and 
waiting for the disk to spin into position. For brevity in this 
paper, we restrict our attention to the case I = 1 of only one 
disk, but our results can be extended to the case I > 1 of 
parallel disks; the I/O results are improved by a factor of 1. 

3. Previous Work 

There are two classes of methods for processing OL.AP 
queries: exact methods and approximate methods. Most 
previous work has concentrated on how to compute the ex- 
act data cube [AAD+96, GBLP96, HRU96, ZDN97]. Ho 
et al. [HAMS971 present an efficient algorithm to speed up 
range-sum queries on a single data cube. The main idea, is 
to preprocess the array S and precompute all the multidi- 
mensional partial sums, which can be represented in what we 
call the partial-sum data cube P. Any d’-dimensional range- 
sum query can be answered by accessing and computing 2d’ 
entries from P. 

The biggest problem with this partial-sum approach is 
that the partial-sum data cube is typically very dense even 
when the original array is sparse. For sparse data, the partial- 
sum approach becomes very expensive since it takes huge 
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amount of space to store the partial-sum data cube P and the 
sparse representation does not help us at all. To answer a d’- 
dimensional range query, 2d’ entries need to be accessed. The 
corresponding 2d’ partial-sum values for a given range-sum 
query might be stored in different disk blocks and accessing 
them may require up to 2d’ disk I/OS, which is prohibitive. 

Approximation methods are becoming attractive in 
OLAP applications [HHW97, GM98, VWI98]. They have 
been used in DBMSs for a long time. For example, selectivity 
estimation in query optimization is always an approximation 
process [SAC+79, PIHS96, MVW98]. In choosing proper ap- 
proximation techniques, there are two major concerns: the 
efficiency in applying the techniques and the accuracy of the 
methods. 

Histograms and sampling are used in a variety of impor- 
tant applications where quick approximations of a (possibly 
multidimensional) array of values are needed, such as query 
optimization [SAC!+79], parallel join load balancing [PI96], 
and approximate query processors [BDF+97]. Matias et 
al. [MVW98] first explored the use of wavelet-based tech- 
niques to construct analogs of histograms in databases. Their 
experiments show that wavelet-based approximation methods 
can offer substantial improvements in accuracy over random 
sampling and other histogram-based approaches. Traditional 
histograms are too inefficient to construct when the under- 
lying data are high-dimensional and cannot fit in internal 
memory. (It is interesting that our method in this paper con- 
structs compact data cubes that can be viewed as some sort 
of general histograms of the underlying raw data.) 

Random sampling is a simple and natural way to answer 
aggregation queries approximately. An advantage of sam- 
pling is that the construction procedure is very efficient to 
run. (In Section 7, we compare our new method with ran- 
dom sampling.) 

Vitter et al. [VW1981 give the first algorithm for approx- 
imating the OLAP data cube, based upon the wavelet ap- 
proach developed in [MVW98]. Using the partial-sum data 
cube [HAMS97], the algorithm computes an approximate ver- 
sion, called a compact partial-sum data cube, using wavelet 
techniques. The algorithm performs a series of linear scans, 
in which each scan is done over a carefully selected group of 
dimensions. A nice provable property is that the number of 
scans is O(log,,, g), and thus the total wavelet decomposi- 
tion takes 0( g log MIB g) I/OS, where N is the size (number 
of cells) of the partial-sum data cube. The algorithm’s I/O 
performance is optimal for dense data cubes, and the result- 
ing compact data cube can generally fit in only one or two 
disk blocks. 

The critical problem with the above approach is that in 
typical OLAP applications, the data are massive and yet at 
the same time very sparse, that is, the number N, of nonzero 
cells in the array is much smaller than N, perhaps by a factor 
of several million. Since the partial-sum data cube is typically 
dense regardless of the sparsity of the original data cube, the 
method of Vitter et al. [VW1981 may have to process a data 
set that is several million times larger than the original data 
set and there simply may not be enough disk space or time 
to process the dense partial-sum data cube. 

4. Our Method: A High-Level Outline 

In this section we summarize our basic method. We elaborate 
on the details in the following sections. Our method has three 
main components: 

1. Decomposition. We compute the wavelet decomposition 

2. Thresholding and Ranking. We keep only C wavelet co- 
efficients, for some C << C’ that corresponds to the de- 
sired storage usage and accuracy. The choice of which C 
coefficients to keep depends upon the particular thresh- 
olding method we use. We order (rank) the C wavelet 
coefficients according to their importance in the con- 
text of accurately answering typical aggregation queries. 
The C ordered coefficients compose our compact data 
cube. The issue of how to choose proper thresholding 
method and how to define the (relative) importance of 
a wavelet coefficient is the key for the accuracy of our 
approximation method and will be addressed in Sec- 
tion 5.3. 

3. Reconstruction. In the on-line phase, an aggregation 
query is processed by using the Ic most significant 
wavelet coefficients, for some k 5 C, to reconstruct an 
approximate answer. The choice of k depends upon the 
time the user is willing to spend. More accurate answers 
can be provided upon request by using more coefficients 
to refine the previous approximations. The efficiency 
of the reconstruction step, in terms of both I/O per- 
formance and CPU time, is crucial, since it affects the 
query response time directly. We give our efficient query 
answering algorithm in Section 6. 

5. Constructing the Compact Data Cube 

5.1. Wavelet Decomposition 

of the multidimensional array S, obtaining a set of C’ 
wavelet coefficients, where C’ is roughly equal to the 
number N, of nonzero coefficients. We assume as in 
practice that the array is very sparse, that is, N, < N. 
(The dense case was covered previously in [VWI98].) 
We use sparse techniques to do the wavelet decompo- 
sition directly based upon the sparse (ROLAP) repre- 
sentation of S. In Section 5.2, we give the details of 
the our efficient wavelet decomposition algorithms and 
analyze their I/O performance. 

Wavelets are a mathematical tool for the hierarchical decom- 
position of functions in a space-efficient manner. Wavelets 
represent a function in terms of a coarse overall shape, plus 
details that range from coarse to fine. Regardless of whether 
the function of interest is an image, a curve, or a surface, 
wavelets offer an elegant technique for representing the vari- 
ous levels of detail of the function in a space-efficient manner. 

To start the wavelet decomposition procedure, first we 
need to choose the wavelet basis functions. Haar wavelets 
are conceptually the simplest wavelet basis functions, and for 
purposes of exposition in this paper, we focus our discussion 
on Haar wavelets. They are fastest to compute and easiest to 
implement. To illustrate how Haar wavelets work, we start 
with a simple example which will be used throughout the 
paper. (A detailed treatment of wavelets can be found in 
any standard reference on the subject, e.g., [JS94, SDS96].) 
Suppose we have a one-dimensional “signal” of N = 8 data 
items: 

s = [2, 2, 0, 2, 3, 5, 4, 41. 

We perform a wavelet transform on it. We first average the 
signal values, pairwise, to get the new lower-resolution signal 
with values 

[2, 1, 4, 41. 
That is, the first two values in the original signal (2 and 2) 
average to 2, and the second two values 0 and 2 average to 1, 
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and so on. Clearly, some information is lost in this averaging 
process. To recover the original signal from the four averaged 
values, we need to sto:re some detail coefficients, which cap- 
ture the missing information. Haar wavelets store one half 
of the pairwise differences of the original values as detail co- 
efficients. In the above example, the four detail coefficients 
are (2 - 2)/2 = 0, (0 - 2)/2 = -1: (3 - 5)/2 = -1, and 
(4 - 4)/2 = 0. It is easy to see that the original values can 
be recovered from the averages and differences. 

We have succeeded in decomposing the original signal into 
a lower-resolution version of half the number of entries and 
a corresponding set of detail coefficients. By repeating this 
process recursively on the averages, we get the full decompo- 
sition: 

Resolution Averages Detail Coefficients 

mm! 
We define the wavelet transform ialso called wavelet de- 

composition) of the original eight-value signal to be the single 
coefficient representing the overall average of the original sig- 
nal, followed by the detail coefficients in the order of increas- 
ing resolution. Thus, fc’r the one-dimensional Haar basis, the 
wavelet transform of our original signal is given by 

s^= [2i, -l$, f, 0, 0, -1, -1, 01. (3) 

The individual entries a.re called the wavelet coefficients. The 
wavelet decomposition is very efficient computationally, re- 
quiring only O(N) CPU time and @N/B) I/OS to compute 
for a signal of N values. 

No information has been gained or lost by this process. 
The original signal has eight values, and so does the trans- 
form. Given the transform, we can reconstruct the exact 
signal by recursively ad.ding and subtracting the detail coef- 
ficients from the next-lower resolution. 

For compression reasons, the detail coefficients at each 
level of the recursion are often normalized; the coefficients 
at the lower resolutions are weighted more heavily than the 
coefficients at the higher resolutions. One advantage of the 
normalized wavelet transform is that in many cases a large 
number of the detail coefficients turn out to be very small 
in magnitude. Truncating these small coefficients from the 
representation (i.e., replacing each one by 0) introduces only 
small errors in the reconstructed signal. We can approximate 
the original signal effectively by keeping only the most signif- 
icant coefficients. 

The one-dimensional wavelet decomposition and recon- 
struction procedure can. be extended naturally to the multi- 
dimensional case. One way to do a multidimensional wavelet 
decomposition is by a series of one-dimensional decomposi- 
tions. For example, in the two-dimensional case, we first 
apply the one-dimensio:nal wavelet transform to each row of 
the data. Next, we tre.at these transformed rows as if they 
were themselves the original data, and we apply the one- 
dimensional transform t,o each column. 

5.2. Building the Compact Data Cube 

The goal of this step is to compute the wavelet decomposition 
of the multidimensional array S, obtaining a set of C’ wavelet 
coefficients. In this section, we present two algorithms to deal 
with the difficult and im.portant case in which the underlying 
data are very sparse. (Dense data can been handled using 
the algorithm discussed in [VW198].) 

Our algorithms takes the sparse representation (2) of 
array S as input, which we assume is in dimension order 
(01,. . , Dd); that is, the indices of the entries change most 
rapidly along the rightmost dimension Dd, next most rapidly 
along dimension Dd-1, and so on.’ The array entries for 
which the values in the initial set of dimensions DI, . . . , Dk 
are fixed form a (d - k)-dimensional hyperplane, which we 
denote by (Dk+l, . , Dd). Without loss of generality, we as- 
sume that Dd is the dimension with the smallest domain size, 
which improves performance in practice. 

5.2.1. ALGORITHM I: DECOMPOSITION WITH SEPARK~E 
TRANSPOSITION STEP 

We use a concrete example to illustrate the compact da.ta 
cube construction process. Suppose S is a three-dimensional 
array for which ~Dz[ x 1031 5 M-2B, but IDll x ID21 x 1031 > 
M - 2B. We do the wavelet decomposition in two passes. 
We partition the three dimensions into two groups: {DI} 
and {Dz,D3}. All tuples with a fixed dimension D1 value 
are contiguous in the input S and form a (Dz, 03) hyper- 
plane. The first pass is done by reading in all (Dz, 03) hy- 
perplanes, one by one. Each hyperplane is guaranteed to fit 
in internal memory. An ordinary two-dimensional wavelet 
decomposition is performed on each hyperplane and the re- 
sult, still using the sparse representation, is written out using 
an output double buffer. After all (D2,Ds) hyperplanes have 
been processed, we obtain an intermediate array S’, which is 
the result of applying the wavelet decomposition to S along 
dimensions D2 and D3. The elements of array S’ are still 
stored in the dimension order (01, Dz,D3). We reorganize 
them so that they are stored according to the dimension or- 
der (Dz, D3, DI ). We then do the wavelet decomposition of S’ 
along DI. We scan S’ and read in the (01) hyperplanes, one 
by one, and an ordinary multidimensional wavelet decomposi- 
tion is performed on each of them (in this particular example, 
a one-dimensional decomposition). The output of this pass 
constitutes the final result of the algorithm. 

In general, we partition the d dimensions into g groups, 
for some 1 5 g 5 d. Let the jth group be Gj = {Dij-l+~, 
Dij-,+p, . . . , Dij }, where io = 0 and i, = d. The require- 
ment that Gj must satisfy is that either 

or else Gj is a singleton group (i.e., ij-1 + 1 = ij). We can 
form the groups one by one in a greedy manner: Given groups 
GI, . . . . Gj-I, we choose ij to be the largest integer in the 
range (ij-l,d] such that (4) still holds, or else ij = ij-1 + 1. 

Algorithm I for constructing the compact data cube COII- 

sists of g passes. The groups are processed in reverse order, 
one per pass. In the (g - j + 1)st pass, each hyperplane :m 
the jth group Gj is read in, one by one, and processed (i.e., 
the ordinary multidimensional wavelet decomposition is per- 
formed), and the results are written out to be used for the 
next pass. 

One problem is that the density of the intermediate resul-ts 
will increase from pass to pass, since performing wavelet dce- 
composition on sparse data usually results in more nonzero 
coefficients. The number of nonzero coefficients can increase 
by a factor of log )Dil when doing the wavelet decomposi- 
tion along dimension Di. We may thus have to process more 
and more entries from pass to pass, even though a lot of en- 
tries are very small in magnitude. The natural solution ijo 

this problem is truncation. In each pass, after obtaining the 

‘Our definition of dimension order corresponds to the C pro- 
gramming language array declaration syntax. 
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intermediate array S’, we truncate S’ by cutting off entries 
with small magnitude and keep roughly only N, entries. We 
then use the truncated S’ as the input for next pass. This 
process keeps the sparsity of all the intermediate results un- 
changed. The truncation operation is reasonable because it is 
in line with the wavelet decomposition method itself; that is 
the most significant wavelet coefficients contribute the most 
to the reconstruction of the original signal. 

However, it is too expensive to do truncation after all 
intermediate entries are written out in a multipass process. 
Instead, we do truncation in each pass via an on-line learning 
process. We keep on-line statistics of the distribution of the 
values of the intermediate wavelet coefficients during each 
pass and dynamically maintain a cutoff value. Any entry with 
its absolute value below the cutoff value will be thrown away 
on the fly. The cutoff value is adjusted periodically when 
more coefficients are generated and the statistics change. For 
example, if too many entries have been cut off, the cutoff 
value will be decreased. On the other hand, if too few entries 
have been thrown away, we need to increase the cutoff value. 
This self-adjusting procedure works well in practice. 

After the (g-j+l)st pass, for each 1 < j 5 g, in which Gj 
is processed, a transposition is performed on the output of the 
pass in order to regroup the cells according to the dimension 
order required by the next pass. (There is no need to do a 
transposition after the last pass, namely, when j = 1.) The 
data can be transposed in log,,,(/Dij-,+ll x IDij-,+21 x 

. . x lDij I) distribution passes, based upon the values of the 
indices in Gj, and thus the number of I/OS is 

O Bl’gM/B (IDij-l+ll x IDij-1+21 X “’ X lDijl)). ( 
NZ 

(5) 
The first distribution pass of each transposition can be done 
during the wavelet decomposition procedure (at the cost of 
reserving half the internal memory for buffer space), which 
speeds up performance in practice. 

After all g passes are done, we obtain the final wavelet 
decomposition, which consists of C’ % N, coefficients. (In 
the next section we describe the final thresholding process to 
reduce the number of coefficients from C’ to C.) We denote 
the value of a coefficient by v. Each coefficient, with its index, 
is of the form 

c= (il,. . . ,id,V). (6) 
The method described above for how the groups are 

formed is rather conservative and is related to how dense 
arrays are processed in [VWI98]. The following result follows 
from (5) with little algebra: 
Theorem 1 For internal memory of size M and block 
size B, we consider an array S of size N = nlcicd IDil, 
where IDi/ is the size of dimension Di, having a total of N, 
nonzero entries. The I/O complexity of Algorithm I (using 
the truncation procedure) is 

0 % log,,, g> ( 
In practice we can do better than the conservative bound 

in Theorem 1 by using Algorithm I with a more liberal group 
partitioning and a smaller number of groups. For example, we 
might want relax condition (4) and partition the dimensions 
so that the jth group satisfies 

den-W(S) x lDij-l+lI x ~~~~~~~~~ x . . . x lDijl I !!!$%, 

(7) 
for 1 5 j 5 g. The value of density(S) = N,/N is typically a 
very small fraction in practice. The new partition results in 

a much smaller value of g than the one in Theorem 1. Often 
we get g = 2, and thus only two passes (and one interme- 
diate transposition) are needed. However, it may no longer 
be desirable to do the transposition via the distribution ap- 
proach of (5); instead we can do the transposition by sorting, 
which uses 0( $$ log,,, %k, I/OS. (See [Vit99] for a proof 
in the I/O model that transposition is equivalent to sorting.) 
If all the processed hyperplanes individually fit into internal 
memory, the resulting I/O bound for Algorithm I will be 

which is optimal. 
The tradeoff for the liberal partitioning strategy is that 

from time to time, certain hyperplanes may not fit in internal 
memory and their wavelet decomposition may require mul- 
tiple passes. But the number of such hyperplanes requiring 
extra time is usually small, and the recomputation is local- 
ized to the hyperplanes. Overall we can get great savings in 
Algorithm I by using a smaller g value, as our experiments in- 
dicate in Section 7. We use (7) as a guideline for determining 
the groups, and we find that g = 2 as long as 

M 2 2Jdensity(S) x N, + 2B. 

5.2.2. ALGORITHM II: DECOMPOSITION WITHOUT SEPA- 
RATE TRANSPOSITION STEP 

One problem with Algorithm I when using a conservative 
group partitioning is that we need to perform a transposition 
operation to reorder the array entries between passes, for ex- 
ample, after processing one group and before proceeding to 
the next. 

In this section, we present another decomposition algo- 
rithm, called Algorithm II, that uses buffering and knowledge 
of the domain sizes to avoid an explicit transposition step 
between passes. The tradeoff is that Algorithm II must use 
a conservative group partition, and thus may require more 
passes g than in Algorithm I. The input to the algorithm 
is the sparse representation of array S. We assume the in- 
put is in dimension order (01,. . . , Dd). As before, we par- 
tition the d dimensions into g groups, for some 1 5 g 5 d, 
in a greedy fashion. Let the jth group be Gj = {Dij-,+l, 
DijM1+2, . . . , Dij}, such that either 

I~ij_l+lI X IDij-1+21 X “. X l~ijl I ~, (9) 

orifj=lthen 

IDll x IDzl x ... x lDij 1 5 M - 2B, 

or else Gj is a singleton group (i.e., ij-1 + 1 = ij). 

(10) 

The algorithm consists of g passes. We process the g 
groups in reverse order, one per pass. Let us illustrate the 
process with the following concrete example. Suppose S 
is a six-dimensional array and we partition the six dimen- 
sions according to the above procedure. Let the partition be 
(01, Dz}, (03, D4}, and {D5,&}. 

At the beginning of the first pass, we reserve two types 
of buffers in internal memory: a processing buffer and out- 
put buffers. We have one processing buffer whose size is 
1051 x IDsI. We have 1051 x 1061 output double buffers, 
each of size 2B. Each output buffer has a unique b-id E 
{O,l,... ,I051 x 1061 - 1). 

We then read in all (05, De) hyperplanes, one by one, into 
the processing buffer, and perform the ordinary multidimen- 
sional wavelet decomposition. The results of the decomposi- 
tion are then subjected to the cutoff value. For those coef- 
ficients whose magnitudes are bigger than the cutoff value, 
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we do not write them to disk. Instead, for a coefficient 
c = (ii,. , is, u), we write it into the output buffer with 
b-id = is x ]&] + &j. When half of an output double buffer 
becomes full, we write its data to disk. 

After we are done with all the (Ds, &) hyperplanes, we 
are finished with the first pass. 

In the second pass, we read into the processing buffer the 
blocks created during the previous pass, in the order of in- 
creasing b-id value (and for each b-id, in the order the blocks 
were created). The important observation here is that the re- 
sulting order is the dimension order (Dr,, De, D1 , D2, Ds, 04)) 
which is needed for doing the (Ds,D4) hyperplane decompo- 
sitions, and thus we avoid the need for a separate transpo- 
sition step. The transposition is done for free as a result of 
the buffering mechanism. We can then process similarly as 
in the previous pass, except that now the number of output 
buffers becomes 1031 x ID4 ] and the size of processing buffer 
becomes ID:II x 1041. 

When performing the decomposition for the dimensions 
in the last pass (when processing Gi), we no longer need the 
output buffers, and we can write the decomposition results 
out directly. 

In the previous example, all the individual dimension sizes 
satisfied the condition 

IDil 5 M 2B’ (11) 

except possibly for D1. We call Di a big dimension if its 
size does not satisfy (ll). All big dimensions form singleton 
groups. So far we have not described how to process big 
dimensions. If there is only one big dimension, namely, D1, 
then we can perform th.e wavelet decomposition along D1 in 
a linear pass since there is no need for transposing the data 
via the output buffers. 

However, when there are multiple big dimensions, Algo- 
rithm II as described above no longer works (except for 01). 
Let us suppose that D, is a big dimension, for some i # 1. 
The simplest approach is to use the technique of Algorithm I, 
in which the wavelet decomposition is computed in 0( N, /B) 
I/OS, followed by a distribution-based transpose operation, 
which takes 0( 9 log,,, [Oil) I/OS. The first level of the 
distribution can be incorporated into the pass that does the 
wavelet decomposition, yielding an improvement in practice. 

Putting everything together, we find that the total wavelet 
decomposition of array S requires O(logM,, g) passes over 
the data, each pass using O(N,/B) I/OS, and we get the 
following result: 
Theorem 2 For internal memory of size A4 and block 
size B, we consider an array S of size N = n,,i<d IDi/, 
where IDij is the size 0;’ dimension Di, having a total of N, 
nonzero entries. The number of I/OS needed for the wavelet 
decompositio,n of S using Algorithm II is 

The I/O bounds in Theorems 1 and 2 are a tremen- 
dous improvement over the bound obtained by Vitter et 
al. [VWI98], which is larger by a multiplicative factor 
of l/density(S) = O(N/N,). In practice, the approach of 
Algorithm I is generall:y preferable, since it can accommo- 
date a more liberal group partitioning strategy, which often 
results in a much smaller g value, typically g = 2, and the 
optimal I/O bound of (8). 

5.3. Thresholding and Ranking 

Given the storage limitation for the compact data cube, we 
can only “keep” a certain number of the C’ wavelet coeffi- 

cients. Let C denote the number of wavelet coefficients th.at 
we have room to keep; the remaining wavelet coefficients will 
be implicitly set to 0. Typically we have C < C’, so that the 
C coefficients can fit into one or a few disk blocks. The goal 
of thresholding is to determine which are the “best” C coelfi- 
cients to keep, so as to minimize the error of approximation. 

We can measure the error of approximation in several 
ways. Let 2r; be the actual answer of a query qi and let 6 'be 
the approximate answer of the query. We use the following 
five different error measures for the error ei of approximating 
query qi: 

Notation 

absolute error e?bs I 

relative error 

modified relative error 
Iv; - v^il 

max{l,min{v~,~}} 

combined error ecomb rel} 
* min{a x eTbs, p x ei 

modified combined error ecomb m-ml} 
t min{a! x cabs, p x ei -I 

The parameters cr and p are positive constants. 
Our definition of relative error is slightly different from 

the traditional one, which is not defined when TJ~ = 0. The 
modified relative error treats over-approximation and under- 
approximation in a uniform way. For example, suppose the 
exact answer to a query is zli = 10. The approximate an- 
swers ci = 5 or c = 20 each have the same modified relative 
error, namely, 5/5 = lO/lO = 1. In contrast, in terms of 
relative error, the approximation v’, = 5 has a relative error 
of 5/10 = 0.5, and the approximation c = 20 has a rel,a- 
tive error of lO/lO = 1. The approximation 6 = 0 (which 
is a terrible approximation for OLAP purposes) has a rela- 
tive error of only lo/10 = 1, while the modified relative error 
is 10/l = 10. The combined error reflects the importance of 
having either a good relative error or a good absolute error 
for each approximation. For example, for very small TJ~ it 
may be good enough if the absolute error is small even if the 
relative error is large, and for large zli the absolute error may 
not be as meaningful as the relative error. 

Once we choose which of the above measures to represent 
the errors of the individual queries, we need to choose a norm 
by which to measure the error of a collection of queries. Let 
e = (el, e2, . . . . eQ) be the vector of errors over a sequence 
of Q queries. We assume that one of the above four error 
measures is used for each of the individual query errors ei. For 
example, for absolute error, we can write ei = cabs. We define 
the overall error for the Q queries by one of the following error 

I ( Notation 1 Definition ) 

l-norm average error II41 

e-norm average error II42 

infinity-norm error I141m max {ei} 
l<i<Q 

These error measures are special cases of the p-norm 
erage error, for p > 0: 

lIelIP = ($ C eil)“‘. 

l<i<Q 

av- 
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The first step in thresholding is weighting the coefficients 
in a certain way (which corresponds to using a particular 
basis, such as an orthonormal basis, for example). In par- 
ticular, for the Haar basis, normalization is done by dividing 
the wavelet coefficients S(23),. . , S(2j+’ - 1) by 6, for 
O<j<logN-1. 

It is well-known that thresholding by choosing the C 
largest (in absolute value) wavelet coefficients after normal- 
ization is provably optimal in minimizing the 2-norm of the 
absolute errors for the set of singleton queries: 

{ Sum(il: il,, ..,id:id)IO<ij<lDjl, foreachl<j<d}. 

That is, if we want to minimize the average absolute error in 
approximating all the individual cells in S, the best choice 
is to keep the C largest (in absolute value) wavelet coeffi- 
cients [SDS96]. 

But our goal here is to approximate d-dimensional range- 
sum queries, where usually d’ < d. If a coefficient ci is more 
likely to contribute to a query than another coefficient cj , we 
would like to give ci a higher weight, even its absolute value is 
smaller than that of cj. From Lemma 16 in Section 6, we can 
observe the following fact: For a coefficient c = (il,. . . , id, v), 
the bigger the value ct=r[ij = 01, the more likely c is go- 

ing to contribute to a d-dimensional range-sum query.’ We 
therefore define the weight function w for coefficient c as 

W(C) = fJij = 01. 
j=l 

In doing thresholding, we pick the C” (C < C” < C’) 
largest wavelet coefficients in absolute value, and among those 
we pick the C wavelet coefficients with the largest weight 
with respect to function w. (We break ties using the ab- 
solute value.) We rank the C coefficients by ordering them 
according to their weights in decreasing order to get our com- 
pact data cube. Let us denote by R the compact data cube 
computed for a d-dimensional array S. We can view R as a 
one-dimensional array of length C, with each entry being a 
wavelet coefficient value and its indices in the sparse repre- 
sentation of form 

R[j] = (ij, , , ijd , vj ), llj<C. (12) 
The entries are ranked according to their importance in de- 
creasing order. 

6. Answering On-Line Queries 

In this section, we show how to answer on-line aggrega- 
tion queries using the compact data cube constructed in 
the previous section. Let’s consider a range-sum query 
Sum(ll:hl,. . .,z&:h&). 

An advantage of the partial-sum approach of [VW1981 is 
that we need to reconstruct only 2d’ values, not 2d values, 
of the partial-sum data cube in order to answer this query, 
which requires processing min{k, 2 nlcicd, log IDi]} wavelet 
coefficients in the worst case, where k iz <he specified number 
of stored coefficients in the compact data cube to use for the 
approximation. If we abandon the partial-sum data cube and 
use the compact data cube, one big concern is that we may 
lose this speed advantage. It turns out that we will not. In 
fact, our algorithm for answering queries is even faster, both 
theoretically and in practice: In the partial- sum scenario us- 
ing the logarithm transform in [VWI98], a wavelet coefficient 

‘We use the notation [ij = 0] to denote 1 if ij = 0 and 0 if 
ij # 0. 

S(O) S(2) S(3) S(4) S(5) S(6) S(7) 

Figure 1: Error tree for N = 8. 

may be involved in the approximation of several of the 2d’ 
values, so the CPU time complexity is 0(2d’d’Ic), whereas in 
our new approach the CPU time complexity for the standard 
implementation is only O(d’k) with a very small constant fac- 
tor of proportionality (roughly 2) in terms of the number of 
arithmetic operations. (A more complicated approach yields 
an O(d’k)-time algorithm for the former case, but only if the 
logarithm transform is not used.) 

To fully understand the on-line query processing algo- 
rithm, we examine the relationship between wavelet coeffi- 
cients and a range-sum query by using the error tree structure 
introduced in [MVW98]. The error tree is built based upon 
the wavelet transform procedure. Figure 1 is the error tree for 
the example in Section 5.1. Each internal node is associated 
with a wavelet coefficient value, and each leaf is associated 
with an original signal value. (For purposes of exposition, the 
wavelet coefficients are unnormalized, but in the implementa- 
tion the values are normalized and the algorithm is modified 
appropriately.) Internal nodes and leaves are labeled sepa- 
rately. Their labels are in the domain (0, 1, . . , N - 1) for 
a signal of length N. For example, the root is an internal 
node with label 0 and its node value is 2.75 in Figure 1. 
For convenience, we shall use “node” and “node value” inter- 
changeably. 

The construction of the error tree exactly mirrors the 
wavelet transform procedure. It is a bottom-up process. 
First, leaves are assigned original signal values from left to 
right. Then wavelet coefficients are computed, level by level, 
and assigned to internal nodes. 

As the figure shows, the-(unnormalized) value of each in- 
ternal node i is denoted by S(i), and the value of each leaf j is 
denoted by S(j). We use left(i) and right(i) to denote the left 
and right child of any node i, and we use leaves(i) to denote 
the set of leaves in the subtree rooted at i. The average value 
of the nodes in leaves(i) is denoted by ave-leaf-&(i). For 
any leaf i, we use path(i) to denote the set of internal nodes 
(or the node values) along the path from i to the root. For 
any two leaves 1 5 h, we use S(Z: h) to denote the range-sum 
between S(1) and S(h), that is, 

S(1: h) = es(i). (13) 
id 

Below are some useful facts that are helpful for under- 
standing our algorithm. 
Lemma 1 For any nonroot internal node i, we have 

s^(i) = ave..leuf -val (left(i)) - ave-leaf -val (right(i)) 

2 

Lemma 2 The reconstruction of any signal value depends 
only upon the values of those internal nodes along the path 
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from the correspondin.q leaf to the root. That is, the recon- 
struction of any leaf ualue S(i) depends only upon the nodes 
in path(i) . 

Consider the range sum (13). It is an algebraic sum of 
many internal nodes. .For example, for I = 0, h = 1, 

S(0) + S(1) = (<F(O) + $1) + $2) + s^(4)) 

+ (it(O) + s^(l) + $2) - $4)). 

Note that the two terms of g(4) cancel out each other, so g(4) 
does not contribute to the final summation. In general, any 
original signal S(i) can be represented as the algebraic sum 
of the wavelet coefficients along the path path(i). A nonroot 
internal node contributes positively to the leaves in its left 
subtree and negatively to the leaves in its right subtree. For 
a range sum, the contributors may cancel each other, and we 
have the following result: 
Lemma 3 A nonroo2 internal node x contributes to the 
range sum (13) only i.f x E path(Z) U path(h). In particular, 
the contribution of x to (13) is 

(IZe&Zeaves(x, I: h)l - I right-Zeaves(x, I: h)l) x g(x), 

where 

left..Zeaves(x, I: h) = leaves (Zeft(x)) fl [Z, h]; (14) 

right-Zeaves(x, 1: h) = leaves (right(x)) fl [Z, h]. (15) 

Mathematically, we can write any range sum in terms of 
all the wavelet coefficients as 

S(Z:h) = C(jZeft-Z eaaes(z, 1: h)I-I right-Zeaves(x, 1: h)l)S^(x), 
3: 

where the summation is over all internal nodes x. In our 
algorithm, however, we do not evaluate all the terms. We 
quickly determine the nonzero contributors and evaluate their 
contribution. 

Let us relook at the example in Section 5.1; its error tree is 
shown+ Figure 1. The original signal S can be reconstructed 
from S by the following formulas: 

S(0) = 2(O) + i?(l) -k?(2) + 94) 

S(1) = s^cO) + s^cl, -k $2) - i?(4) 

S(2) = iqo, + i?(l) -- $2) + $5) 

S(3) = g(o) + $1) -- $2) - 95) 

S(4) = S(O) - i?(l) + 93) + $6) 
S(5) = S(O) - $1) + s^(3) - i?(S) 

S(6) = g(O) -s?(l) - $3) + $7) 

S(7) = $0) - $1) - i?(3) - $7) 

For ex_ample, S(2) depends only upon path(2) = {g(5), g(2), 
S(l), S(O)}. If we want to-compute the range sum S(2: 5), 
we can see that although S(1) contributes to each of S(2), 
S(3), S(4), and S(5), its total contribution cancels out, and 
t&e net effect is that it does not, contribute at all. Similarly, 
S(5) and S(6) are gone, and we have 

S(2: 5) == 4$(O) - 2s^(2) + 2s^(3). 

The formula can also be verified by using Lemma 3. 
We can extend the above observation to the multidi- 

mensional case. For example, for a two-dimensional array 
with IDll = l&l = 8, we can answer the range-sum query 
Sum(4: 7,0: 7) (note that Dz’s range is the special range al/z) 

u$ng the following formula that involves only coefficients 
S(O,O) and S(l, 0): 

Sum(4:7,0:7) = 8 x 4 x (g(O,O) - s^(l,O)). 

Lemma 4 In the reconstruction process, a wavelet coef- 
ficient c = (il, . , id, w) contributes to the range sum 
Sum(Zl:hl,. . ,Zd’:hd’) Only if id’+1 = . . . = id = 0. Its 
contribution is 

vfl(lZeft_Zeaoes(i,,Zj:hj)l - /right-Zeaves(ij,Zj:hj))) 
j=l 

= v~(IZe~-Zeauts(ij,Zi:hj)I - Iright-Zeaves(ij,Zj:hj:t)) 

j=l 

x fr Idol. 
j=d’+l 

To answer a query of form Sum(Zl : hl , . . . , Z& : h& ) using k 
coefficients of the compact data cube R, we use the following 
algorithm: 
AnswerQuery(R,k,Zl, hl,. . . , Z&, hd,) 

answer = 0; 
fori=1,2,...,kdo 

if Contribute(R[i], 11, hl,. . , Z&, hd’) then 
answer = answer+ 

Compute-Contribution(R[i], II, hl, . . , Zd’ , h& ); 
forj=d’+l,...,ddo 

answer = answer x I Dj I; 
return answer; 

Function Contribute(R[i], 11, hl, . . . , Zd’ , hd, ) returns true if 
the R[i] contributes to the range-sum query, and it 
returns false otherwise. The actual contribution of 
R[i] to the specified query is computed by function 
Compute-Contribution(R[i], 21, hl,. . , Zd’, h#). 

Based upon the regular structure of the error tree and 
the preceding lemmas, we have devised two algorithms to 
compute the above two functions. Each algorithm has CPU 
time complexity of about 2d’. For reasons of brevity, we defer 
the details to the full paper. 
Theorem 3 For a given aggregation query of form 

Sum(Zl: hl,. . ,Zd,: h&), 

the approximate query answer can be computed based upon the 
top k coeficients in the compact data cube using a ((d + 1)k) - 
space data structure in 2d’ x min{k, 2 nlcicd, log IDi/} CPU 
time. 

-- 

Proof Sketch: We only need to process the first k coefficients 
in R. Each of the coefficients is a (d+l)-tuple of the form (6), 
so the space complexity is (d+l)k. The CPU time complexity 
follows easily from that of the two functions. An alternate 
mechanism is to nrocess onlv the coefficients needed. wh.ich 
are at most 2 nliicd, log /Dil. q -- 

Often the first k coefficients of the compact data cube 
reside in internal memory. If instead they are on disk, they 
occupy rdk/Bl disk blocks, which is typically one or a small 
constant, so they can be retrieved with a constant number of 
I/OS. In terms of CPU time, the quantity 2 nlcicd, log JDil 
is almost always larger than k in practice, so the faster and 
simpler way to evaluate the approximation takes O(d’k) CPU 
time. By comparison, the CPU running time is 2d’ times 
faster than the algorithm in [VWI98]! 

Our algorithm has the useful feature that it can prog:res- 
sively refine the approximate answer with no added overhead. 
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If a coefficient contributes to a query, its contribution can be 
computed independently of the other coefficients. Therefore, 
to refine a query answer, the contribution of a new coefficient 
can be added to the previous answer in O(d) CPU time, 
without starting over from scratch. 

7. Experiments 

7.1. Data Description 

In many OLAP applications, the data have high dimensions 
and the correlations among the functional attributes and the 
measure are intricate and do not match artificial data mod- 
els. To make our experimental results meaningful, we per- 
formed our experiments using both real-world data and syn- 
thetic data of high dimension. For brevity, we report the ac- 
curacy of our approximate query answers for only real data. 
To analyze the speed of our compact data cube construction 
algorithm, we report the running time of our algorithm on 
tunable synthetic datasets. 

We obtained our real-world data from the U.S. Census Bu- 
reau using their Data Extraction System (DES) [Burl. Our 
data source is the Current Population Survey (CPS) and 
our extracted file is the March Questionnaire Supplement- 
Person Data File. The file contains 372 attributes, from 
which we chose 11. Our measure attribute is income, 
and the 10 functional attributes are age, marital-status, 
sex, education-attainment, race, origin, family-type, de- 
tailed-household-summary, age-group, and class-of-worker. 
In the original data file, all the attributes are already prepro- 
cessed and have a relatively small dimension size; that is, the 
domain of each dimension Di is (0, 1, . , IDi 1 - l}, for some 
small integer ) Di 1. Although the dimension sizes are generally 
small, the high dimensionality results in a ten-dimensional ar- 
ray with more than 16 million cells. The density of the array 
is about 0.001; there are 15,985 nonzero elements. In this 
setting we can imagine that several sparse data sets are ap- 
proximated, and each data set must be approximated using 
very little space. 

Our synthetic datasets are generated using our own data 
generation model described in the Appendix. 

7.2. Efficiency of the Compact Data Cube Con- 
struction Algorithm 

We implemented our compact data cube construction algo- 
rithms using the nansparent Parallel I/O Programming En- 
vironment (TPIE) system [VV96, Ven97, Ven94]. TPIE is 
a collection of ternplated functions and classes to support 
high-level and efficient implementations of external memory 
algorithms. The basic data structure in TPIE is a stream, 
representing a list of objects of an arbitrary type. The sys- 
tem includes I/O efficient implementations of algorithms for 
scanning, merging, distributing, and sorting streams, which 
are building block for our algorithms. 

We did our experiments on a Digital Alpha workstation 
running Digital UNIX 4.0, with 512MB of internal memory. 
Since the sizes of the raw data sets used in our experiments 
are relatively small (44MB to lGB), we restricted the amount 
of internal memory used by our program to be in the range 
from 1MB to 10MB. For all the runs using Algorithm I, the 
logical block transfer size used by TPIE streams was 256KB 
(32 times the physical disk block size 8KB) in order to achieve 
a high transfer rate. Smaller logical block sizes resulted in 
slightly longer run times. However, for all the runs using 
Algorithm II, we used a smaller logical block transfer size 
of 16KB in order to keep the number g of passes small. 

Figure 2: Construction time vs. density. 

In the first group of experiments, we use synthetic data 
and measure the elapsed time of the compact data cube con- 
struction algorithms as a function of the data density N, IN. 
We fix the number of dimensions d, the number of nonzero 
entries N,, and the internal memory size M. 

Figure 2 depicts the results from one set of the exper- 
iments, in which we fix d = 10 and N, = 106. The size 
of each data item is 44 bytes, and the internal memory size 
parameter M is set to 190650 (corresponding to 8MB). The 
size of the sparse representation of the raw data is 44MB. 
By changing the dimension size parameters jOi], we obtain 
multidimensional arrays with different sizes N in the range 
from 16 x N, to 220 x N,. This corresponds to the densities 
in the range from 0.06 to 10e6. We partition the dimensions 
according to (7). For all data sets, we have g = 2, although 
the ones with small density have very big values of N. For 
example, the data set with density of 10T6 has array size 
N r=z 240. 

We ran our compact data cube wavelet decomposition al- 
gorithms against five data sets. The results are shown in 
Figure 2. To make the plot clear, we plot the logarithm of 
density on the z axis. The z coordinate z = -i corresponds 
to a density of lObi. As we can see from the figure, the run- 
ning time of Algorithm I for the five data sets varies slightly 
(in the range from 242 seconds to 306 seconds) as the density 
changes. The differences in running time are mainly caused 
by the effect of the on-line cutoff. For some runs, slightly 
more than N, coefficients are written out during the first 
pass, which causes a longer running time, whereas it is the 
other way around for some other runs. The running time of 
Algorithm II decreases significantly as the density increases. 
The reason for the decrease is that N, is fixed, and a data set 
with small density corresponds to a big N value. Since Al- 
gorithm II cannot apply the more liberal group partitioning 

Figure 3: Construction time vs. input raw data size. 
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of (7), the resulting CJ value is large. On the other hand, Al- 
gorithm I takes advantage of (7) for partitioning the groups 
and performs noticea.bly better than Algorithm II for very 
sparse data. 

Our methods require less time and storage space than 
do other methods. For example, for the data set with the 
smallest density 1/106, if we use the partial-sum data cube 
approach of [HAMS9’7], we will need to process and store a 
partial-sum cube that contains 101’ nonzero cells and takes 
up 4GB storage space if we use the MOLAP (array) repre- 
sentation, even though the raw data size is only 44MB. If we 
use the compact parti.al-sum data cube approach in [VWI98], 
the final compact partial-sum data cube is much smaller in 
size than that of the raw data, but there will be time and 
space problems during the construction stage because of the 
need to compute the dense partial-sum data cube during the 
wavelet decomposition. 

In the second group of experiments, we measure the 
elapsed time in terms of the raw data size. In each set of the 
experiments in this group, we fix the number of dimensions d, 
the density N,/N, and the amount of internal memory M. 
By changing N, and N proportionally, we obtain data sets 
with the same density but different size. 

Figure 3 plots the result of one set of the experiments, 
in which we use d = 10, data item size of 44 bytes, M = 
190650 (corresponding to 8MB), and a density of 0.001. The 
value N, varies from 1 million to 16 million, corresponding to 
a raw data size from 44MB to 704MB. From Figure 3, we can 
see that the running -time of both algorithms scales almost 
linearly with respect to the input data size. 

In all the experiments, the initial order of the data is in 
the order needed for the first pass of the data cube construc- 
tion algorithms. We also graph in Figures 2 and 3 the time 
it takes to sort each data set using TPIE, so that the speed 
of the data cube construction algorithms can be assessed in 
terms of the time it takes to sort a similarly sized file. Note 
however that the TPIE: sorting routine has an extra speed ad- 
vantage in that it has been carefully optimized. Algorithm I 
was fairly easy to program since it makes use of the TPIE 
scan and sorting operations. However, it can be optimized 
further by performing the first pass of each transposition step 
during the actual wavelet decomposition, as suggested in Sec- 
tion 5.2.1. Algorithm II should also be further optimized; our 
implementa.tion did not make use of double buffering. 

7.3. Accuracy of the Approximate Answers 

In this section, we compare the accuracy of our method with 
that of the traditional random sampling method in answer- 
ing typical range-sum queries. The simplest way of using 
random sampling is, during the off-line phase, to take a ran- 
dom sample of a certain size from the raw data. When a 
query is presented in the on-line phase, the query is evalu- 
ated against the sample, and an approximate answer is given 
in the obvious way: If the answer of the query using a sample . 
of size t is c;, the approximate answer is s x N,/t. The new 
sampling-based summary statistics proposed in [GM981 can- 
not be applied here to any advantage since our raw data do 
not contain duplicate tuples. We chose not to do any com- 
parisons with traditional histogram methods [PIHS96, PI97], 
because as we mentioned in Section 1, they are too ineffi- 
cient to construct for high-dimensional data that cannot fit 
in internal memory. 

The relative effectiveness of random sampling and that of 
our method are fairly constant over a wide variety of synthetic 
data sets and range-sum query sets. Our compact data cube 

generally provides more accurate results than that of a ran- 
dom sample of the same size. If the locations of the nonzero 
entries are uniformly distributed in the multidimensional ar- 
ray, random sampling may perform better. But uniform ‘dis- 
tributions in real-life data warehouses are rare. 

We measure the accuracy of the methods by using both 
the real data and synthetic data. For the brevity of this 
paper, we present the results from a typical set of our real- 
data experiments. (The other experiments were qualitatilvely 
similar.) In the experiments, we specify partial ranges on 
d’ = 3 of the d = 10 dimensions and average our results clver 
the following d’-dimensional range-sum queries: 

{S~m(Z1:h1,Zz:hz,Z3:h3) 1 hi = Zi + A, 0 5 Zi 5 hi < IDi], 

for each 1 5 i 5 3) 

where A is a nonnegative integer constant. 
Figure 4 plots the accuracy of our method in compari,son 

with random sampling for different error metrics and various 
storage space sizes k. We used A = 10. The absolute er- 
rors are normalized by the largest exact answer L = 766327 
for the query set. The sampling results are the averages for 
five different runs. The storage size is measured in terms of 
the number k of wavelet coefficients (for our method) or the 
number of sample points (for sampling) used in answering 
the queries. The wavelet coefficients and the sample points 
are each of form (6), which is a (d + 1)-tuple; since d = 10 
for our data set, each wavelet coefficient (sample point) is 
represented by a tuple of 11 numbers. 

As shown in Figure 4, the accuracy of our compact d.ata 
cube is noticeably better than that of random sampling. For 
example, when using only k = 50 coefficients in our compact 
data cube method, the average relative error for the query set 
is only 17%, and the average relative error is about 10 times 
better than for random sampling. 

8. Conclusions 

In this paper, we present an efficient and effective technique 
based upon a multiresolution wavelet decomposition that 
yields an approximate and space-efficient representation of 
the underlying multidimensional data in OLAP applications. 

Our compact data cube construction algorithms are very 
efficient in term of I/O complexity, especially when the raw 
data are very sparse. In the on-line phase, by using the hier- 
archical structure of the wavelet decomposition, we obtain an 
efficient algorithm for answering typical OLAP aggregation 
queries. Experiments show our compact data cube provides 
excellent approximation for on-line range-sum queries with 
limited space usage and little computational cost 

One feature of the approach of Vitter et al. [VW1981 for 
dense multidimensional arrays that we have not incorporated 
into the sparse approach presented in this paper is the use 
of special transforms for further improvements in relative ac- 
curacy. The logarithm transform in [VW1981 is based upon 
the use of the partial-sum data cube. It would be intereist- 
ing to explore alternative transforms or perhaps compression 
approaches to the partial-sum data cube. It is possible that 
such transforms are effective mainly in lower dimensions. 

We are considering alternative normalization and thresh- 
olding methods based upon more sophisticated probability 
distributions of query patterns. To get further improvements 
in the space-accuracy tradeoff, we are working on quantizing 
the wavelet coefficients and entropy encoding of the quan- 
tized coefficients. In other joint work, we are developing d.y- 
namic efficient algorithms for maintaining the compact da.ta’ 
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Attribute 

n-region 
nlregion 
n2-region 

T 
z 

z-min 
z-max 
I/-min 
V-max 

noise-volume-level 

noise-weightJeve1 

- 

- 

Value 

the number of dimensions 
the size of the ith dimension, 1 5 i 5 d 
the number of dense regions in multrdimensional space 
the number of type 1 dense regions 
the number of type 2 dense regions 
the sum of all the nonzero values 
the Zipf parameter for the value distribution dense regions 
the minimum Zipf parameter for type 2 dense regions 
the maximum Zipf parameter for type 2 dense regions 
the minimum volume of a dense region 
the maximum volume of a dense region 
% of the number of nonzero entries outside dense regions 
w.r.t to the total number of non-zero entries 
% of the sum of the nonzero values outside dense regions w.r.t. T 

Table 1: Description of the synthetic data. 
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Appendix: Synthetic Data Description 

We use own data generation model and different combina- 
tions of parameters to generate a wide variety of synthetic 
datasets for our timing experiments. We model the distrihu- 
tion of the nonzero values in a multidimensional array by the 
parameters defined in Table 1. 

The program will generate the sparse representation ol^ a 
d-dimensional array whose size is determined by the param- 
eters IDi(s, for 1 5 i 5 d. The nonzero entries are mainly 
located in n-region dense regions. The center of each dense 
region is a randomly picked position in the d-dimensional ar- 
ray. The volume of any dense region (which is defined as 
the number of cells in the region) is a random number be- 
tween I/-min and V-max. Each region has a sum which is 
the summation of the values for all the cells contained in 
the region. The Zipf distribution parameter 2, together with 
T(l -noise-weight-level) and n-region, are used to generate 
values which are randomly assigned to each region as its sum. 

A dense region can be either type 1 or type 2. A type 1 
region has a distribution where all dimensions are indepe.n- 
dent of one other and obey the unbiased binomial distrib-u- 
tion. To generate a type 2 region, we first use the Zipf distri- 
bution with parameter z (where z is uniformly chosen from 
[z-m&, z-max]) to generate a set of values. The values a:re 
then assigned to the cells in the region in such a way that the 
closer a cell is to the center, the bigger the assigned value is. 

We also consider the fact that besides the nonzero cells 
in the dense regions, there might be some isolated nonzero 
cells outside those dense regions. The number of such 
cells is defined by the parameters noise-volume-level and 
the sum of these isolated nonzero values are defined by 
noise-weight-level. Their positions are generated in a ran- 
dom way. 
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