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ABSTRACT 
The database query optimizer requires the estimation of the query 
selectivity to find the most efficient access plan. For queries 
referencing multiple attributes from the same relation, we need a 
multi-dimensional selectivity estimation technique when the 
attributes are dependent each other because the selectivity is 
determined by the joint data distribution of the attributes. 
Additionally, for multimedia databases, there are intrinsic 
requirements for the multi-dimensional selectivity estimation 
because feature vectors are stored in multi-dimensional indexing 
trees. In the l-dimensional case, a histogram is practically the 
most preferable. In the multi-dimensional case, however, a 
histogram is not adequate because of high storage overhead and 
high error rates. 

In this paper, we propose a novel approach for the multi- 
dimensional selectivity estimation. Compressed information from 
a large number of small-sized histogram buckets is maintained 
using the discrete cosine transform. This enables low error rates 
and low storage overheads even in high dimensions. In addition, 
this approach has the advantage of supporting dynamic data 
updates by eliminating the overhead for periodical reconstructions 
of the compressed information. Extensive experimental results 
show advantages of the proposed approach. 

1. INTRODUCTION 
The database query optimizer chooses an efficient execution plan 
among all possible plans by estimating the cost of each plan. One 
of the most important factors for computing the cost of a plan is 
the selectivity, which is defined as the ratio of the number of data 
in a query result to the total number of data in a database. The 
accuracy of the selectivity estimation significantly affects the 
selection of an efficient plan. The selectivity can be estimated 
using a variety of statistics that are kept in a database catalog. The 
statistics for the selectivity estimation usually approximates the 
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data distribution of a database. 
There are two classes in selectivity estimation problems 

according to the dimensionality. One is the l-dimensional 
selectivity estimation and the other is the multi-dimensional 
selectivity estimation. The estimation of the result size of a query 
with a single attribute predicate depends on the data distribution 
of the attribute. This case is the l-dimensional selectivity 
estimation problem. Regarding the multi-dimensional selectivity 
estimation, there are several applications that require it. The 
optimization of a query referencing multiple attributes from the 
same relation needs it, because the result size of the query depends 
on the joint data distribution of the attributes that is represented as 
a multi-dimensional space [PI97]. So do the optimization of fuzzy 
queries for multimedia repositories [CG96, Fa96, Fa98] and 
database ranking for selecting resources in a distributed 
environment such as the World Wide Web [CSZS97], because the 
feature vectors of multimedia data are stored in multi-dimensional 
index trees. 

A variety of techniques were proposed based on how to 
approximate the data distribution. An excellent survey and the 
taxonomy of various selectivity estimation techniques appeared in 
[MCS98, CR94, PIHS96]. l-dimensional selectivity estimation 
techniques are classified into four categories: the parametric, the 
curve fitting, the sampling, and the non-parametric. Among these 
classes, the histogram method in the non-parametric class is the 
most preferable because it approximates any data distribution and 
requires reasonably small storage with low error rates. And it does 
not incur run-time overheads. Several histogram techniques were 
proposed in order to reduce estimation errors[PIHS96]. For the 
multi-dimensional selectivity estimation, several estimation 
techniques were proposed: the method using the multilevel grid 
tile(MLGF)[WKW94], the singular value decomposition(SVD), 
Hilbert numbering, PHASED, and MHIST [PI97]. These are all 
based on histogram techniques. And these were proposed under 
the assumption that a histogram method is also efficient in the 
multi-dimensional selectivity estimation as it is so in the l- 
dimensional case. However, the situation of the multi-dimensional 
case is very different from that of the 1 -dimensional case. In order 
to achieve low error rates, the size of histogram buckets must be 
small. As the dimension increases, the number of histogram 
buckets that can achieve low error rates increases explosively. This 
is because the number of histogram buckets is in inverse 
proportion to the dimension’th power to the normalized one- 
dimensional length of a partitioned multi-dimensional bucket as 
expressed by an equation below. It causes a severe storage 
overheads problem. 

l Cka<l, #of buckets = - 1 
adim 

where a is the 1 -dimensional length of a bucket. 
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Therefore, it is impossible to maintain a reasonably small 
storage with low error rates in high dimensions. Also it is difficult 
to partition a multi-dimensional space into disjoint histogram 
buckets efficiently so that the error rates are kept small. From a 
practical point of view, these methods cannot be used in 
dimensions higher than three. Another problem is that all methods 
except the MLGF method cannot reflect dynamic data updates 
immediately to the statistics for the estimation. This leads to an 
additional overhead suc:h as the periodical reconstruction of 
statistics for the estimation. 

In this paper, motivated from the above problems, we propose 
a novel approach for the multi-dimensional selectivity estimation. 
The contents and contributions are as follows: Compressed 
information from a large number of small-sized buckets is 
maintained using the discrete cosine transform (DCT). This 
enables low storage overheads and low error rates even in high 
dimensions. This can be achieved from the fact that DCT can 
compress the information remarkably. That is, low error rates can 
be achieved by small-sized buckets and low storage overheads can 
be achieved by compressing a large amount of histogram bucket 
information. As another contribution, as far as we know, this is the 
first application in which DCT is used in high dimensions. DCT 
has been widely used in the image and signal processing area 
usually in 2-dimensional domain. Therefore, we also extend DCT 
from two dimension to high dimensions. In addition, this method 
has the advantage that it is not necessary to reconstruct statistics 
for selectivity estimation periodically, because it reflects dynamic 
data updates into the statistics for the estimation immediately. An 
extensive set of experiments show that the method proposed in 
this paper requires low storage overheads, achieves low error rates, 
and provides fast computations of the estimation even in high 
dimensions. 

The paper is organized as follows: In Section 2, we describe l- 
dimensional and multi-dimensional selectivity estimation 
techniques as well as thleir advantages and disadvantages. In 
Section 3, we introduce the discrete cosine transform. In section 4, 
we explain how discrete cosine transform can be used in the multi- 
dimensional selectivity estimation. In Section 5, we show 
experimental results and discuss them in detail. Finally, 
conclusions are made in Section 6. 

2. RELATED WORK 
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First, we briefly describe l-dimensional selectivity estimation 
techniques ancl explain multi-dimensional estimation techniques, 
and then discuss their problems. 

2.1 One-dimensional Selectivity Estimation 
Selectivity estimation techniques can be classified into four 
categories: the parametric method by model functions [Chri83], 
the curve fitting method by general polynomial functions [CR94, 
SLRD93], the sampling method [HNSS95], and the non- 
parametric method by histograms [Io93, IP95, PIHS96, 
JKMPSS98]. The parametric method approximates the data 
distribution of an attribute to a model function such as normal, 
exponential, Pearson, Zipf >function, and computes free parameters 
for the model function under the assumption that the data 
distribution well fits the selected model function. The advantage 
of this method is that it requires a little storage, incurs low 
computation overheads, and provides accurate results when the 
data distribution fits the selected model function. However, if the 
data distribution does not fit the model function, the error rates of 

estimation results will be very high. And we must know a pliori 
which model function fits the actual data distribution. If the actual 
data distribution does not fit any known model function, we 
cannot use this method. The curve fitting method was proposed to 
get more flexibility than the parametric method. This method uses 
a general polynomial function in fitting the actual data distribution. 
The advantage of this method is that it can approximate any data 
distribution. However, it has the negative value problem and the 
rounding error propagation problem. So, we must be careful to use 
this method. The sampling method is mainly used for statistical 
queries that have aggregate functions. It retrieves sample data 
from a database and applies the sample data to a query in order to 
get statistics of the query. The sampling method must take enough 
sample data to achieve the desired accuracy. The query 
optimization that requires frequent selectivity estimations cannot 
use this method due to its high performance overheads. The 
histogram method is the most common non-parametric meth.od. 
The histogram method divides the data distribution into a set of 
small disjoint intervals, in other words, buckets, to approximate 
the data distribution, and stores some statistics in each bucket such 
as value range and the number of data in a bucket. The histogram 
method is based on the uniform distribution assumption which 
means that data in a bucket are uniformly distributed. The 
selectivity estimation using a histogram is as follows: First, all 
buckets overlapping with the query are selected. The statistics in 
each bucket is used to compute the number of data that satisfy the 
query. The numbers of the satisfied data from each bucket are 
summed up to get the final estimation result. 

The histogram method is practically the most preferable 
among the ones in four classes because it is possible to make a 
histogram that approximates any data distribution with reasonably 
small storage and low error rates. Therefore it is widely used in 
many commercial databases. The histogram method is ag;lin 
classified into various methods according to how to partition Ithe 
data distribution into buckets in order to minimize the estimation 
error: the Equi-width, the Equi-depth, the MaxDiff, the V-optimal 
method, etc. In the Equi-width, the widths of the buckets are equal, 
and the number of data in each bucket approximates the data 
distribution. In the Equi-depth, each bucket has the same number 
of data, so the widths of the buckets are different. In the MaxDiff, 
there is a bucket boundary bewteen two adjacent values when the 
difference of these values are among the largest. In the V-optimal, 
the sum of weighted variances of buckets is minimized. The ‘V- 
optimal method has been shown to be the most accurate histogram 
method [IP95, JKMPSS98J. 

2.2 Multi-dimensional Selectivity Estimation 
The optimization of fuzzy queries for multimedia repositories 
needs a multi-dimensional selectivity estimation technique. 
Chaudhuri[CG96] used the result using the correlation fractal 
dimension [BF95] as the selectivity estimation. However, the 
selectivity using the correlation fractal dimension is the average of 
the estimation results for the same shape and size queries and can 
be practically used in two and three dimensions. For queries with 
multiple attributes, there is an estimation method that uses a multi- 
dimensional file organization called the multilevel grid file 
(MLGF) [WKW94]. MLGF partitions the multi-dimensional data 
space into several disjoint nodes, called grids, that act as 
histogram buckets. A new field, count, is added to each grid node 
for saving the number of data in the grid. The selectivity is 
estimated by accessing grid nodes overlapping with a query. This 



method supports dynamic data updates because MLGF itself is a 
dynamic access method. And it accurately estimates the result size 
of a query. However, MLGF suffers from the dimensionality curse 
[BBK98] that means severe performance degradation in high 
dimensions. Also the method has the maintenance overhead of 
MLGF. So, the method can not be applied in dimensions higher 
than three. 

Recently, Poosala et al. proposed several useful methods for 
the multi-dimensional selectivity estimation [PI97]: The Singular 
Value Decomposition (SVD), the Hilbert numbering, the 
PHASED, and the MHIST methods. These methods are based on 
the l-dimensional histogram method under the assumption that the 
histogram can also be used in the multi-dimensional selectivity 
estimation. So, these methods partition the joint data distribution 
into disjoint buckets. The SVD method decompose the joint data 
distribution matrix J into three matrices V, D, and V that satisfy 
J=VDVT. Large magnitude diagonal entries of the diagonal matrix 
D are selected together with their pairs, left singular vectors from 
V and right singular vectors from V. These singular vectors are 
partitioned using any one-dimensional histogram method so as to 
be used as histogram buckets of the attributes. There are many 
efficient SVD algorithms, but the SVD method can be used only 
in two dimension. The Hilbert numbering method converts the 
multi-dimensional joint data distribution into the 1 -dimensional 
one and partitions it into several disjoint histogram buckets using 
any one-dimensional histogram method. The buckets made by this 
method may not be rectangles. Therefore, it is difficult to find the 
buckets that overlap with a query. The estimates may be inaccurate 
because it does not preserve the multi-dimensional proximity in l- 
dimension. The PHASED method partitions an n-dimensional 
space along one dimension chosen arbitrarily by any one- 
dimensional histogram method, and repeats this until all 
dimensions are partitioned. The MHIST is an improvement to the 
PHASED method. It selects the most important dimension in each 
state and partitions it. From the V-optimal point of view as an 
applied partitioning method in MHIST, the dimension that has the 
largest variance is the most important dimension. The experiments 
in [PI971 showed that MHIST technique is the best among a 
variety of multi-dimensional histogram techniques. However, even 
though it produces low error rates in 2-dimensional cases, it has 
relatively high error rates in the 3-dimensional space (20-30 %) 
and the 4-dimensional space (30-40%). This demonstrates that it is 
not easy to segment multi-dimensional spaces into disjoint 
histogram buckets efficiently. These methods cannot be used in 
dimensions higher than three. In addition, the database system 
must reconstruct the statistics periodically in an environment 
where data is updated frequently because the method do not 
support dynamic data updates. 

3. DISCRETE COSINE TRANSFORM 
The discrete cosine transform has been widely used in the image 
and signal processing areas usually in the 2-dimensional domain 
because it has the power to compress information. However, we 
should use the multi-dimensional DCT for compressing the 
histogram information. Therefore, we briefly describe the 
definition of the l-dimensional DCT, the 2-dimensional DCT and 
extend them to the multi-dimensional DCT. 

3.1 Definition of Discrete Cosine Transform 
For a series of data $ = (f(O)f(l),. . &N-l)), DCT coefficients, G 

= (g(O),g(l),...,g(N-1)). are defined as follows: - 

F = (f(O)J(l),...f(N-1)) is recovered by the inverse DCT defined 
as follows: 

f(n)=~~~,,g(u)cos((2n~~ur) n=O,...,N-1 
U-0 

l-dimensional DCT was extended to 2-dimensional DCT as 
follows: Let [1;1s be an MxN matrix representing the 2- 
dimensional data and [G]* be the 2-dimensional DCT coefficients 
of [f12. Then the element (u,v) of [Cl* is given by 

g(uBv)= 4iz rn=On=O 
%kyyf(m,n)cos[ (zm:Ml)qos[ y--h] 

where u = 0 ,..., M-l andv=O ,..., N-l 
By the separability property [RY90, Lim90] of the 2-dimensional 
DCT, g(u,v) can be rewritten as follows: 

Its inverse is as follows: 

.f(mn)=~f,).{,/$$$ k&,v)cos[ (““;;)““]}cos[ (2m;;)un] 

Now we generalize the above to the k-dimensional DCT 
recursively as follows: 
Let [flk be NlxN2x...xiVk k-dimensional data. Let u(r)=(ui,...,u,) 
E (ul,...,uk) and n(t)=@ I,..., n,) E (nl,..., Q) for l<t I k and Ur= 
O,.. .,Ni-1, ni = 0,. ..,N,-I for II i I k. Let [G]k be DCT coefficients 
of [r;lk . We define G(u(t)) , F(u(r)) as follows: 

Then, k-dimensional DCT coefficients is given by g(ul,...,uk) = 
G(u(k)). And the inverse DCT transform is given by flu,,. . .,u& = 
FMk)). 

3.2 Properties of Discrete Cosine Transform 
DCT has many desirable properties as follows: 
(1) DCT is a linear transform. Let Fc be DCT and q/3 be the 
scalar values, and let x,y be the general k-dimensional data. Then 
the following linearity holds: 

Fc (a + PY) = aF, (x) + PF, (Y) 
(2) DCT is separable. This means that the 2-dimensional DCT can 
be reduced to the I-dimensional DCT which enables the row- 
column decomposition which is the basis of fast algorithms. 
(3) DCT preserves the energy in the transformed domain as 
Parseval’s theorem says that 

ni, ui=O,...,Ni-1 t i=l,...,k 
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(4) DCT has the property of energy compaction. DCT reduces the 
correlation among transformed coefficients. This property is 
related to the energy compaction. That is, if data adjacent to each 
other in the data distribution are highly correlated, DCT can 
reduce the correlation between adjacent transformed coefficients. 
And if the frequency spectrum of a data distribution is skewed in 
which the magnitudes of low frequency coefficients are large 
while those of high frequency coefficients are small, we can 
discard the high frequenc.y coefficients without seriously affecting 
the original dada distribution [AFS93]. Since discarding the high 
frequency coefficients causes an error, we measure this error as the 
mean square error (MSE). 

wheref(ni,...,n& is computed by applying the inverse DCT with 
truncated DCT coefficients. 

There are many other transforms such as the discrete Fourier 
transform (DFT), the Harr transform, the Hadamard Transform, 
and the Karhunen Loeve Transform (KIT). They differ in energy 
compaction and in computational requirements. From the energy 
compaction point of view, KLT is the best transform. That is, KLT 
is the transform that minimizes the MSE for truncated coefficients. 
However KLT has a serious practical problem. There is no 
computationally efficient algorithm for KLT. However, DCT has a 
good energy compaction property as well as computationally 
efficient algorithms. Also the energy compation power of DCT is 
superior to all other transforms except KLT [RY90,Lim90]. 
Therefore DCT is most widely used in various applications. 
Typical applications of DCT are the visual telephony and the joint 
photographic expert group (JPEG). 

4. SELECTIVITY ESTIMATION USING 
DISCRETE COSINE TRANSFORM 

As explained in Section I and 2, a histogram method cannot be 
directly used in the multi-dimensional selectivity estimation. As 
alternatives, we can consider parametric and curve-fitting methods. 
The former has the same constraint in a multi-dimensional space 
as in the l-dimensional space, that is, the model function should 
tit the data distribution in some degree. When the constraint does 
not hold, the accuracy degrades. The latter uses a polynomial 
function for fitting a curve:. But it uses an independent variable for 
every dimension and the number of coefficients in a multi-variable 
polynomial function increases rapidly as the dimensionality 
increases. It also suffers from the problems of the oscillation 
(negative values) and rounding errors. 

We propose a curve-fitting method using DCT. In this method 
we use a uniform grid as histogram buckets in a multi-dimensional 
space. From now, this grid is called a uniform histogram bucket. 
In case a data distribution is highly correlated, DCT makes it 
possible for a few data items to represent the whole data by 
compressing information of the data distribution. We also can get 
the original distribution by the inverse transformation with low 
error rates. This method solves the problem of the high storage 
overheads and higher error rates in high dimensional spaces, since 
it uses a large number of small-sized multi-dimensional histogram 
buckets while compressing information from histogram buckets. 
There are various considerations to estimate the multi-dimensional 
selectivity by using DCT coefticients sampling, data distribution, 
DCT computation and maintenance, and selectivity computation. 

First, we consider the efficient sampling method to select low- 
frequency coefficients that have large values. Second, we describe 
what is the constraint of the data distribution to compress the 
histogram information efficiently. Third, we explain how to 
support dynamic data updates to reflect it to the statistics 
immediately. Fourth, we describe how to simply calculate the 
selectivity estimation. 

4.1 Geometrical Zonal Sampling 
The size of the histogram bucket should be maintained small 
enough to get a low error rate in high dimensionality. The number 
of DCT coefficients transformed, however, increases exponentially 
as the dimensionality increases. If we choose appropriate 
coefficients after all coefficients are computed, it causes a severe 
computation overhead. Therefore, we must choose and compute 
only the coefficients that are estimated to have large values. To 
select the appropriate DCT coefficients, we use the 2-dimensional 
geometric zonal sampling technique that is used frequently in the 
area of digital signal processing [RY90, Lim90] and extend it to a 
multi-dimensional technique. Only those transformed coefficients 
within a specified zone are processed, with the remaining ones set 
to zero. This selection corresponds to low frequency filtering. 
There are several zonal sampling techniques: The triangular, the 
reciprocal, the spherical, and the rectangular zonal sampling. Eig. 1 

0, 1, 2, 3, . . . . . . . . . . . . . N-l 0, 1, 2, 3, . . . . . . . . . . . . . . N-l 

(a) Triangular (b) Reciprocal 

0, 1, 2, 3, . . . . . . . . . . . . . . N-l 0, 1, 2, 3 ,....._........., N-l 

(c) Spherical (d) Rectangular 

Fig 1. Geometrical Zonal Sampling 
in 2-dimensional case 

(a)-(d) shows only 2-dimensional cases of 4 geometrical zonal 
sampling methods for easy visualization. The triangular method is 
to select the coefficients within the triangle in a 2-dimensio:nal 
case as shown in Fig.l(a). It selects DCT coefficients, g(ui&, 
such that the sum of u1 and u2 is less than or equal to a given value 
b, that is, ui+u& for ui=O ,..., Ni-1 and u2=0,. .., N2-1. In a multi- 
dimensional case, it selects DCT coefficients, g(u,,...,uJ, such 

that $ui Ib for Ui = O,..., Ni-1. We know the number of DCT 

coefficients by this sampling with lemma 1. 

Lemma 1) The number of DCT coefficients selected by the 
triangular zonal sampling is given by n+&‘m;n(n,b), if the condition 
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bSNi is satisfied. 
Table 1 shows various values of n and b. 

Table 1. The number of DCT coefficients selected 
by the triangular zonal sampling 

The reciprocal method is to select the coefficients such that the 
multiplication of indices is less than or equal to a given value b. 

That is, the selection is made by the constraint fi(Ui + 1) I b for 
i=l 

Ui = O,..,N,-1. This method chooses more high-frequency values in 
each dimension than the previous method. The spherical zonal 
sampling method is to select the coefficients such that the sum of 
the square of indices is less than or equal to a given value b, that 

is,&‘~b for & = op..., Ni-1. It chooses the coefficients within 

the area of a circle in the 2-dimensional case and a sphere in the 3- 
dimensional case. The rectangular zonal sampling method chooses 
the coefficients such that the maximum value of indices is less 
than or equal to a given value b, that is, max(u,,u2,...,u,) <b for Ui 

= O,...,Ni-1. It chooses the coefficients within the area of a 
rectangle. 

Table 2 shows the sampling ratio of each zonal sampling 
methods. As the dimensionality increases, the number of 
coefftcients chosen by the triangular zonal sampling and the 
reciprocal zonal sampling increases slowly, while the total number 
of histogram buckets increases explosively. However, the number 
of selected coefficients by the spherical and rectangular zonal 
sampling method increases somewhat rapidly. 

4.2 Data Distributions 
In order to be able to compress a great number of histogram 
buckets into a small amount of information with low estimation 
error rates by using DCT, the data distribution should have certain 
characteristics. The distribution should have high correlation 
among data items. That is, the frequency spectrum of the 
distribution should show large values in its low frequency 
coefficients and small values in its high frequency coefficients 
[AFS93]. If the data distribution does not follow the above 
characteristics, that is, data are totally independent of adjacent 
data, we cannot have the benefits of energy compaction and 
cannot reduce the number of coefficients without distorting the 
original data distribution. We believe that data in a real data 
distribution are highly correlated. There are many cases that data 
are correlated. It is natural for the joint data distribution of 
multiple attributes from a relation to have clusters in most cases, 
since the attributes are in general closely dependent each other 
[PI97]. Actually in the areas like data mining, the techniques to 
find such clusters are practically used for extracting useful 
knowledge from a large volume of databases [GRS98, EKSWX98, 
ZRL96, NH94]. The clustering effect can also be seen in 
multimedia databases like images and in spatial databases 
[EKSX96, SCZ98]. The large-sized shapes of a cluster correspond 
to large-valued low frequency coefficients while small-sized 
variations in it correspond to small-valued high frequency 
coefficients. Therefore, the mean square error between the actual 
data distribution and the distribution recovered by selected low 
coefficients is usually small. Based on these observations, we can 
reduce the number of multi-dimensional histogram buckets 
remarkably. In general, as the skewness of data distributions grow 
or the number of clusters increases, the number of large-valued 
high frequency coefficients tends to increase. It means more 
coefficients are needed to keep low error rates. 

4.3 Dynamic Data Update 
It is important to reflect dynamic data updates to the statistics for 
estimating selectivity immediately in the environment where data 
are frequently inserted or deleted. Except the MLGF method, most 
of multi-dimensional selectivity estimation techniques, such as 
MHIST, SVD, PHASED, and Hilbert numbering, cannot reflect 
dynamic data updates into the histogram immediately. In other 
words, when the number of data updates reaches a certain 
threshold, the histogram should be reconstructed entirely. In 

7 7 823543 1716(0.21%) 477(0.058%) 8080(0.98%) 16384(2%) 

8 6 1679616 3003(0.18%) 601(0.036%) 21772(1.3%) 65536(3.9%) 

Table 2. The ratio of the number of selected coefficients by the zonal sampling to the total number of uniform histogram buckets 
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contrast, our proposed method can reflect dynamic data updates to 
the statistics for estimating the selectivity with reasonable 
overheads. This is enabled because DCT is a linear transform. Its 
process is as follows: When data is newly inserted, the values of 
its DCT coefficients are computed and added into existing DCT 
coefficients. In case of d.eletion, the values of DCT coefficients of 
the deleted data are computed and subtracted from existing DCT 
coefficients. Therefore, we can immediately reflect data insertions 
and deletions into the statistics for estimating the selectivity by 
processing only the update data. 
Example 1) We show an example for a 2-dimensional case. Let 
[Fjz be the current uni:form histogram buckets and [Cl2 be the 
current DC?’ coefficients of [flz. Let [F’J* be some data updates 

which represents that one data in (0,l) and two data in (1,2) are 
deleted and two data in (2,0) are newly added. And let [G’], be 

DCT coefficients of IF’],. Let [FU], be the final uniform 

histogram buckets and [:G”], be final DCT coefficients of [F’]*. 

Then [F112 =[F]* +[F’j2 ad [G”], =[G]* +[G’],. 

4.4 Selectivity Esltimation of Range Queries 
There are two kinds of methods to compute the selectivity of a 
range query. The first method finds all histogram buckets within 
the query range using the inverse DCT, and then computes the 
selectivity as the histogram method does. It assumes the uniform 
data distribution within a bucket like the existing histogram 
methods. The second method computes the selectivity using the 
integral of the inverse DCT function since the function is a 
continuous cosine function. The former method needs the inverse 
DCT computation for each bucket information while the latter 
simply computes the selectivity without the computation for each 
bucket information count since it computes the integral of the 
inverse DCT function only for the interval of the query range. 
Since the inverse DCT function naturally supports the continuous 
interpolation between contiguous histogram buckets, the second 
method provides accurate results. The following is the expression 
of the integral to estimate the selectivity of a range query. 

First, we show the 2 dimensional case and generalize it to the 
/c-dimensional case. Let q2 be a 2-dimensional query. The range of 
q2 is ash, c+ld, which is represented as (a-b, c-d). We 

assume the data space is normalized as (0,l)“. The x coordinate is 
divided into N partitions and y coordinate is divided into M’ 
partitions. Then i’th positions of x,y (Xi and yi) are as follows: 

2i+l 2i+l 

xi =Tryt =- 2M 
Then we can rewrite the inverse DCT functionflm,n) in section 
3.1 as follows: 

Selectivity of a query q2 = 
II cd abfk Y%dY 

=f@${l@ k,g(u,v)cos(xv7ryx cos(yua)dy 
I 

c 

where Z is the set of selected coefficients from zonal sampling 
Now, we generalize the above integral to the /c-dimensional 

case. Let qk be a k-dimensional range query. The range of the 
query qk is ai I Xi 5 bi for 1 I i I k, which is represented as 
(a,-bl,...,ak-bk). The x; coordinate is devided into Ni partitions. 
Then the selectivity is expressed as formula (l), (2). 

5. EXPERIMENTAL EVALUATION 
In order to measure the accuracy of the proposed method in 
estimating the result sizes of queries, we conducted1 
comprehensive experiments over an environment containing 
various synthetic data distributions and various queries. All data 
are generated in the normalized data space (0,l)” . We were not 
able to make detailed comparisons with the previous 
results[WKW94, PI971 because the existing methods showed high. 
errors in high dimensions beyond 3 dimension. For example.. 
MHIST shows somewhat high errors in the 3-dimension 
(20-30%) and the 4-dimension (30-40%), and the MLGF method. 
cannot be used in dimensions higher than three. 

Synthetic data are generated with 50K records which ranged. 
from 2 to 10 dimensions. We generated data with various. 
distributions: 

1. Normal distribution : The data points follow N(O,$) where 
CS = 0.4 for 2-4 dimensions, (T = 1 .O for 5-10 dimensions. 

2. Zipf distribution: The data points follow the Zip1 
distribution where z = 0.3 for 2-5 dimensions, z = 0.2 for 
6-10 dimensions. The Zipf distribution is defined as 
follows: 
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f(ij = F where i= 1,2 ,....., N y+L+...+- 1 1 

1 2: NZ 
3. Clustered distribution: 5-15 normal distributions are 

overlapped in a data distribution. 

DCT coefficients are calculated as follows: A multi- 
dimensional space is partitioned into a large number of uniform 
histogram buckets such that the number of partitions in each 
dimension is the same as those of others. The total number of 
buckets is in proportion to the dimension’th power of the number 
of partitions in one dimension. In low dimensions, if the total 
number of buckets is not quite large, we read data sequentially and 
count the number of data in each bucket and store them in the 
array of main memory. Then we calculate only DCT coefftcients 
that are selected by the zonal sampling using DCT. In high 
dimensions, since the number of buckets is very large, we cannot 
afford the memory space for counting the number of data in all 
buckets. So, we used an X-tree[BKK96] to get groups of data that 
are close to each other by accessing nodes of the X-tree. This 
enables to get the number of data in a small group of buckets at a 
time for calculating DCT coefficients. 

The selectivity estimation method proposed in this paper is 
evaluated for range queries of the form (atlXi~bi)&...& 
(a,lX,,~b,), where O~ai,bi~l. Four sets of 30 queries were made 
such that each set represents a different range of selectivity: 
large(=0.3), medium(=0.067), small(=0.0067), very small 
(=0.0013). There are two query models for the probability 
distribution of queries [PSTW93, BF95]: the random model, the 
biased model. The random model assumes that queries are 
uniformly distributed in the data space. That is, every part of data 
space is equally likely to be queried. The biased model assumes 
that queries are more highly distributed in high-density regions. 
That is, each data is equally likely to be queried. Most applications 
follow the latter model. For example, in GIS applications, users 
are not likely to query the area of a dessert but are likely to query 
populated areas like a city. In image database applications, most of 
users may browse the images from a database and pick up the 
most similar image that they want from the browsed images and 
search images similar to it. This means that queries are located 
more frequently in dense area in the data space. So, we adopt the 
biased model as a query model in these experiments. For each 
query, we generated 30 biased queries. The query results are 
compared with the estimations using the proposed method in this 
paper. A percentage error is used for the accuracy of an estimation 
result: 

I query result size -estimated result size 
Percentage error = x 100% 

query result size 

5.1 Storage Requirements and Selectivity 
Estimation Time 

The proposed method requires the storage of the statistics for 
estimating the selectivity. The amount of the storage for the 
method is proportional to the number of DCT coefficients selected 
by zonal sampling. We convert the multi-dimensional indices of a 
DCT coefficient to an one-dimensional value and vice versa. 
Therefore, one DCT coefficient needs 4 bytes for storing its value 
and 4 bytes for storing its index. 8 bytes are required for storing 

one DCT coefficient. If one use 100 DCT coefficients for 
estimating the selectivity, 800 bytes and some book keeping bytes 
are required. 

From the selectivity calculation formula (2), we can estimate 
the the selectivity computation time as follows: If k is the 
dimension and a is the time to compute the sine function, the time 
to compute the selectivity is given by 2*k*a*(the number of 
selected DCT coeflcients). Table 3 shows the typical selectivity 
estimation time. In Sun Ultra II, a is measured as about 1 l.t sec. 

dimension # DCT= 50 # DCT = 100 # DCT = 200 

3 300 p set 600 p set 1.2m set 

6 600 p set 1.2msec 2.4 m set 
I I I 

9 900 p set 1.8 m set 3.6 m set 

Table 3. The selectivity computation time in Sun Ultra II 

It follows that the proposed method is efficient for time and 
space. 

5.2 Effect of Zonal Sampling 
The zonal sampling selects low frequency coefficients. That is, it 
acts as a low frequency filter. Its effectiveness can be measured by 
the mean square error. But this requires all values of uniform 
histogram buckets by the inverse DCT, which is a very time 
consuming job. So, instead we measure the effectiveness of the 
zonal sampling by percentage errors of queries. We make 30 
queries for each test and averaged their results. The efficiency of 
the zonal sampling is affected by distributions. We made 
experiments for 3 different distributions in the 6-dimension: (1) 
Normal distribution (2) Zipf distribution (3) Clustered 15 
distribution (that has 15 clusters). We apply the three zonal 
sampling methods to these data. We drop the rectangular zonal 
sampling in the 6-dimension because the number of selected DCT 
coefficients by rectangular zonal sampling increases very rapidly 
with a small b value as indicated in Table 2. The results are shown 
in Fig. 2-4. The results show that the reciprocal zonal sampling is 
the best for all distributions. The triangular zonal sampling 
method is the second. The spherical zonal sampling showed the 
worst performance. However, there are some threshold after which 
there is no difference between three zonal methods. Therefore, 
when we use a few DCT coefftcients, the reciprocal zonal 
sampling is the best. 

5.3 Effect of Dimension and Query Size 
In Fig. 5-7, we show the results of various query sizes in various 
dimensions. Query sizes are large, medium, small, very small. The 
dimensions are varied as 2, 4, 6, 8, 10. The data distribution is the 
clustered 15 distribution. We use the reciprocal zonal sampling 
method as section 5.2 shows that the reciprocal zonal sampling is 
the best. Fig. 5 shows the results for using only 100 DCT 
coefficients. Fig. 6 for 500 DCT coefficients and Fig. 7 for 2000 
DCT coeff’cients. As the dimension increases, the error rates 
increase slightly, but the average error of queries is below 10 %. 
This results show that the method in this paper can be used for 
high dimensional data spaces. As the query size is decreased, the 
error rates increase. This is a natural result because the percentage 
error is magnified by the slight difference between an estimation 
size and a query result size when the query result is small. 

5.4 Effect of Data Distributions 
The data distribution has impacts on the error rates for estimating 
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the selectivity. Fig. 8-10 shows the results for various 
distributions. The Zipf is a skewed distribution. As the dimension 
increase, the skewness of the Zipf also increase exponentially. 
Therefore, the error rates increase. However, as expected, we 
verified the fact that the more we use DCT coefficients, the more 
accurate the results are. The error rates of the normal and the 
clustered 5 distributions .increase very slightly. This means that the 
skewness of the normal and the clustered distribution increases 
very slightly as the dimension increases. In addition, since the 
clustered distribution is the most common phenomenon in many 
applications, the proposed method can be widely used in real 
world. 

5.5 Effect of Data Space Partition 
A multi-dimensional space is partitioned into a large number of 
uniform histogram buckets. The number of DCT coefficients is the 
same as that of the histogram buckets. But 2000 DCT coefficients 
that are selected by the triangular zonal sampling are computed 
and sorted. To show the effects of the number of partitioned 
buckets, we partition a. multi-dimensional space into several 
different ways. The p in Fig. 11-14 means the number of 
partitions in one dimension. We find the average result size of 30 
medium-size queries and estimate the size of the queries with only 
the indicated number of DCT coefficients in the X-coordinate 
(numDCT) in Fig. 11- 14.. Then we calculate percentage errors. We 
found some interesting facts. As the number of partitions (p) 
increases, the accuracy also increase. The more DCT coefficients 
we use for estimating the selectivity, the more accurate the result is. 
There is some threshold after which the accuracy is not changed. 
In 3 dimensional case, if p=lS, the threshold of the number of 
DCT coefficients is 30 with less than 1% error. That is, it is 
sufficient to have 30 DCT coefficients for estimating the 
selectivity with low error rates. 

6. CONCLUSION 
In this paper, we proposed a novel approach for estimating the 
multi-dimensional selectivity. The histogram is not adequate in 
high dimensions because the desired high accuracy requires small- 
sized histogram buckets, however we have a tremendous storage 
overhead as the dimension increases. To solve this problem, we 
used the discrete cosine transform which is an information 
compression technique in order to compress the information of a 
large number of histogram buckets. We achieved the high accuracy 
by using small-sized buckets, and also low storage overhead by a 
small amount of compressed information. Extensive experiments 
showed the proposed method is superior to the previous ones with 
the following advantages: 
(1) 

(2) 

(3) 

The previous methods could not support multi-dimensional 
selectivity estimation, particularly, more than three dimensions. 
But our method supports high dimensional selectivity 
estimation with high accuracy. 
Our method eliminates the periodical reconstruction of the 
statistics for estimating the selectivity because it can reflect 
dynamic data updates to the statistics immediately. 
Our method simply calculates the selectivity using the integral 
of cosine functions. It also calculates the estimation accurately 
because it naturally supports the interpolation between the 
adjacent buckets. 

For the future research, we plan to investigate the selectivity 
estimation of the nearest neighbor query. 
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