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Abstract 

We present efficient algorithms for solving the prob- 
lem of computing an optimal penetration (a ray 
or a line segment) among weighted regions in 2-D 
and 3-D spaces. This problem finds applications in 
several areas, such as radiation therapy, geological 
exploration, and environmental engineering. Our 
algorithms are based on a combination of geomet- 
ric techniques and optimization methods. Our geo- 
metric analysis shows that the optimal penetration 
problem in d-D (d = 2,3) can be reduced to solving 
O(n2td-l)) instances of certain special types of non- 
linear optimization problems, where n is the total 
number of vertices of the regions. We also give 
implementation results of our 2-D algorithms. 

1 Introduction 

In this paper, we study the following geometric 
optimization problem (called optimal penetration 
problem): Given a subdivision R with a total of 
n vertices in 2-D or 3-D space, divided in m re- 
gions R..i, i = 1,2,. . . , m, find a ray L such that L 
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originates from outside R and intersects a specified 
target region ‘I’ E { Ri , R2, . . . , &} and such that 
the weighted sum 

S(L) = c wi *f&q 
Lfmf4 

is minimized, where fi(L) is a function associated 
with the pair (&, L) and wi is a positive weight 
factor associated with &. We call such a ray L a 
penetration. The regions &, i = 1,2,. . . ,m, are 
all simple polygons (resp., polyhedrons) in the 2-D 
(resp., 3-D) space, and the weights of T and the 
complement E of R are zero (R is the free space 
outside R). Let RL denote the set of all regions of R 
intersected by a ray L and let di denote the length 
of L within Ri E RL. (The lengths of line segments 
are all based on the L2 metric.) We consider two 
versions of this problem. For the first version (Pl), 
fi(L) is either di or zero, depending on whether 
& is passed by L before or after L intersects the 
target region T (i.e., this models the case in which 
the ray stops when it hits the target). For the 
second version (P2), fi(L) = di for all l& E RL. 
See Figure 1 for an example. 

The problem we study finds applications in sev- 
eral areas such as radiation therapy, geological ex- 
ploration, and environmental engineering. For ex- 
ample, in radiation therapy, the subdivision R may 
represent a portion of a human body while the re- 
gions of R may represent various organs within the 
human body. Different organs may have differ- 
ent characteristics. A region containing a tumor 
may correspond to the target region and should be 
treated by strong radiation, while healthy organs 
should suffer minimum exposure to radiation (var- 
ious organs may have different degrees of tolerance 
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(a) @) 

Figure 1: Illustrating the problems: (a) L “probes” 
(hits) the target region Ra (Pl); (b) L penetrates 

R3 W- 

to radiation, as indicated by their weight factors). 
Problem Pl can be used to model the process of de- 
livering radiation by direct. implantation of a radi- 
ation source into the target [13] (brunchytherapy), 
while problem P2 is closely related to the use of 
a penetrating radiation ray (radiation beam) di- 
rected at the target from an external source [13] 
(teletherupy). Problem Pl also models the process 
of finding an optimal “probe” to a specified region 
T in the setting of R. Such a problem may appear 
in applications such as mineral exploration. 

In radiation teletherapy, usually, three param- 
eters need to be optimized: beam fluence distri- 
bution (the dose distribution to be delivered to the 
patient), beam energy (the radiation field that pro- 
vides the dose distribution), and beam directions. 
Most efforts in the field have concentrated on op- 
timizing the first two parameters for prespecified 
beam directions. In general, global optimization 
methods and probabilistic methods (e.g., simulated 
annealing, genetic algorithms) are used to compute 
the (approximate) optimal values for these two pa- 
rameters. However, as pointed out in [18], in prac- 
tice the optimal choice of beam directions is one 
of the most difficult problems of medical treatment 
optimization, and there should be as great an ef- 
fort expended on optimizing beam directions [12]. 
While there are quite a few 2-D and 3-D results 
[5, 6, 7, 8, 9, 10, 11, 12, 13, 18, 19, 22, 23, 24, 26, 
29, 34, 351 on treatment optimization with respect 
to one of the first two parameters, or even both, 

optimizing the beam directions has remained an 
elusive goal. The few papers which consider the 
optimization of the beam directions discretize the 
problem and use brute force methods (i.e., trying 
a large number of combinations of directions and 
selecting the best). In [13], a discretized ray space 

( i.e., a rectangular grid of points) and a two di- 
mensional function (the 2-D case), defined on the 
grid of points in the discretized ray space, are used 
to obtain an approximate optimal beam direction. 
A discretized model is also used in [18] to opti- 
mize with respect to multiple criteria, including 
the beam direction. Clearly, such approaches do 
not guarantee yielding a true optimal solution. 

In [32], the authors use a different approach for 
finding all feasible beam directions for a special 3- 
D case of problem P2. For this case, the target 
region is modeled as a 3-D ball, the central axis 
of each beam is required to go through the center 
of the target region ball, and the healthy organs 
under consideration are all treated as obstacles to 
the radiation beams. Their approach is based on 
computational geometry techniques developed for 
robot motion planning problems [21] and uses topo- 
logical sweep [17] to compute the arrangement of 
O(n) great circle arcs on a 3-D sphere. 

In computational geometry, there are results 
in the context of computing approximate geodesic 
shortest paths among weighted regions [l, 20, 25, 
271 that are somewhat related to the optimal pen- 
etration problems. Although the geodesic shortest 
path problem and our optimal penetration prob- 
lem both deal with weighted regions, there are sev- 
eral different aspects between these problems: (1) 
while a geodesic shortest path connects two spec- 
ified points, an optimal penetration may connect 
any two points in two specified regions, and (2) 
while a geodesic shortest path is in general a polyg- 
onal line, a penetration can only be a ray or a 
line segment. Due to such differences, the tech- 
niques that we use in solving the optimal pene- 
tration problem are quite different from those of 
[l, 20, 25, 271. 

Our work represents a step towards solving the 
optimal beam direction problem (the general beam 
direction problem may involve multiple beams and 
may be tangled with other constraints and opti- 
mization parameters such as dose distribution and 
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beam energy). 

Our main results are as follows. We solve both 
Pl and P2 in 2-D and 3-D spaces. We show that 
the ray space for the 2-D (resp., 3-D) cases can be 
partitioned into a set SC of O(k) cells, where k is 
O(n2) (resp., O(n4)) in the worst case, such that 
the function S(L) to be minimized has a similar 
description for all the rays L corresponding to any 
such cell. To obtain the cells in the ray space, we 
transform Pl and P2 to certain visibility problems. 
For each cell C E SC, we find a ray L that opti- 
mizes S(L) over C, and thus the sought solution 
is a ray that gives the smallest value for S(L) over 
all cells in SC. We present output-sensitive algo- 
rithms for solving Pl and P2 in 2-D, which take 
O(k) time and O(n) space to generate the cells of 
SC, where k is O(n2) in the worst case. Further, we 
present an output-sensitive 0( (n3 + Ic)log n) time 
algorithm for constructing the cells of SC for Pl 
and P2 in 3-D, where !i~ is O(n4) in the worst case. 
The function to be optimized over each cell, which 
in general is non-linear and non-convex, has a quite 
complicated form. Hence we use an optimization 
software to compute the optimal solution for each 
cell. We have implemented our O(n2) time, O(n) 
space algorithms for the 2-D case in LEDA, and 
provide an analysis of the overall performance of 
the algorithms. 

2 The 2-D Case 

In this section, we present our algorithms for solv- 
ing problems Pl and P2 in 2-D. We divide each 
problem into two subproblems: (1) partition the 
ray space into a set SC of cells, such that the func- 
tion S(L) to be minimized has a similar description 
for all rays corresponding to any such cell, and (2) 
for each cell C E SC, find a ray that optimizes S(L) 
over C. 

Since our approaches are based on geometric 
techniques such as the visibility complex, topolog- 
ical walk, and topological sweep, we first review 
some useful structures. 

Let H = {11,/z,. . . , In} be a set of n straight 
lines on a plane. The lines in H partition the plane 
into a subdivision, called the arrangement A(H) of 
H, that consists of a set of convex regions (cells), 
each bounded by some line segments of the lines in 

H. In general, A(H) consists of O(n2) cells, edges 
and vertices. Edelsbrunner and Guibas [17] intro- 
duced a technique called topological sweep that al- 
lows to construct and report A(H) in O(n2) time 
and O(n) space, by sweeping the plane with an 
unbounded simple curve that is monotone with re- 
spect to the y-axis and that intersects each line 
of H exactly once. The technique was later ex- 
tended to 3-D by Anagnostou, Guibas and Polime- 
nis [2]. Asano, Guibas and Tokuyama [3] developed 
another approach, called topological walk, for con- 
structing and reporting A(H) in O(n2) time and 
O(n) space. Essentially, a topological walk tra- 
verses A(H) in a depth-first search fashion [3, 41. 

For a geometric scene with “opaque” objects, 
the visibility computation involves determining the 
objects seen along certain directions of vision (i.e., 
rays). Pocchiola and Vegter [28] introduced a data 
structure, called visibility complex, representing col- 
lections of line segments (or rays) in the free space 
of the scene that have the same visibility proper- 
ties. They gave an output-sensitive O(n log n + k) 
time and O(k) space algorithm, where k is the com- 
plexity of the visibility complex and can be O(n2) 
in the worst case, to construct the visibility com- 
plex of a scene consisting of n convex curved ob- 
jects. Rivikre [31] presented an output-sensitive 
O(n log n+k) time and O(n) space algorithm, where 
k = O(n2) in the worst case, that optimally con- 
structs the visibility complex of a polygonal scene 
with a total of n vertices. 

Let P denote the 2-D plane and consider the 
duality transform [30] that maps a line I : y = 
mx +p on P onto the point Z* : (m,p) on the dual 
plane p. Using this duality, the set of lines passing 
through a point q : (a, b) on P corresponds to the 
line q* : y = --ax + b on P [30]. 

For a ray L on P, we define a point order <L 
on L such that, for two distinct points p and q on 
L, p <L q if and only if (iff) the ray originating at 
p and passing through q has the same direction as 
L. Let Ls be the set of line segments of the sub- 
division R intersected by L. We say Ls is sorted if 
the sequence of segments in Ls is consistent with 
the point order of their intersection points with L 
along L (i.e., let pi = L n si and pj = L n sj for 
two segments si and sj in Ls; then pi <L pj iff si 
appears in Ls before sj). When L changes (rota- 
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tion and/or translation), the segment sequence in 
Ls changes only when a segment is removed from 
Ls or a new segment is inserted into Ls. In these 
situations, we have an event that updates Ls. As 
long as no event occurs while changing L, we say 
that the function S(L) has a similar description 
(the exact description of S(L) is given later). 

Our algorithms for problems Pl and P2 gener- 
ate collections of rays such that for each ray collec- 
tion (cell), S(L) h as a similar description. This is 
achieved by efficiently updating the Ls sequences 
to produce the ray collections one by one. 

2.1 A Visibility Approach 

In this subsection, we show that the computation of 
the cells in the ray space (on each of the cells S(L) 
has a similar description) can be done by trans- 
forming Pl and P2 into visibility problems. Since 
the transformations for Pl and P2 are similar, we 
mainly describe the transformation for P2. 

Let P be the 2-D plane containing the subdi- 
vision R and let SR be the set of line segments 
bounding {RI, &, . . . ,&}. Let Lc be the set of 
rays that originate in the free space ?? outside R, 
hit the target region 57, and intersect a same subset 
Ls of line segments of R such that the segments in 
Ls are in the same point order along every L E Lc. 

Observation 1 The union of rays in LC forms an 
hourglass in the plane P and a convex cell in its 
dual plane P, such that each line segment on the 
boundary of the hourglass (resp., each vertex of the 
cell) is defined by a line passing through two ver- 
tices of the subdivision R. 

For a segment s E Ls, let sl and s, be the left 
and right endpoints of s, and 1, be the line contain- 
ing s. On plane P, we replace each segment s E Ls 
by two semilines on 1, (see Figure 2 (a) and (b)), 
such that the first semiline has its right endpoint 
at .sl and the second one has its left endpoint at s, 
(i.e., removing s from 1, gives the two semilines). 
Let L’, denote the set of semilines defined by Ls in 
this manner. The hourglass bounding LC remains 
unchanged after this transformation, but Lc now 
corresponds to a set of rays with the same back- 
ward and forward views. That is, if we assume 
that R is enclosed by a large circle CR and con- 
sider (SR \ Ls) U L’, as opaque objects, then each 

(a) 09 

Figure 2: (a) An hourglass (bold dashed line) cor- 
responding to the set of rays intersecting three line 
segments (bold), and (b) transformation to a visi- 
bility problem. 

ray L E LC originates on CR, goes through the 
free space of the hourglass, and ends on CR (we 
may refer t0 CR as an object at infinity). using 

the duality transformation, the hourglass for Lc 
on P is mapped onto a convex cell C on p [31]. 

Observation 2 The cell C corresponds to a face 
of the visibility complex of (SR \ Ls) U L’, with CR 
as forward and backward views. 

Similarly, for problem Pl, a cell C on p cor- 
responds to a face of the visibility complex which 
has CR as backward view and a line segment on 
the target region as forward view. 

For a cell C and a ray L E C, let L inter- 
sect the region set RL = {RI, Rz, . . . , Rk-I}, and 
let LS = {s~,sz,..., sk} such that Ls is sorted in 
the point order. For problem P2, we have S(L) = 
Cf:; wi * di, wh ere di is the length of L inside & 
(i.e., the Euclidean distance along L between the 
two consecutive segments si and si+l of Ls that 
are on the boundary of Ri). Clearly, the distance 
di depends on the descriptions of si, si+l, and the 
ray L. Note that the descriptions of si and si+l 
are fixed while that of L is not. Hence, si and si+l 
contribute only to the constant coefficients of the 
expression for di. If we parameterize L by, say, 
its slope m and intercept p of the y-axis, then m 
and p are the only variables in the expression of 
di. Thus S(L) has the same expression (or similar 
description) on all rays of C. 

Therefore, our algorithms for solving Pl and 
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P2 have the following outline: (1) Generate a cell 
C and compute Ls, where L is any ray in C; (2) 
optimize S(L) over C (i.e, find L E C such that 
S(L) is minimized); (3) compute a new cell while 
updating Ls accordingly, and go to step (2), until 
we are done. 

The next two subsections show how to gener- 
ate the cells while efficiently maintaining Ls, and 
discuss a few different ways for generating the in- 
stances of the special optimization problem. 

2.2 Computing the Cells of SC 

Let SC denote the set of cells in the ray space F 
such that for each cell C E SC, S(L) has a similar 
description over C, and the rays in C all intersect 
the target region T. Let ST denote the set of seg- 
ments on the boundary of T. 

The visibility approach introduced in Subsec- 
tion 2.1 appears to suggest that, for each cell C E 
SC, we need to identify its corresponding segment 
set Ls and perform a visibility transformation to 
obtain L’,, before being able to compute C. But 
that would not yield an efficient approach for com- 
puting the cells of SC. Instead, observe that, es- 
sentially, only the endpoints of the line segments in 
5’~ are actually involved in the visibility transfor- 
mation. Thus, to compute SC for problem PI, for 
each segment s E SR \ ST, we discard the interior 
of s and treat its endpoints .sl and sT as point ob- 
stacles. We further consider each line segment in 
ST as a distinct obstacle in the transformed scene. 
Then, we can obtain SC for Pl by computing the 
faces F of the visibility complex of the transformed 
scene that have the object at infinity as the back- 
ward view and some line segment in ST as the for- 
ward view. To compute SC for P2, we treat the 
endpoints of all segments s E SR as point obstacles 
and compute the faces F of the visibility complex 
of the scene that have the object at infinity as both 
the backward and forward views. We can then con- 
sider each face f E F such that every point p E f 
dualizes to a line that penetrates the target region 
T. 

The cells of SC for both Pl and P2 can be ob- 
tained in O(nlogn+Ic) time and O(n) space, where 
k = O(n2) in the worst case, by using Riviere’s vis- 
ibility complex algorithm [31]. Observe that we 
need not maintain explicitly the whole visibility 

complex of the transformed scene. Instead, we only 
need to produce the faces of the complex as they 
are used by our computation. Once the computa- 
tion on a face is done, that face is discarded. 

There are other ways to construct SC, and in 
fact we choose to use one of these approaches in the 
implementation of our algorithms. That approach 
is based on the following observation. 

Observation 3 The cells of SC are a subset of the 
cells of the arrangement for the lines on P that are 
the duals of the vertices of the subdivision R. 

Based on the observation above, we dualize the 
vertices of R and obtain a set of n lines H = 

{W2,.~VhJ on P. Let A(H) denote the arrange- 
ment of these lines. It is well known that each cell 
of A(H) corresponds to a set of lines that intersect 
a same sequence of line segments of R on P. Thus, 
we can use topological walk [3, 41 to compute the 
cells of A(H) and to identify those cells C such that 
each point p E C dualizes to a line that penetrates 
T. A similar result can also be obtained by using 
topological sweep [ 171. 

The algorithms for constructing the visibility 
complex, as well as the ones based on topological 
walk and topological sweep, allow us to maintain 
the sequence Ls (and its point order) of intersected 
segments in amortized constant time per cell over 
all cells in A(H) [3, 17, 311. Then, we have the 
following lemma. 

Lemma 1 The set SC of cells for problems Pi and 
P2 in 2-D can be computed in O(n2) time and O(n) 
space. The sequences of line segments of R inter- 
sected by a line L in each cell C E SC can also 
be computed in O(n2) time and O(n) space, for all 
cells of SC. 

2.3 Generating Optimization Problem 
Instances 

In this subsection, we present and analyze our al- 
gorithm for generating the function S(L) that is to 
be minimized over each cell C E SC, for both Pl 
and P2. 

Let RL = (Rl,Rz,. . . ,Rk-l} and Ls = (si, 

sz,---, sk}, such that Ls is sorted in the point or- 
der and the segments si and si+r of Ls are on the 
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boundary of Ri, for i = 1,2,. . . , k - 1. For P2, the 
function S(L) to be minimized over a cell C has the 
form S(L) = Ct;; wi * di, where di is the length of 
L inside &. Thus, to compute S(L) on C, we need 
to compute the distances di, i = 1,2,. . . , k- 1, that 
change only when L E C changes. Our goal is to 
obtain an expression for S(L) whose form is as sim- 
ple as possible, so that its computation is efficient 
and stable. Without loss of generality (WLOG), 
we assume that R is in the first quadrant of the 
plane P. 

A straightforward approach to compute di is to 
parameterize L by its slope m and intercept p of 
the y-axis on the plane P. When L is specified by 
equation y = mz + p, these two parameters define 
L’s dual point (m,p) E C on P, and the feasible 
region for S(L) is exactly the convex cell C. The 
Euclidean distance between the two consecutive in- 
tersection points of L with the boundary of I&, ly- 
ing on segments si and .si+r of Ls, is di (see Figure 
1). Thus, we obtain the following form for S(L): 

L--l 

s(L) = diGi?‘z Wi(Xi+l - Xi/ 
i=l 

After computing the form for xi, we have: 

k-l 

where xi (resp., xi+r) is the x-coordinate of the 
intersection point vi (resp., ui+r) of L and si (resp., 
si+r), and mi and pi (resp., mi+l and pi+r) are the 
slope and intercept of the function defining the line 

Li bp., L,+, >. 
One drawback of this form is that the compu- 

tation of S(L) may not be very stable in certain 
situations. The instability may occur when the cell 
C contains a line L that is (almost) vertical. Thus, 
if the sought optimal line lies in a narrow sector 
that contains such a line L, it may be difficult to 
capture the line correctly by common optimization 
software, due to numerical errors. Another draw- 
back of this form is that it applies the absolute- 
value function to each term of the summation, since 
the sign of each term may change over the feasible 
domain C. Therefore, function S(L) in this form 
is in general not smooth and may not be suitable 

for optimization techniques and software that ex- 
pect smooth objective functions. Certainly, there 
are optimization approaches that also accommo- 
date non-smooth functions, but it is likely to yield 
a lesser implementation performance. The main 
advantage of this expression is the simple form for 
S(L) (i.e., each term in the summation is a linear 
fractional). 

The following lemma suggests a way to remove 
the absolute-value function in S(L). 

Lemma 2 Let Listc be the list x1, x2,. . . , xk of 
the x-coordinates of the k intersection points of L 
and Ls in the point order. Then, Listc is either an 
increasing list or a decreasing list, and the mono- 
tonicity changes when L sweeps through a vertical 
line. 

Note that the points of the dual plane p use m 
and p as their two coordinates. Based on Lemma 
2, splitting the cell C on p along the dual curve of 
the vertical lines on P yields at most two convex 
subregions Cl and C2, and in each subregion C,, 
r = 1,2, the slopes of all penetration lines have 
the same sign. Thus, in each such subregion, the 
absolute-value function can be removed from the 
corresponding objective function, and the new form 
of S(L) is as follows: 

where ai and bi are constants that depend on wi-1, 
wi, and pi. 

As the reader may have observed, the dual- 
ity transformation proposed above does not dualize 
vertical lines. However, this cell splitting is implic- 
itly done by the dualization process (i.e., if the set 
of lines on P for a given segment sequence Ls in- 
cludes vertical lines, then its dual is a pair of cells 
in P). Let one such cell be denoted as Cv, and 
observe that there can be at most O(n) such cells 
on F (since the total number of edges of the un- 
bounded cells of A(H) is O(n) [33]). To resolve the 
instability issue associated with vertical lines, we 
identify each such cell Cv on P, as it is generated 
by topological walk. Starting with’ Cv, we next 
identify the vertices of the corresponding hourglass 
on P (this can be easily done in O(n2) time over all 
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such cells Cv). (Note that Cv does not maintain 
sufficient information for restoring its correspond- 
ing hourglass since such an hourglass is associated 
with two unbounded cells.) Finally, we use a dif- 
ferent dualization, obtained from the one above by 
exchanging the labels of the coordinate axes of P 
(i.e., rotating the coordinate system by 90 degrees), 
to compute S(L) and the feasible domain C. 

This approach retains the simplicity of the form 
of S(L) as given above (i.e., the terms in the sum- 
mation are all linear fractionals), and gains stabil- 
ity in computing S(L) as well. Also, there is no 
need to use the absolute-value function in the ex- 
pression of S(L). This is possible since the sign 
of S(L) and the sign of each term in S(L) do not 
change over C. Thus, the sign of each term in S(L) 
for the first encountered cell C by topological walk 
can be computed in advance and “hidden” in the 
values of the constant coefficients of the numerator. 

Before solving the instance of the optimization 
problem on each cell C E SC, we need to compute 
the feasible domain and the constant coefficients 
of the terms in S(L). As stated earlier, these co- 
efficients depend only on the segments in Ls and 
the weights of the regions in RL. When changing 
from one problem instance to another (i.e., going 
from one cell of SC to the next), a new S(L) and 
a new feasible domain need to be computed. The 
new domain can be produced by (say) topological 
walk. Further, there is no need to recompute the 
entire set of constant coefficients of the new S(L): 
it suffices to update the previous set, by removing 
the coefficients for the terms that no longer appear 
in S(L) and inserting the ones for the new terms of 
S(L). As stated earlier, this updating can be done 
in amortized constant time per cell of SC. 

3 The 3-D Case 

In this section, we sketch our algorithms for prob- 
lems Pl and P2 in 3-D. As for the 2-D cases, we 
divide each problem into two subproblems: Find 
the cell set SC and, for each cell C E SC, find the 
ray that optimizes S(L) over C, maintaining the 
ray that gives the best value for S(L) over all cells 
GE SC. 

Consider a line L in 3-D. L can be described 
by four parameters: the two spherical coordinates 

(0,+) of the direction vector of L and the projection 
(u, u) onto the plane orthogonal to L and contain- 
ing the origin [16]. Hence, a cell C E SC is a point 
set in the 4-D dual space. 

To build SC, we use a visibility approach sim- 
ilar to that for the 2-D cases. Let SR be the set 
of l-faces (i.e., edges) of the polyhedral subdivision 
R and ST be the set of l-faces of the target region 
T in 3-D. To generate SC for Pl, we consider the 
line segments in SR \ ST (i.e., discard the interior 
of the 3-faces and 2-faces of {RI, R2, . . . , &}) and 
the 2-faces of the target region 5” as the objects of 
the scene, and compute the faces F of the 3-D visi- 
bility complex that have as the backward view the 
object at infinity (a large sphere enclosing R) and 
as the forward view some face of T. To generate 
SC for P2, we consider all line segments in SR as 
the objects of the scene, and compute the faces F 
of the visibility complex that have the object at in- 
finity as both the backward and forward views. We 
further consider each face f E F such that every 
point p E f dualizes to a line that penetrates the 
target region T. 

For both Pl and P2, SC can be computed in 
an output-sensitive 0( (n3 + k)log n) time, where k 
is the size of the visibility complex and is between 
Q(n) and O(n4), by using the algorithm in [lS]. We 
are not aware of any topological walk or topological 
sweep algorithm for the 4-D case, although some 
results were given for the 3-D case. 

The parameterization of L as given above (i.e., 
the quadruple (u, z1,8,4)) may result in a rather 
complicated expression for the terms in S(L). To 
obtain a simple expression for each term in S(L), 
we choose to use a slightly different parameteriza- 
tion of L. Let L, and L, be the projections of L 
onto the planes z = 0 and y = 0, respectively. We 
describe L by the quadruple (u, ~,8, +), where u 
and v are the coordinates of the intersection point 
of L with the plane z = 0, and B and I#J are the 
slopes of L, and L,. Thus, we obtain the following 
form for S(L): 

S(L) = ~izq~wi,zi+l - Zi(, 
i=l 

where the form for xi is 

ai - biu - v 
xi = 

d- ~$3 - ei 
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and ai, bi, ci and ei are constants that depend on 
the planes supporting the facets (2-faces) of the 3- 
D regions that are intersected by L. 

As for the 2-D case, instability and sign changes 
of the terms in S(L) may occur when the feasible 
domain contains lines that are in planes parallel to 
the plane z = 0. To fix these problems, we proceed 
like in the 2-D case: identify the corresponding 3-D 
hourglass and use a different dualization. Then, we 
have the following lemma. 

Lemma 3 The set SC of cells for problems Pl and 
P2 in 3-D and the sequences of Z-faces of R inter- 
sected by a line L in each cell C E SC can be com- 
puted in O(n410gn) time in the worst case, for all 
cells C E SC. 

4 Experimental Results 

In this section, we give some preliminary experi- 
mental results for solving problems Pl and P2 in 
2-D. We implemented our 2-D algorithms in LEDA 
and ran the experiments on a SUN SPARC 5 com- 
puter. Since real data were not available to us at 
the time we did the experiments, we generated pla- 
nar maps as the subdivision R, using the LEDA 
GraphWin class. In the full paper, we hope to be 
able to include experiments based on real data sets 
from the field of radiation therapy. 

Our implementations use some robustness tech- 
niques, together with topological walk, to compute 
the cells of SC and to maintain Ls over SC. This 
helps our algorithms in achieving robustness and 
efficiency. Topological walk, as a key component of 
our algorithms, has been carefully implemented as 
a stand-alone procedure, and thus may be incorpo- 
rated into other applications (e.g., see [3, 141). One 
issue we encountered during the implementation 
was how to deal with numerical errors, which may 
cause some LEDA functions (e.g., test of intersec- 
tion of line segments, test of a point on a line, etc.) 
to return erroneous results. We overcome this by 
enhancing our data structures with additional in- 
formation for checking the correspondence between 
the computed values in the dual space (e.g., when 
topological walk computes the intersection point p 
of two lines) and their dual values in the original 
scene (e.g., the vertices of the scene that define the 
line dual to p). 

Figure 3: A subdivision R and the optimal rays for 
Pl (LI) and P2 (Lz). 

Another key component of our implementations 
is the software for optimizing S(L). To compute a 
ray .L that minimizes S(L) over a cell C E SC, we 
used a non-linear optimization software called CF- 
SQP [15], developed at the University of Maryland. 
CFSQP is a set of C functions, and we were able 
to build an interface between this software and our 
LEDA programs. 

We measure the following parameters of our al- 
gorithms: (1) the total number of vertices of the 
subdivision R; (2) the total number of iterations 
performed by CFSQP, for finding an optimal value 
of S(L) over all the cells of SC (an iteration cor- 
responds to the amount of computation performed 
by the software in order to advance from the cur- 
rent feasible point to the next one, thus giving a 
better value for S(L) inside the same cell); (3) the 
user time, as measured by the getrusage function. 

In the example of Figure 3, we use a subdivision 
R with twenty vertices, and show the ray L1 that 
optimizes Pl and the ray L:! that optimizes P2, as 
given by the output of our program. The boundary 
of the target region is in bold line and the target 
has associated a zero weight (all other weights are 
positive). 

Figure 4 presents a plot of the average, over 
multiple runs, of the user time (in seconds) ver- 
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sus the number of vertices of the subdivision R, 

for both Pl (continuous line) and P2 (dotted line). 
The plot in Figure 4 indicates that the running 
time of our implementation increases quadratically 
as the number of vertices increases, which is con- 
sistent with the theoretical analysis. 

Figure 5 depicts the average, over multiple runs, 
of the total number of iterations performed by the 
optimization software for finding the optimal solu- 
tions for Pl (continuous line) and P2 (dotted line) 
versus the number of vertices of R. The plot in 
Figure 5 seems to suggest that the contribution of 
the optimization software to the total running time 
is likely to decrease as the number of vertices of the 
subdivision R increases. 

One conclusion we draw from our experiments 
is that the number of iterations for finding an opti- 
mal ray over a cell has high variations from one cell 
to another, even when the feasible domain is topo- 
logically the same (e.g., a triangle). Another thing 
to notice is that the optimization software allows 
the user to specify the error tolerance in comput- 
ing the optimal solution. Hence, for example, when 
the target region is surrounded by critical healthy 
organs (and thus high precision is required), we can 
use a smaller error tolerance for computing the op- 
timum, paying the price of having a longer running 
time. But if there are only sparsely distributed crit- 
ical organs around the target, we can use a bigger 
error tolerance to reduce the running time. 
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