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Abstract. Energy transparency is a concept that makes a program’s
energy consumption visible, from hardware up to software, through the
different system layers. Such transparency can enable energy optimiza-
tions at each layer and between layers, and help both programmers and
operating systems make energy-aware decisions. In this paper, we fo-
cus on deeply embedded devices, typically used for Internet of Things
(IoT) applications, and demonstrate how to enable energy transparency
through existing Static Resource Analysis (SRA) techniques and a new
target-agnostic profiling technique, without hardware energy measure-
ments. Our novel mapping technique enables software energy consump-
tion estimations at a higher level than the Instruction Set Architecture
(ISA), namely the LLVM Intermediate Representation (IR) level, and
therefore introduces energy transparency directly to the LLVM opti-
mizer. We apply our energy estimation techniques to a comprehensive
set of benchmarks, including single- and also multi-threaded embedded
programs from two commonly used concurrency patterns, task farms and
pipelines. Using SRA, our LLVM IR results demonstrate a high accuracy
with a deviation in the range of 1% from the ISA SRA. Our profiling
technique captures the actual energy consumption at the LLVM IR level
with an average error of 3%.

1 Introduction

The various abstraction layers introduced through the system stack to make
programming easier, make it very difficult to understand how coding and data
structures affect the energy consumption when the program is executed. Energy
transparency aims to leverage this information from the lower levels of the sys-
tem stack up to the user [1]. Such information can be of significant value for
Internet of Things (IoT) applications which typically have to operate on limited
or unreliable sources of energy.

Deploying millions of embedded devices into IoT environments poses the
challenge of how to power them. Battery-based solutions can be costly and im-
practical due to the need for replacement. A better solution is a combination
of energy harvesting with ultra-low energy embedded devices. Energy harvest-
ing comes with two caveats. Firstly, it is an unreliable source of energy and,
secondly, it cannot yet deliver the required energy budgets for many IoT ap-
plications. While many achievements have been made in optimizing the energy
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consumption of hardware, too little is done to expose potential hardware-level
energy savings to the software developer. We propose techniques for exposing
the bounds and the actual energy consumption of software written for a specific
platform, as part of the embedded systems software development cycle. This
enables programmers, tool chains and runtime systems to make energy-aware
decisions in order to meet their strict energy constraints.

The energy consumption of a program on specific hardware can always be
determined through physical measurements. Although this is potentially the
most accurate method, it is often not easily accessible. Measuring energy con-
sumption can involve sophisticated equipment and special hardware knowledge.
Custom modifications may be needed to probe the power supply. Even though
energy monitoring counters are becoming increasingly popular in modern proces-
sors, their number and availability are still limited in deeply embedded systems.
Moreover, fine-grained energy characterization of software components, such as
Control Flow Graph (CFG) basic blocks or loops, can not be achieved by just
using energy measurements. All this makes it very difficult for the majority of
software developers to assess a program’s energy consumption.

Energy consumption is a resource constraint, with another frequently exam-
ined constraint being execution time. Significant progress has been made in the
area of Worst Case Execution Time (WCET) prediction using Static Resource
Analysis (SRA) techniques that determine safe upper bounds for the execution
time of programs. A popular approach used for WCET is the Implicit Path Enu-
meration Technique (IPET), which retrieves the worst case control flow path of
programs based on a timing cost model. Instead, in [2], an energy model that
assigns energy values to blocks of Instruction Set Architecture (ISA) code is
used to statically estimate Worst Case Energy Consumption (WCEC). We also
adopted IPET in our SRA, retrieving energy bounds for the processor under
investigation, the XMOS XS1-L “Xcore”.

The Xcore is a multi-threaded deeply embedded processor with time deter-
ministic instruction execution. Such systems are simpler than general purpose
processors and favor predictability and low energy consumption over maximiz-
ing performance. Processors with such characteristics are the backbone for IoT
applications. Moreover, the absence of performance-enhancing complexity at the
hardware level, such as caches, make them ideal for critical applications. We base
our choice of the Xcore processor among other more popular architectures used
for IoT applications, such as the ARM Cortex-M series [3], on the fact that the
Xcore is a time deterministic multi-threaded architecture that can be extended to
many-core systems [4], allowing for a variety of design space exploration choices.
Our SRA uses an ISA multi-threaded energy model for the Xcore introduced in
[5].

In addition, we have developed a novel mapping technique to lift our ISA-level
energy model to a higher level, the intermediate representation of the compiler,
namely LLVM IR [6], implemented within the LLVM tool chain [7]. This enables
SRA to be performed at a higher abstraction level than ISA, thus introducing
energy transparency into the compiler tool chain by making energy consump-
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tion information accessible directly to the optimizer. Transparency of energy
consumption at this level enables programmers to investigate how optimizations
affect their program’s energy consumption [8], or even helps introduce new low
energy optimizations [9, 10]. This is more applicable at the LLVM IR than at the
ISA level, because more program information exists at that level, such as types
and loop structures. Our mapping and analysis techniques at the LLVM IR level
are applicable to any compiler that uses the LLVM common optimizer, provided
that an energy model for the target architecture is available. Our LLVM IR
analysis results demonstrate a high accuracy with a deviation in the range of
1% from the ISA SRA.

Because currently, there is no practical method to perform actual case static
analysis [11], we introduce a profiling technique that can provide actual energy
estimations directly at the LLVM IR level. The profiler is implemented at the
LLVM IR level in order to keep the technique as target-agnostic as possible.
Moreover, the technique is more favorable than Instruction Set Simulation (ISS)
based estimations, as building an ISS for an architecture is a significantly bigger
task. Our profiling-based estimation can provide at least the same performance
or significantly outperform the estimation speed of an ISS-based estimation,
depending on the complexity of the algorithm implemented and the size of the
resulting program. This makes it more suitable for iterative optimizations during
software development. The profiling-based estimation is evaluated on a large set
of benchmarks, showing an only 1.8% deviation compared to a cycle accurate
ISS for the Xcore.

The main contributions of this paper are:

1. Formalization and implementation of a novel target-agnostic mapping tech-
nique that lifts an ISA-level energy model to a higher level, the intermediate
representation of the LLVM compiler (Section 3);

2. SRA energy estimation at the ISA level and at the LLVM IR level using our
mapping technique (Section 4.1);

3. A new target-agnostic profiling-based energy estimation technique, that re-
trieves estimations at the LLVM IR level by the use of our mapping tech-
nique, and with an accuracy close to a cycle accurate ISS-based estimation
(Section 4.2);

4. SRA and profiling extension for a set of multi-threaded programs (Sec-
tion 4.3), focusing on task farms and pipelines, two commonly used con-
currency patterns;

5. Comprehensive evaluation of our SRA and profiling energy estimation tech-
niques and our mapping technique accuracy on a large set of benchmarks
(Section 5).

The rest of the paper is organized as follows. Section 2 gives an overview of the
Xcore architecture and its ISA energy model. Section 3 introduces our mapping
technique and its instantiation for the Xcore processor. Section 4 details our
two estimation methods, SRA and profiling-based. Our experimental evaluation
methodology, benchmarks and results are presented and discussed in Section 5.
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Section 6 critically reviews previous work related to ours. Finally, Section 7
concludes the paper and outlines opportunities for future work.

2 Xcore Architecture and Energy Model

2.1 Xcore Architecture Overview

The Xcore processor is a deeply embedded processor intended to allow hardware
interfaces to be implemented in software. This makes the Xcore well suited to
embedded applications requiring multiple hardware interfaces with real-time re-
sponsiveness. Interfaces, such as SPI, I2C and USB, can be written efficiently in
C-style software, rather than relying on hardware blocks provided in a System-
on-Chip or synthesized onto FPGA. To achieve this, the Xcore is designed to be
a time deterministic hardware multi-threaded architecture, that provides inter-
thread communication and I/O port control directly in the ISA. Moreover, for
energy efficiency the processor is event-driven; busy waiting is avoided in favor
of hardware-scheduled idle periods.

The processor supports up to 8 threads, with machine instructions and hard-
ware resources dedicated to thread creation, synchronization and destruction.
Each thread has its own instruction buffer and register bank. The pipeline of
the processor was designed to provide time-deterministic execution and to maxi-
mize responsiveness, making the processor ideal for IoT applications. It is integer
only, with no floating point hardware. By design the architecture avoids the need
for forwarding between pipeline stages, speculative instruction issue and branch
prediction and allows for zero time overhead in thread context switching. Threads
are executed round-robin through a four-stage pipeline. Each thread can have
only one instruction occupy the pipeline at any time, avoiding data hazards.
Therefore, if fewer than four threads are active there will be clock cycles with
inactive pipeline stages. This means that, to reach the maximum computation
power of the processor, four or more threads have to be active to fully occupy
the processor’s pipeline. When more than four threads are active, maximum
throughput is maintained, but compute time is divided between active threads.

The Xcore is many-core scalable, with 2- or 5-wire “X-Links” and a net-
work switch embedded into each core. Communication between threads on the
same or different cores is done via synchronous channel-based message passing.
Threads on the same core can communicate without contention, whereas the
links used for multi-core communication may be contended. These properties
allow design space exploration of multi-threaded programs that are core-local
and/or multi-core. A case of the trade-off between processor count and energy
efficient execution is investigated in Section 5.1.2. Full details of the architecture
are provided in [12].

2.2 Xcore Multi-threaded ISA Energy Model

The underlying energy model for this work is captured at the ISA level. Indi-
vidual instructions from the ISA are assigned a single cost each. These can then
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be used to compute power or energy for sequences of instructions. The mod-
eling technique is built upon [13], which is adapted and extended to consider
the scheduling behavior and pipeline characteristics of the Xcore [5]. The model
captures the cost of thread scheduling performed by the hardware, in accordance
with a series of profiling tests and measurements, because it influences the en-
ergy consumption of program execution. The cost associated with an instruction
represents the average energy consumption obtained from measuring the energy
consumed during instruction execution based on constrained pseudo-randomly
generated operands.

A new version of this model that is well suited for static analysis has been
developed. It represents energy in terms of static and dynamic power components
to better reflect inter-instruction and inter-thread overheads. This has improved
model accuracy by an average of four percentage points.

Eprg = (Ps + Pdi)·Tidl+
∑
i∈prg

(
Ps + PiMNp

O

Np
· 4 · Tclk

)
, where Np = min(Nt, 4)

(1)

In Equation (1), Eprg is the energy of a program, formed by adding the
energy consumed at idle to the energy consumed by every instruction, i, executed
in the program. At idle, only a base processor power, the sum of its static
power, Ps, and dynamic idle power, Pdi, is dissipated for the total idle time, Tidl.
For each instruction, static power is again considered, with additional dynamic
power for each particular instruction, Pi. The dynamic power contribution is then
multiplied by a constant inter-instruction overhead, O, that has been established
as the average overhead of instruction interleaving. This is then multiplied by a
scaling factor to account for the number of threads in the pipeline, MNp

. The
result is divided by the number of instructions in the pipeline, which is at most
four and is dependent upon the number of active threads, Nt. Each instruction
completes in four cycles, so 4 · Tclk gives the energy contribution of the given
instruction, based on the calculated power.

When more than four threads are active, the issue rate of instructions per
thread will be reduced. The energy model accounts for this with the min term in
Equation (1). From a purely timing perspective, the latency between instruction
issues for a thread is max (Nt, 4) ·Tclk. This property means that instructions are
time-deterministic, provided the number of active threads is known. A thread
may stall in order to fetch the next instruction. This is also deterministic and
can be statically identified [12, pp. 8–10]. These instruction timing rules have
been used in simulation-based energy estimation, and are also utilized in both
the SRA and profiling performed in this paper.

A limited number of instructions can be exceptions to these timing rules.
The divide and remainder instructions are bit-serial and take up to 32 cycles to
complete. Resource instructions may block if a condition of their execution is
not met, e.g. waiting on inbound communication causes the instruction’s thread
to be de-scheduled until the condition becomes satisfied. This paper focuses its
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contributions on fully predictable instructions, with timing disturbances from
communication forming future work.

2.3 Utilizing the Xcore energy model for energy consumption
estimations

To determine the energy consumption of a program based on Equation (1) the
program’s instruction sequence, 〈i1, . . . , in〉, the idle time Tidl, and the number of
active threads Np during instruction execution must be known. In [5] an ISS was
used to gather full trace data or execution statistics to obtain these parameters.
In this work we use ISS only as a reference for comparison of SRA and profiling
results, with a second reference being direct hardware measurement.

For both SRA and profiling, we need to extract the CFGs for each thread
and identify the interleavings between them. This allows for each instruction in
the program to identify the Np component in Equation (1). It also allows to
estimate the total idle time, Tidl of the program. For single-threaded programs
the energy characterization of the CFG is straightforward, as there is no thread
interleaving. For SRA, the IPET can be directly applied to the energy character-
ized CFG to extract a path that bounds the energy consumption of the program,
as described in Section 4.1. For arbitrary multi-threaded programs, using static
analysis to energy characterize the CFG of each thread is challenging. We have
therefore concentrated on two commonly used concurrency patterns, task farms
and pipelines, which we use with evenly distributed workloads across threads.
For these classes of programs the number of active threads across the whole
execution is constant and equal to the number of threads used to implement
the task farm or the pipeline. Similarly, the profiling technique does not need to
account for thread interleavings for the programs investigated in this work.

In addition to instructions defined in the ISA, a Fetch No-Op (FNOP) can
also be issued by the processor. These occur deterministically [12, pp. 8–10].
FNOPs can significantly impact on energy consumption, particularly within
loops. To account for FNOPs in both our SRA and profiling, the program’s
CFG at ISA level is analyzed. An instruction buffer model is used to deter-
mine where FNOPs will occur in a basic block (BB). Further details on FNOPs
modeling can be found in [14].

3 Mapping ISA Code to LLVM IR and LLVM IR Energy
Characterization

Our mapping technique aims to link each LLVM IR instruction of a program
with its corresponding machine specific ISA emitted instructions. Such a map-
ping can give powerful insights to the LLVM IR optimizer regarding code size,
execution time and the energy consumption of a program. Furthermore, our
LLVM mapping technique does not involve statistical analysis; instead, it is an
on-the-fly technique that takes into consideration the compiler behavior and the
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actual program’s CFG structure. The technique is fully portable and target ag-
nostic. It requires only the adjustment of the LLVM mapping pass to the new
architecture.

In this section we first formalize our generic mapping technique. We then
specialize the technique to determine the energy characteristics of LLVM IR
instructions. This specialization propagates ISA level energy models up to LLVM
IR level, enabling energy consumption estimation of programs at that level.
Finally, we instantiate and tune the mapping technique for the architecture
under consideration, the Xcore.

3.1 Formal specification of the mapping

The main idea of the mapping technique is to monitor the back-end of a compiler
to establish a 1 : m relation between the optimized LLVM IR and the emitted
ISA. The goal of this mapping is to associate a single LLVM IR instruction with
all the ISA instructions that originated from it, whenever possible. Then, by
aggregating the energy costs of these ISA instructions, we can assign an energy
cost to their single corresponding LLVM IR instruction. The mapping technique
also guarantees that there is no loss of energy between the two levels as each
ISA instruction will be mapped to one LLVM IR instruction. We formalize the
mapping as follows. For a program P , let

IRprogL = {1, 2, ..., n} (2)

be the ID numbers of P ’s LLVM IR instructions after the LLVM transformation
and optimizations passes, with

IRprog = 〈ir1, ir2, ..., irn〉 (3)

being the sequence of LLVM IR instructions for P . An architecture-specific com-
piler back-end Tarch translates the IR program into ISA code:

Tarch(IRprog) = ISAprog = 〈isa1, isa2, ..., isak〉 (4)

producing a sequence of machine instructions 〈isa1, isa2, ..., isak〉 that represents
the program P at ISA level. Let

M(IRprog) = 〈(isa1,m1), (isa2,m2), ..., (isak,ml)〉
where m1,m2, ...,ml ∈ IRprogL

(5)

be the mapping process that monitors Tarch and creates a relation between the
sequence of ISA instructions for P and the IDs of the LLVM IR instructions,
with the aim to associate an ISA instruction with the LLVM IR instruction it
originated from, whenever this is possible. For ISA instructions that are not
related to any LLVM IR instruction (ISA injected instructions) or whose ori-
gin LLVM IR instruction is ambiguous, the mapping process has to make an
implementation-specific choice as to which LLVM IR instruction an ISA instruc-
tion should be associated with. This will preserve the 1:m relation and ensure
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that such instructions are accounted at the LLVM IR level. The mapping func-
tion

R(iri) = {isaj |iri ∈ IRprog ∧ isaj ∈ ISAprog ∧ (isaj , i) ∈ M(IRprog)} with

the property ∀ irn, irk ∈ IRprog ∧ n 6= k then R(irn) ∩ R(irk) = ∅
(6)

captures a 1 : m relation from IRprog to ISAprog instructions. The energy
consumption of an LLVM IR instruction can be retrieved by

E(iri) =
∑

isaj∈S

E(isaj) where iri ∈ IRprog ∧ isaj ∈ ISAprog ∧ S = R(iri) (7)

as the sum of the energy consumed by all ISA instructions mapped to that
LLVM IR instruction. Equation (7) can also be used to associate timing or code
size information with LLVM IR instructions, by replacing the ISA instructions’
energy costings with the resource of interest costings.

3.2 Xcore mapping instantiation and tuning

In our case, the Tarch function is the XMOS tool chain lowering phase that
translates the LLVM IR to Xcore-specific ISA. The real challenge is to create
from scratch a mechanism that can monitor Tarch and create the mapping given
by Equation (5) which will have the property of Equation (6). This would require
an extensive knowledge of the back-end of the architecture under consideration
and a vast engineering effort to take into account every possible transformation
and optimization that happens between the optimized LLVM IR and the final
ISA emitted code. Instead, we demonstrate a simple yet powerful technique that
can provide sufficiently accurate results. An overview of the technique is given
in Figure 1. We now describe the three mapping stages.

3.2.1 Stage 1: LLVM IR annotation

The goal of this stage is to enable the property of Equation (6) that ensures
a 1 : m relation between the LLVM IR and ISA code. To achieve this, our
mapping implementation leverages the debug mechanism in the XMOS compiler
tool chain. Symbols are created during compilation to assist with debugging.
These symbols are propagated to all intermediate code layers and down to the
ISA code. Debug symbols can express which programming language constructs
generated a specific piece of machine code in a given executable module. In our
case, these symbols are generated by the front-end of the XMOS compiler in
standard DWARF format [15]. These are transformed to LLVM metadata [16]
and attached to the LLVM IR. LLVM 2.7 and upwards uses this metadata format
as the primary means of storing debug information.

During the lowering phase of compilation, LLVM IR code is transformed to a
target ISA by the back-end of the compiler, with debug information stored along-
side in the DWARF standard format. Tracking source code debug information
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gives an n :m relationship between instructions at the different layers, because
several source code instructions can be translated to many LLVM IR instruc-
tions, and these again into many ISA instructions. This n :m relation prevents
the fine-grained energy mapping needed for accurate energy estimations.

Source
code

LLVM based
Compiler 

Front-end + 
Optimizer 

Optimized 
LLVM IR

LLVM 
Mapping 

Pass

LLVM IR with 
new debug 
information 

LLVM 
Lowering

ISA with 
debug 

information

ISA Energy 
Model

Mapping
+ 

LLVM IR Energy 
Characterization

Energy 
characterised 

LLVM IR

Tuning 
+

LLVM IR basic block 
Energy Characterization

Energy 
characterized 
LLVM IR basic 

blocks

Stage 1 : LLVM IR annotation Stage 2 : Mapping, LLVM IR energy characterization Stage 3 : Tuning, LLVM IR BB energy charct. 

Fig. 1: LLVM IR energy characterization overview.

To achieve a 1:m mapping between the optimized LLVM IR instructions and
the ISA instructions using the debug mechanism, we created an LLVM pass that
traverses the optimized LLVM IR and replaces source location information with
LLVM IR location information, or adds new location information to LLVM IR
instructions without any debug data. This LLVM pass runs after all optimization
passes, just before emitting ISA code, because the optimized LLVM IR is closer
in structure to the ISA code than the unoptimized version. An example output
of this process is given on the left hand side of Figure 2. This represents a part
of the LLVM IR CFG of a program after the LLVM optimizations, along with
the unique debug location, IRprogL in Equation (2), assigned to each LLVM IR
instruction.

The XMOS compiler debug mechanism applies the following four rules to
preserve the debug information through the different transformations and opti-
mizations applied in the back-end:

1. If an instruction is eliminated, its debug location information is also elimi-
nated.

2. If one instruction is transformed into another one, the debug location of the
original instruction is assigned to the new instruction.

3. If multiple instructions are merged into one, the debug location of one of
the initial instructions, the first one in our case, is assigned to the new
instruction.

4. If one instruction is transformed into multiple ones, then all the new instruc-
tions are being assigned the debug location of their origin instruction.

These rules iteratively preserve the 1 :m relationship between the LLVM IR
instructions in IRprog and the final ISA in ISAprog, with two exceptions.

The first is when instructions are introduced at the ISA level and they do
not correspond to any LLVM IR instruction (ISA injected instructions). In such
cases the mapping process can assign to them the debug location of an adjacent
ISA instruction in the same BB. This ensures that they are accounted for in
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the mapped LLVM IR block. The second is when a transformation takes as
an input multiple instructions and converts them to another set of multiple
instructions in a single step. An example of such transformations are peephole
optimizations. In such cases the handling of debug information depends on the
compiler implementation. For the back-end under investigation, ISA instructions
generated by such transformations are left without any debug information. To
account for these instructions at the LLVM IR level, we use the same approach
as for ISA injected instructions.

3.2.2 Stage 2: Mapping and LLVM IR Energy Characterization

Once the LLVM IR annotation has been performed for a program, the back-end
lowering phase translates the LLVM IR code to target-specific ISA code. Then
the mapping phase, which implements Equation (6), runs and maps LLVM IR
instructions with the new debug locations to the emitted ISA instructions which
carry the same debug location ID. Finally, the energy values for groups of ISA
instructions are aggregated and then associated with their single corresponding
LLVM IR instruction, as described by Equation (7).

  

%i.0 = phi i32 [ %postinc, %LoopBody ], [ 0, %allocas ] 71

%ic.0 = phi i32 [ %postdec, %LoopBody ], [ %2, %allocas ] 72

%subscript3 = getelementptr [51 x [51 x i32]]* %d, i32 0, i32 %i.0 73

store i32 %i.0, i32* %subscript3, align 4 74

%postdec = add i32 %ic.0, -1 75

call void @llvm.dbg.value(metadata !{i32 %postdec}, i64 0, metadata !29) 76

%postinc = add i32 %i.0, 1, !dbg !43 : 16 77

call void @llvm.dbg.value(metadata !{i32 %postinc}, i64 0, metadata !26) 78

%zerocmp8 = icmp eq i32 %postdec, 0 79

br i1 %zerocmp8, label %ifdone, label %LoopBody 80

call void @llvm.dbg.value(metadata !2, i64 0, metadata !28) 10

call void @llvm.dbg.value(metadata !{i32 %3}, i64 0, metadata !30) 11

%zerocmp13 = icmp eq i32 %3, 0 12

br i1 %zerocmp13, label %ifdone30, label %LoopBody15 13

0x000102ee:   ldw (ru6)   r0, sp[0x1] 13

0x000102f0:    bf (lru6)   r0, 0x43 <.label16> 13

0x000102f4:   ldc (ru6)   r0, 0x0 13

0x000102f6:   ldaw (ru6)   r11, sp[0x8] 13

0x000102f8:   ldw (ru6)   r1, sp[0x1] 72

0x000102fa:   stw (l3r)   r0, r11[r0] 74

fnop 74

0x000102fe:   add (2rus)   r0, r0, 0x1 77

0x00010300:   sub (2rus)   r1, r1, 0x1 75

0x00010302:   bt (ru6)   r1, -0x5 <.label17> 80

IS
A

 B
B

1
IS

A
 B

B
2

IS
A

 B
B

3

L
LV

M
 B

B
1

LL
V

M
 B

B
2

CFG edge Phi-node adjustment

LLVM IR to 
ISA Lowering

Fig. 2: Fine-grained 1:m mapping including our LLVM mapping pass.

An example mapping is given in Figure 2. On the left-hand side is a part of
the LLVM IR CFG of a program, which represents the IRprog in Equation (3),
along with the new debug location assigned to each LLVM IR instruction by
the mapping pass and represented by Equation (2). The right-hand side shows
the corresponding ISA CFG, together with the debug locations for each ISA in-
struction, given by Equation (5). The coloring of the instructions demonstrates
the mapping between the two CFGs’ instructions using Equation (6). Now, one
LLVM IR instruction is associated with many ISA instructions, but each ISA
instruction is mapped to only one LLVM IR instruction. Some LLVM IR instruc-
tions are not mapped, because they are removed during the lowering phase of the
compiler. This mapping also guarantees that all ISA instructions are mapped to
the LLVM IR, so there is no loss of energy between the two levels.
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This Xcore instantiation of the mapping technique, using the debug mecha-
nism, can be ported to any architecture supported by the LLVM IR compiler for
which an ISA-level energy model exists. Typically, these are deeply embedded
processors, such as the one used here and the ARM Cortex M series, which are
ideal for IoT applications.

3.2.3 Stage 3: Tuning and Basic-Block Energy Characterization

Without any further tuning, the mapping instantiation for the Xcore architec-
ture provides an average deviation of 6% between the SRA prediction at the
LLVM IR level and that at the ISA level. An additional tuning phase is in-
troduced after the mapping, to account for specific architecture behavior and
to facilitate our BB level energy analysis. In the case of the bound analysis,
this improved the LLVM IR SRA accuracy, narrowing the gap between ISA and
LLVM IR energy predictions to an average of 1% as demonstrated in our results
in Section 5.1. This tuning had a similar positive effect on the accuracy of the
LLVM IR profiling-based energy estimation.

As discussed in Section 2.3, FNOPs can be issued by the processor and this
can be statically determined at the ISA level. This can not be represented in
LLVM IR. Ignoring FNOPs can therefore lead to a significant underestimation
of energy at the LLVM IR level. To account for FNOPs at the LLVM IR level,
we treat them similarly to the ISA injected instructions; by assigning them the
debug location of an adjacent ISA instruction in the same BB. Figure 2, provides
an example of such FNOP treatment at debug location number 74.

To estimate energy at the LLVM BB level, the energy cost of each BB is
needed. This can be obtained by accumulating the energy costs of all LLVM
IR instructions in an LLVM IR BB. When estimating energy at the BB level,
the position of the LLVM IR instructions in BBs is critical, and tuning may
be needed to transfer mapped energy costs to different BBs to reflect more
accurately where the energy is consumed during program execution. Phi-nodes,
for example, benefit from such tuning.

Phi-nodes can be introduced at the start of a BB as a side effect of the Single
Static Assignment (SSA) used for variables in the LLVM IR. A phi-node takes
a list of pairs, where each pair contains a reference to the predecessor block
together with the variable that is propagated from there to the current block.
The number of pairs is equal to the number of predecessor blocks of the current
block. A phi-node can create inaccuracies in the mapping when LLVM IR is
lowered to ISA code that no longer supports SSA, because it can be hoisted
out from its current block to the corresponding predecessor block at the ISA
level. For blocks in loops this can lead to a significant estimation error. Such
cases can be detected by examining the mapping. Similar inaccuracies can be
introduced by branching LLVM IR instructions with multiple targets, if the ISA
of the target processor supports only single-target branches.

Algorithm 1 detects cases where the ISA energy values mapped to phi-nodes
in a looping BB are accumulated into the wrong LLVM IR BB. It then hoist these
costs out to the appropriate LLVM IR predecessor BBs. The algorithm detects
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ALGORITHM 1: phi-node tuning

input : IRprog for a program P as described by Equation (3)
input : IRprogCFG, the CFG for IRprog, with the total energy cost for each BB
input : ISAprogCFG, the CFG for the ISAprog given by Equation (4) with BB

total energy info
input : M , the 1 : m mapping retrieved for P using the mapping as described in

this section
1 for each irn ∈ IRprog do
2 if irn is a phi-node then
3 ISAmap ← GetISAmap(irn, M) // all the ISA instructions mapped to irn

4 irBBloopDepth ← GetInstrBBLoopDepth(irn) // degree of nested loops for

irn’s BB

5 FromIRBB ← GetCurrentIRBB (IRprogCFG, irn) // the irn’s BB

6 for each isak ∈ ISAmap do
7 isaBBloopDepth ← GetInstrBBLoopDepth(isak) // degree of nested

loops for isak’s BB

8 if irBBloopDepth > isaBBloopDepth then
9 ISABB ← GetISABB (ISAprogCFG, isak) // the isak’s BB

10 ToIRBB ← FindIRBB (IRprogCFG, ISABB) // finds the IR

predecessor BB of FromIRBB that matches ISABB by examining the

mapping of their instructions

11 if ToIRBB not NULL then
12 ISAcost ← GetCost (isak) // the energy cost of isak from our ISA

energy model

13 RemoveCostFromBB (FromIRBB, ISAcost)// remove cost from

initial block

14 AddCostToBB (ToIRBB, ISAcost) // add cost to the chosen

predecessor block

15 end

16 end

17 end

18 end

19 end
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the problematic cases by using the mapping and the BB loop depth. Then,
by examining the mapping, function FindIRBB at Line 10 finds the LLVM IR
predecessor BB that matches the ISA block holding the ISA phi-node generated
instruction. The ISA’s instruction energy cost is then added to the cost of the
selected predecessor LLVM IR BB and subtracted from the phi-node’s LLVM
IR BB. Performing the mapping after the LLVM IR optimization passes and
just before the lowering phase increases the possibility of similar CFG structures
between the two levels. This improves the ability of FindIRBB to find the correct
BB and therefore improves the results of the phi-node tuning.

An example of a phi-node adjustment is given in Figure 2 at debug location
72. Its corresponding ISA instruction is hoisted out from the loop BB, ISA BB3,
and into ISA BB2. A similar hoisting is performed from LLVM BB2 and into LLVM

BB1 by Algorithm 1, thus correctly assigning energy values to each LLVM IR
block.

3.3 Limitations

Our mapping approach between the LLVM IR and the ISA guarantees that no
energy is lost between the two levels, as all the ISA instruction energy costs are
propagated to the LLVM IR level. Therefore, any inaccuracies introduced in our
LLVM IR energy estimations from the mapping are a consequence of attributing
ISA energy costs to the wrong LLVM IR BBs. This is because our LLVM IR
estimation techniques work at a BB level. In that respect, two cases can affect
the estimation accuracy.

In the first case, for instructions at the boundaries of LLVM IR BBs, their
corresponding ISA instructions may cross these boundaries at the ISA level. The
mapping will, however, still associate the energy costs of these ISA instructions
with their original LLVM IR instruction, and thus with their original LLVM IR
BB. If such LLVM IR instructions belong to a BB that is part of a loop, when
the ISA instruction has been hoisted out of that loop, then, with no proper
adjustment, an overestimation will occur due to the mapping. An example of
such a case are the Phi-node instructions, described in Section 3.2.3, where
Algorithm 1 is introduced to adjust their mapping. Such cases can be statically
identified by examining the mapping. In the second case, a difference between
the two CFG structures can occur when BBs are introduced/eliminated at the
ISA level. If this makes the structures of the two CFGs significantly different,
then the energy costs allocated to the LLVM IR BBs by the mapping can be
inaccurate. Performing the mapping after the LLVM IR optimization passes and
just before the lowering phase increases the possibility of having similar CFG
structures between the two levels and therefore the accuracy of the mapping.
The impact of the above issues is investigated in Section 5.

3.4 Discussion

The mapping technique uses an ISA resource model. This has significant benefits
over a stand alone LLVM IR static energy model. Firstly, our mapping-based



14 K. Georgiou et al.

approach benefits from the accuracy that ISA models can provide, because the
ISA is closer to the hardware than LLVM IR. Secondly, the dynamic nature of
the mapping technique can account for specific architecture behavior, such as
the LLVM IR location to which the costs of the FNOPs should be attributed,
and compiler specific behavior, such as code transformations. Static IR energy
models that are created through statistical approaches are inherently limited in
their ability to account for these.

Furthermore, since [13], the seminal approach of constructing ISA energy
models, there are several well-defined ISA energy models [17, 18, 19, 20, 21].
These models could now be lifted to the compilers’ IR by our mapping. Our
approach therefore benefits from a well understood process by which energy
models can be created for deeply embedded systems, where predictability is
provided at the ISA level.

4 Energy Estimation Methods used

4.1 Static Resource Analysis

Our IPET-based SRA is implemented in three stages detailed as follows:

1. Low-Level Analysis: This stage aims to model the dynamic behavior of
the processor’s micro-architecture. For our energy consumption analysis, this
is achieved through the ISA-level energy model detailed in Section 2.2, that
captures the behavior of the Xcore processor with regard to its energy con-
sumption characteristics. For the LLVM IR analysis an extra step is required
to characterize the energy consumed by LLVM IR instructions as detailed
in Section 3.2.

2. Control Flow Analysis: This stage aims to capture the dynamic behavior
of the program and associates CFG BBs with the information needed for
the computation step of the analysis. IPET requires the CFG and call graph
of a program to be constructed at the same level as the analysis. At LLVM
IR level, the compiler can generate them. At ISA level a tool was created to
construct them. To detect BBs that belong to a loop or recursion, we adopted
and extended the algorithm in [22]. The CFGs are annotated according to
the needs of the IPET described in [23]. Finally, the annotated CFGs are
used in the computation step to produce Integer Linear Programming (ILP)
formulations and constraints.

3. Computation: The IPET adopted in our work to estimate the energy con-
sumption of a program is based on [23]. To infer the energy consumption of
a program, instead of using the time cost of a CFG BB, the BB’s energy
cost is used. The minimum required user input to enable bounding of the
problem is the loop bounds declaration. This is also standard practice in
timing analysis [24]. Further constraints, such as denoting CFG infeasible
paths, can be provided in the form of user source code annotations, to ex-
tract more accurate estimations. The annotation language used in this work
can be found in [25].
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4.2 Profiling-Based Energy Consumption Estimation

In contrast to SRA, given a specific set of input parameters, our profiling tech-
nique aims to provide the actual energy consumed by a program, rather than
bounds. To achieve this, the technique collects LLVM IR BB execution counts.
The technique is target-agnostic in the sense that the instrumentation code is
inserted at the architecture-independent LLVM IR level and does not require the
modification of a program’s object code to insert instrumentation instructions,
unlike in other approaches [26]. The energy consumption estimations are also
collected at the LLVM IR level. This is enabled by the energy characterization
of the LLVM IR code using the mapping technique introduced in Section 3.
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Fig. 3: Profiling-based energy estimation.

Figure 3 outlines the profiling-based energy consumption estimation process.
The process is split in two phases: a profiling phase, which aims to collect BB
execution traces, and an energy estimation phase that performs the LLVM IR
energy characterization and combines it with the profiling information to obtain
energy estimations. Both phases take as input the same LLVM IR, the one re-
trieved after all the optimization passes and just before emitting the target’s ISA
code. Using the optimized LLVM IR allows us to benefit from a more accurate
energy characterization via the mapping technique, since it is closer in structure
to the ISA code than the unoptimized version. This also avoids possible neg-
ative impact on the LLVM optimizations’ abilities, resulting from the injected
instrumentation code. The stages for each of the two phases are annotated with
numbers in black boxes in Figure 3 and are explained next.

Profiling Phase:

1. LLVM Instrumentation Pass: A new LLVM pass is built into the LLVM
compiler that runs after all the LLVM optimization passes and just before
the ISA lowering. The pass injects each LLVM IR BB with instrumenta-
tion instructions. To implement the BB instrumentation we considered two
choices. First, using BB execution counters and second using instructions
that emit a unique ID, identifying the BB and its origin function, every
time the BB is executed. The second option puts less stress on the limited
memory size, typically available on deeply embedded devices, as there is no



16 K. Georgiou et al.

need to keep global variables. Therefore, we chose to use the print instruc-
tion supported in the LLVM IR assembly language. These print instructions
need to be translated by the compiler back-end to target-specific tracing
functions. In the Xcore, printf real-time debugging is supported by the xTAG
debug adapter [27], which emits the data to the host machine via buffering,
with negligible impact on program execution time. The only requirement for
other embedded devices to benefit from our profiler is the implementation of
a target-specific instrumentation function to emit profiling data to the host
machine, if not already in place. On most targets, this can be implemented
using I/O ports, with very low impact on the program’s execution time.

2. Post Processing: The program is then executed and the BBs execution
trace is collected. Based on the unique IDs emitted, the post-processing
stage can associate execution counts with each BB of the optimized LLVM
IR code.

Energy Consumption Estimation Phase:
1. BB Energy Characterization: A clean copy of the optimized LLVM

IR code, with no instrumentation instructions, is energy-characterized using
the BB energy characterization mapping techniques introduced in Section 3.
This ensures that no energy overheads appear in our energy consumption
estimations due to instrumentation code.

2. Energy Estimation: This stage takes as input the BB energy-characterized
LLVM IR and the BBs execution counts collected from the Profiling phase,
and produces the program’s total energy consumption estimation. Having
the LLVM IR BBs’ execution counts and the LLVM IR instruction energy
costings, a fine-grained software energy characterization can be achieved,
where we can attribute energy consumption to specific programming con-
structs, e.g. BBs, loops and functions.

4.3 Analysis of multi-threaded programs

In this paper we present the first steps towards energy consumption analysis of
multi-threaded programs. Two concurrency patterns are considered: replicated
threads with no inter-thread communication, working on different sets of data
(task farms), and pipelines of communicating threads. For both cases we consider
evenly distributed, balanced workloads.

There is a fundamental difference when statically predicting the case of in-
terest (worst, best, average case) for time and for energy for multi-threaded
programs. Generally, for time only the computations that contribute to the path
forming the case of interest must be considered. For energy, all computations
taking place during the case of interest must be considered. For instance, in
an unbalanced task farm, the WCET will be equivalent to the longest running
thread. To bound energy, the energy consumed by each thread needs to be aggre-
gated. Thus, the static analysis needs to determine the number of active threads
at each point in time in order to apply the energy model from Equation (1) and
characterize the CFG of each thread. Then, IPET can be applied to each thread’s
CFG, extracting energy consumption bounds. Aggregating these together will
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give a loose upper bound on the program’s energy consumption, meaning that
the safety of the bound cannot be guaranteed.

In our balanced task farm examples, all task threads are active in parallel
for the duration of the test. Thus, the number of active threads is constant,
giving a constant Nt, used to determine the pipeline occupancy scaling factor,
M , in Equation (1). For balanced pipelined programs we consider the continu-
ous, streaming data use case, so the same constant thread count property holds.
In both cases, IPET can be performed on each thread’s CFG and the results
aggregated to retrieve the total energy consumption. The energy model cov-
ers the core-local instructions used for thread communication. Although off-core
communication uses the same instructions as core-local communication, an ad-
ditional energy cost needs to be accounted for external-link usage. This cost was
determined empirically for the development board used in Section 5.1.2.

For multi-threaded programs with synchronous communications, to retrieve
a WCET, IPET can be applied on a global graph, connecting the CFGs of all
threads along communication edges. The communication edges can be treated
by the IPET as normal CFG edges and WCET can be extracted by solving the
formulated problem [28]. This will return a single worst case path across the
global graph. Bounding energy in this way is not possible, as parallel thread
activity over time needs to be considered. Activity can be blocked if the threads’
workloads are unbalanced, due to the synchronous blocking message passing. In
this case, statically determining the number of active threads at each point in
time is hard.

Similar to SRA, profiling-based energy estimation does not need to infer the
number of active threads at each execution stage, for our balanced task farms and
pipelined test cases. Therefore, retrieving the BB execution counters is sufficient.

The concurrency patterns addressed here represent typical embedded use
cases. We demonstrate in Section 5.1.2 that for these use cases, SRA can provide
sufficiently accurate information for design space exploration. More advanced
concurrency analysis techniques, such as the ones employed in [29], could be
combined with our techniques to scale our analysis to more complex concurrency
patterns.

5 Experimental Evaluation

Two open source benchmark suites were used for evaluation. The first one,
Mälardalen WCET benchmark suite [30], is specially designed for WCET analy-
sis. The second, the BEEBS benchmark suite [31], is targeted at evaluating the en-
ergy consumption of embedded processors. The selected benchmarks were mod-
ified to work with our test harness and, in some cases, to make them more para-
metric to function input arguments. When necessary, benchmarks using floating
point were modified to use integer values, since the Xcore does not support
floating point operations. Some of the benchmarks were also extended to be
multi-threaded task farms, where the same code runs on two or four threads.
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Furthermore, a range of industrial benchmarks was selected to demonstrate the
value of our estimation techniques to embedded developers.

Deeply embedded processors do not typically have hardware support for di-
vision or floating point operations, using software libraries instead. Software
implementations are usually far less efficient than their hardware equivalent,
both in terms of execution time and energy consumption. The effect of these
software implementations on energy consumption should be known by develop-
ers, therefore we include software division and software-emulated floating point
arithmetic benchmarks. A radix-4 software divider, Radix4Div [32], is used. A
less efficient version, B.Radix4Div, is added for comparison; it omits an early
return when the dividend is greater than 255. As a consequence, CFG paths be-
come more balanced, with less variation between the possible execution paths.
The effect of this on the energy consumption is discussed later in this section. For
software floating point, single precision SFloatAdd32bit and SFloatSub32bit

operations from [33] are analyzed.
To extend our analysis to multi-threaded communicating programs, we ana-

lyze two common signal processing tasks written for the Xcore, FIR and Biquad [34].
Both tasks are implemented as pipelines of seven threads. Such programs are the
preferred form for Xcore, as spreading the computation across threads allows the
voltage and frequency of the core to be lowered, significantly reducing energy
consumption while retaining the same performance as the single threaded ver-
sion.

A complete list of all the benchmarks’ attributes, can be found in [35]. Bench-
marks were compiled with xcc version 12 [36] at optimization level O2; the de-
fault for most compilers. For hardware measurements, as in [5], a shunt resistor
current sense and sampling circuit obtains power dissipation with sub-milliwatt
precision and variation of less than 1 %.

5.1 Static Resource Analysis Results

For the evaluation of our SRA estimations together with the mapping technique,
20 benchmarks were used. These cover a broad spectrum of language features
and code complexity. A combination of good understanding of the underlying
algorithms, profiling information and brute forcing of the benchmarks’ functions
input space was necessary to identify tests covering the algorithmic worst case
execution path for each benchmark with certainty.

Figure 4 presents the error margin of using the same ISA energy model with
three energy estimation techniques compared to hardware energy measurements
for our benchmarks. Simulation produces energy estimations based on instruc-
tion traces from ISS, ISA SRA uses the model for static analysis at the ISA level
and LLVM IR SRA uses our mapping technique to apply the model and analysis
at LLVM IR level.

In the case of LLVM IR SRA, the accuracy of the prediction is heavily depen-
dent on the accuracy of the mapping techniques presented in Section 3. As shown
in Figure 4, for all benchmarks the LLVM IR SRA results are within one per-
centage point error of ISA SRA results, except for the Base64 and levenshtein
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Fig. 4: SRA and ISS against hardware measurements (worst case program in-
puts).

benchmark with a further 4.3 and 2.0 percentage points error, respectively. In
these cases the CFGs of the two levels were significantly different due to new
BBs introduced from branches in the ISA level CFG. As discussed in Section 3.3,
substantial differences between the two CFGs can reduce the effectiveness of our
current tuning implementation.

Generally, for all results, a proportion of error is present in both forms of
static analysis as well as simulation-based energy estimation. The error in the
ISS-based estimation is a baseline for the best achievable accuracy in static
analysis, as the ISS produces the most accurate execution statistics. For all the
benchmarks, the ISA SRA results are over-approximating the trace-based energy
estimations. This applies also to the LLVM IR SRA results with exception of
the st benchmark. This over-approximation is a product of the bound analysis
used, which is trying to select the most energy-costly CFG path based on the
provided cost model.

The majority of SRA energy estimations are tightly overestimating the actual
energy consumption measured on the hardware, up to 5.7% for ISA SRA and up
to 7.4% for LLVM IR SRA. There are a number of cases for which the retrieved
estimations underestimate the actual energy consumption (mac, levenshtein,
st, p.fir 7t, p.biquad 7t). IPET is intended to provide bounds based on a
given cost model. In our case it tries to select the worst case execution paths
in terms of the energy consumption. However, energy consumption is data sen-
sitive, i.e. the energy cost of executing an instruction varies, depending on (the
circuit switching activity caused by) the operands used. Therefore, the observed
underestimation is a consequence of using a data-insensitive energy model and
analysis.

The SRA estimations seen in Figure 4 represent a loose upper bound on
the benchmarks’ energy consumption. These bounds cannot be considered safe
for use in mission critical applications. However, our experimental results show
a low level of SRA underestimation, less than 4%, and therefore our SRA can
still provide valuable guidance to the application programmer, e.g. to compare
coding styles or algorithms.
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Beyond the use of SRA predictions for bounding the energy consumption, a
number of other use cases were investigated and are detailed next.

5.1.1 SRA alternative use cases

The modified B.Radix4Div benchmark avoids an early return when the dividend
is greater than 255. Omitting this optimization is less efficient, but balances the
CFG paths. The effect of this modification can be seen in Figure 5. The ISA
level energy consumption lower and upper bounds (the best and worst case re-
trieved by IPET) are shown. In the optimized version, Radix4Div, the energy
consumption across different test cases varies significantly, creating a large range
between the upper and lower energy consumption bounds. Conversely, the un-
optimized version, B.Radix4Div, shows a lower variation, thus narrowing the
margin between the upper and lower bounds, but has a higher average energy
consumption.
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Fig. 5: The energy consumption bounds of the optimized and unoptimized version
of Radix4Div benchmarks, captured by SRA.

Knowledge of such energy consumption behavior can be of value for appli-
cations like cryptography, where the power profile of systems can be monitored
to reveal sensitive information in side channel attacks [37]. In these situations,
SRA can help developers to design code with low energy consumption varia-
tion, so that information that could be leaked through power monitoring can be
obfuscated.

5.1.2 Design Space Exploration using SRA

In this section we examine how ISA SRA can be used as an alternative to mea-
surements or simulation for design space exploration of task farms and pipelined
programs. We consider applications for which the worst-case execution path is
actually the dominant execution path. Having a number of available threads, a
number of cores and the ability to apply voltage and frequency scaling, provides a
wide range of configuration options in the design phase, with multiple optimiza-
tion targets. This can include optimizing for quality of service, time and energy,
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or a combination of all three. For this experiment we used the XMOS XP-SKC-
A16 [38] development board, which consists of two interconnected Xcores, with
16 threads available in total and supports voltage and frequency scaling.

The left-hand side of Figure 6 shows different configurations for the same
program; on the right-hand side these different versions are compared in regards
of savings, if any, achieved for time and energy. For energy, both the hardware
measurement-based, and the SRA-predicted percentages of savings are shown in
order to assess the ability of SRA to support sound energy-aware decisions. Our
analysis can infer also the time figures but due to the time-deterministic nature
of the architecture the predictions closely match the actual values and therefore
we omit them from the graph.

First, SRA was applied to replicated non-communicating threads. The user
can make energy-aware decisions on the number of threads to use, with respect to
time and energy estimations retrieved by our analysis. As an example, consider
four independent matrix multiplications on four pairs of equally sized matrices
(30 × 30). For all three versions we keep the number of cores, the core voltage
and frequency constant, but we alter the number of threads and split the com-
putation across them. The single thread version, M1, has an execution time of 4×
the time needed to execute one matrix multiplication. However, the two-thread
version, M2, halves the execution time and, as indicated by both SRA and actual
measurements, decreases the energy by 21%, compared to M1. The four-thread
version, M3, halves the execution time again and, as predicted by SRA, the en-
ergy consumption is decreased by 40% compared to the two-thread version, M2.
For the same case, M3 vs M2, the actual energy savings are 44%. Although there
is a different estimation error between different numbers of active threads, the
error range of 5% is small enough to allow comparisons between these different
versions, by just using the energy estimations from SRA. The measured and the
predicted values are strongly correlated and confirm that using more threads in-
creases the power dissipation, but the reduction in execution time saves energy
on the platform under investigation.
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Next, SRA was applied to streaming pipelines of communicating threads.
There is a choice in how to spread the computation across threads to maximize
throughput to either minimize execution time or lower the necessary device
operating frequency and voltage while maintaining performance. Our SRA can
take advantage of the fact that the energy model used is parametric to voltage
and frequency, to statically identify the most energy-efficient configuration of the
same program, among a number of options that deliver the same throughput.
We demonstrate this on the Biquad benchmark.

The Biquad benchmark implements an equalizer; it takes a signal and atten-
uates or amplifies different frequency bands. The Biquad equaliser uses a cascade
of biquad filters. Each biquad filter attenuates or amplifies one specific frequency
range; the signal is sequentially passed through all filters, eventually attenuating
or amplifying all bands. In a standard equalizer setting, a seven-bank filter is
used, of which the low four banks are set to amplify, and the top three banks are
set to attenuate. These seven banks are implemented in a seven-stage pipeline.

Figure 6, on the left-hand side shows the three different versions explored
for the Biquad filter. B1 is the sequential version running at 450 MHz and 1V.
The single-core parallel version, B2, uses 7 threads, one for each bank, and runs
at 150 MHz and 0.75V. The multi-core parallel version, again using 7 threads,
places 4 threads on the first core and 3 on the second core. It therefore allows
for halving the core frequency to 75 MHz and a further reduction of the core
voltage to 0.7V. All versions, B1, B2 and B3 deliver the same filter performance,
therefore the percentage of time savings on the right hand side graph of Figure 6
is zero. In contrast, we can see a predicted energy saving on B2 vs B1 of 54% and
on B3 vs B2 of 3%. The actual energy savings are 52% and 2%, respectively.
The small error of our energy consumption estimations enables energy-aware
decisions just by the use of SRA. In this case, version B2 is the best solution since,
while maintaining the same performance, it halves the energy consumption. In
comparison, the small additional energy savings realized by B3 may not warrant
the use of a second core. These energy-aware decisions can not be achieved by
only examining the execution time of each one of the three configurations. Similar
results were achieved for the Fir benchmark.

In both of the above examples, we demonstrated that our SRA is sufficient
to provide design space exploration guidance considering both time and energy,
without the need of any simulation or hardware measurements. This has signifi-
cant benefits since SRA is faster than simulation and less costly to deploy than
hardware measurements.

5.2 Profiling-Based Analysis Results

To evaluate the profiling-based energy estimation technique together with the
mapping technique, 30 benchmarks were used. For these benchmarks, Figure 7
presents the error margin of using the same ISA energy model with the ISS-
based estimations and the profiling-based estimations, compared to hardware
energy measurements, respectively. The average absolute error obtained for the
profiling-based estimations is 3.1%, and 2.7% for the ISS-based estimations.
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The ISS-based estimation is more reliable than profiling. This is because cycle-
accurate ISS allows for a very precise energy consumption estimation for each
particular program execution as the program is executed in simulation with
a specific set of input parameters. The exact sequence of instructions can be
recorded during simulation and then used to estimate energy consumption. In
contrast, profiling is less precise as it operates further away from the hardware,
at the LLVM IR level. Profiling estimation precision heavily depends on the
quality of the mapping techniques introduced in Section 3.2, and on the quality
of the profiling techniques used to collect execution counts of LLVM IR BBs,
as described in Section 4.2. However, our profiling results demonstrate a high
accuracy with an average error deviation of 1.8% from the ISS.

Fig. 7: Profiling- and ISS-based energy estimations against hardware measure-
ments.

5.2.1 Profiling-Based Estimation Performance

ISS execution is often several orders of magnitude slower than hardware. The
performance of an ISS is governed by the complexity of the program’s underlying
algorithms. In contrast, the performance of our profiling is mainly governed by
the program size, since retrieving the BB execution counts incurs a negligible
execution time overhead when running on the actual platform, as discussed in
Section 4.2. The bigger the program the more time will be needed for Stage 1,
LLVM Instrumentation Pass in the Profiling phase and Stage 1, BB Energy

Characterization, in the Energy Consumption Estimation phase, shown in
Figure 3.

In the case of benchmarks with low algorithmic complexity and function in-
puts that will trigger a very short simulation time, no significant performance
gains will be observed from using profiling over ISS estimation. For example, for
our SFloatAdd benchmark, with a O(1) complexity, the average profiling estima-
tion performance observed has a negligible gain over the ISS estimation. On the
other hand, increasing the complexity of the benchmarks’ underlying algorithms
and using parameters which trigger longer simulation time, results in the pro-
filer significantly outperforming the simulation. For example, when using 30×30
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size matrices for our matrix multiplication benchmark, the profiling estimation
achieves a 381 times speedup over the ISS estimation. The benchmark’s small
size allowed for a fast profiling estimation, but the ISS estimation performance
follows the O(n3) algorithmic complexity of the benchmark.

A further speedup can be achieved for the profiling-based method, when
testing the same program with different inputs. If the optimized LLVM IR code
obtained is the same across the different inputs, then there is no need to repeat
the LLVM IR energy characterization stage. In such cases using the profiling
energy estimation has clear performance advantages compared to the ISS-based
energy estimation.

5.3 Discussion

Our SRA-based estimation at the LLVM IR level has a deviation in the range
of 1% from the ISA SRA, and our profiling-based estimation has an average
error deviation of 1.8% from the ISS. This shows that the tuning phase intro-
duced in Section 3.2.3, mitigates the impact of the mapping limitations described
in Section 3.3, and yields sufficiently accurate results for the architecture and
compiler under consideration. Depending on the architecture and the compiler
implementation, the tuning phase heuristics can be further improved to achieve
the required level of accuracy.

6 Related Work

SRA is a methodology to determine usage bounds of a resource (usually time or
energy or both) for a specific task when executed on a piece of hardware, without
actually executing the task. This requires accurate modeling of the hardware in
order to capture the dynamic functional and non-functional properties of task
execution. Determining these properties accurately is known to be undecidable
in general. Therefore, to extract safe values for the resource usage of a task, a
sound approximation is needed [24, 39].

SRA has been mainly driven by the timing analysis community. Static cost
analysis techniques based on setting up and solving recurrence equations date
back to Wegbreit’s [40] seminal paper, and have been developed significantly in
subsequent work [41, 42, 43, 44, 45]. Other classes of approaches to cost analysis
use dependent types [46], SMT solvers [47], or size change abstraction [48]. Gen-
erally, for performing an accurate WCET static analysis, there are four essential
components [24]:

1. Value analysis: mainly used to analyze the behavior of the data cache.

2. Control flow analysis: used to identify the dynamic behavior of a program.

3. Low-level analysis: attempts to retrieve timing costs for each atomic unit on
a given hardware platform, such as an instruction or a BB in a CFG for a
processor.
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4. Calculation: uses the results from the two previous components to estimate
the WCET. The most common techniques used for calculation of the WCET
are the IPET, the path-based techniques and the tree-based methods [49].

Three of the above components, namely the control flow analysis, low-level
analysis and calculation, are adopted in our work, as discussed in Section 4.1.

IPET is one of the most popular methods used for WCET analysis [50, 51,
52, 49, 28]. In this approach, the CFG of a program is expressed as an ILP
system, where the objective function represents the program’s execution time.
The problem then becomes a search for the WCET by maximizing the retrieved
objective function under some constraints on the execution counts of the CFG’s
BBs.

Although significant research has been conducted in static analysis for the
execution time estimation of a program, there is little on energy consumption.
One of the few approaches [53] seeks to statically infer the energy consumption
of Java programs as functions of input data sizes, by specializing a generic re-
source analyzer [44, 54] to Java bytecode analysis [55]. However, a comparison
of the results to actual measurements was not performed. Later, in [56], the
same generic resource analyzer was instantiated to perform energy analysis of
XC programs [57] at the ISA level based on ISA-level energy models and in-
cluding a comparison to actual hardware measurements. However, the scope of
this particular analysis approach was limited to a small set of simple bench-
marks because information required for the analysis of more complex programs,
such as program structure and types, is not available at the ISA level. The SRA
presented in this paper does not rely on such information. A similar approach,
using cost functions, was used in [58]. The analysis was performed at the LLVM
IR level, using an early version of the mapping technique that we formalize and
describe in full detail for the first time in this paper. Although the range of pro-
grams that could be analyzed was improved, compared to [56], the complexity
of solving recurrence equations for analyzing larger programs proved a limiting
factor.

In [2] the WCEC for a program was inferred by using the IPET first intro-
duced in [50]. Although the authors manage to bound the WCEC on a simulated
processor by maximizing the switching activity factor for each simulated com-
ponent, they acknowledge the need to validate their estimation results against
commercial embedded processors. Similarly, in [59] the authors attempt to per-
form static WCEC analysis for a simple embedded processor, the ARM Cortex

M0+. This analysis is also based on IPET combined with a so-called absolute
energy model, an energy model that is said to provide the “maximum energy
consumption of each instruction”. The authors argue that they can retrieve a
safe bound. However, this is demonstrated on a single benchmark, bubblesort,
only. They also acknowledge that using an absolute energy model can lead to
significant overestimation, making the bounds less useful. We choose to use a
pseudo-random data characterized energy model, as empirical evidence shows
that such models tend to be close to the actual worst case [60].
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All of the reviewed previous works combined SRA techniques together with
energy models to capture the WCEC path. Currently, there is no practical
method to perform average case static analysis [11]. One of the most recent
works towards average case SRA [61] demonstrates that compositionality com-
bined with the capacity for tracking data distributions unlocks the average case
analysis, but novel language features and hardware designs are required to sup-
port these properties. This situation motivated us to develop a dynamic profiling
technique that captures the actual energy consumption of a program based on
its input parameters.

There are two main requirements for CPU energy profiling. First, a technique
is needed to instrument a program’s execution and collect data that represent the
program’s dynamic behavior. Code instrumentation, simulation and hardware
performance counters are some of the most popular techniques used to collect
such data. The second requirement is a method of associating energy information
with the various entities, events in the set of the collected instrumentation data.
This is typically done either through an energy model, or by power-monitoring
the program’s execution.

Energy modeling and profiling can be performed at various levels of abstrac-
tion. In [62], a gate-level power consumption model was created and combined
with event-driven logic simulation to estimate the power consumption of pro-
grams. Modeling and profiling at such low design levels is not practical for most
commercial embedded processors since their lower level circuit information is
not available. Moreover, this estimation is quite slow and not practical for fine-
grained energy characterization of software.

In [13] an ISA-level energy model was proposed which treated the hardware
as a black-box and obtained energy consumption data through hardware mea-
surements of large loops of individual instructions. Modeling at the ISA allowed
for attributing energy costs to low-level software components such as ISA BBs.
This led to further research that combined ISA energy models with instruction
set simulators and profilers to extract energy estimations [17, 18, 19, 20, 21].
Our energy model is also based on [13], but significantly extended to a multi-
threaded version for the Xcore, which takes into account both inter-instruction
and inter-thread effects.

For more complex processors or for system-level energy consumption esti-
mation, energy modeling and profiling at the ISA level is impractical. In such
cases, performance counter-based statistical energy modeling and estimation is
preferable. In several works [63, 64, 65], the authors used performance coun-
ters to characterize the processor energy consumption based on the conditions
affecting these counters, such as cache misses and prefetches. Then, by combin-
ing this energy characterization with performance counters execution statistics,
they predict the energy consumption of an application. An alternative to per-
formance counters is the use of an external multi-meter to directly measure a
system’s energy profile [66].

In [67], energy characterization of LLVM IR code is performed by linear
regression analysis. This is combined with instrumentation and execution on a
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target host machine to estimate the performance and energy requirements in
embedded software. Transferring the LLVM IR energy model to a new platform
requires performing the regression analysis again. The mapping technique we
present here does not involve any regression analysis and it is fully portable. It
requires only the adjustment of the LLVM mapping pass to the new architecture.
Furthermore, our LLVM IR mapping technique provides an on-the-fly energy
characterization that takes into consideration the compiler behavior including
optimization and transformation passes and other architecture-specific aspects.
The instrumentation technique of [67] is also based on collecting execution BB
counts, but this is done by executing programs on a host machine rather than
the actual platform. However, compiling and executing on a higher-end PC,
rather than the target deeply embedded device, could yield an execution profile
significantly different from the one that would be obtained on the target machine.
Our profiling technique collects execution counts on the target machine, and
maps them back to their corresponding LLVM IR BB.

In [68], a scheme is proposed that enables the compiler to exploit both task
and data parallelism and automatically map an application to an embedded
multi-processor containing voltage islands. The scheme is based on the workload
of each processor, using both hardware parallelism and voltage scaling to re-
duce energy consumption without increasing the overall execution time. Per-core
frequency and voltage configurations can be provided to appropriately design
Xcore-based systems. Using our profiling technique and our LLVM IR energy
characterization, accurate workload estimations can be achieved at the LLVM
IR level. These could be utilized by the optimization scheme introduced in [68]
to enable the LLVM compiler to achieve similar energy consumption savings.

Profiling has previously been used successfully to enable energy-aware com-
pilation. A combination of code analysis and profiling techniques can enable the
compiler to build power-aware flow graphs [69]. Such a graph has its basic blocks
annotated with the hardware resource requirements and the execution counts.
The power-aware flow graphs can then be used to identify code regions where
several of the processor’s functional units can be turned off during execution to
reduce the static power dissipation. [70] demonstrate a framework that enables
the compiler to support a number of energy-related optimizations for parallel
design patterns. A series of pragmas were introduced to identify specific parallel
design patterns and guide the compiler to apply power optimizations. These op-
timizations were enabled by utilizing power profiling and code instrumentation
feedback provided by a simulator.

Our profiler provides energy consumption information directly into the com-
piler’s optimizer. Therefore it can enable feedback-directed compilation that
targets energy-specific optimizations and design space exploration for deeply
embedded systems.
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7 Conclusion and Future Work

This work focuses on providing energy consumption estimation techniques that
can enable energy transparency in the software stack of deeply embedded proces-
sors, typically used in IoT applications. A novel target-agnostic mapping tech-
nique is introduced to allow energy characterization of the LLVM tool chain
intermediate representation, namely the LLVM IR. This is a significant step be-
yond existing ISA-level energy estimation techniques. Our mapping technique
can give powerful insights to the LLVM IR optimizer regarding execution time
and the energy consumption of a program. This enables programmers to investi-
gate how optimizations can affect their program’s energy consumption, or even
help introduce new energy-specific optimizations in future.

For energy consumption bounds an IPET-based SRA was developed. The
analysis was introduced at both ISA and LLVM IR levels. The results demon-
strated that the mapping technique enables SRA at the LLVM IR level with a
small accuracy loss in the range of only 1%, compared to SRA at ISA level. SRA-
based energy estimation was also applied to a set of multi-threaded programs for
the first time to our knowledge. This is a significant step beyond existing work
that examines single-thread programs. As shown in Section 5.1.2, such an anal-
ysis can provide significant guidance for time-energy design space exploration
between different numbers of threads and cores.

To estimate the actual energy consumption of a program under specific input
parameters, a target-agnostic profiling technique was developed. The technique
is enabled by the LLVM IR energy characterization utilizing our mapping. It is
designed to ensure that the instrumentation code required for profiling does not
lead to energy overheads. Experimental evaluation shows an average absolute
error of 3.2% compared to hardware measurements. Our profiling technique is
more flexible and significantly more efficient than ISS-based estimation. It can at-
tribute energy consumption to software components, such as BBs and functions,
in contrast to hardware measurements. The high accuracy and performance of
our profiler can enable feedback-directed optimization for energy consumption.
LLVM IR energy consumption estimations of each compilation can be taken into
consideration iteratively in subsequent compilations. Each new compilation will
be able to make more energy-aware decisions.

The techniques introduced in this paper are focused on deeply embedded
architectures that favor predictability over performance. Such architectures are
the backbone of IoT applications. Enabling energy-aware software development
for such architectures will help to tackle the energy challenge that IoT faces. We
acknowledge that some of our techniques, mainly SRA-based estimation, work
best with predictable architectures. This is also true for WCET analysis. In fact,
static analysis is inherently limited in that sense. Thus, in future work we intend
to examine the portability of our profiling-based techniques to more complex
processors.

Future work aims to analyze more complex concurrent programs, such as
distinct non-communicating threads, or pipelines of threads with unbalanced
workloads. We anticipate that our LLVM IR profiling technique will scale better
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to these cases than SRA. As the core-count of the analyzed system grows, more
in-depth exploration of energy saving techniques such as per-core DVFS could
be considered both at the model level and SRA or profiling levels.
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