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Abstract 

This paper assesses the performance and scalability of several soft- 
ware synchronization algorithms, as well as the interrelationship 
between synchronization, multiprogramming and parallel job sche- 
duling, on ccNUMA systems. Using the SGl Origin2000, we eval- 
uate synchronization algorithms for spin locks, lock-free concur- 
rent queues, and barriers. We analyze the sensitivity of synchro- 
nization algorithms to the hardware implementation of elementary 
synchronization primitives and investigate in-depth the architec- 
tural implications and particularly the tradeoffs between implemen- 
ting synchronization primitives with cacheable synchronization 
variables or at-memory. The architectural study enables us to con- 
tribute scalable, customized implementations of synchronization 
algorithms, including a hybrid scheduler-conscious queue lock and 
a lock-free queue. We also evaluate different combinations of syn- 
chronization algorithms, synchronization disciplines that cope with 
the effects of multiprogramming and different parallel job schedul- 
ing strategies, using the Cellular IEUX operating system as a case 
study. 

1 introduction 

Cache Coherent Non Uniform Memory Access (ccNUMA) archi- 
tectures have recently attracted considerable research and commer- 
cial interest, as they present strong advantages in the direction of 
achieving high performance. At the same time, synchronization 
is still an intrusive source of bottlenecks in parallel programs for 
shared memory. The importance of synchronization has motivated 
a vast amount of research efforts, which contributed several effi- 
cient algorithms for tightly-coupled small-scale symmetric multi- 
processors (SMPs), as well as scalable algorithms for distributed 
memory multiprocessors. Whether these solutions are still suffi- 
cient for modern ccNUMA systems remains an open and important 
question. 

This paper addresses some significant issues of synchronization 
on ccNUMA systems. In this direction, we conduct a thorough ar- 
chitectural evaluation of software synchronization algorithms both 
standalone and in conjunction with spinning and scheduler-con- 
scious disciplines, embedded in synchronization algorithms to cope 
with the interferences of multiprogramming and the operating sys- 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distribuled for profit or commercial advantage and that 
copies hear this notice and the I’ull citation on the tirst page. To copy 
otherwise, to republish, to post WI xrvcrs or to wdistrihutc to lists. 
requires prior specific permission andior a fee. 
ICS ‘99 Rhodes Greece 
Copyright ACM 1999 l-581 13-164~x/99/06...$5.00 

tern scheduling strategy. More specifically, the main issues ad- 
dressed in this paper include: (1) The architectural implications of 
ccNUMA on the scalability of elementary synchronization prim- 
itives, as well as the sensitivity of these primitives to their hard- 
ware implementation; (2) understanding the behavior and relative 
performance of synchronization algorithms in terms of hardware 
performance counts that reflect the interactions between synchro- 
nization algorithms, the cache coherence protocol and the memory 
subsystem; (3) the effectiveness of using specialized hardware that 
bypasses the caches, to implement scalable synchronization algo- 
rithms; (4) how feasible is the implementation of scalable, lock- 
free and non-blocking synchronization algorithms and how these 
algorithms perform against standard mutual exclusion algorithms 
with locks; (5) how different combinations of multiprogramming- 
conscious synchronization disciplines and parallel job scheduling 
strategies perform on a contemporary multiprogrammed ccNUMA 
multiprocessor. 

The goal of this work is to provide an in-depth understanding of 
the ccNUMA architectural impact on software synchronization, as 
well as the close interrelationship between synchronization, multi- 
programming and parallel job scheduling on modem ccNUMA sys- 
tems. We use the Origin2000 as a case study, since it offers the nec- 
essary for our evaluation advanced hardware and software features 
for scalable synchronization and multiprogramming adaptability of 
parallel programs. It should be clear however that the conclusions 
extracted from this study have general applicability in other realiza- 
tions of the ccNUMA architecture. Aside from the evaluation, this 
study contributes also some highly efficient, customized implemen- 
tations of scalable synchronization algorithms on the Origin2000. 

After a brief overview of the Origin2000 hardware, we dis- 
cuss its architectural implications on the scalability of elementary 
synchronization operations. We then extend the discussion in the 
context of synchronization algorithms for spin locks, concurrent 
queues, and barriers. The mutual influence of synchronization, 
multiprogramming and parailel job scheduling is treated separately. 
In this context, we examine techniques applied at user-level, or both 
at the user and kernel levels to achieve scalable synchronization 
under multiprogramming. Although these techniques are primarily 
designed to work with time-sharing schedulers, the effectiveness 
of gang scheduling as a beneficial scheduling strategy for tightly 
synchronized parallel programs is also studied. 

The main body of the evaluation is performed with realistic mi- 
crobenchmarks executed in dedicated and multiprogrammed envi- 
ronments on a 64-processor Origin2000. The interpretation of the 
results is based on hardware performance counts, which we ex- 
tracted on-line during the experiments. The generality of the re- 
sults is validated using three programs with high synchronization 
overhead from the SPLASH-2 benchmark suite [25]. 
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To our knowIedge, this work is the first to evaluate a broad 
spectrum of synchronization algorithms and their interrelationship 
with multiprogramming on an actual ccNUMA platform. Previ- 
ous studies of synchronization on ccNUMA architectures [6, 10, 
13,’ 17, 231 examined in isolation the scalability of hardware syn- 
chronization primitives or the mutual influence of synchronization 
and multiprogramming, using simulation. A more recent study of 
synchronization on shared memory multiprocessors [9] uses also 
the Origin2000 as an evaluation testbed. However, this study fo- 
cuses mainly on methodological issues for selecting benchmarks 
to evaluate synchronization and does not examine alternatives such 
as lock-free and non-blocking synchronization, neither the perfor- 
mance impact of multiprogramming on synchronization algorithms. 
We examine synchronization Tom the architectural and the operat- 
ing system perspective, in order to give valuable practical insights 
and assist the design of synchronization hardware and algorithms 
for system architects and end-users of modern and future ccNUMA 
systems. 

The remainder of the paper is organized as follows: Section 
2 outlines the Origin2000 architecture and hardware support for 
synchronization. In Section 3, we overview synchronization al- 
gorithms for spin-locks, lock-free queues and barriers and discuss 
the architectural implications of ccNUMA and the interferences 
between synchronization algorithms and multiprogramming. Our 
experimental results with microbenchmarks in dedicated and mul- 
tiprogrammed environments are presented in Sections 4 and 5 re- 
spectively. Section 6 reports results from application benchmarks. 
We summarize the results in Section 7 and conclude the paper in 
Section 8. 

2 The SGI Origin 2000 

2.1 Architectural Overview 

The Origin2000 [ 1 I] is a ccNUMA multiprocessor introduced by 
Silicon Graphics Inc. in 1996. The system employs an aggressive 
memory and communication architecture to achieve high scalabil- 
ity. The building block of Origin2000 is a dual-processor node 
which consists of 2 MIPS RIO000 processors, with 32 Kilobytes 
of split primary instruction and data caches and up to 4 Megabytes 
of unified second level cache per processor. Each node contains 
up to 4 Gigabytes of DRAM memory, its corresponding directory 
memory and connections to the I/O subsystem. The components 
of a node are connected to a hub, which is in turn connected to 
a six-ported router. The routers are interconnected in a fat hyper- 
cube topology. The hub serves as the communication assist for the 
Origin2000 nodes and implements the cache coherence protocol. 
The Origin2000 uses a memory-based directory cache coherence 
protocol with MESI states and a sequentially consistent memory 
model [ 111. Along with aggressive hardware optimizations, the 
system uses software prefetching and hardware/software support 
for page migration and replication to reduce the ratio of remote 
to local memory access time to no more than 3:l for configura- 
tions up to 128 processors. The Origin2000 uses Cellular IRIX, 
a highly scalable 64-bit operating system with support for multi- 
threading, distributed shared memory and multidisciplinary sched- 
ulers for batch, interactive, real-time and parallel processing. 

2.2 Support for Synchronization 

The Origin2000 provides two hardware mechanisms for interpro- 
cessor synchronization. The first mechanism is realized at the pro- 
cessor level and implements a load linked-store conditional (LL- 
SC) instruction in the cache controller of the MIPS RlOOOO. The 
instruction is composed of two elementary operations. Load linked 
reads a synchronization variable from its memory location into a 

register. The matching store conditional attempts to write the (pos- 
sibly modified) value of the register back to its memory location. 
Store conditional succeeds if no other processor has written to the 
memory location since the load linked was completed, otherwise 
it ,fails. A successful load linked-store conditional pair guarantees 
that no conflicting writes to the synchronization variable intervene 
between the load linked and the store conditional. LL-SC is a 
versatile synchronization primitive, which can be used to imple- 
ment a wide range of other synchronization instructions, including 
fetch-and& test-and-set and compare-and-swap’ . 

The implementation of LL-SC on the RlOOOO uses a reserva- 
tion bit per cache line which is set when the load linked is executed 
[ 153. This bit is invalidated before the execution of the store con- 
ditional, if the associated cache line is also invalidated due to an 
intervening write from another processor, a context switch, or an 
exception. The load linked requests the cache line in shared state. 
If the matching store conditional succeeds, invalidations are sent to 
all the active sharers of the cache line. If the store conditional fails, 
no invalidations are sent out in order to avoid a livelock situation. 
The latter could happen if two processors start invalidating each 
other’s cached copy of the synchronization variable without mak- 
ing further progress. The same situation could occur if load linked 
loaded the variable in exclusive state, in order to avoid a possible 
coherence cache miss in the store conditional. As a consequence, 
a successful LL-SC may experience two cache misses, which is 
likely to happen more frequently if the synchronization variable is 
heavily contended. In the Origin2000 architecture, many of these 
coherence misses are satisfied from remote memories, other than 
the memory of the processor that experiences the miss. Remote 
misses are serviced with three-party transactions in the Origin2000 
coherence protocol [ 1 l] and their service has higher latency, de- 
pending on the distance between the invlolved processors. 

The second hardware synchronization mechanism in the Ori- 
gin2000 is implemented at the node memory. Specialized hardware 
is employed to implement atomic operations at-memory. These 
operations are called fetchops and include atomic loads, stores, 
fetch-and-and, fetch-and-or, fetch-and-increment, fetch-and-decre- 
ment and an exchange with zero. Fetchops operate on 64-byte 
memory blocks, allocated from a specia1 segment of the node mem- 
ory which is not replicated in the processor caches. Reads and up- 
dates of fetchop memory blocks require a single message in the 
interconnection network and do not generate coherence trtic. A 
shortcoming of fetchops is the read latency experienced by a pro- 
cessor that spins on an uncacheable variable, since the read op- 
erations issued by the processor go always to a DRAM memory 
module, which may reside on a remote node. The architects of 
the Origin2000 have circumvented this by adding a small (one to 
four-entry) fetchop cache at the memory interface of the hubs, to 
hold the most recently used fetchop variables. This cache reduces 
the best-case latency of a fetchop down to approximately the la- 
tency of a secondary cache access, when the fetchop is issued to 
local memory. However, the effective read latency of fetchops is 
still high and spinning on fetchop variables may generate signifi- 
cant network traffic. A second drawback of fetchops is that they 
lack a poweful synchronization primitive like compare-and-swap, 
or atomic exchange of the contents of two memory locations. This 
is an important limitation, since it precludes the implementation of 
non-blocking synchronization algorithms. We revisit this issue in 
Section 3. 

‘Compareandswap takes three arguments, a pointer to a memory location, an 
expected value and a new value. The insbuction checks if the content of the memory 
location is equal to the expected value and if so, it stores the new value in the memory 
location. In both cases the instruction returns an indication if it succeeded or not. 
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3 Synchronization Algorithms 

In this section, we overview the synchronization algorithms which 
serve our evaluation purposes and discuss the architectural implica- 
tions of the Origin2000 hardware on the performance of these algo- 
rithms. Due to space considerations, the discussion is limited to the 
fundamental properties and the implementation of the algorithms 
on the Origin2000. The following three subsections overview al- 
gorithms for spin locks, concurrent queues and barriers. The last 
subsection discusses mechanisms embedded in synchronization al- 
gorithms to achieve scalability under multiprogramming. 

3.1 Spin Locks 

Synchronization with spin locks implies the use of a shared flag 
which serves as a lock for mutual exclusion. We evaluate three 
popular flavors of spin locks, the test-and-set lock, the ticket lock 
and the queue lock. 

In the case of the test-and-set lock, an acquiring process at- 
tempts to atomically test if the value of the lock is zero and set the 
value to one. If the process succeeds, it proceeds in the critical sec- 
tion, otherwise it busy-waits until the lock is reset. Upon a lock re- 
lease, the lock holder resets the lock and the waiting processes race 
to enter the critical section by issuing test-and-set instructions. On 
the Origin2000, test-and-set can be implemented either with LL- 
SC or with the fetchop that atomically exchanges the contents of a 
memory location with zero. 

When implemented with LL-SC, the test-and-set lock intro- 
duces hot spots in the memory system at the lock acquire and re- 
lease phases. Every test-and-set updates the lock (although it does 
not always modify its value) and with each update invalidations 
are sent to all processors that cache the lock in shared state. The 
number of invalidations tends to increase when multiple processors 
issue the LL-SC sequence simultaneously or race for the critical 
section upon a lock release. One solution is to poll continuously 
the lock before issuing a test-and-set [22]. This solution reduces 
the number of test-and-set’s that each processor issues to acquire 
the lock and therefore the number of invalidations and coherence 
traffic. However, this solution is inadequate for ccNUMA architec- 
tures. In a ccNUMA system, the lock is allocated in the memory 
module of a single node which contains also the associated direc- 
tory information. Every processor outside the home node of the 
lock, retrieves an updated value of the lock from a remote memory 
location when it experiences a coherence miss on the associated 
cache line. Therefore, most processors experience potentially ex- 
pensive cache misses also during the polling phase. A technique to 
further alleviate this effect is to use backoff, i.e. let the processor sit 
for a while in an idle loop between successive polls. Although, the 
implications of the cache coherence protocol impede the scalabil- 
ity of the test-and-set lock, coherence overhead can be eliminated if 
the lock is allocated as an uncacheable variable. The disadvantage 
of this solution is the increased latency and network traffic incurred 
firorn spinning on the lock variable. 

In our implementations of the test-and-set lock with LL-SC and 
fetchops we used polling and bounded exponential backoff [l] to 
alleviate hot spotting. The base backoff interval in the implemen- 
tation with LL-SC is set to be roughly equal to the cost of an un- 
contended processor read in the secondary cache. In the fetchop 
implementation, the base interval is set roughly equal to the latency 
of a fetchop read from local memory. Both approaches attempt to 
limit the cost payed by unfortunate backoff decisions. 

The test-and-set lock is non-deterministic with respect to the 
order in which processes access the critical section. The ticket 
lock [ 161, overcomes this limitation by guaranteeing FIFO service 
to the processes that acquire the lock, Each process accesses the 
critical section with a unique ticket number, obtained at the lock 

acquire phase. A releasing process increments a now-serving vari- 
able, which holds the ticket number of the lock holder. Waiting pro- 
cesses spin until their ticket number becomes equal to now-serving. 
The only atomic synchronization operation needed by the ticket 
lock is fetch-and-increment, which can be implemented on the Ori- 
gin2000 either with LL-SC, or with the corresponding fetchop. 

The ticket lock has two advantages compared to the test-and-set 
lock. It guarantees FIFO service for contending processes and re- 
duces the critical path of the lock acquisition phase. However, the 
ticket lock is also prone to coherence overhead on a ccNUMA ar- 
chitecture. If the implementation of fetch-and-increment uses LL- 
SC and contention is high, processors are likely to repeat the LL-SC 
sequence more than once to acquire the lock and each successful 
store conditional will issue a potentially large number of invalida- 
tions. Furthermore, all processes spin on the now-serving variable 
which becomes a hot spot whenever a releasing process updates the 
variable. On the other hand, if fetch-and-increment is implemented 
at-memory, coherence traffic is no longer an issue, but processors 
will experience high read latencies when spinning on now-serving 
and network traffic will increase. In the implementation of the 
ticket lock we used proportional backoff [ 161 to reduce the effects 
of contention. The base backoff unit was selected similarly to the 
case of the test-and-set lock. 

The queue lock [I, 163 is based on the idea of maintaining a 
queue of processes that wait to enter the critical section. Each ac- 
quiring process checks if the queue of lock waiters is empty. If 
so, the process proceeds in the critical section, otherwise it joins 
the queue and busy-waits on a local flag. A process that exits the 
critical section visits the head of the queue of lock waiters and 
resets the local flag of the first waiter. The queue can be main- 
tained in an array or a linked list. The linked list implementation is 
more space-efficient, however it requires costly atomic operations, 
namely compare-and-swap and fetch-and-store. We opted for an 
army implementation of the queue lock on the Origin2000, mainly 
because it requires only fetch-and-increment, which can be imple- 
mented both with LL-SC and fetchops. 

The important advantage of the queue lock other than iEs de- 
terministic FIFO service, is that processes spin on local variables 
in the lock acquisition phase. This means that at the lock release 
phase, the lock holder will be involved in a single point-to-point 
transaction with the first waiter. Therefore, the lock release is per- 
formed with a single cache invalidation. Although the lock acquire 
phase may require an increased number of invalidations under high 
contention, the queue lock is expected to experience less coherence 
overhead than both the test-and-set and the ticket lock 

Our implementation of the array-based queue lock with fetch- 
ops presents an interesting case. The only fetchop variable used 
in the implementation is the variable that indicates the slot in the 
array where the next lock waiter is enqueued. All other book- 
keeping variables, as well as the queue itself can be maintained on 
cacheable locations. The implementation results to a hybrid lock, 
that uses synchronization at memory and point-to-point operations 
with cacheable shared variables to combine the benefits of both ap- 
proaches cumulatively. Section 4 reveals that the hybrid queue lock 
delivers the best performance among the spin locks that we tested 
on the Origin2000. 

3.2 Lock-Free Synchronization with Concurrent Objects 

In many practical cases, critical sections in parallel programs con- 
sist of a sequence of statements which update a shared data struc- 
ture, such as a queue or a stack. An idea established in the re- 
cent past to implement these operations efficiently, is to replace 
the lock/unlock pairs that protect the shared structure with an im- 
plementation which allows concurrent accesses from many proces- 
sors, but maintains the state of the data structure coherent during 
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void enqueue (ulong item, struct queue *q) ( 
ulong slot = atomic-increment (q-ahead); 
atomic-storetq->nodes[slotI, item); 

I 

ulong dequeue (struct queue *q) 1 
while (true) ( 

if (atomic-load(q-ahead) == atomic-load(q->tail)) 
return QUEUE-EMPTY: 

else I 
ulong slot = atomic-load(q-ahead); 
ulong item = atomic-clear(q->nodes[slot]); 
if (item != NULL) 

atomic-incrementcq-shead); 
return item; 

1) 
I 

Figure 1: Customized lock-free queue implementation with f&chops. 

program execution. Intuitively, the benefit of such an approach is 
to exploit parallelism by overlapping the updates of shared objects 
and reduce the latency that processes experience when attempting 
to access a shared object with a lock. An ideal concurrent object 
satisfies three properties, the non-blocking property, the wait-free 
property and the linearizability property [S]. These properties guar- 
antee the following: no process trying to update the object will be 
delayed indefinitely, contending processes will always finish their 
updates in a limited amount of time and the concurrent object will 
function as a sequential object where each concurrent update will 
appear as an atomic unintermptible operation. 

Although an algorithm that satisfies all three properties has not 
appeared yet in the literature, non-blocking and linearizable algo- 
rithms can be implemented on processor architectures that support 
a universal atomic primitive, Universal primitives resolve an infi- 
nite number of contending processors in a non-blocking fashion. 
Compare-and-swap, LL-SC and atomic exchange of the contents 
of two memory locations are universal atomic primitives. At least 
one of the first two is implemented in most commodity micropro- 
cessors. 

In this paper, we evaluate three non-blocking and Iinearizable 
algorithms that implement concurrent FIFO queues. They are at- 
tributed to P&ash, Lee and Johnson 12 I], Valois [24] and Michael 
and Scott [ 181 respectively. All three algorithms use compare-and-- 
swap to atomically update the queue and share a common technique 
for concurrent updates. The algorithms maintain pointers to the 
two ends of the queue. An enqueuingldequeuing process reads the 
pointer to the tail/head of the queue respectively and attempts to 
modify the contents of the pointed memory location using com- 
pare-and-swap. Enqueue and dequeue attempts are repeated until 
the compare-and-swap succeeds. The differences between the three 
algorithms lie in the implementation of the queue and the memory 
management mechanism used to avoid the problem of pointer recy- 
cling (also known as the ABA problem), which may occur between 
the read and the atomic update of a pointer. 

Compared to spin locks, concurrent queues have the advan- 
tage of allowing multiple enqueue and dequeue operations to be 
overlapped. However, concurrent objects have also performance 
limitations. Compare..and-swap is more expensive than other syn- 

chronization primitives. Furthermore, simultaneous executions of 
compare-and-swap on cacheable memory locations incur hot spots. 
Under high contention, processors may need to issue multiple com- 
pare-and-swap instructions in order to complete their updates. Each 
successful compare-and-swap may therefore motivate a large num- 
ber of invalidations and remotely satisfied coherence misses. As a 
result, the latency of concurrent queue operations is significantly 
higher than the latency of the corresponding sequential operations. 

We implemented compare-and-swap with LL-SC on the MIPS 

RIOOOO. Based on this primitive, we implemented the three non- 
blocking algorithms for concurrent queues mentioned previously. 
Unfortunately, compare-and-swap is not implemented at-memory 
in the Origin2000. In order to assess the performance of lock-free 
algorithms with uncacheable synchronization variables, we imple- 
mented a customized lock-free queue with fetchops, the pseudo- 
code of which is shown in Figure 1. The implementation is an 
array-baaed variant of the ticket algorithm, where the queue ends 
are kept uncached at-memory and used as tickets to access the slots 
of the queue. The implementation uses the Origin2000 fetchops for 
atomic load, store, increment and exchange with zero which are not 
powerful enough to make our lock-free queue non-blocking. 

3.3 Barriers 

A barrier is a global synchronization point in a parallel program, 
beyond which no process can proceed unless all other processes 
have reached the same point. In this paper, we evaluate two soft- 
ware algorithms for barrier synchronization. The first algorithm is 
a sense reversing centralized barrier [16]. Each processor that ar- 
rives at the barrier increments a shared counter atomically and then 
spins on a sense variable. The last process that arrives at the barrier 
sets the sense variable and signals the other processes to leave the 
barrier. The sense variable is toggled after each barrier, to ensure 
correct execution of successive barriers. On a ccNUMA architec- 
ture, cacheable counter and sense flags may become hot spots and 
prevent the scalability of the centralized barrier, if processors arrive 
at the barrier roughly at the same time. The counter and sense vari- 
ables can be allocated in uncacheable locations to avoid hot spots. 
We implemented either alternative on the Chigin2000, using LL-SC 
and fetchops. 

The second algorithm is a two-tree barrier proposed by Mellor- 
Crummey and Scott [ 161. Processor arrivals and wakeups are prop- 
agated through two separate trees. A single tree node is assigned 
to each process and linked to a parent pointer in the arrival tree 
and child pointers in the wakeup tree. An arriving process waits 
first for its children to arrive at the barrier and then propagates its 
arrival to its parent. The process then spins waiting for a wakeup 
signal from its parent in the wakeup tree. The process that resides at 
the root of the arrival tree activates the wakeup phase. The branch- 
ing factors of the two trees are determined empirically to reduce 
the latency of spinning and optimize the wakeup phase. We used a 
branching factor of four in the arrival tree and two in the wakeup 
tree. The tree-barrier does not require any atomic synchronization 
operations. Spinning and updates on the tree pointers may still in- 
crease coherence overhead, however the number of processors that 
actively share these pointers is low and contention is not expected 
to be as harmful as in the centralized barrier. 

3.4 Synchronization Disciplines under Multiprogramming 

Parallel programs with tight synchronization patterns perform often 
poorly when executed on a multiprogrammed system. The primary 
reason is that the operating system scheduler decides frequently to 
preempt synchronizing processes of parallel programs, in order to 
increase system throughput and ensure fairness. These preemp- 
tions are oblivious of any fine-grain interactions among processes 
in parallel programs. A typical pathological scenario that demon- 
strates the effect, is the preemption of a process that holds a lock. In 
that case, the other processes of the same program spin needlessly, 
waiting for the preempted process to release the lock. 

Several solutions were proposed in the past to cope with inop- 
portune process preemptions and the inconsistencies between syn- 
chronization algorithms and the operating system scheduling strat- 
egy. There are four general solution frameworks: (1) Each process 
makes an independent decision between busy-waiting and blocking 
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to relinquish the processor and avoid underutilization [7, 121. This 
solution is applicable to locks and harriers;(2) a non-blocking syn- 
chronization algorithm is used (Section 3.2); (3) the kernel guar- 
antees that a process is not preempted while executing in a critical 
section [ 141; (4) the lock holder polls the status of its peer processes 
and avoids passing the lock to a preempted process [8]. The latter 
approach is also called scheduler-conscious synchronization. 

Following the first approach, we embedded two multiprogram- 
ming-conscious mechanisms in the synchronization algorithms for 
locks and barriers, namely immediate blocking and competitive 
spinning. With immediate blocking, an acquiring process blocks 
as soon as it finds out that the lock is held by another process. Sim- 
ilarly, a process arriving at a barrier blocks if it finds out that there 
are other processes not arrived at the barrier yet. When the blocked 
process is eventually rescheduled, it attempts to reacquire the lock 
or checks the barrier status again. 

Immediate blocking may improve processor utilization, since 
processes do not waste CPU time spinning, but may also cause un- 
necessary context switches, if processes block unfortunately just 
before the lock is released or the last process arrives at the barrier. 
This effect can be harmful for programs with fine-grain synchro- 
nization patterns. Competitive spinning [7] makes a compromise, 
by letting the acquiring process spin for a “while,, before blocking. 
In this way, utilization is improved without necessarily sacrificing 
the performance of tightly synchronized programs. The problem 
with competitive spinning is how to determine the appropriate in- 
terval of spinning before blocking. This interval is generally deter- 
mined empirically. A good approach is to set the spinning interval 
equal to the overhead of a context switch. This leads to a compet- 
itive spinning strategy where the cost paid at each synchronization 
point is at most twice the cost of a context switch [7]. This is the 
strategy that we employ in the implementation of competitive spin- 
ning in our experiments with spin locks. For barriers, we set the 
spinning interval to be proportional to the number of processes not 
arrived at the barrier yet [8]. 

Non-blocking synchronization algorithms with concurrent ob- 
jects have an inherent immunity to the undesirable effects of mul- 
tiprogramming. The reason is that preemption of a process that 
attempts to update a concurrent object does not prevent other pro- 
cesses from proceeding and updating the object. Previous research 
[ 191 has shown that this property is among the strongest arguments 
that support the use of non-blocking synchronization in multipro- 
grammed environments. 

The last two solution frameworks i.e. preemption-safe lock- 
ing and scheduler-conscious synchronization require kernel support 
to establish a communication path between parallel programs and 
the operating system, in order to let a program request preemp 
tion safety or notify the program of a process preemption. These 
functionalities were not available in Cellular IRIX by the time we 
performed our evaluation on the Origin2000. An experimental im- 
plementation of scheduler-conscious synchronization in IRIX is 
described in [3]. For the purposes of this paper, we emulated a 
scheduler-conscious queue lock at user-level, following the me- 
thodology of Kontothanassis et.al. [8]. A user-level scheduler em- 
ulates the kernel by preempting and resuming processes using the 
blockproc()/unblockproc() system calls of IRIX. A portion of the 
system’s memory is mapped shared between the user-level sched- 
uler and parallel programs and then used to communicate process 
preemptions. The process that holds a lock polls the state of the 
processes waiting in the queue and hands-off the lock to the first 
non-preempted process. This solution sacrifices the FIFO order- 
ing imposed by the semantics of the queue lock, in order to attain 
multiprogramming scalability. 

The solutions mentioned so far make the assumption that a 
general-purpose time-sharing scheduler is used from the operating 
system to execute parallel programs. It has been shown however 

barrier0; 
for (i=0;i<1000000/nprocs;i++) { 

work0; 
synchronize(): 

) 
barrier-o; 

Figure 2: Synchronization microbenchmark. 

[23], that the performance of parallel programs with fine-grain syn- 
chronization patterns is tightly related to the operating system sche- 
duling strategy. Previous research demonstrated that gang schedul- 
ing [4] is more effective for parallel jobs with fine-grain synchro- 
nization patterns. Gang scheduling always executes and preempts 
the processes of a parallel program as a unit, thus giving to the 
program the illusion of a dedicated system and ensuring that all 
synchronizing processes are either running or preempted. Gang 
scheduling is an attractive alternative, since it does not necessitate 
the use of a specialized synchronization discipline in the program 
to cope with multiprogramming. 

Cellular IRIX offers both gang scheduling and time-sharing as 
alternative options to schedule parallel programs, via the schedctl() 
system call. We used either option in our evaluation and coupled 
time-shared programs with multiprogramming-conscious synchro- 
nization disciplines. 

4 Synchronization Algorithms Performance 

In this section, we evaluate the synchronization algorithms pre- 
sented in Section 3 using microbenchmarks. Section 4.1 presents 
results from an experiment that evaluates two implementations of 
a shared counter on the Origin2000, with LL-SC and fetchops. 
This experiment enables us to assess the performance of the low- 
level hardware mechanisms for synchronization. In Section 4.2 we 
present results for spin locks and lock-free queues. These aIgo- 
rithms are evaluated in conjunction, in order to argue directly on 
the relative performance of lock-free synchronization against syn- 
chronization with locks. Section 4.3 evaluates barrier algorithms. 

We used the microbenchmark shown in Figure 2 throughout 
the experiments. Each processor executes its portion of a tight loop 
with a million iterations, where the processor alternates between 
synchronizing and working. The synchronizg) block may contain 
any of the synchronization operations under study, i.e. an atomic 
update of a counter, an enqueueldequeue operation being either 
lock-free or protected with locks, or a call to a barrier synchro- 
nization primitive. In the work0 block each processor executes 
a loop updating a vector in its local cache. The number of iteta- 
tions is selected from a uniform distribution with a parameterized 
mean value provided at runtime. An artificial load imbalance of 
&20% is introduced in the working loop. Based on quantitative 
analyses of synchronization patterns in real applications [9, lo], 
this benchmark captures realistically the characteristics of tightly 
synchronized parallel programs. 

During the experiments with microbenchmarks, we used the 
hardware counters of the MIPS R 10000 to measure the occurrences 
of four critical hardware events that reflect coherence activity due 
to synchronization operations. These events include failed store 
conditionals, external invalidations or interventions received from 
the processors and exclusive store/prefetches to shared lines in the 
secondary cache, When averaged over the number of synchroniza- 
tion operations, failed store conditionals, external invalidations and 
exclusive store/prefetches provide individually an indication of the 
average number of processors that contend for the synchronization 
variable by executing LL-SC simultaneously. These performance 
counts are therefore a good indication of the degree of contention 
for the synchronization variable. On the other hand, external in- 
terventions reflect the amount of coherence cache misses satisfied 
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Figure 3: Results horn the shared counter microbenchmark. The left chart 
plots execution time when processors execute empty work loops, while the 
right chart plots execution time when processors execute on average 5 ,us in 
each work loop. 

remotely in the course of execution. In the Origin2000 coherence 
protocol, an external intervention is sent whenever a processor re- 
quests a cache line which is owned exclusively from a processor in 
a remote node. 

We accessed the hardware counters of the RI 0000 at user level 
using the /proc interface. The processor has two hardware coun- 
ters and since we wanted to track four events, we multiplexed two 
events on each counter and then multiplied the results for each 
counter by two, to estimate the actual counts. Since all tracked 
events contribute significantly to execution time, the projections of 
the counter values are fairly accurate. 

All presented measurements in the following sections are av- 
erages of five executions and all charts are plotted in logarithmic 
scale for the sake of readability. 

4.1 Shared Counters 

In order to evaluate the scalability of the hardware mechanisms 
for synchronization on the Origin2000, we executed a version of 
our microbenchmark where each process atomically increments a 
shared counter at synchronization points. The counter updates are 
implemented with LL-SC or at-memory with the fetchop-increment 
instruction. 

Figure 3 illustrates the results that demonstrate clearly the ad- 
vantages of implementing synchronization operations at-memory 
when the synchronization variable is heavily contested. The at- 
memory atomic increment exhibits satisfactory scaling up to 64 
processors in both versions of the microbenchmark. The flatten- 
ing of the fetchop curve in the left chart when moving from 32 
to 64 processors occurs because the bandwidth of the Origin2000 
scales linearly up to 32 processors but flattens when the configu- 
ration moves from 32 to 44 processors [I I]. The LL-SC imple- 
mentation of fetch-and-increment does not scale when processors 
execute empty work loops and scales only up to 8 processors when 
processors execute non-empty work loops. The left chart in Fig- 
ure 3 illustrates also the effects of the latency of fetchop accesses. 
The average latency of the fetchop atomic increment is higher when 
one or two processors access the shared counter. Accessing the 
counter from the local cache of the MIPS RlOOOO is about ten 
times faster than accessing the counter with a fetchop from local 
memory. When the benchmark is executed on two processors, syn- 
chronization is performed within a single node of the Origin2000. 
Therefore, coherence transactions do not have to cross the inter- 
connection network and they are performed locally in the hub. The 
positive effects of caching cease when synchronization crosses the 
node boundaries. On the other hand, the effect of fetchop latency 
is mitigated when processors execute non-empty work loops. 

Figure 4 plots the R 10000 hardware event counts for the shared 

- LL-SC 
I=I f&chop 

leo3 
failed L&SC ext. inv. ext. inf. excl. SVpref 

hardware eyents 

Figure 4: Hardware performance counts of the counter microbenchmark 
with work loops of 5 ps, executed on 64 processors. 
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Figure 5: Performance of spin locks and lock-free queues. The top chart 
plots execution time, while the bottom chart plots the hardware event counts 
from executions of the microbenchmark on 64 processors, for some illus- 
trative cases. Each process executes on average 5 JJS in each work loop. 

counter microbenchmark. The results are extracted from execu- 
tions on 64 processors with non-empty work loops and provide a 
view of the coherence activity generated from processor contention, 
when LL-SC is used as an elementary synchronization primitive. 
At each counter update, 11 processors on average fail to execute the 
store conditional successfully. Each successful store conditional is- 
sues on average 13 invalidations to remote processors and the over- 
all execution incurs 2.5 million coherence cache misses satisfied 
remotely. The corresponding numbers for the fetchop implemen- 
tation of the counter are zero and the coherence traffic shown in 
the chart is attributed solely to cold start misses experienced by the 
processors at the very first executions of the work loops. 

4.2 FIFO Queues 

We use shared FIFO queues to evaluate the performance of spin 
locks and lock-free synchronization algorithms. We made this 
choice in order to provide a direct comparison between the two 
approaches, i.e. synchronization with locks versus lock-free syn- 
chronization. The results for the lock-free algorithms are probably 
the first reported for a ccNUMA architecture. 
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Figure 5 summarizes the results, including the hardware per- 
formance counts from executions of the microbenchmark on 64 
processors. We interpret the results in the charts in a top-down 
manner. The three lock implementations with LL-SC deliver the 
worst performance. These locks suffer from excessive coherence 
traffic, an effect which we explored in detail in Section 3.1. The 
intuition established in Section 3.1 for the relative performance of 
the three locks is verified from the results in Figure 5. The queue 
lock outperforms the other locks since it uses only one atomic syn- 
chronization operation per lock acquisition and processors spin on 
locally cached variables. The ticket lock uses also one atomic op- 
eration per acquisition but suffers from spinning on a shared lo- 
cation, while the test-and-set lock issues an unpredictable number 
of atomic operations depending on contention and processors spin 
also on a shared location. The hardware counts for the test-and-set 
lock indicate that at each lock acquisition race, on average 90 store 
conditionals from other processors are issued and fail. The rest of 
the hardware event counts are not directly interpretable in terms of 
synchronization operations, since the coherence activity generated 
from synchronization operations is interleaved with the coherence 
activity generated from the actual sharing of the queue pointers. A 
rough indication of the synchronization activity can be extracted 
by subtracting the counter values of the fetchop impIementation of 
the locks, which reflect the coherence activity generated only from 
queue sharing. Using this approach, we detect for example that 
contention due to test-and-set’s increases by more than an order of 
magnitude the number of external invalidations and interventions. 

The non-blocking algorithms perform significantly better than 
locks with cacheable variables, beyond the &processor scale. The 
algorithm of Michael and Scott outperforms the algorithm of 
Prakash, Lee and Johnson, which in turn outperforms Valois’s al- 
gorithm. This result was also reported in [ 181 for bus-based SMPs 
and it is fairly intuitive, given the complexity of each algorithm and 
its memory management scheme. The hardware counts for the best 
performing non-blocking queue indicate that the algorithm reduces 
the coherence overhead to approximately one fourth of the coher- 
ence overhead of the implementations with cacheable locks, al- 
though the overall coherence traffic of the non-blocking algorithms 
remains significant. The reduction of coherence overhead is not 
translated into a proportional reduction of the execution time of the 
microbenchmark -which is approximately one half of the execu- 
tion time of the LL-SC locks microbenchmarks on 64 processors- 
mainly because of the significantly higher latency of the individual 
enqueue and dequeue operations of non-blocking algorithms, com- 
pared to the latencies of the corresponding sequential operations. 

The performance of non-blocking queues based on compare-- 
and-swap is inferior to the performance of fetchop implementations 
of spin locks. The absence of a universal atomic primitive imple- 
mented at-memory in the Origin2000 seems to impede the scala- 
bility of non-blocking algorithms. The relative performance of the 
three locks remains unchanged when the locks are implemented 
with fetchops. Although the hardware counters cannot track the 
network activity from fetchops, it appears that the queue lock gen- 
erates less network traffic compared to the other two locks. Recall 
from Section 3.1 that our implementation of the queue lock is hy- 
brid. The update of the queue index is done at memory, however 
processors spin on variables in their caches while waiting for the 
lock. This combination overcomes the problems of fetchop read 
latencies and enables the scalability of the queue lock under high 
contention. 

Our customized lock-free queue impIemented at-memory de- 
livers the best performance and satisfactory scalability up to 64 
processors. All enqueue and dequeue operations are implemented 
at-memory and coherence activity is generated only from the cold- 
start misses of the work loops (Figure 5). The read latency of 
fetchops is not particularly harmful. Although our queue is block- 
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Figure 6: Barriers microbenchmark performance. The Iefi chart plots the 
petiormance of different barrier implementations, while the right chart plots 
the hardware event counts from executions of the barrier microbe&mark 
on 64 processors. In the microbenchmark, each process executes on average 
5 ps in the work loops. 

ing and does not compare in sophistication with other algorithms 
for lock-free synchronization, it provides a quite efficient synchro- 
nization alternative, suited to the Origin2000 hardware. 

4.3 Barriers 

Figure 6 depicts the performance of two implementations of the 
centralized barrier and the two-tree barrier of Mellor-Crummey and 
Scott, The results demonstrate that the centralized barrier imple- 
mented with fetchops delivers the best performance. The LL-SC 
implementation of the centralized barrier performs poorly due to 
its excessive coherence overhead. Interestingly, although the two- 
tree barrier appears to be scalable, it performs radically worse than 
the centralized fetchop barrier. The hardware performance counts 
(right chart) indicate that although the two-tree barrier does not is- 
sue any synchronization operations, it still incurs significant coher- 
ence overhead and network traffic, despite the fact that the variables 
used in the barrier implementation are actively shared only by pairs 
or quads of processors. It seems that there is no need to imple- 
ment a highly sophisticated tree barrier in the Origin2000, since 
the centralized fetchop barrier performs very well, at least up to a 
64-processor scale. 

5 Performance under Multiprogramming 

In order to assess the impact of multiprogramming and parallel 
job scheduling on synchronization in ccNUMA systems, we eval- 
uated five different synchronization disciplines, busy-wait, imme- 
diate blocking, competitive spinning, scheduler-conscious synchro- 
nization and non-blocking synchronization, in conjunction with two 

scheduling strategies of Cellular IRIX, gang scheduling and time 
sharing. Details on the IRIX schedulers can be found in [2,3]. For 
the purposes of this evaluation, we used multiprogrammed work- 
loads, with multiple copies of our FIFO queues and barrier mi- 
crobenchmarks, running simultaneously on all 64 processors of the 
Origin2000 on which we experimented. The exception is the sched- 
uler conscious queue lock where the numbers are extracted from 
executions on 63 processors, since one processor emulates the ker- 
nel scheduler. This minor interference does not affect significantly 
our quantitative comparisons. 

Figure 7 illustrates the results from the experiments with mul- 
tiprogrammed workloads of the queues microbenchmark. The pri- 
mary outcome of the results is that for all synchronization algo- 
rithms, gang scheduling performs significantly worse than time 
sharing. The performance gap between the two scheduling strate- 
gies tends to be wider for the algorithms that use LL-SC. The hard- 
ware performance counts of the multiprogrammed executions (not 
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Figure 7: Average execution time of the queue microbenchmarks under 
two-way (top) and three-way (bottom) multiprogramming on 64 processors 
with four combinations of synchronization disciplines and IRIX scheduling 
algorithms. The queue lock is implemented with a scheduler-conscious dis- 
cipline. Competitive spinning and immediate blocking are applicable only 
to spin locks. Processes execute on average 50 ps in the work loops. 

shown) indicate that when the processes of synchronizing programs 
are gang scheduled, contention and coherence traffic are exacer- 
bated. We are not in a position to attribute this effect to the imple- 
mentation of gang scheduling in the IRIX kernel since we did not 
have access rights to the IRIX source code. We detected from the 
experiments however that IRIX uses a flat model of gang schedul- 
ing, with no dynamic control of the number of processes in each 
program that are coscheduled under multiprogramming. The time- 
sharing scheduler alleviates contention by reducing the number of 
processes that contend actively for a lock or a queue. This effect 
is somehow artifactual, since the time-sharing scheduler does not 
take any special provision for synchronization in parallel programs. 
It indicates however, that dynamic control of the number of each 
parallel job’s processes at runtime can be beneficial for fine-grain 
synchronization. 

The second observation is that with time sharing, non-blocking 
algorithms tend to perform better than multiprogramming-cons- 
cious spin locks, even when the locks are implemented with 
fetchops. The result demonstrates the robustness of non-blocking 
algorithms in multiprogrammed environments. The same argument 
holds for our customized lock-free queue. Although our queue 
is blocking, it appears that this algorithmic limitation is not par- 
ticularly harmful. The exception to the above rule is our hybrid 
scheduler-conscious queue lock, which retains its scalability and 
adapts effectively to the operating system scheduler through the 
preemption-safe lock passing mechanism. 

The final observation concerns the relative performance of syn- 
chronization disciplines with a time-sharing scheduler. Immediate 
blocking performs worse than the other synchronization disciplines 
in all cases. The reason is that immediate blocking leads to an ex- 
cessive number of unnecessary context switches. As long as the 
latency of context switches in modern operating systems remains 
high, immediate blocking can be beneficial only to parallel pro- 
grams with fairly coarse-grain synchronization patterns and under 
heavy multiprogramming load. However, even in these cases, the 

electiveness of immediate blocking was not verified in our experi- 
ments with spin locks. Competitive spinning on the other hand had 
always a positive, but generally marginal effect. 

Figure 8 illustrates the results from multiprogrammed experi- 
ments with the barrier microbenchmark. The primary conclusion 
extracted from the results is that gang scheduling performs bet- 
ter for tightly synchronized programs with barriers. Simultaneous 
scheduling of all processes of each microbenchmark tends to han- 
dle well the artificial load imbalances that we introduced in the mi- 
crobenchmark. However, results from experiments with increased 
load imbalance and higher degrees of multiprogramming, indicated 
that gang scheduling was less effective and evidently inferior to 
time-sharing, when the barrier algorithms were coupled with im- 
mediate blocking or competitive spinning. This is illustrated by 
the rightmost chart in Figure 8. Competitive spinning was benefi- 
cial in general, both with tightly and loosely synchronized barrier 
microbenchmarks. 

6 Results from Application Benchmarks 

We selected three applications from the SPLASH-2 benchmark 
suite [25], Cholesky, Radiosity and LU, to assess the performance 
of synchronization algorithms under realistic conditions. All three 
applications spend on average around 25% of their execution times 
at synchronization points, assuming a perfect memory system [25J. 

For the purposes of the evaluation, we applied minor modifica- 
tions in the synchronization code of each application. In LU, we 
modified the code that implements the barriers. In Cholesky and 
Radiosity, we modified the implementation of the task queues used 
for better data locality and load balancing. In the experiments, we 
selected problem sizes that ensured the scalability of the programs, 
at least up to 32 processors. 

Due to space considerations, we present only the results from 
multiprogrammed executions of the benchmarks. The results from 
executions in dedicated mode can be found in the expanded ver- 
sion of this paper [20]. The conclusion drawn from these results is 
that they agree qualitatively with the results from our microbench- 
marks, although the effects of using more scalable synchronization 
algorithms become noticeable (i.e. lead to improvements of more 
than 2% in execution time) beyond the 32-processor scale. 

Figure 9 illustrates the results from multiprogrammed execu- 
tions of the SPLASH-2 benchmarks. For Cholesky and Radiosity 
the comparative results agree remarkably with the results from our 
multiprogrammed experiments with microbenchmarks. The rela- 
tive performance of combinations of synchronization disciplines 
and scheduling strategies in these benchmarks remains unchanged 
compared to their performance with microbenchmarks. The no- 
table exception is LU, where due to significant load imbalance, 
competitive spinning combined with a time-share scheduler deliv- 
ers better performance than gang scheduling. 

7 Summary of Results 

Our experimental results demonstrate the scalability advantages of 
implementing synchronization primitives at-memory for heavily 
contested synchronization variables. This observation was vali- 
dated for all synchronization constructs that we evaluated in this 
paper. The main drawback of implementing synchronization oper- 
ations at-memory i.e. the read latency experienced from processors 
that spin on uncached variables allocated on remote memory mod- 
ules, can be surmounted with hybrid implementations of synchro- 
nization algorithms that combine spinning on cacheable variables 
with atomic updates on uncacheable variables. We demonstrated 
the effectiveness of this solution with our hybrid queue lock. 

On the other hand, the absence of a universal atomic primi- 
tive precluded the implementation of non-blocking algorithms with 
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Figure 8: Performance of combinations of barrier synchronization disciplines and IRIX scheduling strategies, under two-way (let%) and three-way (middle) 
multiprogramming on 64 processors. Processes execute on average 50 ps in the work loops. The rightmost chart is extracted from an experiment with a 
modified microbenchmark with *50% of load imbalance, under two-way multiprogramming, 
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Figure 9: Normalized average execution times of three SPLASH-2 applications, from multiprogrammed experiments on 44 processors. The charts from left 
to right correspond to multiprogrammed executions of Cholesky, LU and Radios@. Normalization is performed against the average execution time of the 
worst performing combination of synchronization discipline and operating system scheduling strategy. 

compare-and-swap at-memory. Although we cannot argue for the 
hardware complexity of adding a universal primitive in the synchro- 
nization operations performed at-memory in the Origin2000, we 
believe that such an atomic primitive is necessary for implement- 
ing efficient non-blocking synchronization algorithms for moder- 
ate and large-scale multiprocessors. This observation can serve as 
a guideline for the implementation of synchronization primitives in 
future hardware generations. 

From a programmer’s perspective, OUT results support lock-free 
synchronization, the efficiency of which is mainly demonstrated by 
our customized concurrent queue and by the fact that non-blocking 
algorithms are superior to mutual exclusion algorithms with locks 
when implemented with the same hardware synchronization prim- 
itive. We recommend the use of non-blocking algorithms for the 
implementation of simple shared objects like queues, stacks and 
heaps in parallel programs. 

In OUT experiments with multiprogrammed workloads, we ob- 
served tradeoffs between selecting a multiprogramming-conscious 
synchronization discipline and a synchronization-conscious sche- 
duling strategy. Applications with frequent locking perform better 
in a timesharing environment, when the synchronization mecha- 
nisms are equipped with a scheduling discipline that copes with 
the preemptions of processes from the operating system. Our re- 
sults for gang scheduling are to some extent in contrast with pre- 
vious research results that favored gang scheduling for fine-grain 
synchronization. We find that in the Origin2000, contention and 
coherence overhead outweigh the benefits of gang scheduling, al- 
though this could be attributed also to the implementation of gang 
scheduling in the IRIX kernel’. On the other hand, we find that the 

2The use of gang scheduling in newer versions of IRiX is obsolete and the default 
environment for multiprogrammed execution of parallel applications uses the time- 
sharing scheduler and dynamic thread control [3]. 

effects of inopportune process preemptions under time-sharing can 
be dealt with, using either scheduler-conscious synchronization or 
competitive spinning. Our hybrid scheduler-conscious queue lock 
has proven to be very robust under multiprogramming. The use 
of competitive spinning instead of busy-wait was also beneficial in 
all our experiments. Non-blocking algorithms finally, exhibited a 
remarkable immunity to multiprogramming effects, a result which 
was fairly expected. We believe that non-blocking synchronization 
should be the strategy of choice for achieving multiprogramming 
scalability of parallel programs on ccNUMA systems, primarily 
due to its inherent simplicity. Competitive spinning is largely para- 
metric and application-dependent, while scheduler-conscious syn- 
chronization requires modest modifications to the operating system 
kernel, which are not feasible for non-priviteged end-users. 

With respect to barrier synchronization, we find that gang 
scheduling tends to perform better with multiprogrammed work- 
loads of programs with fine-grain load imbalances. For programs 
with more significant load imbalances, gang scheduling leads to 
poorer utilization. In that case a blocking or competitive spinning 
strategy with a time-sharing scheduler is more appropriate. 

8 Conclusions 

This paper contributed a quantitative study of several synchroniza- 
tion algorithms and their interrelationship with multiprogramming 
and parallel job scheduling on an actual ccNUMA platform. The 
Origin2000 gave us the opportunity to evaluate these algorithms 
with advanced hardware and a well-tuned proprietary operating 
system. Besides several comparative results that were presented 
thoroughly in Sections 4 through 6, this study brought out several 
important issues, related to the scalability of synchronization con- 
structs on ccNUMA architectures. We summarize these issues be- 
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low and point out those of them that merit tiher investigation. 
We experienced a strong architectural impact on the perfor- 

mance of synchronization constructs. Although this was expected, 
our results demonstrated that synchronization algorithms are very 
sensitive to the hardware implementation of the elementary syn- 
chronization primitives on which these algorithms are based. In 
certain cases, this sensitivity plays a more catalytic role in the per- 
formance of synchronization algorithms than their actual algorith- 
mic properties. This effect was demonstrated clearly with the rel- 
ative performance of non-blocking synchronization algorithms and 
spin locks, when the latter were implemented at-memory. 

We found that detailed knowledge of the ccNUMA architec- 
ture and particularly the cache coherence protocol and the memory 
subsystem is necessary to evaluate synchronization algorithms in 
the proper context. This detailed knowledge enabled us to con- 
tribute efficient customized implementations of synchronization al- 
gorithms for the Origin2000 such as the hybrid queue lock and the 
simple lock-free FIFO queue. The implementation of a complete 
set of hybrid synchronization algorithms with high scalability on 
largescale ccNUMA systems is within our future plans. 

Our study on the mutual influence of synchronization and par- 
allel job scheduling reveals that this issue needs further investiga- 
tion. The experiments with Cellular IRIX, a fairly customized op- 
erating system, show that time sharing is not as harmful for syn- 
chronization as previous studies demonstrated. Both scheduler- 
conscious synchronization disciplines and non-blocking synchro- 
nization are able to cope with the undesirable interferences of a 
time-sharing scheduler, while at the same time, time sharing has 
the ability to alleviate the effect of hot spotting at synchronization 
points. Gang scheduling did not exhibit the expected performance 
benefits. A further investigation of this subject in conjunction with 
more elaborate multiprocessor scheduling strategies with dynamic 
process control is also planned as future work. 
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