
Software Trace Cache *

Alex Ramirez Josep-L. Larriba-Pey Carlos Navarro
Mateo Valero

Josep Torrellast

Computer Architecture Department
Universitat Politkcnica de Catalunya

Jordi Girona 1-3, Module D6
08034 Barcelona (Spain)

{aramirez,1arri,cnavarro,mateo}@ac.upc.es

Abstract

In this paper we address the important problem of instruc-
tion fetch for future wide issue superscalar processors. Our
approach focuses on understanding the interaction between
software and hardware techniques targeting an increase in
the instruction fetch bandwidth. That is the objective, for
instance, of the Hardware Trace Cache (HTC).

We design a profile based code reordering technique which
targets a maximization of the sequentiality of instructions,
while still trying to minimize instruction cache misses. We
call our software approach, Software Xrace Cache {STC).

We evaluate our software approach, and then compare
it with the HTC and the combination of both techniques.
Our results show that for large codes with few loops and
deterministic execution sequences like databases and some
SPEC-INT codes, the STC offers similar, or better, results
than a HTC. Moreover, when combining the software and
hardware approaches, we obtain encouraging results: the
STC and a small HTC offer similar performance to a much
larger HTC alone.

1 Introduction

Instruction fetch bandwidth may become a major limiting
factor for future aggressive wide-issue superscalars. Conse-
quently, it is crucial to develop software and hardware tech-
niques that interact to deliver multiple basic blocks to the
processor every cycle.

Unfortunately, for many important codes, this is hard to
do. For instance, database codes and several integer SPEC

*This research has been SuDDOrted bv CICYT erant TIC-0511-
98 (UPC authors), the Generaiitat de Catalunyagrants ACI 97-
26 (Josep L. Larriba-Pey and Josep Torrellas) and 1998FI-00306-
APTIND (Alex Ramiree), the Commission for Cultural, Educational
and Scientific Exchange’between the United States of .America and
Spain (Josep L. Larriba-Pey, Josep Torrellas and Mateo Valero),
NSF grant MIP-9619351 (Josep Torrellas) and CEPBA. Alex Ramirez
wants to thank all his fellow PBC’s for their time and efforts. The
authors want to thank Xavi Serrano for all his help setting up and
analyzing PostgreSQL.

+ University of Illinois at Urbana Champaign, USA.
(torrella@cs.uiuc.edu)

Permission to make digital or hard topics of all or part of this work &>I
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
othcrwisc, IO republish, to post on scrvcrs or to redistribute to lists.
requires prior specific permission and/or a fee.
ICS ‘99 Rhodes Greece
Copyright ACM 1999 I-581 13-164-x/99/06.,.$5.00

applications have frequent control flow transfers and high
instruction-cache miss rates. These characteristics make
supplying a high number of useful instructions a difficult
task, even in the presence of aiding devices like the Hard-
ware Trace Cache (HTC) [4, 121.

On the software side, it is possible to reorder the code in
memory so that it is easier to supply useful instructions to
the execution unit. Code reordering can target the elimina-
tion of cache conflicts [5, 6, 8, 7, 10, 131. In addition, it can
also map sequentially-executed basic blocks in consecutive
memory positions [7, 10, 131. Both aspects may increase the
number of useful instructions fetched per access for future
wide-issue superscalars.

In this paper, we focus on the interaction between hard-
ware and software to provide a high instruction bandwidth.
We start presenting a fully-automated, compile-time code
reordering technique that focuses on maximizing the sequen-
tiality of instructions, while still trying to minimize instruc-
tion cache misses. We call our technique Software llace
Cache (SXC).

We compare the results obtained with the STC to those
obtained with a HTC alone and to the combination of both
techniques. The results are obtained for the PostgreSQL
database, an arcade game, and the SPEC’95 benchmark.

Our results show that for large codes with few loops
and deterministic execution sequences like the Postgres95
database management system, the STC offers similar, or
better, results than a HTC. Moreover, if we combine the
STC and the HTC, we obtain very encouraging results.
Specifically, the number of fetched instructions per cycle ob-
tained with a combination of the STC and a small HTC is
comparable to that of a HTC of double size alone. Finally,
the STC can be useful even in combination with a large HTC
due to the instruction cache miss rate reduction.

This paper is structured as follows: Section 2 describes
the fetch mechanism and the HTC; Sectiori 3 describes the
STC technique; Section 4 characterizes the instruction ref-
erence stream for a variety of workloads; Section 5 uses sim-
ulations to evaluate various combinations of the STC and
the HTC; Section 6 discusses related work; and in Section 7
we draw some final remarks.

2 The Fetch Mechanism

We simulate an aggressive sequential fetch unit similar to
that described in [12]. As shown in Figure 1, our core
fetch unit model is composed of an interleaved instruction
cache (i-cache), a multiple branch predictor (BP), an in-

119

http://crossmark.crossref.org/dialog/?doi=10.1145%2F305138.305178&domain=pdf&date_stamp=1999-05-01

terleaved branch target buffer (BTB) and a return address
stack (RAS). This fetch unit is designed to fetch as many
contiguous instructions as possible. The limits are posed
by the width of the data path and the branch predictor
throughput. In this work, we will assume a limit of 16 in-
structions and 3 branches per cycle.

Fetch Address

i-I Fill Buffe

4 1
To Decode Next Fetch Address

From Fetch
or Commit

Figure 1: Fetch unit model used for simulation, complete
with the Hardware Trace Cache mechanism. In our simula-
tions N=16 and M=3.

Two consecutive i-cache lines are accessed per cycle, al-
lowing us to fetch sequential code crossing the cache line
boundary. The BTB is accessed in parallel with the i-cache,
and is used to predict the address of indirect jumps and
subroutine calls. The return address of subroutines can be
accurately predicted using the RAS. It is assumed that in-
structions will be pre-decoded, allowing branches and other
control transfers to be detected. The target of PC-relative
branches is calculated, not obtained from the BTB. Using
the outputs from the BP, the BTB and the information re-
garding which instructions represent control transfers, we
obtain an instruction mask to select the valid instructions
from the fetched i-cache lines, and generate the fetch address
for the next cycle.

We do not allow our fetch unit to stop at indirect jumps
if those do not break the execution sequence. We add a
breaking bit to the BTB, which informs the fetch unit when
the predicted jump address will break the sequence.

Summarizing, instruction fetch stops in one of these con-
ditions:

a 16 instructions are fetched

l 3 branches are fetched

l A branch is predicted taken

l An indirect jump is predicted to break the execution
sequence

l A system call is fetched

l On any misprediction or BTB miss

For high branch prediction accuracy we use a 4KB GAg
correlated branch predictor, with ll-bit history length, ex-
tended to allow multiple branches to be predicted in a single
cycle, a 256-entry BTB enhanced with the breaking bit, and
a 256-entry RAS.

We also simulated our core fetch unit in conjunction with
the basic trace cache model described in [12]. The com-
plete fetch unit, with a trace cache (t-cache), is what we
call the Hardware Trace Cache (HTC). The fill buffer reads

instructions from either the fetch unit (speculative trace con-
struction) or from the commit stage (non-speculative trace
construction) and stores them in a special purpose buffer.
When a trace is completed, it is stored in the t-cache in
conjunction with the branch outcomes that led to that in-
struction sequence. If the same leading instruction and the
same branch outcomes are encountered in the future, the
trace is fed directly from the t-cache to the decode unit.
The fill buffer stops building a trace on the same conditions
as the core fetch unit, except for the case of sequence breaks,
as the t-cache is able to store non-contiguous instructions in
contiguous memory positions.

3 The Software Trace Cache

The number of useful instructions per cycle provided to the
processor is broadly determined by three factors: branch
prediction accuracy, instruction cache miss rate and the ex-
ecution of non-contiguous basic blocks. To deal with the
last two problems, we propose a code reordering technique
which uses the whole memory space as a Software Trace
Cache to store the most popular sequences of basic blocks.
In order to avoid sequence breaks we will reorder the basic
blocks in a program to change taken branches to non-taken
ones, moving unused basic blocks out of the execution path
and inlining basic blocks from the most popular functions.
To reduce the instruction cache miss rate we map the most
popular traces in a reserved area of the i-cache.

Our algorithm is based on profile information. This
means that the results obtained will depend on the represen-
tativity of the training inputs. The most popular execution
paths for a given input set do not need to be related to the
execution paths of a different input set.

Running the training set on each benchmark, we obtain
a directed graph of basic blocks with weighted edges. An
edge connects two basic blocks p and Q, if q is executed after
p. The weight of an edge W(pq) is equal to the total number
of times q has been executed aEter p. The weight of a basic
block W(p) can be obtained by adding the weight of all
outgoing edges. The branch probability of an edge B(pq) is
obtained as W(pq)/W(p). All unexecuted basic blocks are
pruned from the graph.

Next we describe how we select the seeds or starting
basic blocks for our code sequences, the algorithm which
builds the basic block traces from the selected seeds, and the
mapping algorithm used to allocate these traces minimizing
instruction cache misses.

3.1 Seed selection

We obtain an ordered list of seeds by sorting the entry points
of all functions in decreasing frequency of execution. This
tries to expose the maximum temporal locality, as the first
traces built will start on the most frequently’ referenced func-
tions.

It is possible to obtain better results with a seed selec-
tion based on the internal structure of the code, a~ we show
in [ll]. However, access to the source code of applications
is not always granted, and gaining such deep understanding
of the code is a time consuming task, which may not offer
an improvement large enough to compensate for the effort.

3.2 Trace building

Using the weighted graph obtained running the training set,
and starting from the selected seeds, we implement a greedy

120

algorithm to build our basic block traces targeting an in-
crease in the code sequentiality. Given a basic block, the al-
gorithm follows the most frequently executed path out of it.
This implies visiting a subroutine called by the basic block,
or following the control transfer with the highest probability
of being used. All the other valid transitions from the basic
block are noted for future examination.

For this algorithm we use two parameters called Exec
Threshdd, and Branch Threshold. The trace building algo-
rithm stops when all the successor basic blocks have been
visited or have a weight lower than the Exec Threshold, or
all the outgoing arcs have a branch probability less than the
Branch Threshold. In that case, we start again from the
next acceptable transition, as we noted before, building sec-
ondary execution paths for the same seed. Once all basic
blocks reachable from the given seed have been included in
the main or secondary sequences, we proceed to the next
seed.

Figure 2.a shows an example of the weighted graph and
Figure 2.b shows the resulting sequences. We use an Exec-
Thresh of 4 and a BranchThresh of 0.4. Starting from seed
Al and following the most likely outgoing edge from each ba-
sic block we build the sequence Al + A8 (Figure 2.b). The
transitions to Bl and C5 are discarded due to the Branch
Threshold. We noted that the transition from A3 to A5 is
a valid transition, so we start a secondary trace with A5,
but all its successors have been already visited, so the se-
quence ends there. We do not start a secondary trace from
A6 because it has a weight lower than the Exec Threshold.

Figure 2: Trace building example.

Code replication

In order to increase code sequentiality, we introduce a lim-
ited form of code replication in out method. We allow the
main execution path of each subroutine to be replicated at
all call points.

We introduce two new threshold values, the ExecRep
and Bran&Rep Thresholds to control the amount of code
we are replicating. A sequence will be replicated if the call
probability passes the BranchRep threshold and the starting
basic block for that sequence passes the ExecRep Threshold.

In the example from Figure 2, if we found a new caIl to
Cl from, say A7, we would replicate the sequence Cl -+ C4
and include it between A7 and A8 in the main execution
path.

Threshold selection

We have a loop in our algorithm that repeatedly selects a
set of values for the four thresholds and generates the re-
sulting traces for each pass. The basic blocks included in
previous passes are pruned from the newly formed traces,
further limiting the amount of code replicated in each pass.
By iteratively selecting less and less restrictive values for the
thresholds, we build our traces grouped in passes of decreas-
ing frequency of execution.

The values selected for the Exec and Branch threshold
will determine the number of basic blocks included in each
pass of the algorithm, generating larger or smaller groups of
traces. The target is to pack in a given pass those traces
with a similar popularity, while keeping the total number of
instructions under control. For this paper we selected our
Exec Threshold so that each pass contained approximately
4KB of not replicated code. To maximize the effect of the
code replication we used the least restrictive ExecRep and
BranchRep thresholds.

3.3 Trace mapping

As shown in Figure 3, we map our code sequences in de-
creasing order of popularity, concentrating the most likely
used code in the first memory pages and mapping popular
sequences close to other equally popular ones, reducing con-
flict misses among them. Also, the most popular sequences
will map to a reserved area of the cache, leaving gaps to cre-
ate a Conflict Free Area (CFA), shielding the most popular
traces from interference with any other code.

Figure 3: Trace mapping for a direct mapped instruction
cache.

The same mapping algorithm can be applied to set asso-
ciative cache with minor modifications. A complete study of
the different factors which determine the instruction cache
miss reduction offered by this mapping of code sequences,
and a comparison with other code mapping algorithms for
the PostgreSQL database can be found in [ll].

4 Locality Study

The objective of the STC is to build at compile time the
most popular traces that are built at run time by the HTC.
Also, the STC targets a minimization of the i-cache miss
rate at the same time. We analyze the instruction reference

121

stream for a wide set of workloads, characterizing instruc-
tion locality and execution path determinism, which affect
the performance offered by the STC. With this information
we intend to predict the performance increase we can expect
when using the STC for each workload. The reference local-
ity will affect the i-cache miss rate reduction offered by our
technique, and the basic block size, the number of loops and
the determinism of program execution will influence the in-
crease in code sequentiality accomplished by the basic block
reordering.

4.1 Workloads

We have used four classes of workloads, trying to cover a
wide range of applications: common integer and floating
point codes, commercial workloads, and arcade games.

Recent studies have shown that commercial workloads
do not behave like common integer codes, like the SPEC-
INT set. Also, it is well known that floating point codes
have a different behavior than integer codes. Our workloads
include the whole SPEC 95 benchmarks. We use the Post-
greSQL 6.3.2 database management system as our commer-
cial workload and XBlast 2.2, an arcade game, as an example
of a little studied workload.

All the executions and simulations needed to develop this
work, have been done using the Alpha 21164 processor, DEC
ATOM, and trace driven simuIation. We used different input
sets to obtain the profile information and to obtain the sim-
ulation results to ensure that the improvements were valid
for inputs other than the profiled ones. Ail benchmarks were
run to completion for both training and simulation.

4.2 Code Analysis

Examining the profile information obtained running the train-
ing set, we classify the workloads attending to those charac-
teristics that affect the performance of our technique: code
locality, the amount of loops, conditional branches and sub-
routine calls, the basic block size and the number of sequence
breaks.

To examine code locality, we determine the number of
static instructions needed to gather 75, 90 and 99% of the
dynamic instruction references as shown in Table 1. The
total code size for each benchmark and the CFA size we
selected for 32 and 64KB instruction caches are also shown
in Table 1. We observe that some codes have very large
working sets, like applu, apsi, fpppp, gee and postgres which
do not fit even in 32KB caches. Furthermore, some codes
exhibit very little temporal locality, like gee, which can not
fit 75% of the references in a 32KB cache.

We select the CFA size so that it gathers between 75 and
90% of the instruction references, while still leaving reason-
able space for the rest of the code. Obviously, larger caches
allow a larger CFA and more code replication. For example,
xblast concentrates 90% of the dynamic references in 2362
instructions (9448 bytes) which almost fit in an 8KB CFA,
which we will use for a 32KB instruction cache, but for a
64KB cache we will allow the CFA to grow to 16KB.

Next, we examine the code sequentiality for the origi-
nal layout. We observe that all floating point benchmarks
have very large basic blocks (35 instructions average), lead-
ing to large code sequences (57 consecutive instructions aver-
age). Meanwhile, the average sequence length for the integer
benchmarks is usually under 12 instructions, as less than 2
consecutive basic blocks are executed, and the typical basic
block size is around 5-7 instructions.

Benchmark 75%
101.t0mcatv 223
102.swim 148
103.su2cor 979
104.hydro2d 1223
107.mgrid 147
llO.applu 2407
125.turb3d 1065
14l.apsi 3099
145.fpppp 8985
146.wave5 1116
124.m88ksim 458
126.gcc 9595
129.compress 243
13O.G 325
132.ijpeg 862
134.perl 987
147.vortex 751
postgres 2716
xblast 1100

Dyn nit ewes Code
--m%- 99% size

308 1328 108237
232 763 110350

1839 4197 129741
1977 5371 125946
218 1029 112421

5060 10509 132803
1771 2828 121181
5694 9883 156479
8985 9879 124970
1919 5506 154987
1006 2863 51341

22098 57878 349382
338 525 21991
563 1365 38126

1489 3271 67646
1582 3006 108227
1486 5128 172690
5221 11748 374399
2362 6326 430664

CFA size
32KB 64KB

8 8
4 4
8 16
8 16
4 4

16 24
8 8
16 24
8 32
8 24
8 16
8 16
4 8
8 8
8 16
8 16

Table 1: Number of static instructions needed to accumulate
75, 90 and 99% of the dynamic references, and the total code
size, including unreferenced instructions. Selected CFA size
for 32 and 64KB instruction caches.

Finally, we examined a classification of the dynamic basic
blocks executed by each benchmark. The different types of
basic block considered are shown in Table 2. The percentage
of basic blocks of each type executed is shown in Table 3.
The last two columns show the percentage of branch and
loop basic blocks which behave in a fixed way (FB,FL), that
is, they are always taken or always not taken. A low propor-
tion of tied loop branches means that each loop executes
few iterations (less than 20).

BB Type
F
J

I:
L
s

i

Description
Fall-through

Target
1 Next instruction

Table 2: Basic block types considered.

By changing the order of the basic blocks in a program
we can reduce the number of unconditional branches, and
change taken conditional branches for not taken ones. Also,
by inlining the most popular functions we can eliminate sub-
routine calls and returns, and increment the number of se-
quentially executed instructions. Note that the number of
sequence breaks due to loop branches and unpredictable con-
ditional branches does not depend on the organization of the
code.

We consider the indirect jumps in a separate way be-
cause they can not be eliminated, as the target address is
unknown, and may jump to an unexpected address. How-
ever, we can reorder the code so that the most frequent
target address does not break the execution sequence.

To reduce the number of loops, compiler optimizations
like loop unrolling can be used, but it is not yet included
in our work. Consequently, the STC as it is now will offer
little advantage to codes with lots of loops and few fixed
conditional branches.

122

Also, codes with few subroutine calls will not benefit
from the fact that the STC builds its execution sequences
crossing procedure calls.

The number of predictable basic block transitions is de-
termined by fall-through basic blocks, PC-relative uncondi-
tional branches, conditional branches with a fixed behavior
and subroutine calls. The percentage of fall-through basic
blocks is around lO-20% for most codes, so STC perfor-
mance will be determined by the rest of the basic block
classes, mainly by the percentage of loop basic blocks.

With this criteria, we expect postgres, with only a 3.4%
of loop basic blocks, 12.8% of subroutine calls and 43% of
conditional branches (76.2% of which behave in a fixed way)
to be the one which will benefit the most from the STC. On
the other hand, 32% of the basic blocks executed by ijpeg
end with a loop branch, and barely 30% of its conditional
branches behave in a fixed way, which makes it difficult to
enlarge the execution sequences. Among the FP codes, apsi
looks as the best candidate, with a large proportion of fixed
conditional branches and few loops but few subroutine calls.

5 Simulation results

After selecting an appropriate CFA size for each bench-
mark, we measured the increase in the number of instruc-
tions executed between two sequence breaks obtained with
the STC. Table 4 shows the percentage of basic block tran-
sitions which break the sequence, and the average number
of consecutive instructions executed for each benchmark for
both the original code and our proposed layout, measured
running the Test set.

The number of consecutive instructions executed repre-
sents the performance limit of a sequential fetch unit. Even
if we were not limited by the bus width, the branch predic-
tor throughput, and branch mispredictions, we would still
be limited by taken branches. Table 4 shows how the STC
improves this performance limit.

Average Original Reor
Benchmark BB size %breaks Seq Len. Wbresks
tomcatv 44.0 80 55.2 72
swim 48.7 99 49.2 99
su2cor
hydro2d
mgrid
aPPlu
turb3d
apsi
fPPPP

19.8 52
14.9 69
62.0 89
23.4 50
21.9 47
26.3 55
69.1 43

37.7
21.6
70.0
46.5
46.7
48.0

162.5

49
53
90
58

49.1
40.1
28.3
68.8
40.7
60.6
59.4

wave5 24.6 62 39.5 61
Average 35.5 65 57.7 60 4 171.6 40.4 62.0
m88ksim 4.82 61 7.9 27 17.8
ccc II 5.33 II 55 13.4
compress II 6.77 II I 9.8 II 40

58 11.7
li 4.20 49 8.5

II 62
37

I1 10.9
11.2

%zsF]
61.4 1

_ _ _ __. _. _
;;

_.
Average 1 6.85 1 11.6 42 1 i5.8
postgres 1 4.58 1 51 9.0 25 1 18.3
xblast 1 5.25 1 62 8.4 27 1 19.5

Table 4: Percentage of basic block transitions and average
number of consecutive instructions executed for the original
and the reordered code. The average BB size is the same
for both code layouts.

As expected, the FP benchmarks barely reduce the per-

centage of sequence breaks. The best results are obtained by
hydro2d and apsi, with reductions between 20-25%, which
translate to sequence length increases of 24-31%. This was
to be expected due to the reduced proportion of loops ex-
ecuted. On the other hand, mgrid actually increased the
percentage of sequence breaking BB transitions from 89%
to 90%. It is the FP benchmark with a higher proportion of
loop basic blocks executed.

For the integer codes, we obtain sequence length in-
creases above 100% for m88ksim, vortex, postgres and xblast.
Meanwhile, ijpeg did not experience any noticeable improve-
ment. This roughly corresponds to what we expected from
Section 4.

In general terms, most integer codes experience signifi-
cant reductions in the percentage of sequence breaking BB
transitions. After reordering, most codes execute 2-3 con-
secutive basic blocks, raising the average performance limit
to 15.8 instructions.

5.1 Fetch unit simulation

Table 5 shows simulation results for the fetch unit described
in Section 2, using a 32KB instruction cache (i-cache). We
simulated both code layouts on the core fetch unit, and in
combination with trace caches (t-cache) of 16 and 32KB.
The code layout is either the original code (Base), or the
optimized layout corresponding to a CFA of zKB (CFA,).

We present the number of Fetched Instructions per Ac-
cess (FIPA) as three separate results, the average number
of instructions the core fetch unit (i-cache) provides, the av-
erage number of instructions the t-cache provides, and the
average global performance. If no t-cache is present, the
core fetch unit is the same as the global performance.

Also, separate i-cache and t-cache miss rates are pre-
sented in terms of misses per line access. There are two i-
cache line accesses and one t-cache line access for each fetch
unit access.

We also present the branch misprediction rate.
The final performance metric is the number of Fetched

Instructions per Cycle (FIPC). The FIPC was obtained di-
viding the FIPA for an estimated number of cycles per access
(CPA). Instruction cache misses cause the fetch engine to
stall, increasing the CPA, and branch mispredictions cause
the fetch unit to fetch instructions from the wrong execution
path, effectively wasting fetch cycles.

We used a fixed number of cycles for each i-cache miss,
and assumed that if both i-cache lines missed, they could be
served simultaneously. We also assumed an average number
of penalty cycles for each branch misprediction. As i-cache
miss penalties we used 3 and 6 cycles, and branch mispre-
diction penalties of 4, 8 and 12 cycles, as it will depend on
the execution core of the processor.

Software Trace Cache

The main effects of the STC are an increase in the FIPA
provided by the core fetch unit and a reduction of the i-cache
miss rate. Some codes show large improvements in one or
both numbers, while others seem unaffected. We found some
unexpected side effects on the branch prediction accuracy.

For example, reordering the code for postgres increases
the FIPA for the core fetch unit from 7.5 to 10.3 instructions.
These 10.3 instructions per access are still far away from the
18.3 shown in Table 4, but that is a performance limit. Here
we are limited by the bus width and the branch predictor
throughput and accuracy, not only by taken branches.

123

II Basic Block Tvr II Fixed branches 1
I B

I .

7,
59.0
57.5
25.3
39.1
81.1
45.4
29.3
23.7
9.6

31.9
9.4
11.3
16.5
11.6
32.1
9.2

17.8
3.4

11.2

s R
1.0 1.2
3.9 3.9
5.2 5.3
1.3 1.3
0.1 0.1
0.0 0.0
0.4 2.6
2.2 5.4
4.5 4.5
5.1 7.6

10.2 12.2
3.0 7.0
0.0 14.1
3.9 11.2
1.1 2.7
6.7 8.8
7.5 7.6
0.9 13.6
6.2 8.4

I FT,
3.3

7.1
11.8
9.8
5.2
11.1
11.8
17.8
19.8
15.2
i1.7
9.5
12.3
21.1
13.8
21.1
16.0
22.1
20.8

28.2
19.4
44.4
46.3
13.2
43.3
46.9
44.7
56.3
35.2
47.3
58.8
37.0
39.8
43.7
45.9
44.4
43.4
50.1

%-
0.2
0.0
0.1
0.1
0.0
0.0
2.2
3.2
0.0
2.5
2.0
4.0

14.1
7.3
1.6
2.1
0.1

12.8
2.2

%E3-
92.0
54.7
65.9
66.5
81.1
58.8
81.5
77.9
46.2
90.5
62.7
39.9
48.2
44.4
29.8
69.0
63.7
76.2
65.1

A
49.3

100.0
92.4
88.1
0.0
13.0
14.8
18.8
16.9
88.3
53.6
21.7
44.7
50.8
35.1
53.4
32.6
26.3
13.5

Benchmark
lOl.tomcatv
102.swim
103.su2cor
104.hydroZd
107.mgrid
llO.applu
125.turb3d
14l.apsi
145.fPPPP
146.wave5
124.m88ksim
126.gcc
129.compress
130X
132.ijpeg
134.perl
147.vortex
postgres
xblast

Table 3: Percent of the dynamic basic blocks of each type for each workload. Percent of conditional and loop branches with
a fixed behavior.

This increase causes the global FIPA performance of the
STC alone to come quite close to the HTC for some codes.
For example, the core fetch unit provides 10.1 instruction
per access with the reordered xblast, while using a 16KB
t-cache with the original code obtains 10.8 instructions per
access.

We also observe that the STC drastically reduces the
i-cache miss rate for both the FP and the integer codes.
Large codes like apsi, xblast and postgres obtain miss rate
reductions around 90%, and a final i-cache miss rate around
1% on a 32KB cache.

The branch misprediction rate increases slightly with the
reordered code. It is so because the reordered code reduces
the number of taken branches, introducing more zeroes in
the history register of the GAg predictor, leading to a worse
utilization of the history table. For example, the branch
misprediction rate for m88ksim increases from 4.9% to 7.9%
when the code is reordered, mainly due to the reduction of
sequence breaks from 61% to 27% (see Table 4).

Hardware Trace Cache

The fact that the traces provided by the t-cache are built
in the fill buffer makes the FIPA provided from the t-cache
independent of the t-cache geometry. Also, reading the in-
structions form the dynamic stream, makes the traces inde-
pendent of the code layout.

The t-cache miss rate does not seem to depend on the
code layout, but on the t-cache size itself. In order to re-
duce the t-cache miss rate, techniques like Partial match-
ing [4] have been proposed, which also reduce the number
of instruction provided. The HTC mechanism assumes that
the t-cache will always be able to provide more instructions
than the core fetch unit. This statement may not be true
if we consider the increased FIPA performance of the STC
and the reduced trace length caused by such techniques. It
may not be worth adding such functionality to the HTC, as
a compile-time optimization can obtain similar results.

The HTC does not have a visible impact on the branch
prediction accuracy.

STC and HTC interaction

The best results are obtained when combining both STC
and HTC, as the core fetch unit will be able to provide more
instructions on a t-cache miss and a lower i-cache miss rate.
For example, a combination of STC and 16KB t-cache for
vortex provides 12.2 instructions per access, while a HTC of
32KB provides only 11.3.

For the larger codes, the t-cache can not remember all
the executed code sequences, and the core fetch unit is used
extensively. It is in these cases, like gee, where the STC
proves more useful, combining with a small t-cache to pro-
vide better results than a t-cache of double size alone. Com-
bining a STC with a large t-cache still improves the results
for the larger codes, but the FIPA increase is minimum for
the small ones.

Both the STC and the HTC improve the FIPA, but the
STC also targets a reduction of the CPA by minimizing i-
cache misses. For small codes, like hydro2d which already
have a very low i-cache miss rate, the STC is not too useful,
with the HTC providing much better performance. In some
cases, like li, the increased branch misprediction rate can
actually hinder the performance of the HTC.

On the other hand, for the largest codes, like postgres
and xblast, the STC alone can offer similar, or better results
than a HTC alone. In these cases, combining the compile-
time and the run-time techniques offers the best results, rais-
ing the FIPC from 5.9 with the STC, or 4.6 with the 16KB
HTC, to 6.5 with a combination of both. In most cases,
using a combination of STC and a small HTC offers similar
or better results than a HTC of double size.

The benefits of the STC are more obvious when the i-
cache miss penalty increases and the branch misprediction
penalty is small, while the HTC proves most useful when
the i-cache miss penalty is low.

We conclude that for large codes with few loops, the STC
can provide better results than the HTC alone, and that a
combination of the STC with a small HTC provides similar
or better results than a much larger HTC alone. When com-
bined with a large t-cache, the STC is still able to provide
performance improvements, due to the reduced i-cache miss
rate.

124

I r Bench.

hydro2d

*psi

m88kaim

gee

Ii

ijpcg

Se
t-cache
0

OKB
16KB
16KB
32KB
32KB

OKB
OKB
l6KB
16KB
32KB
32KB

OKB
OKB

16KB
l6KB
S2KB
32KB

Tim?-
OKB

16KB
16KB
32KB
32KB

OKB
OKB
16KB
l6KB
32KB
32KB

OKB
OKB

10KB
16KB
32KB
32KB

OKB
OKB
16KB
16KB
32KB
32KB

OKB
OKB

16KB
16KB
32KB
32KB

OKB
OKB
16KB
16KB
32KB
32KB

P
Layout
Base
CFAe
BIbso

CFA3
Bane

CFAfi
Base

CFAlB
Base

cF*le
Base

CFA,R

Bsse
CFA6
BP&*=

CFA6
BC.ee

CFAS,
Base

CFA*
l3aec

CFAs
Base

CFA3
Base

CFA4
Base

CFA4
Base

CFA4
Base

Cl%*
BMX

CFA3
BCASe

CFAp,
Base

CFAs
Bnsc

CFAs
Base

CF.48

Bsse
CFAls

Base

cz26
CFAIR

Bsse
CFAs
Base

CFA8
Base

CFAs

,-cache
11.T

12.2
11.4
11.1
9.1
0.0

15.8
14.2
13.5
13.7
13.3
13.7

6.9
10.0
6.6
8.8
6.4
8.1

7
8.8
7.1
6.2
6.9
8.0

7.4
8.4
6.4
1.3
6.1
6.8

11.7
11.6
9.7

10.3
8.8
0.0

7.6
10.2
6.7
0.2
6.7
8.6

1.5
10.3
1.2
0.7
7.0
6.0

'7.1
10.1
7.0
0.2
6.8
8.6

-

15.5
15.5
15.5
15.5

-
-

15.9
15.9
16.0
16.0

-
-
-

13.8
13.7
13.7
13.8

-
13.6
13.3
13.6
13.3

13.5
13.2
13.4
13.4

-

16.5
16.4
15.6
15.4

-
13.8
13.8
13.7
13.8 - -
-

14.2
14.0
14.2
14.1

-
-
-

13.7
13.7
19.7
13.8

I
I
I

12.2
15.4
15.5
15.6
15.5

19.8
14.2
15.3
15.4
15.5
15.5

T
10.0
11.1
11.6
11.9
12.0

7.7
8.8
9.s
10.5
10.1
10.7

'1.4
8.4

10.6
11.1
11.1
11.5

11.7
Il.6
14.5
14.5
14.5
14.6

7.6
10.2
10.8
12.2
11.3
12.3

T
10.3
10.6
11.8
11.6
12.3

T.1
10.1
10.8
11.5
11.1
12.1

0.08
0.01

1.3
a.2
1.5
0.2
1.4
0.2

11.6
0.06
14.5
0.06
13.5
0.06

10.2
7.3

12.4
8.3

12.4
8.3

0.1
0.1
0.2
0.2
0.2
0.2

0.07
0.01
0.1

0.01
0.1

0.01
7.8

1.1
8.1
1.3
8.2
1.3

9.5
1.0

10.0
1.1
Q.9
1.2

4.8
0.6
6.8
1.5
7.2
0.0

I - II 11.8 II 3.4 I 2.8 I

- 4.9 3.2 3.0
- 7.0 5.6 4.6

36.0 4.0 4.4 4.0
42.7 7.0 6.0 4.8
25.4 4.0 4.7 4.2
31.5 7.9 6.1 4.9

- 10.0 3.2 2.7
- 11.8 3.4 2.8

59.4 10.0 a.5 2.9
56.0 11.8 a.7 3.0
51.6 10.0 3.6 3.0
48.6 11.8 3.7 3.0

- 5.0 5.3 4.6
5.8 5.5 4.7

40.4 5.0 6.8 5.8
36.4 5.8 6.6 5.5
32.0 5.0 7.0 5.9
29.0 5.8 6.8 5.6

- 9.7 8.3 7.2 - If 1O.I II 8.2 I 7.1

Table 5: Simulation results for a 32KB instruction cache.

6 Related Work

There has been much work on code mapping algorithms to
optimize the instruction cache miss rate. These works were
targeted at less aggressive processors, which do not need to
fetch instructions from multiple basic blocks per cycle.

Hwu and Chang [7] use function inline expansion, and
group into traces those basic blocks which tend to execute
in sequence as observed on a profile of the code. Then, they
map these traces in the cache so that the functions which
axe executed close to each other are placed in the same page.

Pettis & Hansen [lo] propose a profile based technique
to reorder the procedures in a program, and the basic blocks
within each procedure. Their aim is to minimize the con-
flicts between the most frequently used functions, placing
functions which reference each other close in memory. They
also reorder the basic blocks in a procedure, moving unused
basic blocks to the bottom of the function code, even split-
ting the procedures in two, and moving away the unused
basic blocks.

Torrellas et aJ [13] designed a basic block reordering al-
gorithm for Operating System code, running on a very con-
servative vector processor. They map the code in the form
of sequences of basic blocks spanning several functions, and
keep a section of the cache address space reserved for the
most frequently referenced basic blocks. A comparison be-

11.9
15.0
15.0
15.1
16.0
12.4
12.8
13.5
13.8
13.7
13.9

p.1
6.5
5.7
6.0
6.1
6.1

9.7
a.9
4.2
4.2
4.2

*
5.8
6.8
6.6
7.0
6.8

8.5
8.2
0.6
9.5
9.6

%-
6.1
5.3
6.7
5.4
6.8 -

62
5:o
6.8
6.4
7.4
6.6 ~

4.4
5.8
6.6
6.0
5.6
6.5 -

12.0
16.2
16.2
15.2
15.2
12.9
13.4
13.4
14.4
13.6
14.6

s=
7.1
5.0
7.0
5.4
8.1

3.8
4.3
4.2
4.7
4.4

4%
6.6
8.2
8.2
8.5
8.5

9.7
9.6

Il.4
11.5
11.5
11.6
4.1
7.2
5.6
8.2
6.7
8.2

F
712
5.r
7.9
6.2
8.1

FF
P.2
5.9
7.4
5.9
8.2 -

tween the STC, the Pettis & Hansen method and the Tor-
rellas et al method can be found in [ll].

Gloy et al. [5] extend the Pettis & Hansen placement
algorithm at the procedure level to consider the temporal
relationship between procedures in addition to the target
cache information and the size of each procedure. Hashemi
et al [6] and Kalamaitianos et al [8] use a cache line color-
ing algorithm inspired in the register coloring technique to
map procedures so that the resulting number of conflicts is
minimized.

Techniques developed for VLIW processors, like Trace
Scheduling [3] also identify the most frequent execution paths
in a program. But these techniques are trying to optimize
the scheduling of instructions in the execution core of the
processor, not the performance of the instruction fetch en-
gine. Individual instructions are moved up and down, cross-
ing the basic block boundary, to optimize ILP in the execu-
tion core of the processor, inserting compensation code to

undo what wrongly placed instructions did when the wrong
path is taken. The traces they define are logical, the ba-
sic blocks need not be actually moved in order to obtain
the desired effect. In that sense, these techniques and the
STC may be complementary, one optimizes instruction fetch
while the other optimizes instruction scheduling, both using
the same profile information.

On the hardware side, techniques like the Branch Ad-

12.5

dress Cache [14], the Collapsing Buffer [2] and the Trace
Cache [4, 121 approach the problem of fetching multiple,
non-contiguous basic blocks each cycle. The Branch Address
Cache and the Collapsing Buffer access non-consecutive cache
lines from an interleaved i-cache each cycle and then merge
the required instructions from each accessed line. The Trace
Cache does not require fetching of non-consecutive basic
blocks from the i-cache as it stores dynamically constructed
sequences of basic blocks in a special purpose cache. These
techniques require hardware extensions of the fetch unit,
and do not target an i-cache miss rate reduction, relying on
other techniques for it.

Some other works have examined the interaction of run-
time and compile-time techniques regarding the instruction
fetch mechanism. Chen et al. [l] examined the effect of the
code expanding optimizations (loop unrolling and function
inlining) on the instruction cache miss rate. Also, as an ex-
ample of software and hardware cooperation, Pate1 et al [9]
identify branches with a fixed behavior and avoid making
prediction on them, increasing the potential of the Trace
Cache.

7 Conclusions

In this paper we present a profile based code reordering tech-
nique which targets an optimization of the instruction fetch
performance in the more aggressive wide superscalar proces-
sors.

By carefully mapping the basic blocks in a program we
can store the more frequently executed traces in memory, us-
ing the instruction cache as a Software Trace Cache (STC),
obtaining better performance of a sequential fetch unit, and
complementing the Hardware Trace Cache (HTC) mecha-
nism with a better failsafe mechanism.

Our results show that for large codes with few loops
and deterministic execution sequences, like database appli-
cations, the STC can offer similar, or better, results than the
HTC alone. However, optimum results come from the com-
bination of both the software and the hardware approaches.
The number of fetched instructions per cycle obtained with
a combination of the STC and a small trace cache is com-
parable to that of a HTC of double size alone.

The storage of the most popular traces in the instruction
cache leads to a new view of the fetch unit, where the trace
cache is more tightly coupled with the contents of the in-
struction cache. Some traces are being redundantly stored
in both caches, effectively wasting space, and displacing po-
tentially useful traces from the trace cache. It is yet another
example of the need for the software and the hardware to
work together in order to obtain optimum performance with
the minimum cost.

References

[l] W. Y. Chen, P. P. Chung, T. M. Conte, and W.-M.
Hwu. The effect of code expanding optimizations on
instruction cache design. IEEE Transactions on Com-
puters, 42(9):1045-1057, Sept. 1993.

[2] T. Conte, K. Menezes, P. Mills, and B. Patell. Opti-
mization of instruction fetch mechanism for high issue
rates. Proceedings of the 22th Annual Intl. Symposium
on Computer Architecture, pages 333-344, June 1995.

[3] J. A. Fisher. Trace scheduling: A technique for global
microcode compaction. IEEE nansactions on Com-
puters, 30(7):478-490, July 1981.

[4] D. H. Friendly, S. J. Patel, and Y. N. Patt. Alternative
fetch and issue techniques from the trace cache mecha-
nism. Proceedings of the 30th Anual ACM/IEEE Intl.
Symposium on Microarchitecture, Dec. 1997.

[5] N. Gloy, T. Blackwell, M. D. Smith, and B. Calder.
Procedure placement using temporal ordering informa-
tion. Proceedings of the 30th Anual ACM/IEEE Intl.
Symposium on Microarchitecture, pages 303-313, Dec.
1997.

IS] A. H. Hashemi, D. R. Kaeli, and B. Calder. Efficient
procedure mapping using cache line coloring. Proc.
ACM SIGPLAN’97 Conf. on Programming Languaje
Design and ImpZementation, pages 171-182, June 1997.

1’71 W.-M. Hwu and P. P. Chang. Achieving high instruc-
tion cache performance with an optimizing compiler.
Proceedings of the 16th Annual Ml. Symposium on
Computer Architecture, pages 242-251, June 1989.

[8] J. Kalamaitianos and D. R. Kaeli. Temporal-based pro-
cedure reordering for improved instruction cache perfor-
mance. Proceedings of the 4th Intl. Conference on High
Performance Computer Architecture, Feb. 1998.

[9] S. J. Patel, M. Evers, and Y. N. Patt. Improving trace
cache effectiveness with branch promotion and trace
packing. Proceedings of the 25th Annual Intl. Sympo-
sium on Computer Architecture, pages 262-271, June
1998.

[lo] K. Pettis and R. C. Hansen. Profile guided code posi-
tioning. Proc. ACM SIGPLAN’BO Conf. on Program-
ming Languaje Design and Implementation, pages 16-
27, June 1990.

[II] A. Ramirez, J. L. Larriba-Pey, C. Navarro, X. Serrano,
J. Torrellas, and M. Valero. Code reordering of deci-
sion support systems for optimized instruction fetch.
Technical Report UPC-DAC-1998-56, Universitat Po-
litecnica de Catalunya, Dec. 1998.

[12] E. Rottenberg, S. Benett, and J. E. Smith. Trace cache:
a low latency aprroach to high bandwith instruction
fetching. Proceedings of the 29th Anual ACM/IEEE
Intl. Symposium on Microarchitecture, pages 24-34,
Dec. 1996.

[13] J. Torrellas, C. Xia, and R. Daigle. Optimizing instruc-
tion cache performance for operating system intensive
workloads. Proceedings of the 1st Intl. Conference on
High Performance Computer Architecture, pages 360-
369, Jan. 1995.

[14] T. Y. Yeh, D. T. Marr, and Y. N. Patt. Increasing
the instruction fetch rate via multiple branch prediction
and a branch address cache. 7th Intl. Conference on
Supercomputing, pages 67-76, July 1993.

126

