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Abstract 

Automatic parallelization of codes with complex data struc- 
tures is becoming very important. These complex, and of- 
ten, recursive data structures are widely used in scientific 
computing. Shape analysis is one of the key steps in the 
automatic parallelization of such codes. In this paper we 
extend the Static Shape Graph (SSG) method to enable the 
successful and accurate detection of complex doubly linked 
structures. In addition, these techniques have been imple- 
mented in a compiler, which has been validated for several 
C codes. In particular, we present the results the compiler 
achieves for the C sparse LU factorization algorithm. The 
output SSG for this case study perfectly describes the com- 
plex data structure used during the LU code. 

1 Introduction 

Regarding high performance computing, it is clear that com- 
pilers represent a key tool that should take care of optimizing 
the applications that must be executed efficiently in paral- 
lel computers. A good deal of work has been done in the 
area of array dependence analysis [2] with notable success. 
However, non-numerical and numerical applications based 
on complex and dynamic data structures are becoming more 
and more widely used lately. These complex, and often, re- 
cursive data structures are based on dynamic allocation and 
references. 

To successfully optimize these applications, a fundamen- 
tal compiler task is the analysis of dynamic structures which 
are generated at execution time. Parallelization of any ap- 
plication requires the compiler’s special knowledge about the 
underlying semantic of the data structure. With these as- 
sumptions, shape analysis becomes a first step in the data 
dependence test for such kinds of codes. The aim of this 
phase is to find out at compile time the shape of the heap. 

In this work we present some important modifications to 
the shape analysis method developed by Sagiv et al. [12]. In 
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addition, we check our improvements with a real numerical 
application like the non-symmetric sparse LU decomposition 
based on a one-dimensional doubly linked list. 

The organization of the paper follows. In the next section 
we revise the approaches currently available to solve shape 
analysis problems. Section three presents the motivating 
example. Our shape analysis techniques are presented in 
section four. Conclusions and future work close the paper. 

2 Related Work 

There are several methods addressing the shape analysis 
problem. Some of these are based on explicit annotations, 
as in Hummel et al. [7]. These methods are based on pro- 
grammer annotations describing the data structure. 

Other approximations are based on access paths. Hen- 
dren et al. [5] use “path matrix analysis” that contains 
“access paths” between pointers. Matsumoto et al. [lo] 
use “normalized” path expressions to maintain the “alias- 
pair” between pointers. These methods cannot handle cyclic 
structures like double linked lists and trees with parent point- 
ers. 

Finally, there are methods based on graphs. In the graph, 
the nodes represent “storage chunks”, and the edges refer- 
ences between them. 

One of the first relevant works on this topic was devel- 
oped by Jones et al. [S]. In this work, the authors focus on 
the shape analysis of programs with destructive updating. 
They bind, to each program point, a set of graphs which 
describe all potential alias relationships that can arise at 
execution time. In addition, they use a “k-limited” approx- 
imation in which alI nodes beyond a k selectors path are 
joined in a summary node. Horwitz et al. [6] presented an- 
other variation on k-limited graphs, called “storage graphs”. 
Also, the authors maintain a set of storage graphs at each 
program point. The main drawbacks of these methods are: 
(1) the number of shape graphs that can arise for each pro- 
gram point is very high, leading to a great deal of compu- 
tational and memory overhead; and (2) the node analysis 
beyond the “k-limit” is very inexact. 

On the other hand, there are approximations in which 
each program point has an associated graph which covers 
all possible shape graphs combinations, instead of all these 
possible graphs independently [3, 9, 11, 121). The result of 
joining all the information, previously represented by differ- 
ent shape graphs, in a single one, is a lack of accuracy in the 
representation, but on the other hand, it leads to a practical 
shape analysis algorithm. Larus et al. [9], use a variation 
of “k-limited” graphs called “alias graphs”, and introduce 
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summary nodes using “s-l limiting”. This method works 
well only for simple data structures like trees and lists. It 
is expensive by its complex meet, node summary and node 
labeling operations. 

The algorithm presented by Chase et al. [3] is not “k- 
limited”. Their abstraction “Storage Shape Graph” contains 
one node for each variable and one for each allocation site in 
the program. In this method, the count of references from 
the heap to a node (0, 1, inf), is stored for each node in the 
graph. This way, the k-limited drawback is avoided. This 
algorithm is able to detect a single linked list even when new 
elements are appended to the end of the list. However, it is 
not powerful enough to detect insertions of elements in the 
middle of the list. 

Plevyak et al.[ll] work is based on the Chase’s method. 
They extend the previous “Storage Shape Graph” into the 
“Abstract Storage Graph” (ASG) in order to solve the main 
problems arising in the first one. However, in the same way 
as Chase’s method, their comparison and compression oper- 
ations are complex and expensive. 

The method presented by Sagiv et al. [K?] is based on 
what they call “Static Shape Graphs” (SSG). The main dif- 
ference between this method and previous ones lie in the 
node-name scheme they use for the nodes. Their graph con- 
tains nodes only for heap locations pointed to by program 
variables. Some very interesting properties are: (a) alias 
relationships are easier to find; (b) the determinism is bet- 
ter preserved in the graph due to they always carry out a 
“strong nullification” equivalent to “strong update” (substi- 
tution of a reference by another one, without keeping the 
previous one). 

In SSG the union and comparison operations are very 
simple due to this node-naming scheme. However, this me- 
thod cannot analyze doubly linked structures which are wi- 
dely used in C codes, like Sparse LU factorization. In this 
case the SSG is not able to accurately represent the data 
structure of the Sparse LU factorization. Each column of 
the sparse matrix is represented by a doubly linked list. In 
addition, a different doubly linked list is needed to point to 
the first element of each list (column). 

We propose combining the Sagiv’s method [12] and the 
Abstract Storage Graph (ASG) proposed by Plevyak et al. 
[ll] to achieve a more precise shape analysis of this type of 
structures which will allow us to automatically parallelize 
C codes with complex data structures. The extended SSG 
proposed in this work introduces two main modifications: 

l There will be several summary nodes in the SSG, al- 
lowing us to summarize different structure and type 
elements into different summary nodes, each one with 
its own properties. 

l We include a “shared” attribute assigned to each se- 
lector, and keep additional information regarding pairs 
of selectors called “cycle links”. With this modifica- 
tion we achieve a more accurate representation of the 
doubly linked structures. 

3 Motivating example: sparse LU factorization 

The kernel of many computer-assisted scientific applications 
is to solve large sparse linear systems. We find examples 
of these kinds of applications in optimization problems, lin- 
ear programming, simulation, circuit analysis, fluid dynamic 
computation, and numeric solutions of differential equations 
in general. 

do kz1.n 
Find pivot=Akj 
if (j # k) 

swap A(1 : n,k) and A(1 : n,j) 
endif 
A(k + 1 : n, k) = A(k + 1 : n, k)/A(k,k) 
doj=k+l,n 

doi=k+l,n 
A(i,j) = A(i,j) - A(i, k)A(k, j) 

enddo 
enddo 

enddo 
I- 

Figure 1: LU algorithm (General approach, rig1 
version) 

looking 

@ 
J 

(b) 

Figure 2: (a) Sparse matrix. (b) LLCS data structure. 

Furthermore, this problem presents a good case study 
and is a representative computationd code for many other 
irregular problems. Actually, this problem represents those 
in which the computational load grows with the execution 
time (fill-in) and matrix coefficients change their coordinates 
due to row/column permutations (pivoting). 

More precisely, our working example application solves 
non-symmetric sparse linear systems by applying the LU fac- 
torization of the sparse matrix, computed by using a general 
method [l, 41. These methods directly solve the sparse prob- 
lem and share the same loop structure of the corresponding 
dense code (the one we see in Fig. 1). 

In this Fig. 1, we show an in-place code for the direct 
right-looking LU algorithm, where an n-by-n matrix A is 
factorized. The code includes a row pivoting operation (par- 
tial pivoting) to provide numerical stability and preserve 
sparsi t y. 

Usually, in order to save both memory and computation 
overhead, zero entries of sparse matrices are not explicitly 
stored. A wide range of methods for storing the nonzero 
entries of sparse matrices have been developed [4]. Here, we 
will consider only linked list data structures. The partial- 
pivoting LU decomposition stores the coefficient matrix in 
a one-dimensional doubly linked list (see Fig. 2 (b)), to fa- 
cilitate the insertion of new entries and to allow column 
permutations. 

Analyzing the sparse LU algorithm with Sagiv’s method, 
the resulting SSG is shown in Fig. 3. Here, we can see that 
the same summary node, “rag”, refers to both the elements 
belonging to the header list and the ones in the column 
linked lists. This way it is impossible to discern between the 
two different data structures (header and columns). 

Furthermore, the summary node is shared, (is = true), 
which means that the summarized nodes are referenced from 
the heap more than once, when actually, they are referenced 
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Figure 3: Sparse LU SSG. 

by different selectors (nxt, prv). Therefore, there is no way 
to detect that no node is referenced twice by the same se- 
lector. Or in other words, the previous graph points out 
that the data structure may be cyclic and that there may 
be shared elements in different columns. This information, 
given in the SSG, prevents the compiler from automatically 
generating a parallel code that traverses and updates each 
column in parallel. 

4 A modified shape analysis algorithm 

This section focuses on the description of the new techniques 
which solve the previous problem. However, before this, it 
is necessary to briefly introduce the SSG notation used in 
WI>. 

4.1 SSG Notation. 

An SSG is a finite, labeled, directed graph that approxi- 
mates the actual stores that can arise during program ex- 
ecution. The shape-analysis algorithm itself is an iterative 
procedure that computes an SSG at every program point. 

An SSG SG# consists of two kinds of nodes, variables 
(PVar) and shape-nodes, and two kinds of edges, uariable- 
edges and selector-edges. An SSG is represented by a pair 
of edges sets, < E,#, ET >, where: 

E$ is the graph’s set of variable-edges, each of which 
is denoted by a pair of the form [z, n], where 2 E PVar 
and n is a shape-node. 

E,# is the graph’s set of selector-edges, each of which 
is denoted by a triple of the form < s, sel, t > where s 
and t are shape-nodes, and sel is a selector. 

Shape-nodes are named using a (possibly empty) set of 
pointer variables, X. The set shape-nodes(SG#) is a subset 
of (nx 1 X c PVar}. A shape-node nx, where X # 0, rep- 
resents the cons-cell (storage chunk) pointed to by exactly 
the pointer variables in the set X, in any given concrete 
store. The shape-node rag (summary node) can represent 
multiple cons-cells of a single concrete store. 

Each shape-node n in a SSG has an associated Boolean 
flag, denoted by a@(n) (is shared). When is#(n)=true, 
indicates that the cons-cells represented by n may be the 
target of pointers emanating from two or more distinct cons- 
cells fields. On the other hand, is#(n)=faZse means that, 
if several selector edges in an SSG point to n, they repre- 
sent concrete edges that never point to the same cons-cell 
in any concrete store. The function is# is therefore of type 
shape-nodes(SG#) + (false, true}. 

Two different shape-nodes nx and ny, such that X # Y 
and X n Y # 0, represent incompatible configurations of 
variables. Thus, for all < nx, sel, ray >E E,#, either X = Y 

or XOY = 0. The function compatibZe#(nz, , . . . . nz,) means 
Vi,j: Zi=Z,VZ;llZj=0. 

The “Abstract Interpretation” presents the modifications 
on a SSG for the six kind of statements that manipulate 
pointer variables (x := nil, x.sel := nil, x := new, x := u, 
z.seZ := y and z := y.sel). Ef’, .E,#’ and is#’ are E,#, E,# 
and %‘s# after statement execution. 

With all these definitions we can move on to the main 
part of this section: the description of the new techniques 
we propose. 

4.2 Several Summary Nodes 

The SSG method [la] can contain only one summary node: 
the one which represents the whole storage chunk in a cer- 
tain program point which is not referenced directly by any 
variable. However, to improve the data structure represen- 
tation in many cases, we allow the existence of more than 
one summary node. More precisely, in our SSG there may 
be a summary node for each pointer type and connected 
component, as we describe now. 

4.2.1 A Summary Node per pointer type. 

If the method is constrained to a single summary node, then 
nodes of different structure type may be summarized in a 
single node. This way, all of these nodes will have the same 
‘5s shared” is# attribute. Obviously, %s#” may turn to 
be true at a certain program point, but this is less likely 
to happen when the summary nodes are representing less 
nodes. 

For instance, by allowing only one summary node, two 
different structures, like the ones we see in figure Fig. 4 (a), 
are going to be represented by the same summary node, 
Fig. 4 (b). This way, even when only one of the structures 
has several references to the same node, is# becomes true 
for the whole summary node. Therefore, there is no way to 
know which structure (or if both of them) is actually sharing 
elements. This can be solved allowing a summary node for 
each different type of structure, as we can see in Fig. 4 (c). 
More precisely, we will consider that two structures have 
different type if the pointers pointing to elements of them 
have different type in the pointer declaration. 

In order to do this, apart from the is# attribute, we as- 
sociate to each node the type information (type#). For each 
pointer variable we keep its type (type-var), which is taken 
from the declaratory part. With all these assumptions, 
the abstract semantic of the following statements should be 
modified: 

1. Statement [x:= new] 
The type# of the new node (nfZl) is set to the type# 
of the variable that points to it. 

type#‘(nf,l) = type-uar(x) 

2. Statement [x:= y] 
All the nodes preserve their type, and the new nodes 
(now referenced by ‘lx”) take the type of the nodes 
pointed to by “y”. 

twe#‘(nz) = twe#(nz-(,j) 

3. Statement [x:= y.sel] 
A node materialization takes place. The type of the 
new node is the same as the type of the node from 
which it is materialized. 
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(a) W 

4: (a) Real structures. (b) Shape Graph without “type”. (c) Shape Graph Figure 
share nodes and List may be shared. 

Summary (IS = TRUE) 

type#‘(nz) = We#(nz-{,j) 
4. The summarization of nodes not directly referenced by 

pointer variables, varies as well. Now, only nodes of 
the same type and not pointed to by any variable can 
be summarized. 

5. During node matching for the union or comparison of 
graphs, apart from the set of variables referenced by 
the node, it is now also necessary to match their type#. 
This only affects the summary nodes since the others 
will have the type+ equal to that of the variables which 
reference them. 

4.2.2 A Summary Node per connected component. 

With the previous modifications we can maintain, for each 
graph, different summary nodes for different “types” of struc- 
tures. Now, if we deal with several structures of the same 
type, the corresponding nodes not directly pointed to by 
variables, will be summarized in a single summary node. 
Again, it may be of importance to explicitly distinguish 
these structures, even when they have the same “type”. For 
instance, in Fig. 5 (a) we can see two different structures 
which do not share any element. However, the method pro- 
posed in [12] leads to the SSG presented in Fig. 5 (b). Since 
there is a single summary node, there is no way to detect 
that one of the structures should have the “is shared” at- 
tribute set to false. 

To solve this problem and let the method reach an SSG 
like the one presented in Fig. 5 (c), each node is annotated 
with an additional attribute: the structure to which this 
node belongs, structure#. This structure# attribute has 
the same value for all nodes connected by a path. More 
precisely, we define the set of nodes connected to a given 
node “r-r”, as the set of nodes that can be found in any path 
toward or from node “n”: 

C[Es#J(n) = {nj 1 Sal, ..,n;(< n,sell, nl >, 
< nl, sel2, n2 >, .., < ni, sdi+l,n, >) E ES#V 

(< nj,seZl,m >,< nl,selz,n2 >,..,< ni,Seli+l,n>) E 
ES#) 

Again, the abstract semantic of the following statements 
is modified: 

1. Statement [x:= y] 
The graph connectivity does not change for this state- 
ment. The new nodes (now pointed to by “x”) will 
have the same structure# as the nodes pointed to by 
“Y” 

2. 

3. 

“p+@ 
Summary (IS = FALSE) 

Summary (IS = TRUE) 

Cc) 

with ‘<type”. In (b) List and Graph may 

structure #‘(nz) = structure#(n&+}) 

Statement [x.sel:= nil] 
This statement can break a connected component cre- 
ating two new ones. 
Vnx,xE X,< nx,sel,nz >E Es#: 

l if C[Es#‘](nx) n C[Es#‘](nz) = 0 then 
Vn E C[Es#‘J(nx), 
structure+(n) = newstructure, 
Vm E C[Es#‘](nz), 
structure++‘(m) = newstructure 

l if C’[Es#‘](nx) I-I C[Es#‘](nz) # 0, structure# 
does not change. 

When the connected components of the nodes nx and 
nz do not have any node in common, it is clear that 
we are actually dealing with two different connected 
components. Therefore, the structure# attribute is 
changed for all nodes in each connected component. 

Statement [x.sel:= y] 
This statement can merge two previously unconnected 
components. Since any assignment to “x” or “x.selll is 
always preceded by ‘lx:= nil” or “x.sel:= nil” respec- 
tively, this statement cannot break any connection. 

‘Jnx, w-, [x, nxl, [Y, ny] E Ev”, 
< nx, sel, ray >E Es#‘,compatibZe#(nx, ny): 

l Vn E C[Es#‘](nx),Vm E C[Es#‘](ny) 
structure#(n) = structure#(m) = 
newstructure 

The structure# information will be equal for all nodes 
connected to nx and ny, since now they belong to the 
same connected component. 

Statement [x:= y.sel] 
This statement does not break any connection in the 
graph. The structure# attribute of the new material- 
ized node will be the same as the one of the node from 
which it is materialized. 

structure#‘(nz) = structure#(nz-(,I) 

Now, during the node summarization, only those nodes 
not pointed to by any variable and with the same 
structure # attribute, can be summarized in a single 
node. 
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S,,mmluy (IS = FALSE) 

Summary (IS = TRUE) 

(8) W CC) 

Figure 5: (a) Real structures. (b) Shape Graph without structure’~. (c) Shape Graph with structure#. In (b) Graph1 and 
Graph2 may share nodes and Graph1 may be shared. 

6. 

4.3 

Regarding the node matching, the method also takes 
into account that the atructure# attributes must match 
as well. 

Share Information per selector 

In the original method, each node keeps its own is# at- 
tribute, which tells the compiler whether or not the node is 
referenced more than once from the heap. However, since 
this method does not take into account the selector used to 
reach the node, there is a potential lack of accuracy during 
the shape analysis. For example, Fig. 6 (a) shows a doubly 
linked list. Even when this list is traversed in a loop only 
by selector “nxt” or “prv”, the original method results in a 
single summary node with ia# = true, Fig. 6 (b). In these 
kinds of situations, it is very important to keep the shared 
attribute for each selector, as we see in Fig. 6 (c). 

Our shape analysis algorithm follows this last approach, 
assigning a shared attribute to each selector. Therefore, in 
addition to L@(n) we also introduce: 

is-seZ#(n, sel) + {false, true} 

which indicates whether the node “n” is referenced from the 
heap more than once by using the selector “sel”. This leads 
to a less conservative and more accurate shape analysis for 
many data structures. 

In order to accomplish these requirements, the abstract 
semantic of the following statements needs to be modified: 

1. Statement [x:= nil] 
The summarized nodes(no longer referenced by “x”) 
keep their is-seZ# attributes. 

is-ael#‘(nz, aeli) = 
is-aeP(nz, seli) V is-aeZ#(nzu~rl, aeli) VaeZi 

2. Statement [x:= new] 
When a new node is created, the corresponding is-seZ# 
information is initially set to “false” for all the types 
of selectors. 

is-aeZ#‘(n(,I, seEi) = f a/se Vseli 

3. Statement [x:= y] 
This statement does not change is-aeZ# attribute, since 
the connections in the graph are not changed. 

is-ael#‘(n.z, seli) = is3eZ)Y.(nz,~,), seli) Vseli 

4. 

5. 

6. 

Statement [x.sel:= nil] 
This statement may break references from node “x” by 
selector “sel” and therefore nodes with is-seZ#(n, sel) 
“true” may t&n to be “false”. 

To properly update the isseZ# attribute, we define 
the following function: iss-seZ#[Es#](n, se2) : 
3nzl,nz2,compatibZe#(n~~,nz2,p~)A < nzl,ael,n > 
, < nm, ael, n >E Ea# A nzl # nm 

das-aeZ# becomes “true” for node “n” and selector 
“sell’ when (a) there are two different nodes nzi and 
nz2 which are compatible (using the compatibZe# func- 
tion) with “n” and (b) both of them reference the node 
‘Y by selector “sel”. 

We extend the semantic of this statement as follows: 
is-aeZ#‘(n, sel) = 

l is-seZ#(n, sel) V iia-aeZ#[Ea#‘](n, aeZ) 

if 3nx, [z, nx] E EU#A < nx, sel, n >E Es* 

l iaseZ# (n, ael) otherwise 

That is, after breaking references to nodes pointed to 
by variable “x” using selector %el”, we check whether 
or not these referenced nodes maintain the shared at- 
tribute for selector “sel”. 

Statement [x.sel = y] 
This statement can change the is-aeZ# information of 
the nodes directly pointed to by variable “y”, since 
they are going to be referenced by selector “sel” from 
the heap. 

is-seP(n, sel) = 

l isseZ#(n, ael) V iia-aeZ#[Ea#‘](n, ael) if [g, n] E 
E?J# 

l is_seZ#(n, sel) otherwise 

With the iss-seZ# function we check if the nodes point- 
ed to by variable “y” are referenced more than once 
by selector “sel”. The others nodes do not change. 

Statement [x:= y.sel] 
The changes induced by this statement are twofold. 
First, we note that the is-seZ# attribute does not chan- 
ge. However, like in the statement [x:= y], we need 
to take into account the new nodes, which are now 
pointed to by variable iLx”. 

is-seZ#‘(nz, aeli) = is-aeZ#(nz-(,l,aeZi) VaeZi 
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“~~ q-p$q yj-g 

(IS = TRUE) (ISSEL(nxt) = FALSE) 
(ISSEL@rv) = FALSE) 

(a) @) C-3 

Figure 6: (a) Doubly linked list. (b) Shape Graph without is-se1 attributes. (c) Shape Graph with is-se1 attributes. In (c), 
when a loop traverses the List only by selector “nxt” or “prv”, we can conclude that the same node cannot be visited twice. 

On the other hand, the is-sel# attribute must be taken 
into account during the node materialization in order 
to avoid the creation of unnecessary references. 

Therefore, we have modified the following functions: 

0 compat-in#([y, w], < ny,sel, nz >, 
< nw, sel’, nz >): 

compatible#(ny, nz, raw) A [y, ny] E EV#A 
< w,sel,nz >,< nw,sel’,nz >f ES#A 

nz # nwA 
((ny =# nw A sel = set) V issel#(nz, sel)) 

Note that in this previous function, we use is-sel# 
instead of is#. This function, cornpat-in#, is 
used to set new references from the already ex- 
isting nodes to the materialized one. These new 
references are of two types: (a) references from 
selector “sel” from nodes pointed to by “y” vari- 
able (corresponding to the statement [x:= y.sel]), 
and (b) other node references, which are going to 
be taken into account only if is-sel#(nz, sel) is 
true. 

0 compatseZf#([y, r-w], < ny, sel, nz >, 
< nz, se?, nz >): 

compatibZe#(ny, nz) A [y,ny] E Eu# A 
< ny, sel, nz >, < nz, sell, nz >E ES#A 

((ny =# nz A sel = gel’) V is-seZ#(nz, sel)) 

Similarly to cornpaLin function, we use is-.9el# 
instead of is#. This function creates “self refer- 
ences” in the materialized node. In order to do 
this, we only consider those references for which 
node nz is shared for selector “sel”. 

4.4 Cycle links 

In order to reduce the number of unnecessary edges in the 
SSG, we assign a new attribute to each node: cyclelink.@. 
This attribute is actually a set of pairs of references < sell, 
se/2 >. For a certain node, the pairs in cycleldnks# fulfil the 
following property: when taking sell and se12 subsequently 
from this node, the resulting reference points to the origi- 
nal node. This set maintains similar information to that of 
“identity paths” in the Abstract Storage Graph (ASG) [ll], 
which is very useful to deal with doubly linked structures. 

Again, the following modifications of the abstract inter- 
pretation are needed: 

1. Statement [x:= nil] 
This statement may produce the summarization of the 

nodes pointed to by variable “x”. When two nodes are 
joined, we keep the compatible cyclelinks# of both 
of them. A “cycle link” < sell,se/2 > belonging to 
cycEelinks#(nl), is compatible with cycZe2inks#(n2), 
if (1) < se&se12 > belongs to cycZeZinks#(n2) as 
well, or (2) the node “n2” does not reference any node 
by selector “sell”. 

cycleZinks#‘(nz) = (< sell, se12 > 1 
< sell, se12 >E 

(cycZeZdnks#(nz), cyc2eZiraks#(nzufZl))V 

< sell, se12 >E cyclelinks#(nz)A 
dn, < nzu{z)r sell, n >E ES#V 

< sell, se12 >E cycleZinks#(nzu~zj)r\ 
Gin, < nz, sell, n >E EC@) 

Statement [x:= new] 
For this sentence we create a new node with an empty 
cyclelinks#. 

cycZeZinks#‘(n~,~) = 0 

Statement [x:= y] 
The cyclelinks# of the nodes pointed to by “y” are 
preserved. In addition, these nodes are also pointed to 
by rr~” 

cyc/clelinks#‘(nz) = cyc2e2inks#(nz-{z>) 

Statement [x.sel:= nil] 
This statement results in the deletion of some ele- 
ments in the cyclelinks# set. First, elements of type 
< sel, seli > of cyclelinks#(nx) are deleted, where 
nx refers to the nodes directly pointed to by the rr~” 
variable. On the other hand, we also delete elements 
< seZj, se1 > from the cycZeZinks#(nz), where nz are 
the nodes referenced from nx by selector “sel”. For 
this case, nz should reference nx by “selj”. 

cyclelinks#‘(n) = 

a cyclelinks#(n)\ < sel, seli > 
if [z,n] E EV*A < sel,seli >E cyclelinks#(n) 

l cyclelinks#(n)\ < selj,sel > 
if [x1 nx] E EV#A < nx, sel, n >E Es#A 
< n,selj,nx >E ES#A 
< selj, se1 >E cycZeZinks#(n) 

a cycZeZinks#(n) otherwise 
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Figure 7: (a) Doubly linked list with “cyclelinks”. (b) Shape graph without “cyclelinks” after executing statement “x:= 
list.nxt” . (c) Shape graph with “cyclelinks” after statement “x:== listnxt”. Note that in (b) there are two superfluous 
references (dashed). 

5. Statement [x.sel:= y] 
This statement may create elements in the cyclelinks# 
(nx) and cyclelinks@ sets. Here, tax is pointed 
to by LLx” and ny is pointed to by “y”. Regarding 
cyclelinks#(nx), we extend this set with < sel, seli > 
element if ray only points, by selector “seli”, to nodes 
directly pointed to by variable “x”. In a similar way, 
we include < seii, se1 > in cyclelinks#(ny). 

cyclelinks#‘(n) = 

cycZelinks#(n)U < seI, seli > 

if [x,n], [y, r-w] E Ev# A compatibZe#(n, ny)A 
< ny, seli, n >f Es#A 
+lnz, compcatibZe#(n, nz), n # nz, 
< ny,seli,nz >E Es# 

cycleZinks#(n)U < seli, se1 > 

if [x, 1~x1, [y, n] E Ev# A compatsble#(n, nx)~ 
< n, seli, nx >E Es# A 
dnz,compatible#(nx, nz), nx # nz, 
< n, seli, nz >E Es” 

cycZeZinks#(n) otherwise 

6. Statement [x:= y.sel] 
The cyclelinks# of the nodes pointed to by LLy.sel” are 
preserved. In addition, these nodes are also pointed 
to by “x”. The materialized nodes will have the same 
set of “cycle links” as the node from which it has been 
materialized. 

cycZeZinks#‘(nz) = cycZeZinks#(nz-(=I) 

Once we have applied aII these updates in the SSG, it 
is necessary to check whether or not the references in 
the graph correspond to the information provided by 
the cycle links sets. Actually, the method breaks the 
references which are not compliant with the cycle links 
sets. 

Let be 

A = {n 1 ([x, n] E Ev#‘) v ((< nx, sel, n >E Es#‘)v 
(< n, sel, nx >E Ed@), [ST, nx] E Ev#‘)} 

The new set of selector edges is 

Es+’ = Es+ \ {< n, sell, nz >[ 
n E A, < sell, se12 >E cyclelinks#‘(n), 

< n, sell, nz >E Es#‘, < nz, se12, n >$ Es#‘} 

In Fig. 7 we can see an example showing the improve- 
ment that can be achieved by the use of these cycle 
links set. In Fig. 7 (a) we show a doubly linked list 
and their corresponding cycle links sets. Figures 7 (c) 
and (b) show the resulting SSG after executing the 
sentence ‘Lx:=list.nxt”, taking the cyclelink informa- 
tion into account or not, respectively. We can see that 
there are two artificial references in case (b), that can 
be avoided by considering the cyclelinks information 
(c), which leads to more accurate SSG’s. 

4.5 Sparse LU SSG modified 

All these previously described techniques have been imple- 
mented in a simple compiler which reads C code and returns 
the SSG for each program point. The compiler has been 
written in C, taking special care over memory management 
and in the selection of a proper data structure to store the 
SSG. 

Our Sparse LU factorization in C is transformed to ful- 
&I the normalization assumptions according to the abstract 
semantic of the SSG method: 

Only one constructor or selector is applied per assign- 
ment statement. 

All allocation statements are of the form 2: := new 
(x.sel := new is not allowed). 

In each assignment statement, the same variable does 
not occur on both the left-hand and right-hand side. 

Each assignment statement of the form Zhs := rhs 
in which rhs # nil is immediately preceded by an 
assignment statement of the form Zhs := nil. 

The equivalent statements in C for the six kinds of state- 
ment presented before are: I = NULL, z + se1 = NULL, 
x = allocate(), x = y, x + sel = y and x = y + sel. 

The resulting SSG for this code is shown in Fig. 8. As we 
can see, variable A points to a doubly linked list, summary 
node nei , with the shared attribute set to false. Every node 
in this list points to a different doubly linked list, represented 
by summary node ng2, by selector ‘Lhead”. There are two 
summary nodes, because there are two types of pointers 
(“head list” and ‘&element list”). 

For ah nodes, isseZ#(n, sel) is “FALSE” for ail selectors. 
Therefore, we conclude that the “head list” and the “element 
list” are acyclic structures when they are traversed by a 
single selector type. In addition, we note that there is no 
shared node among different “element lists”. With alI these 
results, it is clear that several sparse matrix columns can be 
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Figure 8: LU algorithm Shape Graph modified. 

updated in parallel during factorization. Furthermore, the 
resulting SSG points out that each column (element list) is 
acyclic when traversed using a single selector type. So, if 
they are actually traversed in this way, it is also possible to 
update each column in parallel. 

For instance, our sparse data structure is traversed in 
our algorithm by using the “nxt” selector. The “prv” se- 
lector is only used to simplify the deletion operation of an 
entry. In other words, “nxt” can be seen as a “traversing 
link” whereas “prv” as a “referencing link”. However, this 
“traversing” information should be inferred in a subsequent 
compiler stage which uses the SSG to perform the data de- 
pendence test step. We do not cover this step yet, but we 
will address this topic in the near future. 

It is important to note here that the same SSG we see 
in Fig. 8 is achieved in two program points: after the data 
structure initialization (initial sparse matrix A) and after 
the sparse LU factorization (data structure for the factorized 
matrix IX). In other words, the in-place LU factorization 
code does not change the sparse data structure representa- 
tion aud characteristics. 

Compared to the SSG method presented by Sagiv [12], 
we see that our SSG is more accurate than the one they ob- 
tain (already presented in Fig. 3). The main reasons leading 
to their results are: (a) they can only represent a summary 
node in the SSG whereas we can include many of them for 
each structure type, (b) their summary node has is# = true 
due to the fact that their method is not able to detect that 
there is not more than one reference from the heap to each 
node by the same selector. Furthermore, by considering the 
“is-sel” and “cycle-links” attributes, we are able to infer that 
there are no shared elements in the list, and also we keep the 
SSG as accurate as possible avoiding superfluous references. 

5 Conclusions and future work 

In this work, we have implemented a Shape-Analysis algo- 
rithm based on the method of Sagiv et al. [la] (SSG), and 
that of Plevyak et al. [ll] (ASG), improving the accuracy 
and dealing with more complex data structures. 

We have validated the implementation of the method 
with a real code, the Sparse LU Factorization, for which 
we have achieved good results. The resulting shape graph 
provides a great deal of information at compile time. Sum- 
marizing, this information describes the data structure used 
in the algorithm, stating that the columns of the sparse ma- 

trix are stored in memory as doubly linked lists which do not 
share elements. A subsequent data dependence test phase 
would determine that the algorithm traverses the columns of 
the reduced submatrix for each &loop iteration (see Fig. 1) 
and that each column can be updated in parallel. 

This data dependence phase is one of the topics on which 
we need to focus next. But first, we plan to enhance the 
method in order to handle more complex data structures, 
like Acyclic Direct Graphs (ADG) where more than one ref- 
erence to a node by the same selector may exist. In addi- 
tion, we are working to extend the shape analysis algorithm 
to make an inter-procedural analysis without applying inlin- 
ing. Since there are many codes which use recursive calls to 
traverse the data structure, this is also an important topic. 
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