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Abstract

We prove that unless the Exponential Time Hypothesis (ETH) fails, deciding if there is a
homomorphism from graph G to graph H cannot be done in time |V (H)|o(|V (G)|). We also show
an exponential-time reduction from Graph Homomorphism to Subgraph Isomorphism. This
rules out (subject to ETH) a possibility of |V (H)|o(|V (H)|)-time algorithm deciding if graph G
is a subgraph of H . For both problems our lower bounds asymptotically match the running
time of brute-force algorithms trying all possible mappings of one graph into another. Thus,
our work closes the gap in the known complexity of these fundamental problems.

Moreover, as a consequence of our reductions conditional lower bounds follow for other
related problems such as Locally Injective Homomorphism, Graph Minors, Topological Graph
Minors, Minimum Distortion Embedding and Quadratic Assignment Problem.

1 Introduction

We establish tight conditional lower bounds on the complexity of several fundamental graph em-
bedding problems including Graph Homomorphism, Subgraph Isomorphism, Graph Minor,
Topological Graph Minor, and Minimum Distortion Embedding. For given undirected
graphs G and H, all these problems can be solved in time nO(n) by a brute-force algorithm that
tries all possible embeddings of G into H, where n is the number of vertices in G and H. We show
that unless the Exponential Time Hypothesis (ETH) fails, the running time nO(n) is unavoidable.
This resolves a number of open problems about graph embeddings that can be found in the liter-
ature. We start by defining embedding problems and providing for each of the problems a brief
overview of the related previous results.
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supported by National Science Centre of Poland, Grant Number UMO-2013/09/B/ST6/03136. Preliminary versions
of this work were presented at ICALP 2015 and SODA 2016.
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Graph Homomorphism A homomorphism G → H from an undirected graph G to an undi-
rected graph H is a mapping from the vertex set G to that of H such that the image of every
edge of G is an edge of H. In other words, there is G → H if and only if there exists a mapping
g : V (G) → V (H), such that for every edge uv ∈ E(G), we have g(u)g(v) ∈ E(H). Then the
Graph Homomorphism problem HOM(G,H) is defined as follows.

Graph Homomorphism

Input: Undirected graphs G and H.
Task: Decide whether there is a homomorphism G → H.

Many combinatorial structures in G, for example cliques, independent sets, and proper vertex
colorings, may be viewed as graph homomorphisms to a particular graph H, see the book of
Hell and Nešetřil [2004] for a thorough introduction to the topic. It is well-known that Coloring

is a special case of graph homomorphism. More precisely, a graph G can be colored with at most h
colors if and only if G → Kh, where Kh is a complete graph on h vertices. Due to this, very often
in the literature HOM(G,H), when h = |V (H)|, is referred as H-coloring of G. It was shown by
Feder and Vardi [1998] that Constraint Satisfaction Problem (CSP) can be interpreted as a
homomorphism problem on relational structures, and thus Graph Homomorphism encompasses
a large family of problems generalizing Coloring but less general than CSP.

Hell and Nešetřil showed that for every fixed simple graph H, the problem whether there exists
a homomorphism from G to H is solvable in polynomial time if H is bipartite, and NP-complete
if H is not bipartite [Hell and Nešetřil 1990]. Since then, algorithms for and the complexity of
graph homomorphisms (and homomorphisms between other discrete structures) have been studied
intensively [Austrin 2010; Barto et al. 2008; Grohe 2007; Marx 2010; Raghavendra 2008].

There are two different ways graph homomorphisms are used to extract useful information about
graphs. Let us consider two homomorphisms, from a “small” graph F into a “large” graph G and
from a “large” graph G into a “small” graph H, which can be represented by the following formula
(here we borrow the intuitive description from the book of Lovász [2012])

F →G→ H.

Then “left-homomorphisms” from various small graphs F into G are useful to study the local
structure of G. For example, if F is a triangle, then the number of “left-homomorphisms” from F
into G is the number of triangles in graph G. This type of information is closely related to sampling,
and we refer to the book of Lovász [2012] which provides many applications of homomorphisms.
“Right-homomorphisms” into “small” different graphs H are related to global properties of graph G.

The trivial brute-force algorithm solving “left-homomorphism” from an f -vertex graph F into
an n-vertex graph G runs in time 2O(f logn): we try all possible vertex subsets of G of size at most f ,
which is nO(f) and then for each subset try all possible f f mappings into it from F . Interestingly,
this näıve algorithm is asymptotically optimal. Indeed, as it was shown by Chen et al. [2006],
assuming Exponential Time Hypothesis, there is no g(k)no(k) time algorithm deciding if an input
n-vertex graph G contains a clique of size at least k, for any computable function g. Since this is
a very special case of Graph Homomorphism with F being a clique of size k, the result of Chen
et al. rules out algorithms for Graph Homomorphism of running time g(f)2o(f logn), from F to
G, when the number of vertices f in F is significantly smaller than the number of vertices n in G.

The interest in “right-homomorphisms” is due to the recent developments in the area of exact
exponential algorithms for Coloring and 2-CSP (CSP where all constraints have arity at most 2)
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problems. The area of exact exponential algorithms is about solving intractable problems signifi-
cantly faster than the trivial exhaustive search, though still in exponential time [Fomin and Kratsch
2010]. For example, as for Graph Homomorphism, a näıve brute-force algorithm for coloring an
n-vertex graph G in h colors is to try for every vertex a possible color, resulting in the running time
O∗(hn) = 2O(n log h).1 Since h can be of order Ω(n), the brute-force algorithm computing the chro-
matic number runs in time 2O(n logn). It was already observed in 1970s by Lawler [1976] that the
brute-force for the Coloring problem can be beaten by making use of dynamic programming over
maximal independent sets resulting in single-exponential running time O∗((1 + 3

√
3)n) = O(2.45n).

Almost 30 years later Björklund et al. [2009] succeeded to reduce the running time to O∗(2n). And
as we observed already, for H-coloring, the brute-force algorithm solving H-coloring runs in time
2O(n log h). In spite of all the similarities between graph coloring and homomorphism, no substan-
tially faster algorithm was known and it was an open question in the area of exact algorithms
if there is a single-exponential algorithm solving H-coloring in time 2O(n+h) [Fomin et al. 2007;
Rzażewski 2014; Wahlström 2010; 2011], see also [Fomin and Kratsch 2010, Chapter 12].

On the other hand, Graph Homomorphism is a special case of 2-CSP with n variables and
domain of size h. It was shown by Traxler [2008] that unless the Exponential Time Hypothesis fails,
there is no algorithm solving 2-CSP with n variables and domain of size h in time ho(n) = 2o(n logh).
This excludes (up to ETH) the existence of a single-exponential cn time algorithm for some constant
c > 1 for 2-CSP.

Another interesting variant of Graph Homomorphism is related to graph labelings. A homo-
morphism f : G → H is called locally injective if for every vertex u ∈ V (G), its neighborhood is
mapped injectively into the neighborhood of f(u) in H, i.e., if every two vertices with a common
neighbor in G are mapped onto distinct vertices in H.

Locally Injective Graph Homomorphism

Input: Undirected graphs G and H.
Task: Decide whether there is a locally injective homomorphism G → H.

As graph homomorphism generalizes graph coloring, locally injective graph homomorphism can
be seen as a generalization of graph distance constrained labelings. An L(2, 1)-labeling of a graph
G is a mapping from V (G) into the nonnegative integers such that the labels assigned to vertices
at distance 2 are different while labels assigned to adjacent vertices differ by at least 2. This
problem was studied intensively in combinatorics and algorithms, see, e.g., Griggs and Yeh [1992]
and Fiala et al. [2008]. Fiala and Kratochv́ıl suggested the following generalization of L(2, 1)-
labeling, we refer [Fiala and Kratochv́ıl 2008] for the survey. For graphs G and H, an H(2, 1)-
labeling is a mapping f : V (G) → V (H) such that for every pair of distinct adjacent vertices
u, v ∈ V (G), images f(u) f(v) are distinct and nonadjacent in H. Moreover, if the distance
between u and v in G is two, then f(u) 6= f(v). It is easy to see that a graph G has an L(2, 1)-
labeling with maximum label at most k if and only if there is an H(2, 1)-labeling for H being a
k-vertex path. Then the following is known, see for example [Fiala and Kratochv́ıl 2008]: there is
an H(2, 1)-labeling of a graph G if and only if there is a locally injective homomorphism from G
to the complement of H.

Several single-exponential algorithms for L(2, 1)-labeling can be found in the literature, the

1O∗(·) hides polynomial factors in the input length. Most of the algorithms considered in this paper take graphs
G and H as an input. By saying that such an algorithm has a running time O∗(f(G,H)), we mean that the running
time is upper bounded by (|V (G)| + |E(G)| + |V (H)| + |E(H)|)O(1) · f(G,H).
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most recent algorithm is due to Junosza-Szaniawski et al. [2013] which runs in time O(2.6488n). For
H(2, 1)-labeling, or equivalently for locally injective homomorphisms, single-exponential algorithms
were known only for special cases when the maximum degree of H is bounded [Havet et al. 2011]
or when the bandwidth of the complement of H is bounded [Rzażewski 2014].

Subgraph Isomorphism We say that an undirected G is a subgraph of H if one can remove
some edges and vertices of H, so that what remains is isomorphic to G. In other words, G is a
subgraph of H if and only if there exists an injective mapping g : V (G) → V (H), such that for
each edge uv ∈ E(G), g(u)g(v) ∈ E(H). We define

Subgraph Isomorphism

Input: Undirected graphs G and H.
Task: Decide whether G is a subgraph of H.

Subgraph Isomorphism is an important and very general problem. Several flagship graph
problems can be viewed as instances of Subgraph Isomorphism:

• Hamiltonicity(G): Is Cn (a cycle with n vertices) a subgraph of G?

• Clique(G, k): Is Kk a subgraph of G?

• 3-Coloring(G): Is G a subgraph of Kn,n,n, a tripartite graph with n vertices in each of its
three independent sets?

• Bandwidth(G, k): Is G a subgraph of P k
n (a k-th power of an n-vertex path)?

All of the mentioned problems are NP-complete, and the best known algorithms for all the listed
special cases work in exponential time. In fact, all those problems are well-studied from the ex-
act exponential algorithms perspective [Beigel and Eppstein 2005; Björklund 2014; Bourgeois et al.
2012; Cygan and Pilipczuk 2012; Feige 2000; Held and Karp 1962; Lawler 1976; Robson 1986;
Tarjan and Trojanowski 1977], where the goal is to obtain an algorithm of running time O(cn)
for the smallest possible value of c. Furthermore, the Subgraph Isomorphism problem was very
extensively studied from the viewpoint of fixed parameter tractability, see [Marx and Pilipczuk
2014] for a discussion of 19 different possible parametrizations. All the mentioned special cases
of Subgraph Isomorphism admit O(cn) time algorithms, by using either branching, inclusion-
exclusion principle, or dynamic programming. On the other hand, a simple exhaustive search for
the Subgraph Isomorphism problem—numerating all possible mappings from the pattern graph
to the host graph—runs in 2O(n logn) time, where n is the total number of vertices of the host graph
and pattern graph.

Therefore, a natural question is whether Subgraph Isomorphism admits an O(cn) time al-
gorithm. This was repeatedly posed as an open problem [Cygan et al. 2014; Amini et al. 2012;
Fomin et al. 2008; Husfeldt et al. 2013]. In particular, in the monograph of Fomin and Kratsch
[2010] the existence of O(cn) time algorithm for Subgraph Isomorphism was put among the few
questions in the open problems section.

Subgraph Isomorphism is a special case of Quadratic Assignment Problem, which is

Quadratic Assignment Problem (QAP)
Input: n× n matrices A = (aij) and B = (bij) with real entries.
Task: Find a permutation π minimizing

∑n
i=1

∑n
j=1 aπ(i)π(j)bij .
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Indeed, G is a subgraph of H if and only if for the instance of QAP with A and B being
adjacency matrices of G and the complement of H the optimum value is 02. Problem 7.6 in the
influential survey of Woeginger on exact algorithms [Woeginger 2003] is to prove that QAP cannot
be solved in time O(cn) for any fixed value c (under some reasonable assumption).

Graph Minor For a graph G and an edge uv ∈ G, we define the operation of contracting edge
uv as follows: we delete vertices u and v from G, and add a new vertex wuv adjacent to all vertices
that u or v was adjacent to in G. We say that a graph G is a minor of H, if G can be obtained
from some subgraph of H by a series of edge contractions. Equivalently, we may say that G is a
minor of H if G can be obtained from H itself by a series of edge deletions, edge contractions and
vertex deletions.

Graph Minor

Input: Undirected graphs G and H.
Task: Decide whether G is a minor of H.

Graph Minor is a fundamental problem in graph theory and graph algorithms. By the theorem
of Robertson and Seymour [1995], there exists a computable function f and an algorithm that, for
given graphs G and H, checks in time f(G)|V (H)|3 whether G is a minor of H. However, when the
size of the graph G is not a constant, nothing beyond a brute-force algorithm trying all possible
partitions of a vertex set of H was known.

Related notion of graph embedding is the notion of topological minor. We say that a graph
G is a subdivision of a graph H if G can be obtained from H by contracting only edges incident
with vertices of degree two. In other words, G is obtained from H by replacing edges with paths.
A graph G is called a topological minor of a graph H if a subdivision of G is isomorphic to a
subgraph of H.

Topological Graph Minor

Input: Undirected graphs G and H.
Task: Decide whether G is a topological minor of H.

Lingas and Wahlen [2009] gave an algorithm of running time O∗(
(

n
p

)

p!2n−p) solving Topolog-

ical Graph Minor for n-vertex graph H and p-vertex graph G.

Minimum Distortion Embedding Given an undirected connected graph G with the vertex
set V (G) and the edge set E(G), the graph metric of G is M(G) = (V (G),DG), where the distance
function DG is the shortest path distance between u and v for every pair of vertices u, v ∈ V (G).
Given a graph metric M and another metric space M ′ with distance functions D and D′, a mapping
f : M → M ′ is called an embedding of M into M ′. The mapping f is non-contracting, if for every
pair of points p, q in M , D(p, q) ≤ D′(f(p), f(q)). The distortion of embedding f is the minimum
number df such that D(p, q) · df ≥ D′(f(p), f(q)). We define

Minimum Distortion Embedding

Input: Undirected graphs G and H.
Task: Find a non-contracting embedding of G into H of minimum distortion.

2If G has smaller number of vertices than H , then it should be first padded with isolated vertices to make the
number of vertices in both graphs equal.
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Most of exact algorithms for Minimum Distortion Embedding deal with a special case when
the host graph H is a path or a tree of bounded degree [Bădoiu et al. 2005a;b; Cygan and Pilipczuk
2012; Fellows et al. 2013; Fomin et al. 2011; Kenyon et al. 2009]. In particular, an optimal-distortion
embedding into a line can be found in time 2O(n) [Cygan and Pilipczuk 2012; Fomin et al. 2011].

Our results. In this paper we show that from the algorithmic perspective, the behavior of “right-
homomorphism” is, unfortunately, much closer to 2-CSP than to Coloring. This result will also
imply similar lower bounds for many other graph embedding and containment problems. All lower
bounds obtained in this paper are conditional, they hold unless the Exponential Time Hypothesis
[Impagliazzo and Paturi 2001; Impagliazzo et al. 2001b] fails. ETH is an established assumption;
many interesting lower bounds have been found under this hypothesis (see [Cygan et al. 2015;
Lokshtanov et al. 2011] for surveys). We formulate ETH in the next section.

The first main result of this paper is the following theorem, which excludes (up to ETH)
resolvability of HOM(G,H) in time 2o(n log h), thus resolving the open qestion from [Fomin et al.
2007; Rzażewski 2014; Wahlström 2010; 2011].

Theorem 1. Unless ETH fails, for any constant d > 0 there exists a constant c = c(d) > 0
such that for any non-decreasing function 3 ≤ h(n) ≤ nd, there is no algorithm solving Graph

Homomorphism from an n-vertex graph G to a graph H with at most h(n) vertices in time

O(2cn log h(n)) . (1)

Let us remark that in order to obtain more general results, in all lower bounds proven in this
paper we assume implicitly that the number h of vertices of the graph H is a function of the number
n of the vertices of the graph G. At the same time, to exclude some pathological cases we assume
that the function h(n) is “reasonable” meaning that it is non-decreasing and time-constructible.

With a tiny modification, the proof of Theorem 1 can be adapted to show a similar lower bound
for Locally Injective Graph Homomorphism.

Theorem 2. Unless ETH fails, for any constant d > 0 there exists a constant c = c(d) > 0 such
that for any non-decreasing function 3 ≤ h(n) ≤ nd, there is no algorithm deciding if there is a
locally injective homomorphism from an n-vertex graph G to a graph H with at most h(n) vertices
in time O(2cn log h(n)) .

The second main result of this paper is about Subgraph Isomorphism, resolving the open
question asked in [Cygan et al. 2014; Amini et al. 2012; Fomin et al. 2008; Husfeldt et al. 2013;
Fomin and Kratsch 2010].

Theorem 3. Unless ETH fails, there is no algorithm solving Subgraph Isomorphism for graphs
G and H in time 2o(n logn), where n = |V (G)| + |V (H)|.

Theorem 3 implies that QAP cannot be solved in time 2o(n logn) unless ETH fails and hence
provides the answer to the open problem of Woeginger [2003].

An important feature of our proof is that it rules out solvability of Subgraph Isomorphism

in time 2o(n logn) even for the special case when |V (G)| = |V (H)| = n. Since in this special case
a graph G is a (topological) minor of H if and only if G is a subgraph of H. Thus the case of
Graph Minor and Topological Graph Minor when |V (G)| = |V (H)| = n cannot be resolved
in time 2o(n logn) as well. Similar arguments work for various modifications of Graph Minor like
Shallow Graph Minor, etc.
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To see how the bound on Subgraph Isomorphism yields the bound on Minimum Distortion

Embedding, we observe that an n-vertex graph G admits a non-contracting embedding of distortion
1 into an n-vertex graph H if and only if H is a subgraph of G.

Methods To establish lower bounds for graph homomorhisms, we proceed in two steps. First we
obtain lower bounds for List Graph Homomorphism by reducing it to the 3-coloring problem
on graphs of bounded degree. More precisely, for a given graph G with vertices of small degrees,
we construct an instance (G′,H ′) of List Graph Homomorphism, such that G is 3-colorable if
and only if there exists a list homomorphism from G′ to H ′. Moreover, our construction guarantees
that a “fast” algorithm for list homomorphism implies an algorithm for 3-coloring violating ETH.
The reduction is based on a “grouping” technique, however, to do the required grouping we need
a trick exploiting the condition that G has a bounded maximum vertex degree and thus can be
colored in a bounded number of colors in polynomial time. In the second step of reductions we
proceed from list homomorphisms to normal homomorphisms. Here we need specific gadgets with
a property that any homomorphism from such a graph to itself preserves an order of its specific
structures.

The remaining part of the paper is organized as follows. Section 2 contains all necessary defini-
tions. In Section 3 we give technical lemmata and reductions which are used to prove lower bounds
for the Graph Homomorphism problem in Section 4.1 and for the Subgraph Isomorphism in
Section 4.2. We conclude with some open problems in Section 5.

2 Preliminaries

Graphs We consider simple undirected graphs, where V (G) denotes the set of vertices and E(G)
denotes the set of edges of a graph G. For a given subset S of V (G), G[S] denotes the subgraph of
G induced by S, and G− S denotes the graph G[V (G) \ S]. A vertex set S of G is an independent
set if G[S] is a graph with no edges, and S is a clique if G[S] is a complete graph. The set of
neighbors of a vertex v in G is denoted by NG(v), and the set of neighbors of a vertex set S is
NG(S) =

⋃

v∈S NG(v) \ S. By NG[S] we denote the closed neighborhood of the set S, i.e., the set
S together with all its neighbors: NG[S] = S ∪NG(S). For an integer n, we use [n] to denote the
set of integers {1, . . . , n}.

The complete graph on k vertices is denoted by Kk. A coloring of a graph G is a function
assigning a color to each vertex of G such that adjacent vertices have different colors. A k-coloring
of a graph uses at most k colors, and the chromatic number χ(G) is the smallest number of colors
in a coloring of G. By Brook’s theorem, for any connected graph G with maximum degree ∆ > 2,
the chromatic number of G is at most ∆ unless G is a complete graph, in which case the chromatic
number is ∆ + 1. Moreover, a (∆ + 1)-coloring of a graph can be found in polynomial time by a
straightforward greedy algorithm.

Throughout the paper we implicitly assume that there is a total order on the set of vertices of
a given graph. This allows us to treat a k-coloring of a n-vertex graph simply as a vector in [k]n.

Let G be an n-vertex graph, 1 ≤ r ≤ n be an integer, and V (G) = B1 ⊔ B2 ⊔ . . . ⊔ B⌈n
r
⌉

be a partition of the set of vertices of G. Then the grouping of G with respect to the partition
V (G) = B1 ⊔ B2 ⊔ . . . ⊔ B⌈n

r
⌉ is a graph Gr with vertices B1, . . . , B⌈n

r
⌉ such that Bi and Bj are

adjacent if and only if there exist u ∈ Bi and v ∈ Bj such that uv ∈ E(G). To distinguish vertices
of the graphs G and Gr, the vertices of Gr will be called buckets.
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For a graph G, its square G2 has the same set of vertices as G and uv ∈ E(G2) if and only if
there is a path of length at most 2 between u and v in G (thus, E(G) ⊆ E(G2)). It is easy to see
that if the degree of G is less than ∆ then the degree of G2 is less than ∆2 and hence a ∆2-coloring
of G2 can be easily found.

Homomorphisms and list homomorphisms Let G and H be graphs. A mapping ϕ : V (G) →
V (H) is a homomorphism if for every edge uv ∈ E(G) its image ϕ(u)ϕ(v) ∈ E(H). If there exists
a homomorphism from G to H, we often write G → H. The Graph Homomorphism problem
HOM(G,H) asks whether or not G → H.

Assume that for each vertex v of G we are given a list L(v) ⊆ V (H). A list homomorphism
of G to H, also known as a list H-coloring of G, with respect to the lists L, is a homomorphism
ϕ : V (G) → V (H), such that ϕ(v) ∈ L(v) for all v ∈ V (G). The List Graph Homomorphism

problem LIST-HOM(G,H) asks whether or not graph G with lists L admits a list homomorphism
to H with respect to L.

Exponential Time Hypothesis Our lower bounds are based on a well-known complexity hy-
pothesis formulated by Impagliazzo et al. [2001a].

Exponential Time Hypothesis (ETH): There is a constant q > 0 such that 3-CNF-
SAT with n variables and m clauses cannot be solved in time 2qn(n + m)O(1).

This hypothesis is widely applied in the theory of exact exponential algorithms, we refer to
[Cygan et al. 2015; Lokshtanov et al. 2013] for an overview of ETH and its implications.

In this paper we use the following well-known application of ETH with respect to 3-Coloring

(see, e.g., Theorem 3.2 in [Lokshtanov et al. 2013], and Exercise 7.27 in [Sipser 2005]). The 3-
Coloring problem is the problem to decide whether the given graph can be properly colored in 3
colors.

Proposition 1. Unless ETH fails, there exists a constant q > 0 such that 3-Coloring on n-vertex
graphs of average degree four cannot be solved in time O∗ (2qn).

It is well known that 3-Coloring remains NP-complete on graphs of maximum vertex degree
four. Moreover, the classical reduction, see e.g. [Garey and Johnson 1979], allows for a given n-
vertex graph G to construct a graph G′ with maximum vertex degree at most four and |V (G′)| =
O(|E(G)|) such that G is 3-colorable if and only if G′ is. Thus Proposition 1 implies the following
(folklore) lemma which will be used in our proofs.

Lemma 1. Unless ETH fails, there exists a constant q > 0 such that there is no algorithm solving
3-Coloring on n-vertex graphs of maximum degree four in time O∗ (2qn).

3 Auxiliary Lemmata

In this section we provide reductions and auxiliary lemmata about colorings which will be used to
prove lower bounds for Graph Homomorphism and Subgraph Isomorphism.
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3.1 Balanced Colorings

In the following we show how to construct a specific “balanced” coloring of a graph in polynomial
time. Let G be a graph of constant maximum degree. The coloring of G we want to construct
should satisfy three properties. First, it should be a proper coloring of G2. Then the size of each
color class should be bounded as well as the number of edges between vertices from different color
classes. More precisely, we prove the following lemma.

Lemma 2. For any constant d, there exist constants α, β, τ > 1 and a polynomial time algorithm

that for a given graph G on n vertices of maximum degree d and an integer τ ≤ L ≤ n(d2−1)
2d2(d2+1)

,

finds a coloring c : V (G) → [L] satisfying the following properties:

1. The coloring c is a proper coloring of G2.

2. There are only a few vertices of each color: for all i ∈ [L],

|c−1(i)| ≤
⌈

α · n
L

⌉

. (2)

3. There are only a few edges of G between each pair of colors: For all i 6= j ∈ [L], we have

ki,j := |{uv ∈ E(G) : c(u) = i, c(v) = j}| ≤ Ki,j :=

⌈

β · min{|c−1(i)|, |c−1(j)|}
L

⌉

.

Proof. The algorithm starts by constructing greedily an independent set I of G2 of size
⌈

n
d2+1

⌉

.

Since the maximum vertex degree of G2 does not exceed d2, this is always possible. We construct
a partial coloring of G2 by coloring the vertices of I in L colors such that the obtained coloring is a
balanced coloring of G2[I], meaning that the number of vertices of each color is ⌊|I|/L⌋ or ⌈|I|/L⌉.
Since I is an independent set in G2, such a coloring can be easily constructed in polynomial time.
In the obtained partial equitable coloring, we have that for every i ∈ [L]

|c−1(i)| ≥
⌊

n

L(d2 + 1)

⌋

≥ n

2Ld2
(3)

(recall that L ≤ n(d2−1)
2d2(d2+1)). Let us note that the obtained precoloring of G2 clearly satisfies the

first and the third conditions of the lemma. Since the size of every c−1(i), i ∈ [L], does not exceed
|c−1(i)| ≤

⌈

n
L

⌉

, the second condition of the lemma also holds for every α ≥ 1.
We extend the precoloring of G2 to the required coloring by the following greedy procedure:

We select an arbitrary uncolored vertex v and color it by a color from [L] such that the new partial
coloring also satisfies the three conditions of the lemma. In what follows, we prove that such a
greedy choice of a color is always possible.

Coloring of a vertex v with a color i can be forbidden only because it breaks one of the three
conditions. Let us count, how many colors can be forbidden for v by each of the three constraints.

1. Vertex v has at most d2 neighbors in G2, so the first constraint forbids at most d2 colors.

2. The second constraint forbids all the colors that are “fully packed” already. The number of
such colors is at most n

(αn
L )

= L
α

.

9



3. To estimate the number of colors forbidden by the third condition, we go through all the
neighbors of v. A neighbor u ∈ NG(v) forbids a color i if coloring v by i exceeds the allowed
bound on ki,c(u). Hence to estimate the number of such forbidden colors i (for every fixed
vertex u) we need to estimate how many values of ki,c(u) can reach the allowed upper bound
Ki,c(u). We have that

|{i : ki,c(u) = Ki,c(u)}|
by (3)

≤
∣

∣

∣

∣

{

i : ki,c(u) ≥
βn

2L2d2

}
∣

∣

∣

∣

=

∣

∣

∣

∣

{

i : ki,c(u) ·
2L2d2

βn
≥ 1

}
∣

∣

∣

∣

≤
∑

i∈[L]

ki,c(u) ·
2L2d2

βn
.

The number of edges between vertices of the same color c(u) and all other vertices of the
graph does not exceed the cardinality of the color class c(u) times d. Thus we have

∑

i∈[L]

ki,c(u) ·
2L2d2

βn
≤ d|c−1(c(u))| · 2L2d2

βn

by (2)

≤ d
⌈αn

L

⌉

· 2L2d2

βn

≤ d
2αn

L
· 2L2d2

βn
=

4αLd3

β
.

where the last inequality is due to α > 1 and L ≤ n.

Therefore,

|{i : ki,c(u) = Ki,c(u)}| ≤
4αLd3

β
.

Since the degree of v in G does not exceed d, we have that the number of colors forbidden by
the third constraint is at most 4αLd4

β
.

Thus, the total number of colors forbidden by all the three constraints for the vertex v is at most

d2 +
L

α
+

4αLd4

β
.

By taking sufficiently large constants α, β, and τ , say α = 4, β = 16α2d4, and τ = 16(d2+1)
11 , we

guarantee that this expression does not exceed L − 1 for every L ≥ τ . Therefore, there always
exists a vacant color for the vertex v which concludes the proof.

Now with help of Lemma 2, we describe a way to construct a specific grouping of a graph. The
properties of such groupings are crucial for the final reduction.

Lemma 3. For any constant d, there exists a constant λ = λ(d) and a polynomial time algorithm
that for a given graph G on n vertices of maximum degree d and an integer r ≤

√

n
2λ , finds a

grouping G̃ of G and a coloring c̃ : V (G̃) → [λr] such that

1. The number of buckets of G̃ is

|V (G̃)| ≤ |V (G)|
r

;
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2. The coloring c̃ is a proper coloring of G̃2;

3. Each bucket B ∈ V (G̃) is an independent set in G, i.e. for every u, v ∈ B, uv 6∈ E(G);

4. For every pair of buckets B1, B2 ∈ V (G̃) there is at most one edge between them in G, i.e.

|{uv ∈ E(G) : u ∈ B1, v ∈ B2}| ≤ 1 .

Proof. Let β = β(d) be a constant provided by Lemma 2 and let L = λr for λ = λ(d) = 2dβ. Let
also c be a coloring of G in L colors provided by Lemma 2. We want to construct a grouping G̃ of
G such that for all buckets B ∈ V (G̃) and all u 6= v ∈ B,

c(u) = c(v) and c(u′) 6= c(v′) (4)

for all u′ ∈ NG(u), v′ ∈ NG(v).

In other words, all vertices of the same bucket are of the same color while any two neighbors of
such two vertices are of different colors.

For each color i ∈ [L], we introduce an auxiliary constraint graph Fi. The vertex set of Fi is
V (Fi) = c−1(i) and its edge set is

E(Fi) = {uv : ∃u′ ∈ NG(u), v′ ∈ NG(v), c(u′) = c(v′)}.
In our construction, each bucket of G̃ will be an independent set in some Fi. Note that this will
immediately imply (4). The degree of any vertex v ∈ V (Fi) is at most

degFi
(v) ≤

∑

v′∈NG(v)

(Kc(v),c(v′) − 1) ≤ d

(⌈

β|c−1(v)|
L

⌉

− 1

)

≤ dβ|V (Fi)|
L

=
|V (Fi)|

2r
.

This means that the greedy algorithm finds a proper coloring of each Fi in at most |V (Fi)|
2r +1 colors,

which splits each Fi in at most |V (Fi)|
2r + 1 independent sets. We create a separate bucket of G̃ from

each independent set of each Fi. Now we show that the four conditions from the lemma statement
hold.

1. For the first property, the number of independent sets in each Fi is at most |V (Fi)|
2r + 1. Thus

the number of buckets in G̃ is

|V (G̃)| ≤
∑

i∈[L]

( |V (Fi)|
2r

+ 1

)

=
∑

i∈[L]

( |c−1(i)|
2r

+ 1

)

=
n

2r
+ L ≤ n

r
.

since L = λr and 2λr2 ≤ n.

2. For the second property, by Lemma 2, the coloring c is proper in G2. We can convert c to a
coloring c̃ : V (G̃) → [λr] by assigning each bucket the color of its vertices (all of them have
the same color). The resulting coloring c̃ is a proper coloring of G̃2 by (4) and the fact that
c is a proper in G2.

3. All buckets of G̃ are monochromatic with respect to c, thus, each bucket B ∈ V (G̃) is an
independent set in G and the third property holds.

4. Finally, by (4), there is at most one edge in G between vertices corresponding to any pair of
buckets in G̃.

Thus, the constructed grouping and its coloring satisfy all conditions of the lemma.
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3.2 Reductions

This section constitutes the main technical part of the paper and contains all the necessary reduc-
tions used in the lower bounds proofs. Using these reductions as building blocks the lower bounds
follow from careful calculations. The general pipeline is as follows. To prove a lower bound, we
take a graph G of maximum degree four that needs to be 3-colored and construct an equisatisfiable
instance (G′,H ′) of List Graph Homomorphism using Lemma 4. We then use Lemma 5 to
transform (G′,H ′) into an equisatisfiable instance (G′′,H ′′) of Graph Homomorphism. Thus, an
algorithm checking whether there exists a homomorphism from G′′ to H ′′ can be used to check
whether the initial graph G can be 3-colored. At the same time we know a lower bound for 3-
Coloring under ETH (Lemma 1). This gives us a lower bound for Graph Homomorphism

under the ETH assumption. In order to prove the hardness of Subgraph Isomorphism, we show
an exponential-time reduction from Graph Homomorphism to Subgraph Isomorphism.

Lemma 4 (3-Coloring → List Graph Homomorphism). There exists an algorithm that takes
as input a graph G on n vertices of maximum degree d that needs to be 3-colored and an integer
r = o(

√
n) and finds an equisatisfiable instance (G′,H ′) of LIST-HOM, where |V (G′)| ≤ n/r and

|V (H ′)| ≤ γ(d)r, where γ(d) is a function of the graph degree. The running time of the algorithm
is polynomial in n and the size of the output graphs.

Proof. Constructing the graph G′. Let G′ be the grouping of G and c : V (G′) → [L] be the coloring
provided by Lemma 3 where L = λ(d)r. To distinguish colorings of G and G′, we call c(B), for a
bucket B ∈ V (G′), a label of B. Consider a bucket B ∈ V (G′), i.e., a subset of vertices of G, and
a label i ∈ [L]. From item 2 of Lemma 3 we know that c is a proper coloring of (G′)2. This, in
particular, means that there is at most one B′ ∈ NG′(B) such that c(B′) = i. Moreover, if such
B′ exists then, by item 4 of Lemma 3, there exists a unique u ∈ B and unique u′ ∈ B′ such that
uu′ ∈ E(G). This allows us to define the following mapping φB : [L] → B ∪ {0}: φB(i) = u if such
B′ exists and φB(i) = 0 if B has no neighbor B′ of label i. Without loss of generality we assume
that G does not have isolated vertices. Since each vertex has a neighbor outside of its bucket (it
cannot have a neighbor in its own bucket as buckets are independent), B ⊆ φB(L).

Constructing the graph H ′. We now define a redundant encoding of a 3-coloring of a bucket
B ∈ V (G′). Namely, let µB : (f : B → {1, 2, 3}) → {0, 1, 2, 3}L . That is, for a 3-coloring f : B →
{1, 2, 3} of B, µB is a vector v of length L. For i ∈ [L], by v[i] we denote the i-th component of v.
The value of v[i] is defined as follows: if φB(i) = 0 then v[i] = 0, otherwise v[i] = f(φB(i)). In other
words, for a given bucket B and a 3-coloring f of its vertices, for each possible label i ∈ [L], µB is
the color of the vertex u ∈ B that has a neighbor in a bucket with label i, and 0 if there is no such
vertex u.

We are now ready to construct the graph H ′. The set of vertices of H ′ is defined as follows:

V (H ′) = {(R, l) : R ∈ {0, 1, 2, 3}L and l ∈ [L]} ,

i.e., a vertex of H ′ is an encoding of a 3-coloring of a bucket and a label of a bucket. The
list constraints of this instance of List Graph Homomorphism are defined as follows: a bucket
B ∈ V (G′) is allowed to be mapped to (R, l) ∈ V (H ′) if and only if l = c(B) and there is a 3-coloring
f of B such that µB(f) = R. Informally, two vertices in V (H ′) are joined by an edge if they define
two consistent 3-colorings. Formally, (R1, l1)(R2, l2) ∈ E(H ′) if and only if R1[l2] 6= R2[l1]. Note
that |V (G′)| ≤ n/r by Lemma 3 and |V (H ′)| ≤ 4L · L ≤ 4L · 2L = 8λ(d)r = γ(d)r for γ(d) = 8λ(d).
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Running time of the reduction. The reduction clearly takes time polynomial in the size of input
and output.

Correctness of the reduction. It remains to show that G is 3-colorable if and only if (G′,H ′) is
a yes-instance of List Graph Homomorphism.

Assume that G is 3-colorable and take a proper 3-coloring g of G. It defines a homomorphism
from G′ to H ′ in a natural way: B ∈ V (G′) is mapped to (µB(g|B), c(B)), where g|B is the function
g with its domain restricted to B. Each list constraint is satisfied by definition. To show that each
edge is mapped to an edge, consider an edge BB′ ∈ E(G′). Then, by item 4 of Lemma 3 there is
a unique edge uu′ ∈ E(G) such that u ∈ B,u′ ∈ B′. Note that B and B′ are mapped to vertices
(R, l) and (R′, l′) such that R[l′] = g(u) and R′[l] = g(u′). Since g is a proper 3-coloring of G,
g(u) 6= g(u′). This, in turn, means that (R, l)(R′, l′) ∈ E(H ′) and hence the edge BB′ is mapped
to this edge in H ′.

For the reverse direction, consider a homomorphism h : G′ → H ′. For each bucket B ∈ V (G′),
h(B) defines a proper 3-coloring of B. Together, they define a 3-coloring g of G and we need to show
that g is proper. Assume, to the contrary, that there is an edge uu′ ∈ E(G) such that g(u) = g(u′).
By item 3 of Lemma 3, u and u′ belong to different buckets B,B′ ∈ V (G′). By the definition of
grouping, BB′ ∈ E(G′). Since h is a homomorphism, (R, l)(R′, l′) := h(B)h(B′) ∈ E(H ′). At the
same time, R[l′] = g(u) = g(u′) = R′[l] which contradicts the fact that (R, l)(R′, l′) is an edge
in H ′.

Lemma 5 (List Graph Homomorphism→ Graph Homomorphism). There is a polynomial-
time algorithm that from an instance (G,H) of LIST-HOM where |V (G)| = n, |V (H)| = h con-
structs an equisatisfiable instance (G′,H ′) of HOM where |V (G′)| ≤ n + ∆, |V (H ′)| ≤ ∆ for
∆ = 25h2.

Proof. Preparations. We start with a simple 6-vertex gadget D′ consisting of a 5-cycle together
with an apex vertex adjacent to all the vertices of the cycle, see Fig. 1.

x1

x2x3

x4 x5

z Kh+3

Figure 1: The graphs D′ and D. The encircled clique Kh+3 is the canonical clique of D. An edge
from a clique to a vertex of a cycle means that each vertex of the clique is joined to this vertex.

An important property of D′ is that for each homomorphism φ : D′ → D′ and i ∈ [5],

φ(z) = z and φ(z) 6= φ(xi).

In words, z is always mapped to z and nothing else is mapped to z. Indeed, because the vertex
z is adjacent to all the remaining vertices of D′, we have that φ(z) 6= φ(xi). By the same reason,
we have that for every i ∈ [5], φ(xi) ∈ ND′(φ(z)). But for every xi its open neighborhood ND′(xi)
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induces a bipartite graph. On the other hand, the chromatic number of the cycle C = x1x2x3x4x5
is three, and thus it cannot be mapped by φ to ND′(xi) for any i ∈ [5]. Therefore, φ(z) = z.

In order for the φ(z) = z argument to work in a bigger graph, we replace z by a clique Kh+3 of
size h + 3, called the canonical clique of the gadget. The obtained graph with (h + 3) + 5 vertices
is denoted as D (see Fig. 1).

Let D0, . . . ,Dk be k + 1 copies of the graph D. We join those k + 1 graphs isomorphic to D to
construct a larger gadget Tk as follows (see Fig. 2). For each i ∈ [k], we select an arbitrary vertex
from the canonical clique of Di, denote this vertex as zi, and identify it with one arbitrary vertex
of Di−1 which does not belong to the canonical clique of Di−1, i.e., with a vertex of the 5-cycle.
and connect every vertex of Kh+3 to all neighbors of z in the subsequent block. We also mark one
of Kh+3’s vertices as z and connect it to the left of it, see Fig. 2. Denote the new graph by Tk,h+3.
Oberve that each Di is a block of Tk and we call Di the ith block of Tk. Note that two consecutive
blocks Di−1 and Di have exactly one common vertex, namely zi.

The reason we are using those canonical cliques instead of single vertices in the construction
of Tk is that those canonical cliques are big enough to behave as anchors. That is, we will prove
that canonical cliques can only be mapped to themselves and not to other parts of the graph, in
particular, for each i ∈ [k] and homomorphism φ : Tk → Tk, φ(zi) = zi.

Kt+3 Kt+3 Kt+3 Kt+3

z1 z2 z3

Figure 2: The gadget Tk for k = 3.

Constructing G′. Let Ah be a graph consisting of a matching with h edges {a1b1, . . . , ahbh}.
Then the graph G′ consists of a copy of G, a copy of Th, and a copy of Ah with the following
additional edges: the vertex zi from the ith block of Th is adjacent to the vertices ai and bi. Also
we add edges from G to Ah: for a vertex gi ∈ G we add an edge giaj for every j, and an edge gibj
if j 6∈ L(i) (see Fig. 3). The number of vertices in G′ is at most n + 2h + (h + 1)(h + 3 + 5) ≤
n + (h + 1)(h + 11) ≤ n + 25h2.

Constructing H ′. The graph H ′ is constructed similarly. It consists of a copy of H, a copy of
Th, and a copy of Ah. For every i we add edges ziai and zibi as before. Also, each vertex i of H is
adjacent to all the vertices from Ah except for bi (see Fig. 4). The number of vertices in H ′ is at
most h + 2h + (h + 1)(h + 3 + 5) ≤ (h + 1)(h + 11) ≤ 25h2.

Correctness. We now turn to prove that the instance (G,H) of LIST-HOM is equisatisfiable to
an instance (G′,H ′) of HOM.

Claim 1. Any homomorphism φ from G′ to H ′ maps Th into Th.

Proof of the claim. No pair of vertices of the same clique of Th is mapped to the same vertex in
H ′, because H ′ has no self-loops. Therefore, canonical cliques from Th are mapped to some cliques
from Th, as H ′ has no more cliques of size h + 3. The remaining vertices of Th have at least h + 3
neighbors from canonical cliques, therefore they must be mapped to vertices from Th.
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Kh+3

a1 b1

Kh+3

a2 b2

Kh+3

a3 b3

Kh+3

z1 z2 z3

G
i

Figure 3: The graph G′. A vertex i ∈ V (G) is connected to bj if and only if j 6∈ L(i), where L(i)
is the list associated with the vertex i ∈ V (G).

Kh+3

a1 b1

Kh+3

a2 b2

Kh+3

a3 b3

Kh+3

z1 z2 z3

H
i

Figure 4: The graph H ′. A vertex i ∈ V (H) is connected to all aj ’s and all bj ’s except for bi.

Claim 2. Any homomorphism φ from G′ to H ′ bijectively maps Th to Th so that the order of z’s
is preserved, i.e., for each i ∈ [k], φ(zi) = zi.

Proof of the claim. 1. Every canonical clique is mapped to a canonical clique. First note that a
canonical clique is mapped into one block. Indeed, there are no vertices outside of a block
that are connected to more than one vertex of the block. Assume, to the contrary, that same
canonical clique is mapped to one block but not to a canonical clique. Then its image has
to contain one or two vertices of the 5-cycle from that block. If the image contains only one
vertex of the 5-cycle, then the image of the 5-cycle has at most 3 vertices: one vertex from the
canonical clique Kh+3, two neigbors of the vertex from the 5-cycle (because all the vertices of
the image of the 5-cycle must be connected to all the vertices of the image of the clique). Note
that these three vertices do not form a triangle, therefore the 5-cycle cannot be mapped to
them. If the image of the clique contains two vertices outside of the canonical clique, then for
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the same reason the image of the 5-cycle must contain only two vertices, which is not possible.
This analysis shows that every canonical clique Kh+3 must be mapped to a canonical clique
Kh+3.

2. Every block is mapped to a block. We already know that every canonical clique is mapped to
a canonical clique. The 5-cycle from the same block must be mapped to the corresponding
5-cycle, because it is the only image that contains a closed walk of odd length and every
vertex of which is connected to the clique (recall that the images of the canonical clique and
the 5-cycle do not intersect, since their preimages are joined by edges). Note that since the
canonical clique and the cycle are mapped to themselves, zi has to be mapped to some zj.

3. If Di is mapped to Dj, then Di+1 is mapped to Dj+1. The cycle from Di shares a vertex
with the canonical clique from Di+1, therefore if Di is mapped to Dj, then Di+1 can only be
mapped to Dj+1 or Dj . However, Di+1 cannot be mapped into the same block as Di. Indeed,
in this case the canonical clique of Di+1 would be mapped to the canonical clique of Dj , but
we already know that zi+1 is mapped to the 5-cycle of Dj . Therefore, Di and Di+1 must be
mapped in consecutive blocks.

The above proves that for every i ∈ {0, . . . , k}, Di is mapped to Di, which implies that any
homomorphism preserves the order of z’s.

Claim 3. Any homomorphism φ from G′ to H ′ maps Ah to Ah so that aibi is mapped to aibi.

Proof of the claim. Every pair aibi is connected to zi ∈ Th, so it can be mapped either to aibi or
to some vertices of Th. But in the latter case it would not have paths of length 2 to all other pairs
ajbj.

Claim 4. Any homomorphism φ from G′ to H ′ maps G to H.

Proof of the claim. Assume, to the contrary, that a vertex g ∈ V (G) is mapped to a vertex v ∈
V (Th) or a vertex a ∈ V (Ah). The vertex g is adjacent to at least h vertices from Ah, but v and a
are adjacent to at most 2 vertices from Ah (recall that by the previous claim every aibi is mapped
to aibi).

Now we show that the two instances are equisatisfiable. Let φ be a list homomorphism from
G to H. We show that its natural extension φ′ mapping Th to Th and Ah to Ah is a correct
homomorphism from G′ to H ′. This is non-trivial only for edges of G′ from G to Ah. Consider an
edge from a vertex i of G to a vertex bj . The presence of this edge means that i is not mapped
to j by φ. Recall that the bj is mapped by φ to bj. This means that the considered edge in G′ is
mapped to an edge in H ′ by φ′.

For the reverse direction, let φ′ be a homomorphism from G′ to H ′. We show that its natural
projection is a list homomorphism from G to H. Since φ′ maps G to H (by Claim 4) it is enough
to check that all list constrains are satisfied. For this, consider a vertex i from G and assume that
j 6∈ L(i). Then φ′ does not map i to j as otherwise there would be no image for one of the edges
giaj or gibj , where gi is the ith vertex of G.

Running time of the reduction. The reduction clearly takes time polynomial in the input length.
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4 Lower Bounds

4.1 Graph Homomorphism

We are ready to prove our main result about graph homomorphisms, i.e., Theorem 1.

Theorem 4 (Theorem 1 restated). Let G be an n-vertex graph and H be a graph with at most
h := h(n) vertices. Unless ETH fails, for any constant D ≥ 1 there exists a constant c = c(D) > 0
such that for any non-decreasing function 3 ≤ h(n) ≤ nD, there is no O (hcn) time algorithm
deciding whether there is a homomorphism from G to H.

Proof. The outline of the proof of the theorem is as follows. Assuming that there is a “fast”
algorithm for Graph Homomorphism, we show that there is also a “fast” algorithm solving List

Graph Homomorphism, which, in turn, implies “fast” algorithm for 3-Coloring on degree 4
graphs, contradicting ETH. In what follows, we specify what we mean by “fast”.

Let h0 = 252. If h(n) < h0 for all values of n, then an algorithm with running time O (hcn) would
solve 3-Coloring in time O (hcn0 ) = O

(

2cn log h0
)

(recall that h(n) ≥ 3). Therefore, by choosing a
small enough constant c such that c log h0 < q, we arrive to a contradiction with Lemma 1.

From now on we assume that h(n) ≥ h0 for large enough values of n. Let c = q
8D log γ , where

q is the constant from Lemma 1, and γ := γ(4) is the constant from Lemma 4. For the sake of
contradiction, let us assume that there exists an algorithm A deciding whether G → H in time
O(hcn) = O(2cn logh), where |V (G)| = n, |V (H)| = h := h(n). Now we show how to solve 3-coloring
on n′-vertex graphs of maximum degree four in time 2qn

′

, which would contradict Lemma 1.
Let G′ be an n′-vertex graph of maximum degree four that needs to be 3-colored. Let r = log h

4D log γ

and n = 2n′

r
. Using Lemma 4 (note that r = o(

√
n′) as required) we construct an instance (G1,H1)

of List Graph Homomorphism that is satisfiable if and only if the initial graph G′ is 3-colorable,
and |V (G1)| ≤ n′

r
, |V (H1)| ≤ γr. By Lemma 5, this instance is equisatisfiable to an instance (G,H)

of Graph Homomorphism where |V (H)| < 25γ2r = 25h
1

2D ≤ h (since D ≥ 1 and h(n) ≥ h0),
and

|V (G)| ≤ n′

r
+ 25γ2r ≤ n

2
+ 25h

1
2D ≤ n

2
+ 25

√
n ≤ n

(for sufficiently large values of n).
Now, in order to solve 3-coloring for G′, we construct an instance (G,H) with |V (G)| ≤ n

and |V (H)| ≤ h of Graph Homomorphism and invoke the algorithm A on this instance. The
running time of A is

O(2cn log h) = O(2
2cn′

r
log h) = O(2

2cn′ log h· 4D log γ
logh ) = O(28cDn′ log γ) = O(2qn

′

)

and hence we can find a 3-coloring of G′ in time O(2qn
′

), which contradicts ETH (see Lemma 1).

Theorem 5 (Theorem 2 restated). Let G be an n-vertex graph G and H be a graph with at most
h := h(n) vertices. Unless ETH fails, for any constant D ≥ 1 there exists a constant c = c(D) > 0
such that for any non-decreasing function 3 ≤ h(n) ≤ nD, there is no O (hcn) time algorithm
deciding whether there is a locally injective homomorphism from G to H.

Proof. The proof is almost identical to the proof of Theorem 4.
Let us observe that in the reduction in Lemma 4, in graph G′, we take a coloring (in the proof

we refer to such coloring as to labeling) of the square of G′. Thus for every bucket v of G′, all its
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neighbors are labeled by different colors. The way we construct the lists, only buckets with the
same labels can be mapped to the same vertex of H ′. Thus for every vertex v of G′, no pair of its
neighbors can be mapped to the same vertex. Hence every list homomorphism from G′ to H ′ is
locally injective. Therefore the result of Lemma 4 holds for locally injective list homomorphisms
as well and we obtain the following lemma.

Lemma 6. There exists an algorithm that takes as input a graph G on n vertices of maximum degree
d that needs to be 3-colored and an integer r = o(

√
n) and finds an equisatisfiable instance (G′,H ′)

of Locally Injective Graph Homomorphism, where |V (G′)| ≤ n/r and |V (H ′)| ≤ γ(d)r,
where γ(d) is a function of the graph degree. The running time of the algorithm is polynomial in n
and the size of the output graphs.

In the reduction of Lemma 5, we established that every homomorphism from G′ to H ′ maps
Th to Th and Ah to Ah so that aibi is mapped to aibi. Thus for vertices of these structures, every
homomorphism is locally injective. By Claim 4, any homomorphism φ from G′ to H ′ maps G to H.
Therefore there is a locally injective homomorphism from G′ to H ′ if and only if there is a locally
injective list homomorphism from G to H. Then by making use of Lemma 6, the calculations
performed in the proof of Theorem 4 we conclude with the proof of the theorem.

4.2 Subgraph Isomorphism

To prove a lower bound for Subgraph Isomorphism we need a reduction, which given an instance
of Graph Homomorphism produces a single exponential number of instances of Subgraph Iso-

morphism. Even though from the perspective of polynomial time algorithms such a reduction gives
no implication in terms of which problem is harder, in our setting it is enough to obtain a lower
bound for Subgraph Isomorphism.

Theorem 6. Given an instance (G,H) of Graph Homomorphism one can in poly(n)2n time
create 2n instances of Subgraph Isomorphism with n vertices, where n = |V (G)|+ |V (H)|, such
that (G,H) is a yes-instance if and only if at least one of the created instances of Subgraph

Isomorphism is a yes-instance.

Proof. Let (G,H) be an instance of Graph Homomorphism and let n = V (G) + V (H). Note
that any homomorphism h from G to H can be associated with some sequence of non-negative
numbers (|h−1(v)|)v∈V (H), being the numbers of vertices of G mapped to particular vertices of
H. The sum of the numbers in such a sequence equals exactly |V (G)|. As the number of such

sequences is
(

V (G)+V (H)−1
V (H)−1

)

≤ 2n, we can enumerate all such sequences in time 2n poly(n). For each

such sequence (av)v∈V (H) we create a new instance (G′,H ′) of Subgraph Isomorphism, where
the pattern graph remains the same, i.e., G′ = G, and in the host graph H ′ each vertex of v ∈ V (H)
is replicated exactly av times (possibly zero). Observe that |V (H ′)| = |V (G′)|.

We claim that G admits a homomorphism to H if and only if for some sequence (av)v∈V (H) the
graph G′ is a subgraph of H ′. First, assume that G admits a homomorphism h to H. Consider the
instance (G′,H ′) created for the sequence av = |h−1(v)| and observe that we can create a bijection
h′ : V (G′) → V (H ′) by assigning v ∈ V (G′) to its private copy of h(v). As h is a homomorphism,
so is h′, and as h′ is at the same time a bijection, we infer that G′ is a subgraph of H ′.

On the other hand if for some sequence (av)v∈V (H) the constructed graph G′ is a subgraph of
H ′, then projecting the witnessing injection g : V (G′) → V (H ′) so that g′(v) is defined as the
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prototype of the copy g(v) gives a homomorphism from G to H, as copies of each v ∈ V (H) form
independent sets in H ′.

Combining Theorem 4 with Theorem 6, we immediately obtain the following lower bound.

Theorem 7. Unless ETH fails, there exists a constant c > 0 such that there is no algorithm deciding
whether a given n-vertex graph G contains a subgraph isomorphic to a given n-vertex graph H in
time O (ncn).

5 Conclusion and Open Problems

In this work we resolved a number of questions about exact exponential algorithms. Our lower
bounds suggest several directions for further research.

“Fine-grained” dichotomy The classical results of Hell and Nešetřil [1990] establishes the
following dichotomy for Graph Homomorphism subject to P 6= NP : For every fixed simple graph
H, the problem whether there exists a homomorphism from G to H is solvable in polynomial time
if and only if H is bipartite. Is there anything similar to that in the world of exponential algorithms
for HOM(G,H)?

More precisely, for graph classes G and H we denote by HOM(G,H) the restriction of the graph
homomorphism problem to input graphs G ∈ G and H ∈ H. If G or H is the class of all graphs
then we use the placeholder ‘ ’ instead of a letter. Thus the result of Hell-Nešetřil states that unless
P 6=NP, HOM( ,H) is in P if and only if H is a class of bipartite graphs.

Now we know that solving HOM( , ) with input graphs G and H in time |V (H)|o(|V (G)|) would
refute ETH. On the other hand, when H is the class of graphs consisting of complete graphs,
HOM( ,H) is equivalent to computing the chromatic number of G and thus is solvable in time
O(2|V (G)|) [Björklund et al. 2009]. More generally, let H be a graph class such that for some
constant t, either the clique-width or the maximum vertex degree of the core of every graph in
H is at most t. Wahlström [2010] have shown that in this case HOM( ,H) is solvable in single-
exponential time O(f(t)|V (G)|) = 2O(|V (G)|), where f is some function of H only. Is it possible to
characterize (up to some complexity assumption) graph classes H, where HOM( ,H) is solvable in
single-exponential time?

What about the fine-grained complexity of Graph Homomorphism for HOM(G, ) and HOM(G,H)?
Of course, similar questions are interesting for Subgraph Isomorphism, as well as for counting
versions of Graph Homomorphism and Subgraph Isomorphism.

Some concrete problems Are the following problems solvable in single-exponential time?

• Subgraph Isomorphism with instance (G,H) when the maximum vertex degree of G is 3.
(When degree of G does not exceed 2, the problem is solvable in single-exponential time, see
e.g. [Held and Karp 1962].)

• Deciding if graph G can be obtained from graph H only by edge-contractions.

• Deciding if graph G is an immersion of graph H.

• Deciding if G is a minor of a graph H for the special situation when G is a clique.
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• Finding a minimum distortion embedding into a cycle. We remark that embedding in a path
can be done in time 2O(|V (G)|) [Cygan and Pilipczuk 2012; Fomin et al. 2011].
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Jiŕı Fiala and Jan Kratochv́ıl. Locally constrained graph homomorphisms - structure, complexity,
and applications. Computer Science Review, 2(2):97–111, 2008. doi: 10.1016/j.cosrev.2008.06.
001.
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Pawe l Rzażewski. Exact algorithm for graph homomorphism and locally injective graph homomor-
phism. Inf. Process. Lett., 114(7):387–391, 2014. doi: 10.1016/j.ipl.2014.02.012.

Michael Sipser. Introduction to the Theory of Computation. Cengage Learning, 2005.

Robert Endre Tarjan and Anthony E. Trojanowski. Finding a maximum independent set. SIAM
J. Computing, 6(3):537–546, 1977.

Patrick Traxler. The time complexity of constraint satisfaction. In Parameterized and Exact
Computation, pages 190–201. Springer, 2008.

Magnus Wahlström. Problem 5.21. Time complexity of graph homomorphism. In Ramamohan Pa-
turi Thore Husfeldt, Dieter Kratsch and Gregory Sorkin, editors, Exact Complexity of NP-Hard
Problems. Dagstuhl Seminar 10441 Final Report. Dagstuhl, 2010.

Magnus Wahlström. New plain-exponential time classes for graph homomorphism. Theory of
Computing Systems, 49(2):273–282, 2011.

Gerhard J. Woeginger. Exact algorithms for NP-hard problems: A survey. In Combinatorial
Optimization - Eureka, you shrink!, volume 2570 of Lecture Notes in Comput. Sci., pages 185–
207. Springer-Verlag, Berlin, 2003.

23

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.542

	1 Introduction
	2 Preliminaries
	3 Auxiliary Lemmata
	3.1 Balanced Colorings
	3.2 Reductions

	4 Lower Bounds
	4.1 Graph Homomorphism
	4.2 Subgraph Isomorphism

	5 Conclusion and Open Problems

