
A Quantitative Architectural Evaluation of Synchronization Algorithms and
Disciplines on ccNUMA Systems: The Case of the SGI Origin2000

Dimitrios S. Nikolopoulos and Theodore S. Papatheodorou

High Performance Information Systems Laboratory
Department of Computer Engineering and Informatics

University of Patras
Rio 26500, Patras, Greece

e-mail:{dsn,tsp}@hpclab.ceid.upatras.gr

Abstract

This paper assesses the performance and scalability of several soft-
ware synchronization algorithms, as well as the interrelationship
between synchronization, multiprogramming and parallel job sche-
duling, on ccNUMA systems. Using the SGl Origin2000, we eval-
uate synchronization algorithms for spin locks, lock-free concur-
rent queues, and barriers. We analyze the sensitivity of synchro-
nization algorithms to the hardware implementation of elementary
synchronization primitives and investigate in-depth the architec-
tural implications and particularly the tradeoffs between implemen-
ting synchronization primitives with cacheable synchronization
variables or at-memory. The architectural study enables us to con-
tribute scalable, customized implementations of synchronization
algorithms, including a hybrid scheduler-conscious queue lock and
a lock-free queue. We also evaluate different combinations of syn-
chronization algorithms, synchronization disciplines that cope with
the effects of multiprogramming and different parallel job schedul-
ing strategies, using the Cellular IEUX operating system as a case
study.

1 introduction

Cache Coherent Non Uniform Memory Access (ccNUMA) archi-
tectures have recently attracted considerable research and commer-
cial interest, as they present strong advantages in the direction of
achieving high performance. At the same time, synchronization
is still an intrusive source of bottlenecks in parallel programs for
shared memory. The importance of synchronization has motivated
a vast amount of research efforts, which contributed several effi-
cient algorithms for tightly-coupled small-scale symmetric multi-
processors (SMPs), as well as scalable algorithms for distributed
memory multiprocessors. Whether these solutions are still suffi-
cient for modern ccNUMA systems remains an open and important
question.

This paper addresses some significant issues of synchronization
on ccNUMA systems. In this direction, we conduct a thorough ar-
chitectural evaluation of software synchronization algorithms both
standalone and in conjunction with spinning and scheduler-con-
scious disciplines, embedded in synchronization algorithms to cope
with the interferences of multiprogramming and the operating sys-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distribuled for profit or commercial advantage and that
copies hear this notice and the I’ull citation on the tirst page. To copy
otherwise, to republish, to post WI xrvcrs or to wdistrihutc to lists.
requires prior specific permission andior a fee.
ICS ‘99 Rhodes Greece
Copyright ACM 1999 l-581 13-164~x/99/06...$5.00

tern scheduling strategy. More specifically, the main issues ad-
dressed in this paper include: (1) The architectural implications of
ccNUMA on the scalability of elementary synchronization prim-
itives, as well as the sensitivity of these primitives to their hard-
ware implementation; (2) understanding the behavior and relative
performance of synchronization algorithms in terms of hardware
performance counts that reflect the interactions between synchro-
nization algorithms, the cache coherence protocol and the memory
subsystem; (3) the effectiveness of using specialized hardware that
bypasses the caches, to implement scalable synchronization algo-
rithms; (4) how feasible is the implementation of scalable, lock-
free and non-blocking synchronization algorithms and how these
algorithms perform against standard mutual exclusion algorithms
with locks; (5) how different combinations of multiprogramming-
conscious synchronization disciplines and parallel job scheduling
strategies perform on a contemporary multiprogrammed ccNUMA
multiprocessor.

The goal of this work is to provide an in-depth understanding of
the ccNUMA architectural impact on software synchronization, as
well as the close interrelationship between synchronization, multi-
programming and parallel job scheduling on modem ccNUMA sys-
tems. We use the Origin2000 as a case study, since it offers the nec-
essary for our evaluation advanced hardware and software features
for scalable synchronization and multiprogramming adaptability of
parallel programs. It should be clear however that the conclusions
extracted from this study have general applicability in other realiza-
tions of the ccNUMA architecture. Aside from the evaluation, this
study contributes also some highly efficient, customized implemen-
tations of scalable synchronization algorithms on the Origin2000.

After a brief overview of the Origin2000 hardware, we dis-
cuss its architectural implications on the scalability of elementary
synchronization operations. We then extend the discussion in the
context of synchronization algorithms for spin locks, concurrent
queues, and barriers. The mutual influence of synchronization,
multiprogramming and parailel job scheduling is treated separately.
In this context, we examine techniques applied at user-level, or both
at the user and kernel levels to achieve scalable synchronization
under multiprogramming. Although these techniques are primarily
designed to work with time-sharing schedulers, the effectiveness
of gang scheduling as a beneficial scheduling strategy for tightly
synchronized parallel programs is also studied.

The main body of the evaluation is performed with realistic mi-
crobenchmarks executed in dedicated and multiprogrammed envi-
ronments on a 64-processor Origin2000. The interpretation of the
results is based on hardware performance counts, which we ex-
tracted on-line during the experiments. The generality of the re-
sults is validated using three programs with high synchronization
overhead from the SPLASH-2 benchmark suite [25].

319

http://crossmark.crossref.org/dialog/?doi=10.1145%2F305138.305209&domain=pdf&date_stamp=1999-05-01

To our knowIedge, this work is the first to evaluate a broad
spectrum of synchronization algorithms and their interrelationship
with multiprogramming on an actual ccNUMA platform. Previ-
ous studies of synchronization on ccNUMA architectures [6, 10,
13,’ 17, 231 examined in isolation the scalability of hardware syn-
chronization primitives or the mutual influence of synchronization
and multiprogramming, using simulation. A more recent study of
synchronization on shared memory multiprocessors [9] uses also
the Origin2000 as an evaluation testbed. However, this study fo-
cuses mainly on methodological issues for selecting benchmarks
to evaluate synchronization and does not examine alternatives such
as lock-free and non-blocking synchronization, neither the perfor-
mance impact of multiprogramming on synchronization algorithms.
We examine synchronization Tom the architectural and the operat-
ing system perspective, in order to give valuable practical insights
and assist the design of synchronization hardware and algorithms
for system architects and end-users of modern and future ccNUMA
systems.

The remainder of the paper is organized as follows: Section
2 outlines the Origin2000 architecture and hardware support for
synchronization. In Section 3, we overview synchronization al-
gorithms for spin-locks, lock-free queues and barriers and discuss
the architectural implications of ccNUMA and the interferences
between synchronization algorithms and multiprogramming. Our
experimental results with microbenchmarks in dedicated and mul-
tiprogrammed environments are presented in Sections 4 and 5 re-
spectively. Section 6 reports results from application benchmarks.
We summarize the results in Section 7 and conclude the paper in
Section 8.

2 The SGI Origin 2000

2.1 Architectural Overview

The Origin2000 [1 I] is a ccNUMA multiprocessor introduced by
Silicon Graphics Inc. in 1996. The system employs an aggressive
memory and communication architecture to achieve high scalabil-
ity. The building block of Origin2000 is a dual-processor node
which consists of 2 MIPS RIO000 processors, with 32 Kilobytes
of split primary instruction and data caches and up to 4 Megabytes
of unified second level cache per processor. Each node contains
up to 4 Gigabytes of DRAM memory, its corresponding directory
memory and connections to the I/O subsystem. The components
of a node are connected to a hub, which is in turn connected to
a six-ported router. The routers are interconnected in a fat hyper-
cube topology. The hub serves as the communication assist for the
Origin2000 nodes and implements the cache coherence protocol.
The Origin2000 uses a memory-based directory cache coherence
protocol with MESI states and a sequentially consistent memory
model [111. Along with aggressive hardware optimizations, the
system uses software prefetching and hardware/software support
for page migration and replication to reduce the ratio of remote
to local memory access time to no more than 3:l for configura-
tions up to 128 processors. The Origin2000 uses Cellular IRIX,
a highly scalable 64-bit operating system with support for multi-
threading, distributed shared memory and multidisciplinary sched-
ulers for batch, interactive, real-time and parallel processing.

2.2 Support for Synchronization

The Origin2000 provides two hardware mechanisms for interpro-
cessor synchronization. The first mechanism is realized at the pro-
cessor level and implements a load linked-store conditional (LL-
SC) instruction in the cache controller of the MIPS RlOOOO. The
instruction is composed of two elementary operations. Load linked
reads a synchronization variable from its memory location into a

register. The matching store conditional attempts to write the (pos-
sibly modified) value of the register back to its memory location.
Store conditional succeeds if no other processor has written to the
memory location since the load linked was completed, otherwise
it ,fails. A successful load linked-store conditional pair guarantees
that no conflicting writes to the synchronization variable intervene
between the load linked and the store conditional. LL-SC is a
versatile synchronization primitive, which can be used to imple-
ment a wide range of other synchronization instructions, including
fetch-and& test-and-set and compare-and-swap’ .

The implementation of LL-SC on the RlOOOO uses a reserva-
tion bit per cache line which is set when the load linked is executed
[153. This bit is invalidated before the execution of the store con-
ditional, if the associated cache line is also invalidated due to an
intervening write from another processor, a context switch, or an
exception. The load linked requests the cache line in shared state.
If the matching store conditional succeeds, invalidations are sent to
all the active sharers of the cache line. If the store conditional fails,
no invalidations are sent out in order to avoid a livelock situation.
The latter could happen if two processors start invalidating each
other’s cached copy of the synchronization variable without mak-
ing further progress. The same situation could occur if load linked
loaded the variable in exclusive state, in order to avoid a possible
coherence cache miss in the store conditional. As a consequence,
a successful LL-SC may experience two cache misses, which is
likely to happen more frequently if the synchronization variable is
heavily contended. In the Origin2000 architecture, many of these
coherence misses are satisfied from remote memories, other than
the memory of the processor that experiences the miss. Remote
misses are serviced with three-party transactions in the Origin2000
coherence protocol [1 l] and their service has higher latency, de-
pending on the distance between the invlolved processors.

The second hardware synchronization mechanism in the Ori-
gin2000 is implemented at the node memory. Specialized hardware
is employed to implement atomic operations at-memory. These
operations are called fetchops and include atomic loads, stores,
fetch-and-and, fetch-and-or, fetch-and-increment, fetch-and-decre-
ment and an exchange with zero. Fetchops operate on 64-byte
memory blocks, allocated from a specia1 segment of the node mem-
ory which is not replicated in the processor caches. Reads and up-
dates of fetchop memory blocks require a single message in the
interconnection network and do not generate coherence trtic. A
shortcoming of fetchops is the read latency experienced by a pro-
cessor that spins on an uncacheable variable, since the read op-
erations issued by the processor go always to a DRAM memory
module, which may reside on a remote node. The architects of
the Origin2000 have circumvented this by adding a small (one to
four-entry) fetchop cache at the memory interface of the hubs, to
hold the most recently used fetchop variables. This cache reduces
the best-case latency of a fetchop down to approximately the la-
tency of a secondary cache access, when the fetchop is issued to
local memory. However, the effective read latency of fetchops is
still high and spinning on fetchop variables may generate signifi-
cant network traffic. A second drawback of fetchops is that they
lack a poweful synchronization primitive like compare-and-swap,
or atomic exchange of the contents of two memory locations. This
is an important limitation, since it precludes the implementation of
non-blocking synchronization algorithms. We revisit this issue in
Section 3.

‘Compareandswap takes three arguments, a pointer to a memory location, an
expected value and a new value. The insbuction checks if the content of the memory
location is equal to the expected value and if so, it stores the new value in the memory
location. In both cases the instruction returns an indication if it succeeded or not.

320

3 Synchronization Algorithms

In this section, we overview the synchronization algorithms which
serve our evaluation purposes and discuss the architectural implica-
tions of the Origin2000 hardware on the performance of these algo-
rithms. Due to space considerations, the discussion is limited to the
fundamental properties and the implementation of the algorithms
on the Origin2000. The following three subsections overview al-
gorithms for spin locks, concurrent queues and barriers. The last
subsection discusses mechanisms embedded in synchronization al-
gorithms to achieve scalability under multiprogramming.

3.1 Spin Locks

Synchronization with spin locks implies the use of a shared flag
which serves as a lock for mutual exclusion. We evaluate three
popular flavors of spin locks, the test-and-set lock, the ticket lock
and the queue lock.

In the case of the test-and-set lock, an acquiring process at-
tempts to atomically test if the value of the lock is zero and set the
value to one. If the process succeeds, it proceeds in the critical sec-
tion, otherwise it busy-waits until the lock is reset. Upon a lock re-
lease, the lock holder resets the lock and the waiting processes race
to enter the critical section by issuing test-and-set instructions. On
the Origin2000, test-and-set can be implemented either with LL-
SC or with the fetchop that atomically exchanges the contents of a
memory location with zero.

When implemented with LL-SC, the test-and-set lock intro-
duces hot spots in the memory system at the lock acquire and re-
lease phases. Every test-and-set updates the lock (although it does
not always modify its value) and with each update invalidations
are sent to all processors that cache the lock in shared state. The
number of invalidations tends to increase when multiple processors
issue the LL-SC sequence simultaneously or race for the critical
section upon a lock release. One solution is to poll continuously
the lock before issuing a test-and-set [22]. This solution reduces
the number of test-and-set’s that each processor issues to acquire
the lock and therefore the number of invalidations and coherence
traffic. However, this solution is inadequate for ccNUMA architec-
tures. In a ccNUMA system, the lock is allocated in the memory
module of a single node which contains also the associated direc-
tory information. Every processor outside the home node of the
lock, retrieves an updated value of the lock from a remote memory
location when it experiences a coherence miss on the associated
cache line. Therefore, most processors experience potentially ex-
pensive cache misses also during the polling phase. A technique to
further alleviate this effect is to use backoff, i.e. let the processor sit
for a while in an idle loop between successive polls. Although, the
implications of the cache coherence protocol impede the scalabil-
ity of the test-and-set lock, coherence overhead can be eliminated if
the lock is allocated as an uncacheable variable. The disadvantage
of this solution is the increased latency and network traffic incurred
firorn spinning on the lock variable.

In our implementations of the test-and-set lock with LL-SC and
fetchops we used polling and bounded exponential backoff [l] to
alleviate hot spotting. The base backoff interval in the implemen-
tation with LL-SC is set to be roughly equal to the cost of an un-
contended processor read in the secondary cache. In the fetchop
implementation, the base interval is set roughly equal to the latency
of a fetchop read from local memory. Both approaches attempt to
limit the cost payed by unfortunate backoff decisions.

The test-and-set lock is non-deterministic with respect to the
order in which processes access the critical section. The ticket
lock [161, overcomes this limitation by guaranteeing FIFO service
to the processes that acquire the lock, Each process accesses the
critical section with a unique ticket number, obtained at the lock

acquire phase. A releasing process increments a now-serving vari-
able, which holds the ticket number of the lock holder. Waiting pro-
cesses spin until their ticket number becomes equal to now-serving.
The only atomic synchronization operation needed by the ticket
lock is fetch-and-increment, which can be implemented on the Ori-
gin2000 either with LL-SC, or with the corresponding fetchop.

The ticket lock has two advantages compared to the test-and-set
lock. It guarantees FIFO service for contending processes and re-
duces the critical path of the lock acquisition phase. However, the
ticket lock is also prone to coherence overhead on a ccNUMA ar-
chitecture. If the implementation of fetch-and-increment uses LL-
SC and contention is high, processors are likely to repeat the LL-SC
sequence more than once to acquire the lock and each successful
store conditional will issue a potentially large number of invalida-
tions. Furthermore, all processes spin on the now-serving variable
which becomes a hot spot whenever a releasing process updates the
variable. On the other hand, if fetch-and-increment is implemented
at-memory, coherence traffic is no longer an issue, but processors
will experience high read latencies when spinning on now-serving
and network traffic will increase. In the implementation of the
ticket lock we used proportional backoff [161 to reduce the effects
of contention. The base backoff unit was selected similarly to the
case of the test-and-set lock.

The queue lock [I, 163 is based on the idea of maintaining a
queue of processes that wait to enter the critical section. Each ac-
quiring process checks if the queue of lock waiters is empty. If
so, the process proceeds in the critical section, otherwise it joins
the queue and busy-waits on a local flag. A process that exits the
critical section visits the head of the queue of lock waiters and
resets the local flag of the first waiter. The queue can be main-
tained in an array or a linked list. The linked list implementation is
more space-efficient, however it requires costly atomic operations,
namely compare-and-swap and fetch-and-store. We opted for an
army implementation of the queue lock on the Origin2000, mainly
because it requires only fetch-and-increment, which can be imple-
mented both with LL-SC and fetchops.

The important advantage of the queue lock other than iEs de-
terministic FIFO service, is that processes spin on local variables
in the lock acquisition phase. This means that at the lock release
phase, the lock holder will be involved in a single point-to-point
transaction with the first waiter. Therefore, the lock release is per-
formed with a single cache invalidation. Although the lock acquire
phase may require an increased number of invalidations under high
contention, the queue lock is expected to experience less coherence
overhead than both the test-and-set and the ticket lock

Our implementation of the array-based queue lock with fetch-
ops presents an interesting case. The only fetchop variable used
in the implementation is the variable that indicates the slot in the
array where the next lock waiter is enqueued. All other book-
keeping variables, as well as the queue itself can be maintained on
cacheable locations. The implementation results to a hybrid lock,
that uses synchronization at memory and point-to-point operations
with cacheable shared variables to combine the benefits of both ap-
proaches cumulatively. Section 4 reveals that the hybrid queue lock
delivers the best performance among the spin locks that we tested
on the Origin2000.

3.2 Lock-Free Synchronization with Concurrent Objects

In many practical cases, critical sections in parallel programs con-
sist of a sequence of statements which update a shared data struc-
ture, such as a queue or a stack. An idea established in the re-
cent past to implement these operations efficiently, is to replace
the lock/unlock pairs that protect the shared structure with an im-
plementation which allows concurrent accesses from many proces-
sors, but maintains the state of the data structure coherent during

321

void enqueue (ulong item, struct queue *q) (
ulong slot = atomic-increment (q-ahead);
atomic-storetq->nodes[slotI, item);

I

ulong dequeue (struct queue *q) 1
while (true) (

if (atomic-load(q-ahead) == atomic-load(q->tail))
return QUEUE-EMPTY:

else I
ulong slot = atomic-load(q-ahead);
ulong item = atomic-clear(q->nodes[slot]);
if (item != NULL)

atomic-incrementcq-shead);
return item;

1)
I

Figure 1: Customized lock-free queue implementation with f&chops.

program execution. Intuitively, the benefit of such an approach is
to exploit parallelism by overlapping the updates of shared objects
and reduce the latency that processes experience when attempting
to access a shared object with a lock. An ideal concurrent object
satisfies three properties, the non-blocking property, the wait-free
property and the linearizability property [S]. These properties guar-
antee the following: no process trying to update the object will be
delayed indefinitely, contending processes will always finish their
updates in a limited amount of time and the concurrent object will
function as a sequential object where each concurrent update will
appear as an atomic unintermptible operation.

Although an algorithm that satisfies all three properties has not
appeared yet in the literature, non-blocking and linearizable algo-
rithms can be implemented on processor architectures that support
a universal atomic primitive, Universal primitives resolve an infi-
nite number of contending processors in a non-blocking fashion.
Compare-and-swap, LL-SC and atomic exchange of the contents
of two memory locations are universal atomic primitives. At least
one of the first two is implemented in most commodity micropro-
cessors.

In this paper, we evaluate three non-blocking and Iinearizable
algorithms that implement concurrent FIFO queues. They are at-
tributed to P&ash, Lee and Johnson 12 I], Valois [24] and Michael
and Scott [181 respectively. All three algorithms use compare-and--
swap to atomically update the queue and share a common technique
for concurrent updates. The algorithms maintain pointers to the
two ends of the queue. An enqueuingldequeuing process reads the
pointer to the tail/head of the queue respectively and attempts to
modify the contents of the pointed memory location using com-
pare-and-swap. Enqueue and dequeue attempts are repeated until
the compare-and-swap succeeds. The differences between the three
algorithms lie in the implementation of the queue and the memory
management mechanism used to avoid the problem of pointer recy-
cling (also known as the ABA problem), which may occur between
the read and the atomic update of a pointer.

Compared to spin locks, concurrent queues have the advan-
tage of allowing multiple enqueue and dequeue operations to be
overlapped. However, concurrent objects have also performance
limitations. Compare..and-swap is more expensive than other syn-

chronization primitives. Furthermore, simultaneous executions of
compare-and-swap on cacheable memory locations incur hot spots.
Under high contention, processors may need to issue multiple com-
pare-and-swap instructions in order to complete their updates. Each
successful compare-and-swap may therefore motivate a large num-
ber of invalidations and remotely satisfied coherence misses. As a
result, the latency of concurrent queue operations is significantly
higher than the latency of the corresponding sequential operations.

We implemented compare-and-swap with LL-SC on the MIPS

RIOOOO. Based on this primitive, we implemented the three non-
blocking algorithms for concurrent queues mentioned previously.
Unfortunately, compare-and-swap is not implemented at-memory
in the Origin2000. In order to assess the performance of lock-free
algorithms with uncacheable synchronization variables, we imple-
mented a customized lock-free queue with fetchops, the pseudo-
code of which is shown in Figure 1. The implementation is an
array-baaed variant of the ticket algorithm, where the queue ends
are kept uncached at-memory and used as tickets to access the slots
of the queue. The implementation uses the Origin2000 fetchops for
atomic load, store, increment and exchange with zero which are not
powerful enough to make our lock-free queue non-blocking.

3.3 Barriers

A barrier is a global synchronization point in a parallel program,
beyond which no process can proceed unless all other processes
have reached the same point. In this paper, we evaluate two soft-
ware algorithms for barrier synchronization. The first algorithm is
a sense reversing centralized barrier [16]. Each processor that ar-
rives at the barrier increments a shared counter atomically and then
spins on a sense variable. The last process that arrives at the barrier
sets the sense variable and signals the other processes to leave the
barrier. The sense variable is toggled after each barrier, to ensure
correct execution of successive barriers. On a ccNUMA architec-
ture, cacheable counter and sense flags may become hot spots and
prevent the scalability of the centralized barrier, if processors arrive
at the barrier roughly at the same time. The counter and sense vari-
ables can be allocated in uncacheable locations to avoid hot spots.
We implemented either alternative on the Chigin2000, using LL-SC
and fetchops.

The second algorithm is a two-tree barrier proposed by Mellor-
Crummey and Scott [161. Processor arrivals and wakeups are prop-
agated through two separate trees. A single tree node is assigned
to each process and linked to a parent pointer in the arrival tree
and child pointers in the wakeup tree. An arriving process waits
first for its children to arrive at the barrier and then propagates its
arrival to its parent. The process then spins waiting for a wakeup
signal from its parent in the wakeup tree. The process that resides at
the root of the arrival tree activates the wakeup phase. The branch-
ing factors of the two trees are determined empirically to reduce
the latency of spinning and optimize the wakeup phase. We used a
branching factor of four in the arrival tree and two in the wakeup
tree. The tree-barrier does not require any atomic synchronization
operations. Spinning and updates on the tree pointers may still in-
crease coherence overhead, however the number of processors that
actively share these pointers is low and contention is not expected
to be as harmful as in the centralized barrier.

3.4 Synchronization Disciplines under Multiprogramming

Parallel programs with tight synchronization patterns perform often
poorly when executed on a multiprogrammed system. The primary
reason is that the operating system scheduler decides frequently to
preempt synchronizing processes of parallel programs, in order to
increase system throughput and ensure fairness. These preemp-
tions are oblivious of any fine-grain interactions among processes
in parallel programs. A typical pathological scenario that demon-
strates the effect, is the preemption of a process that holds a lock. In
that case, the other processes of the same program spin needlessly,
waiting for the preempted process to release the lock.

Several solutions were proposed in the past to cope with inop-
portune process preemptions and the inconsistencies between syn-
chronization algorithms and the operating system scheduling strat-
egy. There are four general solution frameworks: (1) Each process
makes an independent decision between busy-waiting and blocking

322

to relinquish the processor and avoid underutilization [7, 121. This
solution is applicable to locks and harriers;(2) a non-blocking syn-
chronization algorithm is used (Section 3.2); (3) the kernel guar-
antees that a process is not preempted while executing in a critical
section [141; (4) the lock holder polls the status of its peer processes
and avoids passing the lock to a preempted process [8]. The latter
approach is also called scheduler-conscious synchronization.

Following the first approach, we embedded two multiprogram-
ming-conscious mechanisms in the synchronization algorithms for
locks and barriers, namely immediate blocking and competitive
spinning. With immediate blocking, an acquiring process blocks
as soon as it finds out that the lock is held by another process. Sim-
ilarly, a process arriving at a barrier blocks if it finds out that there
are other processes not arrived at the barrier yet. When the blocked
process is eventually rescheduled, it attempts to reacquire the lock
or checks the barrier status again.

Immediate blocking may improve processor utilization, since
processes do not waste CPU time spinning, but may also cause un-
necessary context switches, if processes block unfortunately just
before the lock is released or the last process arrives at the barrier.
This effect can be harmful for programs with fine-grain synchro-
nization patterns. Competitive spinning [7] makes a compromise,
by letting the acquiring process spin for a “while,, before blocking.
In this way, utilization is improved without necessarily sacrificing
the performance of tightly synchronized programs. The problem
with competitive spinning is how to determine the appropriate in-
terval of spinning before blocking. This interval is generally deter-
mined empirically. A good approach is to set the spinning interval
equal to the overhead of a context switch. This leads to a compet-
itive spinning strategy where the cost paid at each synchronization
point is at most twice the cost of a context switch [7]. This is the
strategy that we employ in the implementation of competitive spin-
ning in our experiments with spin locks. For barriers, we set the
spinning interval to be proportional to the number of processes not
arrived at the barrier yet [8].

Non-blocking synchronization algorithms with concurrent ob-
jects have an inherent immunity to the undesirable effects of mul-
tiprogramming. The reason is that preemption of a process that
attempts to update a concurrent object does not prevent other pro-
cesses from proceeding and updating the object. Previous research
[191 has shown that this property is among the strongest arguments
that support the use of non-blocking synchronization in multipro-
grammed environments.

The last two solution frameworks i.e. preemption-safe lock-
ing and scheduler-conscious synchronization require kernel support
to establish a communication path between parallel programs and
the operating system, in order to let a program request preemp
tion safety or notify the program of a process preemption. These
functionalities were not available in Cellular IRIX by the time we
performed our evaluation on the Origin2000. An experimental im-
plementation of scheduler-conscious synchronization in IRIX is
described in [3]. For the purposes of this paper, we emulated a
scheduler-conscious queue lock at user-level, following the me-
thodology of Kontothanassis et.al. [8]. A user-level scheduler em-
ulates the kernel by preempting and resuming processes using the
blockproc()/unblockproc() system calls of IRIX. A portion of the
system’s memory is mapped shared between the user-level sched-
uler and parallel programs and then used to communicate process
preemptions. The process that holds a lock polls the state of the
processes waiting in the queue and hands-off the lock to the first
non-preempted process. This solution sacrifices the FIFO order-
ing imposed by the semantics of the queue lock, in order to attain
multiprogramming scalability.

The solutions mentioned so far make the assumption that a
general-purpose time-sharing scheduler is used from the operating
system to execute parallel programs. It has been shown however

barrier0;
for (i=0;i<1000000/nprocs;i++) {

work0;
synchronize():

)
barrier-o;

Figure 2: Synchronization microbenchmark.

[23], that the performance of parallel programs with fine-grain syn-
chronization patterns is tightly related to the operating system sche-
duling strategy. Previous research demonstrated that gang schedul-
ing [4] is more effective for parallel jobs with fine-grain synchro-
nization patterns. Gang scheduling always executes and preempts
the processes of a parallel program as a unit, thus giving to the
program the illusion of a dedicated system and ensuring that all
synchronizing processes are either running or preempted. Gang
scheduling is an attractive alternative, since it does not necessitate
the use of a specialized synchronization discipline in the program
to cope with multiprogramming.

Cellular IRIX offers both gang scheduling and time-sharing as
alternative options to schedule parallel programs, via the schedctl()
system call. We used either option in our evaluation and coupled
time-shared programs with multiprogramming-conscious synchro-
nization disciplines.

4 Synchronization Algorithms Performance

In this section, we evaluate the synchronization algorithms pre-
sented in Section 3 using microbenchmarks. Section 4.1 presents
results from an experiment that evaluates two implementations of
a shared counter on the Origin2000, with LL-SC and fetchops.
This experiment enables us to assess the performance of the low-
level hardware mechanisms for synchronization. In Section 4.2 we
present results for spin locks and lock-free queues. These aIgo-
rithms are evaluated in conjunction, in order to argue directly on
the relative performance of lock-free synchronization against syn-
chronization with locks. Section 4.3 evaluates barrier algorithms.

We used the microbenchmark shown in Figure 2 throughout
the experiments. Each processor executes its portion of a tight loop
with a million iterations, where the processor alternates between
synchronizing and working. The synchronizg) block may contain
any of the synchronization operations under study, i.e. an atomic
update of a counter, an enqueueldequeue operation being either
lock-free or protected with locks, or a call to a barrier synchro-
nization primitive. In the work0 block each processor executes
a loop updating a vector in its local cache. The number of iteta-
tions is selected from a uniform distribution with a parameterized
mean value provided at runtime. An artificial load imbalance of
&20% is introduced in the working loop. Based on quantitative
analyses of synchronization patterns in real applications [9, lo],
this benchmark captures realistically the characteristics of tightly
synchronized parallel programs.

During the experiments with microbenchmarks, we used the
hardware counters of the MIPS R 10000 to measure the occurrences
of four critical hardware events that reflect coherence activity due
to synchronization operations. These events include failed store
conditionals, external invalidations or interventions received from
the processors and exclusive store/prefetches to shared lines in the
secondary cache, When averaged over the number of synchroniza-
tion operations, failed store conditionals, external invalidations and
exclusive store/prefetches provide individually an indication of the
average number of processors that contend for the synchronization
variable by executing LL-SC simultaneously. These performance
counts are therefore a good indication of the degree of contention
for the synchronization variable. On the other hand, external in-
terventions reflect the amount of coherence cache misses satisfied

323

I 2 4 8 16 32 64
number of processors number of processors

Figure 3: Results horn the shared counter microbenchmark. The left chart
plots execution time when processors execute empty work loops, while the
right chart plots execution time when processors execute on average 5 ,us in
each work loop.

remotely in the course of execution. In the Origin2000 coherence
protocol, an external intervention is sent whenever a processor re-
quests a cache line which is owned exclusively from a processor in
a remote node.

We accessed the hardware counters of the RI 0000 at user level
using the /proc interface. The processor has two hardware coun-
ters and since we wanted to track four events, we multiplexed two
events on each counter and then multiplied the results for each
counter by two, to estimate the actual counts. Since all tracked
events contribute significantly to execution time, the projections of
the counter values are fairly accurate.

All presented measurements in the following sections are av-
erages of five executions and all charts are plotted in logarithmic
scale for the sake of readability.

4.1 Shared Counters

In order to evaluate the scalability of the hardware mechanisms
for synchronization on the Origin2000, we executed a version of
our microbenchmark where each process atomically increments a
shared counter at synchronization points. The counter updates are
implemented with LL-SC or at-memory with the fetchop-increment
instruction.

Figure 3 illustrates the results that demonstrate clearly the ad-
vantages of implementing synchronization operations at-memory
when the synchronization variable is heavily contested. The at-
memory atomic increment exhibits satisfactory scaling up to 64
processors in both versions of the microbenchmark. The flatten-
ing of the fetchop curve in the left chart when moving from 32
to 64 processors occurs because the bandwidth of the Origin2000
scales linearly up to 32 processors but flattens when the configu-
ration moves from 32 to 44 processors [I I]. The LL-SC imple-
mentation of fetch-and-increment does not scale when processors
execute empty work loops and scales only up to 8 processors when
processors execute non-empty work loops. The left chart in Fig-
ure 3 illustrates also the effects of the latency of fetchop accesses.
The average latency of the fetchop atomic increment is higher when
one or two processors access the shared counter. Accessing the
counter from the local cache of the MIPS RlOOOO is about ten
times faster than accessing the counter with a fetchop from local
memory. When the benchmark is executed on two processors, syn-
chronization is performed within a single node of the Origin2000.
Therefore, coherence transactions do not have to cross the inter-
connection network and they are performed locally in the hub. The
positive effects of caching cease when synchronization crosses the
node boundaries. On the other hand, the effect of fetchop latency
is mitigated when processors execute non-empty work loops.

Figure 4 plots the R 10000 hardware event counts for the shared

- LL-SC
I=I f&chop

leo3
failed L&SC ext. inv. ext. inf. excl. SVpref

hardware eyents

Figure 4: Hardware performance counts of the counter microbenchmark
with work loops of 5 ps, executed on 64 processors.

ext. ht.

-+ test-ad-set lock LLSC
-ticket lo& LLSC
-queue lock, LL-SC
- Valois’s lock-free queue, LL-SC
- PI&& Lee and Iohnwn’s lock-free queue
- testLardset lo& fetchop
t MiciwA and Smtt’s lock-t&e queue, LL-SC
-c ticket lo&, fetckop
-a- hybrid queue lock, fetchop
-customized fetchlIp queue

LL-SC

excl. silpref

. test-and-set lock, LLSC
o Michael and Scott lock-free queue, U-SC
m test-and>.% lock, f&hop
n hybrid queue lack, fetchop
. custom&d lock-free queue, fetchop

hardware events

Figure 5: Performance of spin locks and lock-free queues. The top chart
plots execution time, while the bottom chart plots the hardware event counts
from executions of the microbenchmark on 64 processors, for some illus-
trative cases. Each process executes on average 5 JJS in each work loop.

counter microbenchmark. The results are extracted from execu-
tions on 64 processors with non-empty work loops and provide a
view of the coherence activity generated from processor contention,
when LL-SC is used as an elementary synchronization primitive.
At each counter update, 11 processors on average fail to execute the
store conditional successfully. Each successful store conditional is-
sues on average 13 invalidations to remote processors and the over-
all execution incurs 2.5 million coherence cache misses satisfied
remotely. The corresponding numbers for the fetchop implemen-
tation of the counter are zero and the coherence traffic shown in
the chart is attributed solely to cold start misses experienced by the
processors at the very first executions of the work loops.

4.2 FIFO Queues

We use shared FIFO queues to evaluate the performance of spin
locks and lock-free synchronization algorithms. We made this
choice in order to provide a direct comparison between the two
approaches, i.e. synchronization with locks versus lock-free syn-
chronization. The results for the lock-free algorithms are probably
the first reported for a ccNUMA architecture.

324

Figure 5 summarizes the results, including the hardware per-
formance counts from executions of the microbenchmark on 64
processors. We interpret the results in the charts in a top-down
manner. The three lock implementations with LL-SC deliver the
worst performance. These locks suffer from excessive coherence
traffic, an effect which we explored in detail in Section 3.1. The
intuition established in Section 3.1 for the relative performance of
the three locks is verified from the results in Figure 5. The queue
lock outperforms the other locks since it uses only one atomic syn-
chronization operation per lock acquisition and processors spin on
locally cached variables. The ticket lock uses also one atomic op-
eration per acquisition but suffers from spinning on a shared lo-
cation, while the test-and-set lock issues an unpredictable number
of atomic operations depending on contention and processors spin
also on a shared location. The hardware counts for the test-and-set
lock indicate that at each lock acquisition race, on average 90 store
conditionals from other processors are issued and fail. The rest of
the hardware event counts are not directly interpretable in terms of
synchronization operations, since the coherence activity generated
from synchronization operations is interleaved with the coherence
activity generated from the actual sharing of the queue pointers. A
rough indication of the synchronization activity can be extracted
by subtracting the counter values of the fetchop impIementation of
the locks, which reflect the coherence activity generated only from
queue sharing. Using this approach, we detect for example that
contention due to test-and-set’s increases by more than an order of
magnitude the number of external invalidations and interventions.

The non-blocking algorithms perform significantly better than
locks with cacheable variables, beyond the &processor scale. The
algorithm of Michael and Scott outperforms the algorithm of
Prakash, Lee and Johnson, which in turn outperforms Valois’s al-
gorithm. This result was also reported in [181 for bus-based SMPs
and it is fairly intuitive, given the complexity of each algorithm and
its memory management scheme. The hardware counts for the best
performing non-blocking queue indicate that the algorithm reduces
the coherence overhead to approximately one fourth of the coher-
ence overhead of the implementations with cacheable locks, al-
though the overall coherence traffic of the non-blocking algorithms
remains significant. The reduction of coherence overhead is not
translated into a proportional reduction of the execution time of the
microbenchmark -which is approximately one half of the execu-
tion time of the LL-SC locks microbenchmarks on 64 processors-
mainly because of the significantly higher latency of the individual
enqueue and dequeue operations of non-blocking algorithms, com-
pared to the latencies of the corresponding sequential operations.

The performance of non-blocking queues based on compare--
and-swap is inferior to the performance of fetchop implementations
of spin locks. The absence of a universal atomic primitive imple-
mented at-memory in the Origin2000 seems to impede the scala-
bility of non-blocking algorithms. The relative performance of the
three locks remains unchanged when the locks are implemented
with fetchops. Although the hardware counters cannot track the
network activity from fetchops, it appears that the queue lock gen-
erates less network traffic compared to the other two locks. Recall
from Section 3.1 that our implementation of the queue lock is hy-
brid. The update of the queue index is done at memory, however
processors spin on variables in their caches while waiting for the
lock. This combination overcomes the problems of fetchop read
latencies and enables the scalability of the queue lock under high
contention.

Our customized lock-free queue impIemented at-memory de-
livers the best performance and satisfactory scalability up to 64
processors. All enqueue and dequeue operations are implemented
at-memory and coherence activity is generated only from the cold-
start misses of the work loops (Figure 5). The read latency of
fetchops is not particularly harmful. Although our queue is block-

IQ6

IQ3
f&d LLSC at irw.

budwm evenb

Figure 6: Barriers microbenchmark performance. The Iefi chart plots the
petiormance of different barrier implementations, while the right chart plots
the hardware event counts from executions of the barrier microbe&mark
on 64 processors. In the microbenchmark, each process executes on average
5 ps in the work loops.

ing and does not compare in sophistication with other algorithms
for lock-free synchronization, it provides a quite efficient synchro-
nization alternative, suited to the Origin2000 hardware.

4.3 Barriers

Figure 6 depicts the performance of two implementations of the
centralized barrier and the two-tree barrier of Mellor-Crummey and
Scott, The results demonstrate that the centralized barrier imple-
mented with fetchops delivers the best performance. The LL-SC
implementation of the centralized barrier performs poorly due to
its excessive coherence overhead. Interestingly, although the two-
tree barrier appears to be scalable, it performs radically worse than
the centralized fetchop barrier. The hardware performance counts
(right chart) indicate that although the two-tree barrier does not is-
sue any synchronization operations, it still incurs significant coher-
ence overhead and network traffic, despite the fact that the variables
used in the barrier implementation are actively shared only by pairs
or quads of processors. It seems that there is no need to imple-
ment a highly sophisticated tree barrier in the Origin2000, since
the centralized fetchop barrier performs very well, at least up to a
64-processor scale.

5 Performance under Multiprogramming

In order to assess the impact of multiprogramming and parallel
job scheduling on synchronization in ccNUMA systems, we eval-
uated five different synchronization disciplines, busy-wait, imme-
diate blocking, competitive spinning, scheduler-conscious synchro-
nization and non-blocking synchronization, in conjunction with two

scheduling strategies of Cellular IRIX, gang scheduling and time
sharing. Details on the IRIX schedulers can be found in [2,3]. For
the purposes of this evaluation, we used multiprogrammed work-
loads, with multiple copies of our FIFO queues and barrier mi-
crobenchmarks, running simultaneously on all 64 processors of the
Origin2000 on which we experimented. The exception is the sched-
uler conscious queue lock where the numbers are extracted from
executions on 63 processors, since one processor emulates the ker-
nel scheduler. This minor interference does not affect significantly
our quantitative comparisons.

Figure 7 illustrates the results from the experiments with mul-
tiprogrammed workloads of the queues microbenchmark. The pri-
mary outcome of the results is that for all synchronization algo-
rithms, gang scheduling performs significantly worse than time
sharing. The performance gap between the two scheduling strate-
gies tends to be wider for the algorithms that use LL-SC. The hard-
ware performance counts of the multiprogrammed executions (not

325

custom, fetehop

i

SC queue, fetchop

ticket, fecchop

MS, LL-SC

tas, ferchop

PLJ, LL-SC

V&is, LL-SC

: queue, LL-SC

ticket, LL-SC

tas, LL-SC

-gang scheduling

r=~ time sharing with immediate blocking

om time sharing with busy-wait
I time sharing with competitive-spinning

SC queue, f&chop

B

a
ticket, fuchop

1
MS, LL-SC

: tas. fetchop
5 PLI. LL-SC

mime- sharing with immediate blocking
-time sharing with busy-wait
I time sharing with competitive-spinning

Figure 7: Average execution time of the queue microbenchmarks under
two-way (top) and three-way (bottom) multiprogramming on 64 processors
with four combinations of synchronization disciplines and IRIX scheduling
algorithms. The queue lock is implemented with a scheduler-conscious dis-
cipline. Competitive spinning and immediate blocking are applicable only
to spin locks. Processes execute on average 50 ps in the work loops.

shown) indicate that when the processes of synchronizing programs
are gang scheduled, contention and coherence traffic are exacer-
bated. We are not in a position to attribute this effect to the imple-
mentation of gang scheduling in the IRIX kernel since we did not
have access rights to the IRIX source code. We detected from the
experiments however that IRIX uses a flat model of gang schedul-
ing, with no dynamic control of the number of processes in each
program that are coscheduled under multiprogramming. The time-
sharing scheduler alleviates contention by reducing the number of
processes that contend actively for a lock or a queue. This effect
is somehow artifactual, since the time-sharing scheduler does not
take any special provision for synchronization in parallel programs.
It indicates however, that dynamic control of the number of each
parallel job’s processes at runtime can be beneficial for fine-grain
synchronization.

The second observation is that with time sharing, non-blocking
algorithms tend to perform better than multiprogramming-cons-
cious spin locks, even when the locks are implemented with
fetchops. The result demonstrates the robustness of non-blocking
algorithms in multiprogrammed environments. The same argument
holds for our customized lock-free queue. Although our queue
is blocking, it appears that this algorithmic limitation is not par-
ticularly harmful. The exception to the above rule is our hybrid
scheduler-conscious queue lock, which retains its scalability and
adapts effectively to the operating system scheduler through the
preemption-safe lock passing mechanism.

The final observation concerns the relative performance of syn-
chronization disciplines with a time-sharing scheduler. Immediate
blocking performs worse than the other synchronization disciplines
in all cases. The reason is that immediate blocking leads to an ex-
cessive number of unnecessary context switches. As long as the
latency of context switches in modern operating systems remains
high, immediate blocking can be beneficial only to parallel pro-
grams with fairly coarse-grain synchronization patterns and under
heavy multiprogramming load. However, even in these cases, the

electiveness of immediate blocking was not verified in our experi-
ments with spin locks. Competitive spinning on the other hand had
always a positive, but generally marginal effect.

Figure 8 illustrates the results from multiprogrammed experi-
ments with the barrier microbenchmark. The primary conclusion
extracted from the results is that gang scheduling performs bet-
ter for tightly synchronized programs with barriers. Simultaneous
scheduling of all processes of each microbenchmark tends to han-
dle well the artificial load imbalances that we introduced in the mi-
crobenchmark. However, results from experiments with increased
load imbalance and higher degrees of multiprogramming, indicated
that gang scheduling was less effective and evidently inferior to
time-sharing, when the barrier algorithms were coupled with im-
mediate blocking or competitive spinning. This is illustrated by
the rightmost chart in Figure 8. Competitive spinning was benefi-
cial in general, both with tightly and loosely synchronized barrier
microbenchmarks.

6 Results from Application Benchmarks

We selected three applications from the SPLASH-2 benchmark
suite [25], Cholesky, Radiosity and LU, to assess the performance
of synchronization algorithms under realistic conditions. All three
applications spend on average around 25% of their execution times
at synchronization points, assuming a perfect memory system [25J.

For the purposes of the evaluation, we applied minor modifica-
tions in the synchronization code of each application. In LU, we
modified the code that implements the barriers. In Cholesky and
Radiosity, we modified the implementation of the task queues used
for better data locality and load balancing. In the experiments, we
selected problem sizes that ensured the scalability of the programs,
at least up to 32 processors.

Due to space considerations, we present only the results from
multiprogrammed executions of the benchmarks. The results from
executions in dedicated mode can be found in the expanded ver-
sion of this paper [20]. The conclusion drawn from these results is
that they agree qualitatively with the results from our microbench-
marks, although the effects of using more scalable synchronization
algorithms become noticeable (i.e. lead to improvements of more
than 2% in execution time) beyond the 32-processor scale.

Figure 9 illustrates the results from multiprogrammed execu-
tions of the SPLASH-2 benchmarks. For Cholesky and Radiosity
the comparative results agree remarkably with the results from our
multiprogrammed experiments with microbenchmarks. The rela-
tive performance of combinations of synchronization disciplines
and scheduling strategies in these benchmarks remains unchanged
compared to their performance with microbenchmarks. The no-
table exception is LU, where due to significant load imbalance,
competitive spinning combined with a time-share scheduler deliv-
ers better performance than gang scheduling.

7 Summary of Results

Our experimental results demonstrate the scalability advantages of
implementing synchronization primitives at-memory for heavily
contested synchronization variables. This observation was vali-
dated for all synchronization constructs that we evaluated in this
paper. The main drawback of implementing synchronization oper-
ations at-memory i.e. the read latency experienced from processors
that spin on uncached variables allocated on remote memory mod-
ules, can be surmounted with hybrid implementations of synchro-
nization algorithms that combine spinning on cacheable variables
with atomic updates on uncacheable variables. We demonstrated
the effectiveness of this solution with our hybrid queue lock.

On the other hand, the absence of a universal atomic primi-
tive precluded the implementation of non-blocking algorithms with

326

I 10 loo Icm low0
average execution time (sets.) werage execution time (sees.) average execution time (sees.)

Figure 8: Performance of combinations of barrier synchronization disciplines and IRIX scheduling strategies, under two-way (let%) and three-way (middle)
multiprogramming on 64 processors. Processes execute on average 50 ps in the work loops. The rightmost chart is extracted from an experiment with a
modified microbenchmark with *50% of load imbalance, under two-way multiprogramming,

LLSC test-andset lock with gang sehedtiig

LGSC leek-free queuueua with gang sheduling

seixdulcr-conxious hybrid queue loft with tic sharing
LL-SC lock&u qcues with tie sbuing

LL-SC testanddet lock with time sharing and busy-wait

B LL-SC queue lock with gang scheduling
= 1.5 LL-SC lock-free queues with gang scheduling
I scheduler-conscious hybrid queue lock with time sharing
2
I

LL-SC lock-free queues with time sharing

g 1.0

I
2

D 0.5

i

2 3
degree of multiprogrmmiog

2 3
dcgnof mnltipmgnmming

0.0
2 3

degree of multiprogramming

Figure 9: Normalized average execution times of three SPLASH-2 applications, from multiprogrammed experiments on 44 processors. The charts from left
to right correspond to multiprogrammed executions of Cholesky, LU and Radios@. Normalization is performed against the average execution time of the
worst performing combination of synchronization discipline and operating system scheduling strategy.

compare-and-swap at-memory. Although we cannot argue for the
hardware complexity of adding a universal primitive in the synchro-
nization operations performed at-memory in the Origin2000, we
believe that such an atomic primitive is necessary for implement-
ing efficient non-blocking synchronization algorithms for moder-
ate and large-scale multiprocessors. This observation can serve as
a guideline for the implementation of synchronization primitives in
future hardware generations.

From a programmer’s perspective, OUT results support lock-free
synchronization, the efficiency of which is mainly demonstrated by
our customized concurrent queue and by the fact that non-blocking
algorithms are superior to mutual exclusion algorithms with locks
when implemented with the same hardware synchronization prim-
itive. We recommend the use of non-blocking algorithms for the
implementation of simple shared objects like queues, stacks and
heaps in parallel programs.

In OUT experiments with multiprogrammed workloads, we ob-
served tradeoffs between selecting a multiprogramming-conscious
synchronization discipline and a synchronization-conscious sche-
duling strategy. Applications with frequent locking perform better
in a timesharing environment, when the synchronization mecha-
nisms are equipped with a scheduling discipline that copes with
the preemptions of processes from the operating system. Our re-
sults for gang scheduling are to some extent in contrast with pre-
vious research results that favored gang scheduling for fine-grain
synchronization. We find that in the Origin2000, contention and
coherence overhead outweigh the benefits of gang scheduling, al-
though this could be attributed also to the implementation of gang
scheduling in the IRIX kernel’. On the other hand, we find that the

2The use of gang scheduling in newer versions of IRiX is obsolete and the default
environment for multiprogrammed execution of parallel applications uses the time-
sharing scheduler and dynamic thread control [3].

effects of inopportune process preemptions under time-sharing can
be dealt with, using either scheduler-conscious synchronization or
competitive spinning. Our hybrid scheduler-conscious queue lock
has proven to be very robust under multiprogramming. The use
of competitive spinning instead of busy-wait was also beneficial in
all our experiments. Non-blocking algorithms finally, exhibited a
remarkable immunity to multiprogramming effects, a result which
was fairly expected. We believe that non-blocking synchronization
should be the strategy of choice for achieving multiprogramming
scalability of parallel programs on ccNUMA systems, primarily
due to its inherent simplicity. Competitive spinning is largely para-
metric and application-dependent, while scheduler-conscious syn-
chronization requires modest modifications to the operating system
kernel, which are not feasible for non-priviteged end-users.

With respect to barrier synchronization, we find that gang
scheduling tends to perform better with multiprogrammed work-
loads of programs with fine-grain load imbalances. For programs
with more significant load imbalances, gang scheduling leads to
poorer utilization. In that case a blocking or competitive spinning
strategy with a time-sharing scheduler is more appropriate.

8 Conclusions

This paper contributed a quantitative study of several synchroniza-
tion algorithms and their interrelationship with multiprogramming
and parallel job scheduling on an actual ccNUMA platform. The
Origin2000 gave us the opportunity to evaluate these algorithms
with advanced hardware and a well-tuned proprietary operating
system. Besides several comparative results that were presented
thoroughly in Sections 4 through 6, this study brought out several
important issues, related to the scalability of synchronization con-
structs on ccNUMA architectures. We summarize these issues be-

327

low and point out those of them that merit tiher investigation.
We experienced a strong architectural impact on the perfor-

mance of synchronization constructs. Although this was expected,
our results demonstrated that synchronization algorithms are very
sensitive to the hardware implementation of the elementary syn-
chronization primitives on which these algorithms are based. In
certain cases, this sensitivity plays a more catalytic role in the per-
formance of synchronization algorithms than their actual algorith-
mic properties. This effect was demonstrated clearly with the rel-
ative performance of non-blocking synchronization algorithms and
spin locks, when the latter were implemented at-memory.

We found that detailed knowledge of the ccNUMA architec-
ture and particularly the cache coherence protocol and the memory
subsystem is necessary to evaluate synchronization algorithms in
the proper context. This detailed knowledge enabled us to con-
tribute efficient customized implementations of synchronization al-
gorithms for the Origin2000 such as the hybrid queue lock and the
simple lock-free FIFO queue. The implementation of a complete
set of hybrid synchronization algorithms with high scalability on
largescale ccNUMA systems is within our future plans.

Our study on the mutual influence of synchronization and par-
allel job scheduling reveals that this issue needs further investiga-
tion. The experiments with Cellular IRIX, a fairly customized op-
erating system, show that time sharing is not as harmful for syn-
chronization as previous studies demonstrated. Both scheduler-
conscious synchronization disciplines and non-blocking synchro-
nization are able to cope with the undesirable interferences of a
time-sharing scheduler, while at the same time, time sharing has
the ability to alleviate the effect of hot spotting at synchronization
points. Gang scheduling did not exhibit the expected performance
benefits. A further investigation of this subject in conjunction with
more elaborate multiprocessor scheduling strategies with dynamic
process control is also planned as future work.

Acknowledgements

We would like to thank Constantine Polychronopoulos and David
Craig for motivating this work and providing useful advice. We
are also grateful to Oriol Riu and George Tsolis for their invaluable
technical assistance.

References

[l] T. Anderson, operating System Supportfor High Performance
Multiprocessing, PhD Thesis, Univ. of Washington at Seattle,
1991.

[2] .l. Barton and N. Sitar, A Scalable Multi-Discipline, Multi@e-
Processor Scheduling Framework for IRX, Proc. First Work-
shop on Job Scheduling Strategies for Parallel Processing,
1995.

[3] D. Craig, An Integrated Kernel-level and User-tevel Paradigm
for Eficient Multiprogramming, MSc Thesis, Univ. of Illinois
at Urbana-Champaign, 1999.

[4] D. Feitelson and L. Rudolph, Gang Scheduling Pet@rmance
BenejTts for Fine-grain Synchronization, Journal of Parallel and
Distributed Computing, 16(4), pp. 306-3 18, 1992.

[5] M. Herlihy, &it-fee Synchronization, ACM Trans. on Pro-
gramming Languages and Systems, 1 l(l), pp. 124-149, 1991.

[6] A. K@i, D. Burger and J. Goodman, Eflcient Synchronization:
Let Them Eat QOLB, Proc. 24th Int’l Symp. on Computer Ar-
chitecture, pp. 170-180, 1997.

[7] A. Karrin, K. Li, M. Manasse and S. Owicki, Empirical Studies
of Competitive Spinningfor a Shared-Memory Multiprocessor,
Proc. 13th ACM Symp. on Operating Systems Principles, pp.
4l-55,199l.

[S] L. Kontothanassis, R. Wisniewski and M. Scott, Scheduler
Conscious Synchronization, ACM Trans. on Computer Sys-
tems, 15(l), 1997.

[9] S. Kumar, D. Jiang, R. Chandra and J. P. Sin& Evaluat-
ing Synchronization on Shared Address Space Multiprocessors:
Methodology and Pegormance, to appear in ACM SIGMET-
FXS’99 Conf., 1999.

[lo] C. Kuo, J. Carter and R. Kuramkote, MP-LOCKS: Replacing
H/W Synchronization Primitives with Message Passing, Proc.
of the Fifth Int’l Symp. on High Performance Computer Archi-
tecture, 1999.

[1 l] J. Laudon and D. Lenoski, The SGI Origin: A CCNUMA Highly
Scalable Server, Proc. 24th Int’l Symp. on Computer Architec-
ture, pp. 241-251, 1997.

[121 B. Lim and A. Agarwal, Waiting Algorithms for Synchroniza-
tion in Large-Scale Multiprocessors, ACM Trans. on Computer
Systems, 1 l(3), pp. 253-294, 1993.

[131 B. Lim and A. Agarwal, Reactive Synchronization Algorithms
for Multiprocessors, Proc. of ASPLOS-VI, pp. 25-35, 1994.

[14] B. Marsh, M. Scott, T. LeBlanc and E. Markatos, First-CZass
User Level Threads, Proc. 13th ACM Symp. on Operating Sys-
tem Principles, pp. 110-121, 1991.

[151 MIPS Technologies Inc., MIPSRIDOOOMicqwocessor Users
Manual, Version 2.0, 1997.

[161 5. Melfor-Crummey and M. Scott, Algorithmsfir Scalable Syn-
chronization on Shared-Memory Multiprocessors, ACM Trans.
on Computer Systems, 9(l), pp. 21-65, 1991.

[17] M. Michael and M. Scott, Implementation of Atomic Prim-
itives on Distributed Shared Memory Multiprocessors, Proc.
First Symp. on High Performance Computer Architecture, pp.
222-231, 1995.

[18] M. Michael and M. Scott, Simple, Fast and Practical Non-
Blocking and Blocking Concurrent Queue Algorithms, Proc.
15th ACM Symp. on Principles of Distributed Computing,
1996.

[191 M. Michael and M. Scott, Relative Pelrformance ofpreemption-
Safe Locking and Non-Blocking Synchronization on Multipro-
grammed Shared Memory Multiprocessors, Proc. 1 lth Int’l
Parallel Processing Symp., 1997.

[20] D. Nikolopoulos and T. Papatheodomu, A Quantitative Archi-
tectural Evaluation of Synchronization Algorithms and Dis-
ciplines on the SGI Origin2000, Technical Report HPCISL-
010998, Univ. of Pa&as, 1998.

1211 S. Prakash, D. Lee and T. Johnson, A Nonblocking Algorithm
for Shared Queues Using Compare-and-Swap, IEEE Trans. on
Computers, 43(5), pp. 548-559, 1994.

[22] Z. Segall and L. Rudolph, Dynamic Decentralized Cache
Schemes for an MIMD Parallel Procarrsor, Proc. 1 lth Int’l
Symp. on Computer Architecture, pp. 34%347,1984.

[23] A. Tucker, A. Gupta, and S. Utushibara, The Impact of Oper-
ating System Scheduling Policies and Synchronization Methods
on the Performance of Parallel Applications, Proc. ACM SIG-
METRICS’91 Conf., Revised Version, 1995.

[24] J. Valois, Lock-Free Data Structures, PhD Dissertation, Rem-
selaer Polytechnic Institute, 1995.

[25] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh and A. Gupta, The
SPLASH-2 Pmgrams: Characterization and Methodological
Considerations, Pmt. 22nd Int’l Symp. on Computer Archi-
tecture, pp. 24-36, 1995.

328

