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Abstract 

In this paper we address the important problem of instruc- 
tion fetch for future wide issue superscalar processors. Our 
approach focuses on understanding the interaction between 
software and hardware techniques targeting an increase in 
the instruction fetch bandwidth. That is the objective, for 
instance, of the Hardware Trace Cache (HTC). 

We design a profile based code reordering technique which 
targets a maximization of the sequentiality of instructions, 
while still trying to minimize instruction cache misses. We 
call our software approach, Software Xrace Cache {STC). 

We evaluate our software approach, and then compare 
it with the HTC and the combination of both techniques. 
Our results show that for large codes with few loops and 
deterministic execution sequences like databases and some 
SPEC-INT codes, the STC offers similar, or better, results 
than a HTC. Moreover, when combining the software and 
hardware approaches, we obtain encouraging results: the 
STC and a small HTC offer similar performance to a much 
larger HTC alone. 

1 Introduction 

Instruction fetch bandwidth may become a major limiting 
factor for future aggressive wide-issue superscalars. Conse- 
quently, it is crucial to develop software and hardware tech- 
niques that interact to deliver multiple basic blocks to the 
processor every cycle. 

Unfortunately, for many important codes, this is hard to 
do. For instance, database codes and several integer SPEC 
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applications have frequent control flow transfers and high 
instruction-cache miss rates. These characteristics make 
supplying a high number of useful instructions a difficult 
task, even in the presence of aiding devices like the Hard- 
ware Trace Cache (HTC) [4, 121. 

On the software side, it is possible to reorder the code in 
memory so that it is easier to supply useful instructions to 
the execution unit. Code reordering can target the elimina- 
tion of cache conflicts [5, 6, 8, 7, 10, 131. In addition, it can 
also map sequentially-executed basic blocks in consecutive 
memory positions [7, 10, 131. Both aspects may increase the 
number of useful instructions fetched per access for future 
wide-issue superscalars. 

In this paper, we focus on the interaction between hard- 
ware and software to provide a high instruction bandwidth. 
We start presenting a fully-automated, compile-time code 
reordering technique that focuses on maximizing the sequen- 
tiality of instructions, while still trying to minimize instruc- 
tion cache misses. We call our technique Software llace 
Cache (SXC). 

We compare the results obtained with the STC to those 
obtained with a HTC alone and to the combination of both 
techniques. The results are obtained for the PostgreSQL 
database, an arcade game, and the SPEC’95 benchmark. 

Our results show that for large codes with few loops 
and deterministic execution sequences like the Postgres95 
database management system, the STC offers similar, or 
better, results than a HTC. Moreover, if we combine the 
STC and the HTC, we obtain very encouraging results. 
Specifically, the number of fetched instructions per cycle ob- 
tained with a combination of the STC and a small HTC is 
comparable to that of a HTC of double size alone. Finally, 
the STC can be useful even in combination with a large HTC 
due to the instruction cache miss rate reduction. 

This paper is structured as follows: Section 2 describes 
the fetch mechanism and the HTC; Sectiori 3 describes the 
STC technique; Section 4 characterizes the instruction ref- 
erence stream for a variety of workloads; Section 5 uses sim- 
ulations to evaluate various combinations of the STC and 
the HTC; Section 6 discusses related work; and in Section 7 
we draw some final remarks. 

2 The Fetch Mechanism 

We simulate an aggressive sequential fetch unit similar to 
that described in [12]. As shown in Figure 1, our core 
fetch unit model is composed of an interleaved instruction 
cache (i-cache), a multiple branch predictor (BP), an in- 
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terleaved branch target buffer (BTB) and a return address 
stack (RAS). This fetch unit is designed to fetch as many 
contiguous instructions as possible. The limits are posed 
by the width of the data path and the branch predictor 
throughput. In this work, we will assume a limit of 16 in- 
structions and 3 branches per cycle. 

Fetch Address 

i-I Fill Buffe 

4 1 
To Decode Next Fetch Address 

From Fetch 
or Commit 

Figure 1: Fetch unit model used for simulation, complete 
with the Hardware Trace Cache mechanism. In our simula- 
tions N=16 and M=3. 

Two consecutive i-cache lines are accessed per cycle, al- 
lowing us to fetch sequential code crossing the cache line 
boundary. The BTB is accessed in parallel with the i-cache, 
and is used to predict the address of indirect jumps and 
subroutine calls. The return address of subroutines can be 
accurately predicted using the RAS. It is assumed that in- 
structions will be pre-decoded, allowing branches and other 
control transfers to be detected. The target of PC-relative 
branches is calculated, not obtained from the BTB. Using 
the outputs from the BP, the BTB and the information re- 
garding which instructions represent control transfers, we 
obtain an instruction mask to select the valid instructions 
from the fetched i-cache lines, and generate the fetch address 
for the next cycle. 

We do not allow our fetch unit to stop at indirect jumps 
if those do not break the execution sequence. We add a 
breaking bit to the BTB, which informs the fetch unit when 
the predicted jump address will break the sequence. 

Summarizing, instruction fetch stops in one of these con- 
ditions: 

a 16 instructions are fetched 

l 3 branches are fetched 

l A branch is predicted taken 

l An indirect jump is predicted to break the execution 
sequence 

l A system call is fetched 

l On any misprediction or BTB miss 

For high branch prediction accuracy we use a 4KB GAg 
correlated branch predictor, with ll-bit history length, ex- 
tended to allow multiple branches to be predicted in a single 
cycle, a 256-entry BTB enhanced with the breaking bit, and 
a 256-entry RAS. 

We also simulated our core fetch unit in conjunction with 
the basic trace cache model described in [12]. The com- 
plete fetch unit, with a trace cache (t-cache), is what we 
call the Hardware Trace Cache (HTC). The fill buffer reads 

instructions from either the fetch unit (speculative trace con- 
struction) or from the commit stage (non-speculative trace 
construction) and stores them in a special purpose buffer. 
When a trace is completed, it is stored in the t-cache in 
conjunction with the branch outcomes that led to that in- 
struction sequence. If the same leading instruction and the 
same branch outcomes are encountered in the future, the 
trace is fed directly from the t-cache to the decode unit. 
The fill buffer stops building a trace on the same conditions 
as the core fetch unit, except for the case of sequence breaks, 
as the t-cache is able to store non-contiguous instructions in 
contiguous memory positions. 

3 The Software Trace Cache 

The number of useful instructions per cycle provided to the 
processor is broadly determined by three factors: branch 
prediction accuracy, instruction cache miss rate and the ex- 
ecution of non-contiguous basic blocks. To deal with the 
last two problems, we propose a code reordering technique 
which uses the whole memory space as a Software Trace 
Cache to store the most popular sequences of basic blocks. 
In order to avoid sequence breaks we will reorder the basic 
blocks in a program to change taken branches to non-taken 
ones, moving unused basic blocks out of the execution path 
and inlining basic blocks from the most popular functions. 
To reduce the instruction cache miss rate we map the most 
popular traces in a reserved area of the i-cache. 

Our algorithm is based on profile information. This 
means that the results obtained will depend on the represen- 
tativity of the training inputs. The most popular execution 
paths for a given input set do not need to be related to the 
execution paths of a different input set. 

Running the training set on each benchmark, we obtain 
a directed graph of basic blocks with weighted edges. An 
edge connects two basic blocks p and Q, if q is executed after 
p. The weight of an edge W(pq) is equal to the total number 
of times q has been executed aEter p. The weight of a basic 
block W(p) can be obtained by adding the weight of all 
outgoing edges. The branch probability of an edge B(pq) is 
obtained as W(pq)/W(p). All unexecuted basic blocks are 
pruned from the graph. 

Next we describe how we select the seeds or starting 
basic blocks for our code sequences, the algorithm which 
builds the basic block traces from the selected seeds, and the 
mapping algorithm used to allocate these traces minimizing 
instruction cache misses. 

3.1 Seed selection 

We obtain an ordered list of seeds by sorting the entry points 
of all functions in decreasing frequency of execution. This 
tries to expose the maximum temporal locality, as the first 
traces built will start on the most frequently’ referenced func- 
tions. 

It is possible to obtain better results with a seed selec- 
tion based on the internal structure of the code, a~ we show 
in [ll]. However, access to the source code of applications 
is not always granted, and gaining such deep understanding 
of the code is a time consuming task, which may not offer 
an improvement large enough to compensate for the effort. 

3.2 Trace building 

Using the weighted graph obtained running the training set, 
and starting from the selected seeds, we implement a greedy 
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algorithm to build our basic block traces targeting an in- 
crease in the code sequentiality. Given a basic block, the al- 
gorithm follows the most frequently executed path out of it. 
This implies visiting a subroutine called by the basic block, 
or following the control transfer with the highest probability 
of being used. All the other valid transitions from the basic 
block are noted for future examination. 

For this algorithm we use two parameters called Exec 
Threshdd, and Branch Threshold. The trace building algo- 
rithm stops when all the successor basic blocks have been 
visited or have a weight lower than the Exec Threshold, or 
all the outgoing arcs have a branch probability less than the 
Branch Threshold. In that case, we start again from the 
next acceptable transition, as we noted before, building sec- 
ondary execution paths for the same seed. Once all basic 
blocks reachable from the given seed have been included in 
the main or secondary sequences, we proceed to the next 
seed. 

Figure 2.a shows an example of the weighted graph and 
Figure 2.b shows the resulting sequences. We use an Exec- 
Thresh of 4 and a BranchThresh of 0.4. Starting from seed 
Al and following the most likely outgoing edge from each ba- 
sic block we build the sequence Al + A8 (Figure 2.b). The 
transitions to Bl and C5 are discarded due to the Branch 
Threshold. We noted that the transition from A3 to A5 is 
a valid transition, so we start a secondary trace with A5, 
but all its successors have been already visited, so the se- 
quence ends there. We do not start a secondary trace from 
A6 because it has a weight lower than the Exec Threshold. 

Figure 2: Trace building example. 

Code replication 

In order to increase code sequentiality, we introduce a lim- 
ited form of code replication in out method. We allow the 
main execution path of each subroutine to be replicated at 
all call points. 

We introduce two new threshold values, the ExecRep 
and Bran&Rep Thresholds to control the amount of code 
we are replicating. A sequence will be replicated if the call 
probability passes the BranchRep threshold and the starting 
basic block for that sequence passes the ExecRep Threshold. 

In the example from Figure 2, if we found a new caIl to 
Cl from, say A7, we would replicate the sequence Cl -+ C4 
and include it between A7 and A8 in the main execution 
path. 

Threshold selection 

We have a loop in our algorithm that repeatedly selects a 
set of values for the four thresholds and generates the re- 
sulting traces for each pass. The basic blocks included in 
previous passes are pruned from the newly formed traces, 
further limiting the amount of code replicated in each pass. 
By iteratively selecting less and less restrictive values for the 
thresholds, we build our traces grouped in passes of decreas- 
ing frequency of execution. 

The values selected for the Exec and Branch threshold 
will determine the number of basic blocks included in each 
pass of the algorithm, generating larger or smaller groups of 
traces. The target is to pack in a given pass those traces 
with a similar popularity, while keeping the total number of 
instructions under control. For this paper we selected our 
Exec Threshold so that each pass contained approximately 
4KB of not replicated code. To maximize the effect of the 
code replication we used the least restrictive ExecRep and 
BranchRep thresholds. 

3.3 Trace mapping 

As shown in Figure 3, we map our code sequences in de- 
creasing order of popularity, concentrating the most likely 
used code in the first memory pages and mapping popular 
sequences close to other equally popular ones, reducing con- 
flict misses among them. Also, the most popular sequences 
will map to a reserved area of the cache, leaving gaps to cre- 
ate a Conflict Free Area (CFA), shielding the most popular 
traces from interference with any other code. 

Figure 3: Trace mapping for a direct mapped instruction 
cache. 

The same mapping algorithm can be applied to set asso- 
ciative cache with minor modifications. A complete study of 
the different factors which determine the instruction cache 
miss reduction offered by this mapping of code sequences, 
and a comparison with other code mapping algorithms for 
the PostgreSQL database can be found in [ll]. 

4 Locality Study 

The objective of the STC is to build at compile time the 
most popular traces that are built at run time by the HTC. 
Also, the STC targets a minimization of the i-cache miss 
rate at the same time. We analyze the instruction reference 
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stream for a wide set of workloads, characterizing instruc- 
tion locality and execution path determinism, which affect 
the performance offered by the STC. With this information 
we intend to predict the performance increase we can expect 
when using the STC for each workload. The reference local- 
ity will affect the i-cache miss rate reduction offered by our 
technique, and the basic block size, the number of loops and 
the determinism of program execution will influence the in- 
crease in code sequentiality accomplished by the basic block 
reordering. 

4.1 Workloads 

We have used four classes of workloads, trying to cover a 
wide range of applications: common integer and floating 
point codes, commercial workloads, and arcade games. 

Recent studies have shown that commercial workloads 
do not behave like common integer codes, like the SPEC- 
INT set. Also, it is well known that floating point codes 
have a different behavior than integer codes. Our workloads 
include the whole SPEC 95 benchmarks. We use the Post- 
greSQL 6.3.2 database management system as our commer- 
cial workload and XBlast 2.2, an arcade game, as an example 
of a little studied workload. 

All the executions and simulations needed to develop this 
work, have been done using the Alpha 21164 processor, DEC 
ATOM, and trace driven simuIation. We used different input 
sets to obtain the profile information and to obtain the sim- 
ulation results to ensure that the improvements were valid 
for inputs other than the profiled ones. Ail benchmarks were 
run to completion for both training and simulation. 

4.2 Code Analysis 

Examining the profile information obtained running the train- 
ing set, we classify the workloads attending to those charac- 
teristics that affect the performance of our technique: code 
locality, the amount of loops, conditional branches and sub- 
routine calls, the basic block size and the number of sequence 
breaks. 

To examine code locality, we determine the number of 
static instructions needed to gather 75, 90 and 99% of the 
dynamic instruction references as shown in Table 1. The 
total code size for each benchmark and the CFA size we 
selected for 32 and 64KB instruction caches are also shown 
in Table 1. We observe that some codes have very large 
working sets, like applu, apsi, fpppp, gee and postgres which 
do not fit even in 32KB caches. Furthermore, some codes 
exhibit very little temporal locality, like gee, which can not 
fit 75% of the references in a 32KB cache. 

We select the CFA size so that it gathers between 75 and 
90% of the instruction references, while still leaving reason- 
able space for the rest of the code. Obviously, larger caches 
allow a larger CFA and more code replication. For example, 
xblast concentrates 90% of the dynamic references in 2362 
instructions (9448 bytes) which almost fit in an 8KB CFA, 
which we will use for a 32KB instruction cache, but for a 
64KB cache we will allow the CFA to grow to 16KB. 

Next, we examine the code sequentiality for the origi- 
nal layout. We observe that all floating point benchmarks 
have very large basic blocks (35 instructions average), lead- 
ing to large code sequences (57 consecutive instructions aver- 
age). Meanwhile, the average sequence length for the integer 
benchmarks is usually under 12 instructions, as less than 2 
consecutive basic blocks are executed, and the typical basic 
block size is around 5-7 instructions. 

Benchmark 75% 
101.t0mcatv 223 
102.swim 148 
103.su2cor 979 
104.hydro2d 1223 
107.mgrid 147 
llO.applu 2407 
125.turb3d 1065 
14l.apsi 3099 
145.fpppp 8985 
146.wave5 1116 
124.m88ksim 458 
126.gcc 9595 
129.compress 243 
13O.G 325 
132.ijpeg 862 
134.perl 987 
147.vortex 751 
postgres 2716 
xblast 1100 

Dyn nit ewes Code 
--m%- 99% size 

308 1328 108237 
232 763 110350 

1839 4197 129741 
1977 5371 125946 
218 1029 112421 

5060 10509 132803 
1771 2828 121181 
5694 9883 156479 
8985 9879 124970 
1919 5506 154987 
1006 2863 51341 

22098 57878 349382 
338 525 21991 
563 1365 38126 

1489 3271 67646 
1582 3006 108227 
1486 5128 172690 
5221 11748 374399 
2362 6326 430664 

CFA size 
32KB 64KB 

8 8 
4 4 
8 16 
8 16 
4 4 

16 24 
8 8 
16 24 
8 32 
8 24 
8 16 
8 16 
4 8 
8 8 
8 16 
8 16 

Table 1: Number of static instructions needed to accumulate 
75, 90 and 99% of the dynamic references, and the total code 
size, including unreferenced instructions. Selected CFA size 
for 32 and 64KB instruction caches. 

Finally, we examined a classification of the dynamic basic 
blocks executed by each benchmark. The different types of 
basic block considered are shown in Table 2. The percentage 
of basic blocks of each type executed is shown in Table 3. 
The last two columns show the percentage of branch and 
loop basic blocks which behave in a fixed way (FB,FL), that 
is, they are always taken or always not taken. A low propor- 
tion of tied loop branches means that each loop executes 
few iterations (less than 20). 

BB Type 
F 
J 

I: 
L 
s 

i 

Description 
Fall-through 

Target 
1 Next instruction 

Table 2: Basic block types considered. 

By changing the order of the basic blocks in a program 
we can reduce the number of unconditional branches, and 
change taken conditional branches for not taken ones. Also, 
by inlining the most popular functions we can eliminate sub- 
routine calls and returns, and increment the number of se- 
quentially executed instructions. Note that the number of 
sequence breaks due to loop branches and unpredictable con- 
ditional branches does not depend on the organization of the 
code. 

We consider the indirect jumps in a separate way be- 
cause they can not be eliminated, as the target address is 
unknown, and may jump to an unexpected address. How- 
ever, we can reorder the code so that the most frequent 
target address does not break the execution sequence. 

To reduce the number of loops, compiler optimizations 
like loop unrolling can be used, but it is not yet included 
in our work. Consequently, the STC as it is now will offer 
little advantage to codes with lots of loops and few fixed 
conditional branches. 
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Also, codes with few subroutine calls will not benefit 
from the fact that the STC builds its execution sequences 
crossing procedure calls. 

The number of predictable basic block transitions is de- 
termined by fall-through basic blocks, PC-relative uncondi- 
tional branches, conditional branches with a fixed behavior 
and subroutine calls. The percentage of fall-through basic 
blocks is around lO-20% for most codes, so STC perfor- 
mance will be determined by the rest of the basic block 
classes, mainly by the percentage of loop basic blocks. 

With this criteria, we expect postgres, with only a 3.4% 
of loop basic blocks, 12.8% of subroutine calls and 43% of 
conditional branches (76.2% of which behave in a fixed way) 
to be the one which will benefit the most from the STC. On 
the other hand, 32% of the basic blocks executed by ijpeg 
end with a loop branch, and barely 30% of its conditional 
branches behave in a fixed way, which makes it difficult to 
enlarge the execution sequences. Among the FP codes, apsi 
looks as the best candidate, with a large proportion of fixed 
conditional branches and few loops but few subroutine calls. 

5 Simulation results 

After selecting an appropriate CFA size for each bench- 
mark, we measured the increase in the number of instruc- 
tions executed between two sequence breaks obtained with 
the STC. Table 4 shows the percentage of basic block tran- 
sitions which break the sequence, and the average number 
of consecutive instructions executed for each benchmark for 
both the original code and our proposed layout, measured 
running the Test set. 

The number of consecutive instructions executed repre- 
sents the performance limit of a sequential fetch unit. Even 
if we were not limited by the bus width, the branch predic- 
tor throughput, and branch mispredictions, we would still 
be limited by taken branches. Table 4 shows how the STC 
improves this performance limit. 

Average Original Reor 
Benchmark BB size %breaks Seq Len. Wbresks 
tomcatv 44.0 80 55.2 72 
swim 48.7 99 49.2 99 
su2cor 
hydro2d 
mgrid 
aPPlu 
turb3d 
apsi 
fPPPP 

19.8 52 
14.9 69 
62.0 89 
23.4 50 
21.9 47 
26.3 55 
69.1 43 

37.7 
21.6 
70.0 
46.5 
46.7 
48.0 

162.5 

49 
53 
90 
58 

49.1 
40.1 
28.3 
68.8 
40.7 
60.6 
59.4 

wave5 24.6 62 39.5 61 
Average 35.5 65 57.7 60 4 171.6 40.4 62.0 
m88ksim 4.82 61 7.9 27 17.8 
ccc II 5.33 II 55 13.4 
compress II 6.77 II I 9.8 II 40 

58 11.7 
li 4.20 49 8.5 

II 62 
37 

I1 10.9 
11.2 

%zsF] 
61.4 1 

_ _ _ __. _. _ 
;; 

_. 
Average 1 6.85 1 11.6 42 1 i5.8 
postgres 1 4.58 1 51 9.0 25 1 18.3 
xblast 1 5.25 1 62 8.4 27 1 19.5 

Table 4: Percentage of basic block transitions and average 
number of consecutive instructions executed for the original 
and the reordered code. The average BB size is the same 
for both code layouts. 

As expected, the FP benchmarks barely reduce the per- 

centage of sequence breaks. The best results are obtained by 
hydro2d and apsi, with reductions between 20-25%, which 
translate to sequence length increases of 24-31%. This was 
to be expected due to the reduced proportion of loops ex- 
ecuted. On the other hand, mgrid actually increased the 
percentage of sequence breaking BB transitions from 89% 
to 90%. It is the FP benchmark with a higher proportion of 
loop basic blocks executed. 

For the integer codes, we obtain sequence length in- 
creases above 100% for m88ksim, vortex, postgres and xblast. 
Meanwhile, ijpeg did not experience any noticeable improve- 
ment. This roughly corresponds to what we expected from 
Section 4. 

In general terms, most integer codes experience signifi- 
cant reductions in the percentage of sequence breaking BB 
transitions. After reordering, most codes execute 2-3 con- 
secutive basic blocks, raising the average performance limit 
to 15.8 instructions. 

5.1 Fetch unit simulation 

Table 5 shows simulation results for the fetch unit described 
in Section 2, using a 32KB instruction cache (i-cache). We 
simulated both code layouts on the core fetch unit, and in 
combination with trace caches (t-cache) of 16 and 32KB. 
The code layout is either the original code (Base), or the 
optimized layout corresponding to a CFA of zKB (CFA,). 

We present the number of Fetched Instructions per Ac- 
cess (FIPA) as three separate results, the average number 
of instructions the core fetch unit (i-cache) provides, the av- 
erage number of instructions the t-cache provides, and the 
average global performance. If no t-cache is present, the 
core fetch unit is the same as the global performance. 

Also, separate i-cache and t-cache miss rates are pre- 
sented in terms of misses per line access. There are two i- 
cache line accesses and one t-cache line access for each fetch 
unit access. 

We also present the branch misprediction rate. 
The final performance metric is the number of Fetched 

Instructions per Cycle (FIPC). The FIPC was obtained di- 
viding the FIPA for an estimated number of cycles per access 
(CPA). Instruction cache misses cause the fetch engine to 
stall, increasing the CPA, and branch mispredictions cause 
the fetch unit to fetch instructions from the wrong execution 
path, effectively wasting fetch cycles. 

We used a fixed number of cycles for each i-cache miss, 
and assumed that if both i-cache lines missed, they could be 
served simultaneously. We also assumed an average number 
of penalty cycles for each branch misprediction. As i-cache 
miss penalties we used 3 and 6 cycles, and branch mispre- 
diction penalties of 4, 8 and 12 cycles, as it will depend on 
the execution core of the processor. 

Software Trace Cache 

The main effects of the STC are an increase in the FIPA 
provided by the core fetch unit and a reduction of the i-cache 
miss rate. Some codes show large improvements in one or 
both numbers, while others seem unaffected. We found some 
unexpected side effects on the branch prediction accuracy. 

For example, reordering the code for postgres increases 
the FIPA for the core fetch unit from 7.5 to 10.3 instructions. 
These 10.3 instructions per access are still far away from the 
18.3 shown in Table 4, but that is a performance limit. Here 
we are limited by the bus width and the branch predictor 
throughput and accuracy, not only by taken branches. 
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II Basic Block Tvr II Fixed branches 1 
I B 

I .  

7, 
59.0 
57.5 
25.3 
39.1 
81.1 
45.4 
29.3 
23.7 
9.6 

31.9 
9.4 
11.3 
16.5 
11.6 
32.1 
9.2 

17.8 
3.4 

11.2 

s R 
1.0 1.2 
3.9 3.9 
5.2 5.3 
1.3 1.3 
0.1 0.1 
0.0 0.0 
0.4 2.6 
2.2 5.4 
4.5 4.5 
5.1 7.6 

10.2 12.2 
3.0 7.0 
0.0 14.1 
3.9 11.2 
1.1 2.7 
6.7 8.8 
7.5 7.6 
0.9 13.6 
6.2 8.4 

I FT, 
3.3 

7.1 
11.8 
9.8 
5.2 
11.1 
11.8 
17.8 
19.8 
15.2 
i1.7 
9.5 
12.3 
21.1 
13.8 
21.1 
16.0 
22.1 
20.8 

28.2 
19.4 
44.4 
46.3 
13.2 
43.3 
46.9 
44.7 
56.3 
35.2 
47.3 
58.8 
37.0 
39.8 
43.7 
45.9 
44.4 
43.4 
50.1 

%- 
0.2 
0.0 
0.1 
0.1 
0.0 
0.0 
2.2 
3.2 
0.0 
2.5 
2.0 
4.0 

14.1 
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1.6 
2.1 
0.1 

12.8 
2.2 

%E3- 
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54.7 
65.9 
66.5 
81.1 
58.8 
81.5 
77.9 
46.2 
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62.7 
39.9 
48.2 
44.4 
29.8 
69.0 
63.7 
76.2 
65.1 

A 
49.3 

100.0 
92.4 
88.1 
0.0 
13.0 
14.8 
18.8 
16.9 
88.3 
53.6 
21.7 
44.7 
50.8 
35.1 
53.4 
32.6 
26.3 
13.5 

Benchmark 
lOl.tomcatv 
102.swim 
103.su2cor 
104.hydroZd 
107.mgrid 
llO.applu 
125.turb3d 
14l.apsi 
145.fPPPP 
146.wave5 
124.m88ksim 
126.gcc 
129.compress 
130X 
132.ijpeg 
134.perl 
147.vortex 
postgres 
xblast 

Table 3: Percent of the dynamic basic blocks of each type for each workload. Percent of conditional and loop branches with 
a fixed behavior. 

This increase causes the global FIPA performance of the 
STC alone to come quite close to the HTC for some codes. 
For example, the core fetch unit provides 10.1 instruction 
per access with the reordered xblast, while using a 16KB 
t-cache with the original code obtains 10.8 instructions per 
access. 

We also observe that the STC drastically reduces the 
i-cache miss rate for both the FP and the integer codes. 
Large codes like apsi, xblast and postgres obtain miss rate 
reductions around 90%, and a final i-cache miss rate around 
1% on a 32KB cache. 

The branch misprediction rate increases slightly with the 
reordered code. It is so because the reordered code reduces 
the number of taken branches, introducing more zeroes in 
the history register of the GAg predictor, leading to a worse 
utilization of the history table. For example, the branch 
misprediction rate for m88ksim increases from 4.9% to 7.9% 
when the code is reordered, mainly due to the reduction of 
sequence breaks from 61% to 27% (see Table 4). 

Hardware Trace Cache 

The fact that the traces provided by the t-cache are built 
in the fill buffer makes the FIPA provided from the t-cache 
independent of the t-cache geometry. Also, reading the in- 
structions form the dynamic stream, makes the traces inde- 
pendent of the code layout. 

The t-cache miss rate does not seem to depend on the 
code layout, but on the t-cache size itself. In order to re- 
duce the t-cache miss rate, techniques like Partial match- 
ing [4] have been proposed, which also reduce the number 
of instruction provided. The HTC mechanism assumes that 
the t-cache will always be able to provide more instructions 
than the core fetch unit. This statement may not be true 
if we consider the increased FIPA performance of the STC 
and the reduced trace length caused by such techniques. It 
may not be worth adding such functionality to the HTC, as 
a compile-time optimization can obtain similar results. 

The HTC does not have a visible impact on the branch 
prediction accuracy. 

STC and HTC interaction 

The best results are obtained when combining both STC 
and HTC, as the core fetch unit will be able to provide more 
instructions on a t-cache miss and a lower i-cache miss rate. 
For example, a combination of STC and 16KB t-cache for 
vortex provides 12.2 instructions per access, while a HTC of 
32KB provides only 11.3. 

For the larger codes, the t-cache can not remember all 
the executed code sequences, and the core fetch unit is used 
extensively. It is in these cases, like gee, where the STC 
proves more useful, combining with a small t-cache to pro- 
vide better results than a t-cache of double size alone. Com- 
bining a STC with a large t-cache still improves the results 
for the larger codes, but the FIPA increase is minimum for 
the small ones. 

Both the STC and the HTC improve the FIPA, but the 
STC also targets a reduction of the CPA by minimizing i- 
cache misses. For small codes, like hydro2d which already 
have a very low i-cache miss rate, the STC is not too useful, 
with the HTC providing much better performance. In some 
cases, like li, the increased branch misprediction rate can 
actually hinder the performance of the HTC. 

On the other hand, for the largest codes, like postgres 
and xblast, the STC alone can offer similar, or better results 
than a HTC alone. In these cases, combining the compile- 
time and the run-time techniques offers the best results, rais- 
ing the FIPC from 5.9 with the STC, or 4.6 with the 16KB 
HTC, to 6.5 with a combination of both. In most cases, 
using a combination of STC and a small HTC offers similar 
or better results than a HTC of double size. 

The benefits of the STC are more obvious when the i- 
cache miss penalty increases and the branch misprediction 
penalty is small, while the HTC proves most useful when 
the i-cache miss penalty is low. 

We conclude that for large codes with few loops, the STC 
can provide better results than the HTC alone, and that a 
combination of the STC with a small HTC provides similar 
or better results than a much larger HTC alone. When com- 
bined with a large t-cache, the STC is still able to provide 
performance improvements, due to the reduced i-cache miss 
rate. 
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Table 5: Simulation results for a 32KB instruction cache. 

6 Related Work 

There has been much work on code mapping algorithms to 
optimize the instruction cache miss rate. These works were 
targeted at less aggressive processors, which do not need to 
fetch instructions from multiple basic blocks per cycle. 

Hwu and Chang [7] use function inline expansion, and 
group into traces those basic blocks which tend to execute 
in sequence as observed on a profile of the code. Then, they 
map these traces in the cache so that the functions which 
axe executed close to each other are placed in the same page. 

Pettis & Hansen [lo] propose a profile based technique 
to reorder the procedures in a program, and the basic blocks 
within each procedure. Their aim is to minimize the con- 
flicts between the most frequently used functions, placing 
functions which reference each other close in memory. They 
also reorder the basic blocks in a procedure, moving unused 
basic blocks to the bottom of the function code, even split- 
ting the procedures in two, and moving away the unused 
basic blocks. 

Torrellas et aJ [13] designed a basic block reordering al- 
gorithm for Operating System code, running on a very con- 
servative vector processor. They map the code in the form 
of sequences of basic blocks spanning several functions, and 
keep a section of the cache address space reserved for the 
most frequently referenced basic blocks. A comparison be- 
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tween the STC, the Pettis & Hansen method and the Tor- 
rellas et al method can be found in [ll]. 

Gloy et al. [5] extend the Pettis & Hansen placement 
algorithm at the procedure level to consider the temporal 
relationship between procedures in addition to the target 
cache information and the size of each procedure. Hashemi 
et al [6] and Kalamaitianos et al [8] use a cache line color- 
ing algorithm inspired in the register coloring technique to 
map procedures so that the resulting number of conflicts is 
minimized. 

Techniques developed for VLIW processors, like Trace 
Scheduling [3] also identify the most frequent execution paths 
in a program. But these techniques are trying to optimize 
the scheduling of instructions in the execution core of the 
processor, not the performance of the instruction fetch en- 
gine. Individual instructions are moved up and down, cross- 
ing the basic block boundary, to optimize ILP in the execu- 
tion core of the processor, inserting compensation code to 

undo what wrongly placed instructions did when the wrong 
path is taken. The traces they define are logical, the ba- 
sic blocks need not be actually moved in order to obtain 
the desired effect. In that sense, these techniques and the 
STC may be complementary, one optimizes instruction fetch 
while the other optimizes instruction scheduling, both using 
the same profile information. 

On the hardware side, techniques like the Branch Ad- 
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dress Cache [14], the Collapsing Buffer [2] and the Trace 
Cache [4, 121 approach the problem of fetching multiple, 
non-contiguous basic blocks each cycle. The Branch Address 
Cache and the Collapsing Buffer access non-consecutive cache 
lines from an interleaved i-cache each cycle and then merge 
the required instructions from each accessed line. The Trace 
Cache does not require fetching of non-consecutive basic 
blocks from the i-cache as it stores dynamically constructed 
sequences of basic blocks in a special purpose cache. These 
techniques require hardware extensions of the fetch unit, 
and do not target an i-cache miss rate reduction, relying on 
other techniques for it. 

Some other works have examined the interaction of run- 
time and compile-time techniques regarding the instruction 
fetch mechanism. Chen et al. [l] examined the effect of the 
code expanding optimizations (loop unrolling and function 
inlining) on the instruction cache miss rate. Also, as an ex- 
ample of software and hardware cooperation, Pate1 et al [9] 
identify branches with a fixed behavior and avoid making 
prediction on them, increasing the potential of the Trace 
Cache. 

7 Conclusions 

In this paper we present a profile based code reordering tech- 
nique which targets an optimization of the instruction fetch 
performance in the more aggressive wide superscalar proces- 
sors. 

By carefully mapping the basic blocks in a program we 
can store the more frequently executed traces in memory, us- 
ing the instruction cache as a Software Trace Cache (STC), 
obtaining better performance of a sequential fetch unit, and 
complementing the Hardware Trace Cache (HTC) mecha- 
nism with a better failsafe mechanism. 

Our results show that for large codes with few loops 
and deterministic execution sequences, like database appli- 
cations, the STC can offer similar, or better, results than the 
HTC alone. However, optimum results come from the com- 
bination of both the software and the hardware approaches. 
The number of fetched instructions per cycle obtained with 
a combination of the STC and a small trace cache is com- 
parable to that of a HTC of double size alone. 

The storage of the most popular traces in the instruction 
cache leads to a new view of the fetch unit, where the trace 
cache is more tightly coupled with the contents of the in- 
struction cache. Some traces are being redundantly stored 
in both caches, effectively wasting space, and displacing po- 
tentially useful traces from the trace cache. It is yet another 
example of the need for the software and the hardware to 
work together in order to obtain optimum performance with 
the minimum cost. 
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