
A New Security Policy for Distributed Resource Management and 
Access Control 

Steven J. Greenwald 

Center for High Assurance Computer Systems 
Naval Research Laboratory 

Washington, DC 20375 
United States of America 

(greenwaldQitd.nrl.navy.mil) 

Abstract 

The common security policies of access control and 
resource management are based upon a central managing 
authority, called the system administration, that is ulti- 
mately responsible for the management of a usage pol- 
icy. This management is usually done with some com- 
bination of mandatory access control and discretionary 
access control methods, where each user is granted (or 
denied) privileges and resources depending on the us- 
age policies enforced at that particular system. System 
administration includes the management of system re- 
sources, user accounts, and user privileges. This secu- 
rity policy is typified by an operating system such as 
UNIX, and it introduces several dificulties when work- 
ing in a distributed computing environment. 

This paper addresses distributed resource manage- 
ment and access control. It proposes a new version of 
the “Distributed Compartment Model” (DChf), first de- 
veloped by Greenwald in his 1994 doctoral dissertation. 
DCM consists of two major components: Handles, a 
method for role based access control, and Distributed 
Compartments, a method allowing users to manage re- 
sources within a distributed system across administra- 
tive domain boundaries. This new version of DCM dis- 

cussed in this paper is a refinement of the original for- 
mal security policy model. This paper concentrates on 
the history and background of the problems motivating 
the creation of DCM, describes the informal security pol- 
icy, proposes some ezample scenan’os as to how DCM 
could be used, and concludes with a discussion of the 
results of this research. 

0 INTRODUCTION 

The security policy currently used on most dis- 
tributed systems is an old one, dating back to simpler 
times when most computer systems were centralized. 
This security policy is based on the idea that there is a 
central managing authority, called the system admin- 
istration, that is ultimately responsible for the man- 
agement of computer security within an administrative 
domain [19]. In this security policy, system adminis- 
tration includes the management of system resources, 
user accounts, and user privileges. This security pol- 
icy is typified by an operating system such as UNIX [l]. 
This paper shall refer to this older security policy as the 
Jurassic Age Security Policy (JASP) since it apparently 
dates back to the time when huge dinosaur computers 
were kept in air-conditioned pens, lazily grazing on their 
data, before faster, leaner machines wiped them 0ut.l 

JASP introduces some difficulties when working in 
a distributed computing environment. The solution 
proposed here is a new security policy consisting of 
two components: handles and distributed compartments. 
This new security policy, the Distributed Compartment 
Model (DCM) [8, 91 is a new paradigm for the man- 

‘The author is obviously open to suggestions for more appro- 
priate terminology, and is also interested in exactly when JASP 
first came into existence. 

74 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F304851.304870&domain=pdf&date_stamp=1996-09-17


agement of resources and the control of user access on 
distributed computer systems. DCM was specifically 
created to rectify some of the resource management and 
access control problems and deficiencies of the common 
security policies [S]. 

The remainder of this paper is organized as follows. 
Section 1 introduces the problem statement that mo- 
tivated the creation of DCM. Section 2 introduces the 
DCM security policy. Section 3 consists of some exam- 
ples as to how DCM could be used. Finally, section 4 
concludes this paper with a discussion of the results of 
this research. 

1 Problem Statement 

1.1 Introduction 

Most of the computer systems in use are based on 
JASP. This paper is specifically concerned with the 
management of system resources and the management 
of access control in a distributed computing environ- 
ment. Several systems and models have been created to 
facilitate versions of security in a distributed environ- 
ment, such as Guard [28], the NRL Military Message 
Experiment (Sigma) [27], the NRL Military Message 
System [14], Project ADMIRAL [25], CMU’s Andrew 
[22], Amoeba [16], the Centralized-Parallel-Distributed 
model [3], and the IEEE Mass Storage Reference Model 
[lo] to name but a few. However, these systems and 
models still contain some undesirable elements of JASP 
[9], leading to the following problems. 

1.2 Resource Management and Access Control 
Problems with Distributed Systems 

JASP presents the following problems when working 
in a distributed environment. 

1. User-names are often duplicated across name-space 
domains in a distributed system. For example, two 
different users may have the same user-name on two 
different hosts within a distributed system. This 
presents a problem when using groupware’: how 
can each user be unambiguously identified? At- 
taching a host computer system identifier to each 
user-name (e.g., the RFC822 Standard for ARPA 
Internet Text Messages) works, but is often cum- 
bersome. 

2Groupware (computer supported cooperative work) is com- 
monly defined as software designed to support groups of people, 
often at different physical locations, working together. 

2. Location transparency (where a user is not re- 
stricted to a single administrative domain in or- 
der to access applications) may not be possi- 
ble. In an application where location transparency 
is a goal, using a user-name and host-identifier 
combination is unacceptable. For mobile users 
who often change hosts, the combination of user- 
name and host-identifier fails to uniquely iden- 
tify the user (e.g., “biff@host 1 .foobar.org” and 
“bifVBhost2.foobar.org” may be the same user, re- 
sulting in multiple aliases for the same user). A 
related problem is that one user may have two 
(or more) different user-names at different loca- 
tions (e.g., are “greenwald@itd.nrl.navy.mil” and 
“sjg@cis.ufl.edu” the same user?). Even worse, two 
users in different administrative domains may have 
the same user-name. 

3. Unique user identifiers based on user-name and 
host-name combinations may be redundant to 
groupware collaborators. In many cases of collabo- 
ration the users do not care about which computer 
systems their colleagues are using. For example, 
two researchers at different universities collaborat- 
ing on the same research paper are not particularly 
interested in cumbersome host computer names- 
they are only interested in collaborating with one 
other, and unambiguously identifying each other in 
a convenient manner. 

4. There exists a “weak link in the chain” effect. This 
means that security is a problem since the security 
of the entire distributed system depends upon the 
security of the individual hosts that are being used 
within a group of administrative domains. One lax 
system administration can compromise an entire 
distributed system by allowing access to unautho- 
rized users, sharing of user-names, etc. This re- 
sults in the system with the weakest security set- 
ting the maximum security standard for the entire 
distributed system. 

5. In many installations the system administration is 
reluctant to permit a single user to have multi- 
ple user-names (this is not a criticism of system 
administrations-they often have good reasons for 
this policy). This makes it difficult for users to 
test and use groupware. The reason this point is 
important is that for many groupware applications 
(e.g., DCS [18]) a particular user may need to as- 
sume different roles (in DCM a role is a labeled set 
of capabilities that a user can activate). Roles, as 
opposed to protection groups, are generally consid- 
ered to be a form of mandatory access control (e.g., 
a subject generally cannot allocate permissions to 
a role or determine membership [20]). For exam- 
ple, a user may wish to simultaneously assume the 

75 



6. 

7. 

8. 

13 

roles of “professor” and “chairman” for a particu- 
lar groupware session. However, it is typical that 
all processes started by a user have the same priv- 
ileges [l]. There are many references for the inter- 
ested reader on role-based access control (RBAC) 
[13, 14, 26, 20, 211. 

It may be difficult to share resources with other 
users on other computer systems without getting 
permission from the system administrations in- 
volved. For example, two users subject to differ- 
ent system administrations who wish to share a file 
with each other may find it impossible without us- 
ing cumbersome methods (e.g., File Transfer Pro- 
tocol, electronic mail, World Wide Web) that are 
unsuited for real-time applications. 

Foreign user accounts are often necessary to correct 
the previous problem. This places a management 
burden on the system administration because it has 
to manage users from a foreign environment. In ad- 
dition, there is the very serious difficulty of the sys- 
tem administration initially verifying the identity 
of these foreign users, who are often not physically 
present. In addition, foreign user accounts present 
the potential problem of giving the foreign user too 
many permissions. 

Military chain of command systems and corps 
rate hierarchical systems may be difficult to model 
and implement because their structure clashes with 
the “flat” structure of the omnipotent-system- 
administrator approach of JASP. 

Comments 

The above problems result because most of the se- 
curity paradigms in use are outmoded. They are based 
on the assumption of a centralized access control mech- 
anism dating from the days when centralized time- 
sharing mainframes dominated the field. This naturally 
resulted in centralized management of system resources, 
and the implicit condition of location dependency for 
users and resources. Historically, these conditions were 
not seen as problems because the security systems were 
designed for these single stand-alone systems. 

2 THE DCM SECURITY POLICY 

2.1 Philosophy of the Security Policy 

The philosophical justifications and a narrative de- 3This paper will freely associate the terms “distributed com- 
scription of version two of the DCM security policy are partmcnt” and “discom.” 

presented here. The original security policy was pre- 
sented in my dissertation [S] and a subsequent technical 
report [9]. 

What follows can be thought of as an organizational 
(informal) security policy. I would like to emphasize 
that the philosophy behind the solution to the problem 
statement was not motivated by the traditional view of 
a multilevel secure (MLS), categorized system, such as 
that presented in the famous “Orange Book” [5]. It is 
not an MLS system such as the often-cited BLP model 
PI. 

There are many ways to solve the above problem 
statement. I chose to adopt a libertarian (classical lib- 
eral) philosophy that maximizes the freedom of users 
while limiting system administration intervention to 
only necessary functions. Philosophically, this should 
have the benefits of allowing users as much flexibility 
in managing their affairs as possible, while eliminating 
much of the drudgery commonly associated with system 
administration. However, this should not be construed 
as a “lax” security policy. Within their limits, users 
can be as regimented as a military chain of command 
system if they so choose. Hopefully, this is a good com- 
promise between authoritarian control and anarchy. In 
fact, as we shall later see, one of the advantages of this 
security policy is that it can represent authoritarian hi- 
erarchical command structures as used in the military, 
government, or business worlds. 

The solution to the problem statement has two parts. 
The first is a role based access control method I term 
handles. The second is a method for allowing users to 
manage resources within a distributed system, across 
administrative domain boundaries, with a measure of 
independence from any system administrations, that I 
term distributed compartments (discom for short).3 

2.2 Handles 

The central ideas behind handles is that for group- 
ware applications, user-names that depend on operating 
systems and nelworks should be eliminated as a means 
of identification and access control. 

The proposed solution is the concept of a handle, 
which is a type of role-based access control that spans 
administrative domains. A handle is a labeled set of 
capabilities, where capabilities are actions that subjects 
can perform upon objects. This allows a groupware ap- 
plication to use a handle as an identifier for users, and 
as a way to assign those users a set of capabilities. A 
user joining a groupware session is queried for a handle, 
and is then authenticated by the groupware’s security 
manager process. Authentication can be an entirely in- 

76 



dependent operation (e.g., user knowledge, physical at- 
tributes, possession of security objects) using a method 
such as Kerberos [24, 7, 231. This keeps user access to 
that application as separate as possible from the operat- 
ing system. For example, a handle could have the label 
“Author” and have a set of capabilities that allow oper- 
ations upon a set of objects such as “File-l,” “File-P,” 
etc. 

Under this method, an individual user would first 
need to gain access to a particular host in the distributed 
system through JASP by having a valid user-name and 
(perhaps) a password. 4 The user would then need a 
valid handle and would then need to be authenticated 
by the groupware in order to be allowed access to the 
application. Once this is complete, the user has acti- 
vated a role (a set of capabilities) for that application. 
It should be noted that the relationship between users 
and handles can be many-t&many. Additionally, once 
a user has activated a role, auditing can still take place 
(i.e., if necessary, the user can still be identified while 
the role is activated). 

This role based, operating system independent ap- 
proach, has the following advantages. 

Security policy dependencies are reduced because 
the security policy is not entirely dependent on an 
operating system, system administration, bureau- 
cracy, etc. As things now stand, even one lax sys- 
tem administration can disrupt security in group- 
ware applications. Some examples of these security 
policy violations follow. 

l Users might be permitted to share accounts 
with one another. Under this situation it is 
impossible to verify the identity of the actual 
user by the use of user-names. Of course, users 
could still do this with handles, but it is hoped 
that the impetus to do so (e.g., user frustra- 
tion with the system administration) will de- 
crease or disappear. In certain cases, it may 
be beneficial for users to share handles (e.g., 
this is useful in some RBAC paradigms). 

l Users who have no aut8horization to use a par- 
ticular groupware application may have to be 
given permission to access files and applica- 
tions that they have no need for. 

l Users who need access to a particular appli- 
cation, yet lack the permission to access the 
application, may have to wait a long time for 
the (usually overworked) system administra- 
tion to grant the proper permission. 

Handles can be more descriptive than user-names. 
For example, a user-name of “sjg” does not convey 

41t should be possible to implement DCM as an actual oper- 
ating system, thereby eliminating this first step. 

much information. With handles there could be 
a more descriptive name such as “Steve,” “Green- 
wald,” “Third Programmer,” “Referee 2,” etc. The 
label associated with each handle can be much more 
descriptive to users of groupware than (often cryp- 
tic) user-names. 

Multiple handles can be permitted for the same 
user. The advantages of allowing this follow. 

The testing of groupware applications be- 
comes much easier. One user can easily as- 
sume the roles of many subjects by having 
several handles. 

Anonymity is possible. 

Multiple roles for individual users becomes 
possible. Different handles can be used for 
different user roles. A user needing to change 
roles just needs to use the appropriate handle. 

Intervention by the system administration is 
limited. The system administration does not 
have to be concerned with creating multiple 
accounts for the same user. 

More than one user may share the same handle. 
This allows multiple users to share the same role. 

Security policy mechanisms can be implemented 
relatively independently of any underlying oper- 
ating system. Keeping security matters within a 
particular groupware application facilitates devel- 
opment of whatever higher-level operating system 
paradigm is wanted, independent of the actual op- 
erating system. For example, a new operating sys- 
tem could be simulated while using an old one, 
incorporating separate user accounts. Testing of 
experimental security mechanisms becomes safer 
since the testing environment is analogous to a 
tightly isolated “glove box.” 

Management of handles can be made part of the 
groupware application, allowing different security 
methods to be implemented. For example, security 
can be partitioned in hierarchical compartments 
with different users maintaining the handles of their 
own compartments (this idea will be discussed in 
the next section). 

One area specifically not covered is authentication. 
There are a variety of authentication methods avail- 
able (e.g., passwords, physical attributes, possession of 
objects). Specific authentication methods are beyond 
the scope of this research, and are separate from DCM. 
However, one important point is that the system admin- 
istrations will not be responsible for the authentication 

77 



of handles. That will be the responsibility of the partic- 
ular groupware application. This frees the system ad- 
ministration from the burden of managing the handles, 
and frees the groupware managers from the necessity of 
having to contact the system administration every time 
maintenance is needed for access control. 

2.3 Distributed Compartments 

Handles need a framework in which to operate. This 
is also true of groupware applications. This motivated 
the creation of DCM. 

A distributed compartment is a group (i.e., a tuple) 
of entities that is not restricted to a single physical com- 
puter system. 

More formally, a discom is defined as a tuple, 

D = (S, 0, P, R, W, 

where S is a set of subjects representing user processes 
or daemons, 0 is a set of objects representing such things 
as files, hardware devices, programs, users, [2, 4, 191, 
and (recursively) child discoms [8], P is a set of privi- 
leges, R is a set of resources (atomic units of computer 
systems used by software) such as file space, memory, 
or CPU time allocation, and H is a set of handles that 
the users of the discom D can activate in order to per- 
form actions upon the objects. Objects in a discom 
are composed of some or all of the resources in the dis- 
corn’s resource pool. It is important to note that the 
elements of R do not necessarily come from the same 
administrative domain. Therefore, a discom may span 
administrative domains (and vice-versa). 

Discoms are partially ordered as the nodes of rooted 
trees called empires. A discom may be thought of as 
similar to a directory in a standard hierarchical direc- 
tory structure. However, as noted above, it does not 
necessarily reside on a single computer system. The 
root discom is termed the empire discom. 

Each discom must have at least one distinguished 
member of its subject set S termed a governor. By 
definition, governors have all the capabilities for that 
discom (in other words, we can assume for the sake of 
simplicity that governors can activate a special handle 
that has all the capabilities in a discom). Governors 
are an important part of the security policy because 
one of their properties is that they are also governors 
of any descendant discoms. This allows a hierarchical 
command structure to be created without the use of a 
system administrator (there are other variations on the 
security policy which do not have this property - the 
interested reader is referred to [9]). 

The privileges of a discom consist of at least 24 op- 
erations termed the initial privileges (they are termed 
initial because it is possible in the model to have addi- 
tional user-defined privileges): 

1. 

2. 

create a new object from the resource pool; 

destroy an existing object, returning its resources 
to the resource pool; 

3. 

4. 

5. 

6. 

7. 

modify an existing object by adding or removing 
resources from the resource pool; 

merge two existing objects into a single object; 

split an existing object into two objects; 

create a child discom from the resource pool; 

destroy a child discom returning its resources to the 
resource pool; 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

merge two child discoms into a single child discom; 

split a child discom into two child discoms; 

destroy an existing empire; 

merge two existing empires into a single empire; 

split an existing empire into two empires; 

create a new subject; 

destroy an existing subject; 

create a new handle; 

destroy a handle; 

grant governorship to a subject; 

rescind a governorship from a subject; 

add a resource to the resource pool of a discom 
(from the resource pool of its parent discom); 

20. 

21. 

22. 

remove a resource from the resource pool of a dis- 
corn (returning it to the resource pool of its parent 
discom); 

grant a subject the right to activate a handle; 

rescind from a subject the right to activate a han- 
dle; 

23. make a subject a member of a child discom; 

24. remove a subject as a member of a child discom. 

This combination of subjects, objects, and privileges, 
makes it possible to create a system similar to an access 
control matrix. 

DCM has a set of security properties. Their informal 
definitions follow. 

78 



Divine Right Axiom A subject can create an empire 
discom only if given that privilege by the admin- 
istrators of the system administrations involved. 
This is the only area where the system adminis- 
tration need be involved in the management of dis- 
corns. The rationale for this is that the system ad- 
ministration is ultimately responsible for the use of 
its system. It should be given the right to restrict 
the creation of empire discoms. 

Creator Property The creator of a discom automati- 
cally becomes a governor of that discom. The ratio- 
nale for this is that if this property was not present, 
then it would be possible to create discoms that 
were inaccessible to all the subjects in an empire. 

Government Property The governor of a discom 
may grant and revoke handle activation privileges 
to non-governor subjects of that discom. The ra- 
tionale for this is that someone has to do this or 
nothing will get done. The purpose of the security 
policy is to eliminate, as much as possible, involve- 
ment by the system administration. If all subjects 
had the power to do this, then anarchy would be the 
result. Therefore, only governors or those subjects 
they give this privilege to may have this special 
status. 

Nova Property A non-governor subject may access a 
descendant discom only if made a member of that 
discom by a governor of an ancestor discom (con- 
ditional down access). This is similar in concept 
to the BLP *-property (“no write down”), except 
reversed, hence the name (a nova is an exploding 
star).5 The rationale for this is that governors con- 
trol their resources and may allocate them as they 
wish, in the military chain of command sense. 

Ceiling Property A subject may not access an ances- 
tor discom without being a subject of that discom. 
The ceiling property does not allow any access at 
all of an ancestor discom without membership. The 
rationale for this is that the governors of the ances- 
tor discoms are allowed to manage their resources 
as they see fit. They may not wish even write-only 
access from descendant discoms since that might 
use up resources (e.g., disk space) and cause (for 
example) a denial of service problem, or a covert 
channel [12, 171. 

Cordon Property Discoms must be isolated from 
other discoms. Isolation means that the only things 
that any two discoms can share are members of 
their subject sets. The rationale for this is that if 
discoms weren’t isolated from one another, then in- 
formation could flow between them in unrestricted 

“This is similar in concept to McLean’s t-property [15]. 

ways, possibly violating the nova property and the 
ceiling property. Allowing only subjects to act as 
information flow channels between discoms makes 
trusted subjects possible (and perhaps necessary). 

Demesne Property6 The governor of a discom always 
has unrestricted access to any descendant discoms. 
The rationale for this is that a governor, by defi- 
nition, controls the resources of the discom. Since 
any descendant discoms that exist are part of the 
resources of a discom, the governor should not be 
prohibited from any accesses to them. In addition, 
if a governor could not always access descendant 
discoms, completely autonomous discoms could re- 
sult, creating a potential need for the intervention 
of the system administrations involved, if the gover- 
nor ever needed access again after the autonomous 
discoms prohibited access to the governor. 

The intent of these properties is to create a system 
where the management of distributed compartments is 
not done by the local system administration, but ul- 
timately by the individual users who are governors of 
empire discoms (by the divine right axiom). It should 
be noted that some mechanism is probably needed to 
serialize the transactions that would occur in an actual 
implementation to prevent problems such as deadlocks 
and race conditions. 

2.4 Empire Example 

An example empire might consist of three discoms 
arranged as in figure 1. Each discom Di consists of a 
set of subjects Si, a set of objects Oi, a set of privileges 
Pi, a resource pool R+, and a set of handles Hi. Di is 
the empire discom, and has 2 child discoms, D-J and D3. 
Each discom has at least one governor subject. Suppose 
that subject si is a member of Sr and is also a governor. 
That means (due to the demesne property) that si is 
also a member of Sz and Ss. However, the objects, 
privileges, resources and handles of a discom are never 
shared with other discoms. 

6 “Demesne” is usually pronounced similarly to “domain.” 

79 



Discom 1 (D II 
r \ 

Figure 1. An Empire with Three Discoms. 

In this example, D1 might be the discom of a pro- 
fessor, and accessible only to the professor (i.e., D1 has 
only one subject, ~1, who is also a governor) with a set 
of resources, some objects (perhaps representing files), 
some privileges, and a set of handles (perhaps only 1 
handle giving the governor the maximum privileges for 
the discom). Since the professor, s1 is the governor of 
the empire discom, s1 must also belong to the subject 
sets of & and 0s (because of the demesne property). 

Discom Dz might be a discom that is used by the pro- 
fessor and a teaching assistant (~2) to grade papers. The 
teaching assistant need not have the maximum privi- 
leges for D2. For example, s2 might be permitted to 
activate a handle that allows it to read certain files, but 
not write them. Some of the resources in the resource 
pool R2 initially came from RI at the time that D2 was 
created. Of course, since s1 is a governor, it could mod- 
ify the handle activation rights of s2 or even make s2 a 
governor (due to the government property). 

Discom 03 might be a discom that is used by the 
professor to collaborate with a colleague ss from an- 
other university in another administrative domain. The 
colleague may have contributed resources from the “for- 
eign” university’s administrative domain, such that Rs 
is composed of resources from two administrative do- 
mains. Suppose that the two subjects are bot,h gover- 
nors of Dz, and could create, destroy, and modify ob- 
jects (for example, they might be using a groupware 
application to write a paper together, with the paper 
represented as an object in 03). 

In this example, s2 would not be allowed access to 
D1 (due to the ceiling property) or 03 (because of the 
cordon property since s2 is not a member of &), and 
ss would not be allowed access to D1 (again, because of 
the ceiling property) or D2 (again, because of the cor- 
don property since sg is not a member of Dz). Since 
s1 is the governor of the empire discom, s1 would have 
unrestricted access to all of the discoms in this empire. 
Of course, another discom (say 04) might be created 
as a child of 03, which would mean that s1 and sg 

would both automatically be governors of 04 due to 
the demesne property (additionally, if there were an- 
other subject in 03 that actually caused the creation of 
Dd, that subject would be a governor of 04 due to the 
creator property). Conversely, if another discom were 
to be created as a child of D2, s2 would not automati- 
cally become a member of it, since s2 is not a governor 
subject. 

Notice that because of the nova property, if a non- 
governor subject were created in D3, it could not access 
04 unless it were made a member of D.+. 

How was this empire initially created? By use of 
the divine right axiom. This is the only point at which 
a system administrator would be necessary in the en- 
tire process outlined above. Once the empire discom 
is created, its governor can proceed with the creation 
of descendant discoms, objects, etc., without any more 
administration intervention. 

2.5 Subject Instantiation Example 

In DCM before users can do work, they must be in- 
stantiated as subjects. The following are the 6 basic 
operations that a subject must go through, in order to 
perform “work” in DCM (“work” is used in the context 
of executing non-DCM applications within DCM). 

1. Ins2aniialion. The user must obtain a valid subject 
identifier and must then be authenticated. Once 
this occurs, an instantiated subject corresponding 
to an act.ual user exists. This allows auditing of the 
user or subject to take place. 

2. Joining. The instantiated subject chooses a dis- 
corn to join. The request must be validated by the 
discom. 

3. Activation. The subject, joined to a discom, 
chooses a handle to activate. The request must 
be validated by the discom. Once a handle is acti- 
vated, “work” can be performed. 

4. Release. An activated subject releases an activated 
handle. 

5. Depariure. A subject joined with a particular dis- 
corn departs from that discom. 

6. Passivation. The subject is passivated, and the 
user exits the system. 

80 



Figure 2. An Example Subject Instantiation Graph. 

These steps are nested, in the sense that (1) must 
take place before (6), (2) before (5), and (3) before (4). 

An illustrated example of how this might work is 
given in the subject instantiation graph of figure 2, 
where a particular subject is designated by S. There 
are 2 discoms Dr and Ds. There are 3 handles: in Di 
there is HI, and in Dz there are Hz and H3. Time is 
denoted by to < tl < . . . < trl. Note that these are not 
units of time; instead these symbols are merely used to 
indicate that an event happened before (or after) some 
other event. In addition, the label “(work)” in the graph 
is used to denote when a subject can execute non-DCM 
applications (as noted above). 

Figure 2 illustrates how a subject can be joined to 
multiple discoms during the same time interval, and also 
how a subject can activate multiple handles during the 
same time interval. The following is a walk-through of 
the graph during the different times, and also mentions 
how the DCM system might appear to a user. 

0. A user instantiates a subject S. This might occur 
by the user running an application program to enter 
a DCM system. Once instantiated, the user “view” 
of the system might present a selection menu that 
lists the discoms that the user may join. 

1. S joins D1. At this time, a list of handles that 
S is allowed to activate in D1 might appear in a 
selection menu. 

2. S activates HI. At this time, S has activated HI 
in D1. Work can now be performed in D1. 

81 

3. S joins D2. Note that at this time, S is still joined 
to D1, and HI is still activated. At this time, a list 
of handles the S is allowed to activate in D2 might 
appear in a selection menu. 

4. S in D2 activates HP. Work can now be performed 
in D2. Note that S is also still activating HI in DI, 
and performing work in D1 concurrently. 

5. S in 02 activates Ha. At this time, S has activated 
a total of 3 handles: HI in DI, Hz in D2, and Ha 
in D2. Work can be performed concurrently on 3 
paths in the graph at this time. 

6. S in D1 releases HI. At this time, S can no longer 
perform work in Dl. 

7. S in Da releases Hz. At this time, S can no longer 
perform work in D2 using Hz. Note that H3 is still 
activated by S. 

8. S departs D1. S is still joined with D2, and is still 
performing work using H3 in D2. 

9. S in Dz releases H3. At this point, S can perform 
no work whatsoever, even though S is still a mem- 
ber of Dz. 

10. S departs D2. S is still instantiated at this point. 

11. S passivates. The user is no longer using the DCM 
system. 

2.6 Conclusions 

The combination of handles and distributed compart- 
ments is a reasonable solution to the earlier problem 
statement. Combining these two ideas reveals the fol- 
lowing areas of concern. 

1. How should system resources be allocated within 
the discoms? It should be possible to implement 
a system where the resources of a discom are re- 
stricted according to a subject’s privileges within 
that discom (with something analogous to an access 
control matrix). For example, limiting the CPU 
time of a discom member might prove to be a very 
valuable thing in a real-world application. 

2. What is the best way to manage the distribution 
of the resources of the discoms over a distributed 
computer system? 

3. What is the best way to manage the name-space 
that will occur with this system? For example, it 
might be desirable if each discom had its own name- 
space. This would allow handles unique to each 
discom . 



4. There is a profound difference in the way subjects 
are destroyed and governorship is revoked. Since 
subjects can exist in a rooted tree, they must be 
deleted from the “bottom up.” Governors also can 
exist in a rooted tree, however the demesne prin- 
ciple prohibits rescinding from the bottom up. In- 
stead, governors must be rescinded from the top 
down (effectively splitting a tree if one exists at 
some point in the revocation). 

3 Usage Examples 

This section contains some example scenarios as to 
how DCM might be put to use in the real world in order 
to better clarify the ideas presented. All labels are given 
in uppercase for clarity. 

3.1 Electronic Mail Between Discoms 

One common application is electronic mail. In order 
to exchange electronic mail between discoms (or any 
other type of information) a subject would be used as 
an intermediary. Of course, the subject would have to 
be a member of both discoms. It could read the mail 
from one discom, and act as an information flow channel 
while writing to the other discom. Of course, the subject 
would need to have the necessary handles and privileges 
in both discoms in order to accomplish this. 

3.2 “Simple” File Creation 

A file is called “simple” if the resources from which it 
is composed come from only one administration. A file 
would be composed of one or more objects in a partic- 
ular discom. Each object would contain only resources 
from the same administration. The resources involved 
might be blocks of disk storage. 

33 “Complex” File Creation 

A file is called “complex” if the resources from which 
it is composed come from more than one administration. 
Such a file would be composed of one or more objects 
in a particular discom. The resources of these objects 
would come from more than one administration. This 
would amount to sharing the file across multiple sys- 
tem administration boundaries. The resources involved 
might be blocks of disk storage from the different system 
administrations involved. 

3.4 Replicated Fault Tolerant Files 

Replicated fault tolerant files are possible within a 
discom by making several files that do not share re- 
sources from the same system administration. For ex- 
ample, if there were two files, each an object: o0 and ob 
in a particular discom, information stored in them could 
be replicated (i.e., the two files would always contain the 
same data under ideal circumstances). However, to im- 
plement a replicated fault tolerant file structure across 
administrative domains, a constraint would be added 
t,hat the two files must not contain resources from ad- 
ministrative domains in common with each other. This 
would be an extremely easy way to implement repli- 
cated fault tolerant files across administrative domain 
boundaries, with a high degree of fault tolerance since 
the two files do not share any resources in common from 
the same administrative domains. 

3.5 CPU Resource Access 

111 DCM, resources can be allocations of CPU time. 
For example, a particular resource T might represent up 
to 10 seconds of CPU time of supercomputer access (if 
less than 10 seconds were used, all of the resource would 
be expended since resources are atomic in this security 
policy). An object incorporating F could use up that 
resource depending on the actions of the subject who 
controls the object. This is an example of an expendable 
resource. 

3.6 Distributed Conferencing 

A groupware system such as the Distributed Con- 
ferencing System (DCS) [18] is designed to facilitate 
group work. Such a system can be used for conferencing 
where the participants are not physically present in the 
same location. It would be useful for each conference to 
have associated with it one (or more) discoms in which 
objects could reside, and in which distributed handles 
could be used to identify the conference participants by 
roles. 

For example, consider two conferences named 
“EXAM” and “REFEREE.” Each conference holds reg- 
ular meet.ings with the participants (subjects) using 
DCS, who do not meet face to face. Each conference 
is an application running in its own discom, and each 
discom has its own set of handles. 

In the EXAM conference, members are concerned 
with creating, administering, and grading one subject 
arca of a Ph.D. comprehensive examination given pe- 
riodically in a computer science department. Profes- 

82 



sor Ada Algol is a subject that can activate the han- 
dle “CHAIRPERSON.” She also has certain privileges 
associated with this subject/handle (for example, con- 
trolling the floor-passing’ mechanism of certain DCS 
applications). It is clear from her handle what role she 
is playing (although the mnemonic value of the handle 
may not be required, or may be non-existent since there 
is no way to enforce the requirement that all handles 
have a mnemonic value). 

The members of the REFEREE conference are con- 
cerned with evaluating papers submitted to a journal. 
All the members are anonymous referees for the jour- 
nal. Professor Bert Basic is a subject given the handle 
“CHAIRPERSON.” He also has certain privileges asso- 
ciated with this subject/handle. In this case however, 
his identity remains a secret due to the sensitive nature 
of the task the conference is performing. 

In both conferences there exist two handles with the 
same label (and the same mnemonic value), yet used 
by different subjects and unique to their respective dis- 
corns. Additionally, as time goes on and as duties rotate, 
it is easy to change the identity of CHAIRPERSON to 
another member. 

In addition, Professor Bert Basic may be a member 
of the EXAM conference with the handle “BERT,” and 
also a member of the REFEREE conference with the 
anonymous handle “REFEREE-3.” 

3.7 Grading Projects 

A typical problem is that of a professor who assigns a 
programming project to students that is due by a spec- 
ified date. One of the problems is how the students 
can submit their program code in a secure way, with- 
out other students having access to it, but allowing the 
graders easy access. Currently, in the UNIX environ- 
ments in common use in academia, the following are 
some of the methods used for on-line submission. 

A “security through obscurity” approach where the 
graders allow everyone execute and write access to 
an individual directory created for each student in 
the graders’ own directory tree. The graders keep 
the’ names of the specific directories hidden from 
everyone but their respective students. By allowing 
execute access but not read access, it is unlikely 
that someone will stumble upon the name (but not 
impossible). 

The graders have each student create a special di- 
rectory in the student’s home directory. The sys- 
tem administration then creates a special protec- 
tion group to which the only members are the 

7 “Floor-passing” is a groupware mechanism whereby control 
of some application can be passed from user to user. 

graders, and then changes the group ID of each 
student’s special directory to the new group. The 
student must then allow group access to the di- 
rectory. The student may then place files in the 
directory that can be read by the graders. 

3. A special “setuid” program is created that, when 
invoked by the students will copy their programs 
to a directory owned by the graders. 

All of these methods are unsatisfactory for a variety 
of reasons. They are potentially insecure, rely on the 
system administration, are cumbersome, or even poten- 
tially dangerous (in the case of using a setuid program). 

Using distributed compartments and handles, the 
graders could create a discom called “PROJECTS” to 
which only the graders have access. One child dis- 
corn per student could then be created in PROJECTS 
with each student a subject in their child discom with 
their own handle (e.g., “GREENWALD”). Each student 
would be allowed membership to their own discom, but 
would be prohibited from access to any other discom in 
PROJECTS. Students could then be given the neces- 
sary privileges to read and write to their own discoms 
during the submission period. 

Due to the creator property, the graders would au- 
tomatically be governors of discom PROJECTS. Due 
to the cordon property, the students would be prohib- 
ited from accessing each other’s discoms as long as the 
privileges were properly maintained. Students would 
not be allowed access above their own discom due to 
the ceiling property. Since the graders are governors of 
the PROJECTS discom, the demesne property allows 
them unrestricted access to all descendant discoms, and 
therefore the student’s discoms. When the submission 
period expires, the graders can simply revoke the stu- 
dents’ privileges to their discoms, and thereby prohibit 
late submissions. 

All of this would take place in a secure environment, 
and with no intervention required from the system ad- 
ministration. 

3.8 Paper Collaboration 

Two researchers at separate universities with sepa- 
rate system administrations might want to cooperate 
on the same paper. The researchers might want access 
to materials at each other’s locations (e.g., source code, 
word processing files, etc.). Some of the current ways 
to do this in a UNIX environment follow. 

1. Share accounts. This is generally considered a very 
Bad Thing. 

2. Use File Transfer Protocol (FTP) to periodically 
exchange files. The researchers would have to ar- 

83 



3. 

4. 

5. 

range this with their respective system administra- 
tions, and could not operate in real-time. 

3.10 Hierarchical Chain of Command Systems 

Use electronic mail to send versions of the files back Current resource sharing security policies are “flat,” 
and forth. If the files are binary, they would have not hierarchical, with one or more system administra- 
to be uuencoded and uudecoded (uuencoding is a tors in an administrative domain that each have the 
method for exchanging binary data over text sys- maximum privileges for their administrative domain. 
tems, such as electronic mail, that prohibit certain Organizations such as the military, government, and 
control characters). Again, they could not operate business are usually organized in hierarchies. Ideally, a 
in real-time. resource sharing security policy should reflect this fact. 

Petition the system administrations at the respec- 
tive sites for accounts for the foreign researchers, 
and the creation of a security group to which they 
could both belong. This will probably result in the 
“foreign” users having too many privileges. 

Use miscellaneous dangerous methods [because 
they give too many privileges to the collaborators) 
such as modifications to their “.rhosts” file in cer- 
tain network environments. This is effectively the 
same as sharing accounts. 

For example, an organization might be structured in 
a hierarchy with a CEO at the top of the hierarchy, then 
at the next level there might be two departments, Pay- 
roll and Accounts Payable each with their own depart- 
ment manager. Under the Payroll department might 
be a number of Payroll clerks, each with separate du- 
ties and privileges. For example, a Payroll clerk might 
have the duty to enter employee time-card data into the 
computer system that prints employee checks. If this 
Payroll clerk went on vacation, it would be desirable 
to assign another clerk to that role simply by changing 
handle activation privileges. In addition, in the event 
of the Payroll department manager leaving, a replace- 
ment manager can simply be given the handle activation 
rights for that position. These methods are not particularly satisfactory for 

obvious reasons. However, using distributed compart- 
ments and handles, one of the researchers could create a 
distributed compartment and make the other researcher 
a subject (or even a governor), with access using handles 
through a proxy server. Additionally, they could share 
resources from each other’s administrative domains. 

3.9 Location Tkansparency 

A traveling business person for a large corporation 
with many branch offices might need to have access 
to a “home” computer system while visiting the dif- 
ferent branches. If the computer systems at the various 
branches are separately administered, but connected by 
a computer network, this would require the business 
person to have multiple user-names and passwords, to 
access the home system via the network. 

One solution to this problem is to have a guest user- 
name at each location with the same user-name and 
password, restricted to the group of users who travel. 
Normally this is a bad practice, because historically, 
guest accounts have been abused. However, this account 
can be made with severely limited privileges, allowing 
access only to the client process that manages DCM 
over the network. 

The business person needs only to remember one 
user-name and password, and can use handles to gain 
access to the distributed compartments that are re- 
quired. 

4 CONCLUSIONS 

It is hoped that DCM is the beginning of the evo- 
lution of a new paradigm towards a system of resource 
allocation and access control that will better meet the 
needs of distributed computer systems and groupware 
applications for many different types of systems. A soft- 
ware implementation of this security policy would prob- 
ably help to further refine these ideas. 

There have been objections to this security policy 
(usually from system administrators) on the grounds 
that it would allow unscrupulous users to give their re- 
sources to any number of other users, leading to abuse 
of computer system resources. However, this situation 
already exists in current operating systems (for exam- 
ple, it is unfortunately common for users to share their 
accounts with others by giving them their user-names 
and passwords). I feel that in an implementation of this 
security policy, better control over resources is possible, 
since it would be relatively easy for an individual user 
to give others highly controlled access to resources in 
the form of discoms without compromising the security 
of the existing systems. In other words, it is possible 
to limit the rights of users, within the context of DCM, 
so that in a worst case scenario (such as an unscrupu- 
lous governor) 110 damage can be done to the systems 
outside of the empire to which that user belongs. 

There are many results that have emerged from this 

84 



research that show how the problem statement has been 
solved. Some results from the research follow. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

Handles do not have to exist for users alone. Any 
entity that needs to access or modify discom ob- 
jects can have an associated subject and handle. 
Daemons, data transformations, probes, processes, 
etc., can be accommodated by the security policy. 

This security policy does not have to be centralized 
(and should not be). It can be implemented in a 
distributed fashion, using classic client-server tech- 
niques, object-oriented techniques such as CORBA 
[ll], etc. 

Security that is compartmentalized and multilevel 
is possible. Each subject could have associated 
with it a group of discoms of which it is a mem- 
ber. User-defined privileges would allow subject- 
object access to agree with many different security 
policies, with a different policy possible for each 
discom. For example, BLP could be implemented 
in one discom, while a less restrictive version of it 
could be implemented in another. This gives the 
advantage of containment within a discom in the 
event of a problem with a new security policy. 

Since this security policy is distributed, fault tol- 
erance can be added by using replicated data base 
methods. This should be particularly easy to im- 
plement (see the usage example in the previous 
chapter). 

A particular discom can span multiple system ad- 
ministrations if the objects in that discom are com- 
posed of resources from those system administra- 
tions. 

The initial governors of an empire would probably 
come from the users who provide resources from 
their particular system administrations in order to 
create their empire discom. 

An administrative domain can participate in more 
than one empire. 

Objects can be contained by a set of administra- 
tive domains (i.e., objects can span administrative 
domains). 

Discoms can be contained by a set of administrative 
domains. 

Empires can be contained by a set of administrative 
domains. 

While network authentication and privacy is not a 
part of the security policy, it should be relatively 
easy to incorporate encryption methods and digi- 
tal signatures that can be used for communications 
and for mass storage systems. 

12. Perhaps the most important point of all is that this 
system frees users from a large amount of depen- 
dence on various administrative domains, while si- 
multaneously freeing the various system adminis- 
trations from many tedious tasks. I believe that 
this point will become increasingly important as 
distributed systems continue to multiply. 

Acknowledgments 

I would like to acknowledge the contributions of 
Ira S. Moskowitz, John McLean, Myong Kang, Bruce 
Montrose, Catherine Meadows, Laura Corriss, Paul F. 
Syverson, and all the attendees of NSPW96 that made 
it such a memorable and outstanding workshop. 

References 

PI 

PI 

131 

[41 

PI 

Fl 

PI 

t81 

PI 

M. Bach. The Design of the UNIX Operating System. 
Prentice-Ha& Inc., Englewood Cliffs, New Jersey, 1986. 
D. Bell and L. LaPadula. Secure computer system: 
Unified exposition and multics interpretation. Techni- 
cal Report MTR-2997, The MITRE Corporation, Bed- 
ford, Massachusetts, March 1976. Available from the 
National Technical Information Service as report num- 
ber: AD A023 588. 
G. Benson, I. Akyildiz, and W. Appelbe. A formal 
protection model of security in centralized, parallel, and 
distributed systems. ACM Transactions on Computer 
Systems, 8(3):183-213, August 1990. 
D. Denning. A lattice model of secure information 
flow. Communications of the ACM, 19(5):236-243, May 
1976. 
Department of Defense. Department of defense trusted 
computer system evaluation criteria. Technical Report 
DOD 5200.28-STD, Department of Defense, Washing- 
ton, D.C., December 1985. 
D. Downs, J. Rub, K. Kung, and C. Jordan. Issues in 
discretionary access control. In Proceedings of the 1985 
Symposium on Security and Privacy, pages 208-218, 
Oakland, California, 1985. 
S. Garfinkel and G. Spafford. Practical UNIX Security. 
O’Reilly and Associates, Inc., Sebastopol, California, 
1991. 
S. GreenwaId. The Distributed Compartment Model for 
Resource Management and Access Control. Ph.D. Dis- 
sertation, University of Florida, Gainesville, Florida, 
August 1994. 
S. Greenwald and R. Newman-Wolfe. The dis- 
tributed compartment model for resource manage- 
ment and access control. Technical Report TR94- 
035, Department of Computer & Information Sci- 
ences, University of Florida, Gainesville, Florida 
32611, October 1994. Available via anonymous ftp 
from site ftp.cis.ufl.edu in cis/tech-reports/tr94 as 
file tr94-035.ps.Z, or via the World Wide Web with 
“http://www.cis.ufl.edu/cis/tech-reports” as the uni- 
form resource locator. 

85 



[lo] A. Hanushevsky. Security in the IEEE mass storage 
system reference model. In Twelfth IEEE Symposium 

on Mass Storage Systems, pages 67-77, Monterey, CaI- 
ifornia, April 1993. 

[ll] A. Hutt, Editor. Common facilities architecture 
draft 4.0. Technical report, Object Management 
Group, Framingham Corporation Center, 492 Old 
Connecticut Path, Framingham, Massachusetts 01701- 
4568, January 1995. Draft 4.0 of the Com- 
mon Facilities Task Force Architecture document. 

Also available on the World Wide Web at URL: 
http://www.omg.org/docs/1995/95-01-02.ps. 

[12] B. Lampson. A note on the confinement problem. 
Communications of the ACM, 16(10):613-615, October 
1973. 

[13] C. Landwehr and C. Heitmeyer. Military message sys- 
tems: Requirements and security model. Memorandum 

Report 4925, Naval Research Laboratory, Washington, 

D.C., September 1982. 

[14] C. Landwehr, C. Heitmeyer, and J. McLean. A security 
model for military message systems. A CM Transactions 

on Computer Systems, 2(3):198-222, August 1984. 

[15] J. McLean. A comment on the “basic security theorem” 

of Bell and LaPadula. Information Processing Letters, 
20(2):67-70, February 1985. 

[16] S. MuIIender, G. van Rossum, A. Tanenbaum, R. van 
Renesse, and H. van Staveren. Amoeba a distributed 

operating system for the 1990s. Computer, pages 44-53, 
May 1990. 

[17] National Computer Security Center. A guide to un- 

derstanding covert channel analysis of trusted systems. 
Technical Report NCSC-TG-030 Version-l, National 
Security Agency, Fort George G. Meade, Maryland, 
1993. 

[18] R. Newman-Wolfe, C. Ramirez, H. Pelimuhandiram, 

M. Montes, M. Webb, and D. Wilson. A brief overview 
of the DCS distributed conferencing system. In Proceed- 

ings of the USENIX 1991 Summer Useniz Conference, 
pages 437-452, Nashville, Tennessee, June 1991. 

[19] C. Pfleeger. Security in Computing. Prentice-IIaIl, Inc., 

Englewood Cliffs, New Jersey, 1989. 

[20] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. 

Role-based access control: A multi-dimensional view. 
In Tenth Annual Computer Security Applications Con- 

ference, pages 54-62, Orlando, Florida, December 1994. 

[21] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. 
Role-based access control models. Computer, 29(2):38- 
47, February 1996. 

[22] M. Satyanarayanan. Integrating security in a large dis- 
tributed system. ACM Transactions on Computer Sys- 
tems, 7(3):247-280, August 1989. 

[23] J. SchiUer. Secure distributed computing. Scientific 
American, pages 72-76, November 1994. 

[24] J. Steiner, C. Neuman, and J. SchiIler. Kerberos: An 
authentication service for open network systems. In 
Proceedings of the 1988 Winter USENIX Conference, 
pages 191-202, Dallas, Texas, February 1988. 

[25] S. Stepney and S. Lord. Formal specification of an 
access control system. Software-Practice and Experi- 
ence, 17(9):575-593, September 1987. 

[26] B. Tretick, M. Cornwell, C. Landwehr, R. Jacob, and 
J. Tschohl. User’s manual for the secure military mes- 

sage system M2 prototype. Memorandum Report 5757, 
Naval Research Laboratory, Washington, D.C., March 
1986. 

[27] S. Wilson, N. Goodwin, E. Bersoff, and I. Thomas N.M. 
Military message experiment-vol. I executive sum- 

mary. Technical Report NRL Rep. 4454, Naval Re- 
search Laboratory, Washington, D.C., March 1982. 
Available from the National Technical Information Ser- 
vice as report number: AD All2 789. 

[28] J. Woodward. Applications for multilevel secure op- 

erating systems. In Proceedings of the AFIPS 1979 
National Computer Conference, volume 48, pages 319- 
328, Reston, Virginia, June 4-7 1979. 

86 


