skip to main content
10.1145/3052973.3052996acmconferencesArticle/Chapter ViewAbstractPublication Pagesasia-ccsConference Proceedingsconference-collections
research-article

Functional Encryption with Oblivious Helper

Published:02 April 2017Publication History

ABSTRACT

Functional encryption is a nice tool that bridges the gap between usability and privacy when providing access to huge databases: while being encrypted, aggregated information is available with a fine-tuned control by the owner of the database who can specify the functions he allows users to compute on the data. Unfortunately, giving access to several functions might leak too much information on the database, since once the decryption capability is given for a specific function, this is for an unlimited number of ciphertexts. In the particular case of the inner-product, if rows or records of the database contain l fields on which one got l independent inner-product capabilities, one can extract all the individual fields. On the other hand, the major applications that make use of inner-products, such as machine-learning, need to compute many of them.

This paper deals with a practical trade-off in order to allow the computation of various inner-products, while still protecting the confidentiality of the data. To this aim, we introduce an oblivious helper, that will be required for any decryption-query, in order to control the leakage of information on the database. It should indeed learn just enough information to guarantee the confidentiality of the database, but without endangering the privacy of the queries.

References

  1. M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval. Simple functional encryption schemes for inner products. In J. Katz, editor, PKC 2015, volume 9020 of LNCS, pages 733--751. Springer, Heidelberg, Mar. / Apr. 2015.Google ScholarGoogle Scholar
  2. M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval. Better security for functional encryption for inner product evaluations. Cryptology ePrint Archive, Report 2016/011, 2016. http://eprint.iacr.org/2016/011.Google ScholarGoogle Scholar
  3. S. Agrawal, B. Libert, and D. Stehle. Fully secure functional encryption for inner products, from standard assumptions. Cryptology ePrint Archive, Report 2015/608, 2015. http://eprint.iacr.org/2015/608.Google ScholarGoogle Scholar
  4. S. Agrawal, B. Libert, and D. Stehlé. Fully secure functional encryption for inner products, from standard assumptions. In M. Robshaw and J. Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages 333--362. Springer, Heidelberg, Aug. 2016.Google ScholarGoogle Scholar
  5. S. Bayer and J. Groth. Efficient zero-knowledge argument for correctness of a shuffle. In D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 263--280. Springer, Heidelberg, Apr. 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of security for public-key encryption schemes. In H. Krawczyk, editor, CRYPTO'98, volume 1462 of LNCS, pages 26--45. Springer, Heidelberg, Aug. 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In V. Ashby, editor, ACM CCS 93, pages 62--73. ACM Press, Nov. 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. A. Bishop, A. Jain, and L. Kowalczyk. Function-hiding inner product encryption. In T. Iwata and J. H. Cheon, editors, ASIACRYPT 2015, Part I, volume 9452 of LNCS, pages 470--491. Springer, Heidelberg, Nov. / Dec. 2015.Google ScholarGoogle Scholar
  9. D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and challenges. In Y. Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 253--273. Springer, Heidelberg, Mar. 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. E. Boyle, K.-M. Chung, and R. Pass. On extractability obfuscation. In Y. Lindell, editor, TCC 2014, volume 8349 of LNCS, pages 52--73. Springer, Heidelberg, Feb. 2014.Google ScholarGoogle Scholar
  11. J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials from bilinear maps. In M. Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 56--72. Springer, Heidelberg, Aug. 2004.Google ScholarGoogle Scholar
  12. J. Camenisch and M. Stadler. Efficient group signature schemes for large groups (extended abstract). In B. S. Kaliski Jr., editor, CRYPTO'97, volume 1294 of LNCS, pages 410--424. Springer, Heidelberg, Aug. 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In G. R. Blakley and D. Chaum, editors, CRYPTO'84, volume 196 of LNCS, pages 10--18. Springer, Heidelberg, Aug. 1984. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. S. D. Galbraith, K. G. Paterson, and N. P. Smart. Pairings for cryptographers. Discrete Applied Mathematics, 156(16):3113--3121, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate indistinguishability obfuscation and functional encryption for all circuits. In 54th FOCS, pages 40--49. IEEE Computer Society Press, Oct. 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. S. Garg, C. Gentry, S. Halevi, and M. Zhandry. Functional encryption without obfuscation. In E. Kushilevitz and T. Malkin, editors, TCC 2016-A, Part II, volume 9563 of LNCS, pages 480--511. Springer, Heidelberg, Jan. 2016.Google ScholarGoogle Scholar
  17. M. A. Hearst, S. T. Dumais, E. Osman, J. Platt, and B. Scholkopf. Support vector machines. IEEE Intelligent Systems and their Applications, 13(4):18--28, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. A. K. Jain, R. P. W. Duin, and J. Mao. Statistical pattern recognition: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1):4--37, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. A. Lysyanskaya, R. L. Rivest, A. Sahai, and S. Wolf. Pseudonym systems. In H. M. Heys and C. M. Adams, editors, SAC 1999, volume 1758 of LNCS, pages 184--199. Springer, Heidelberg, Aug. 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. A. O'Neill. Definitional issues in functional encryption. Cryptology ePrint Archive, Report 2010/556, 2010. http://eprint.iacr.org/2010/556.Google ScholarGoogle Scholar
  21. D. Pointcheval and O. Sanders. Short randomizable signatures. In K. Sako, editor, CT-RSA 2016, volume 9610 of LNCS, pages 111--126. Springer, Heidelberg, Feb. / Mar. 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. D. Pointcheval and J. Stern. Security proofs for signature schemes. In U. M. Maurer, editor, EUROCRYPT'96, volume 1070 of LNCS, pages 387--398. Springer, Heidelberg, May 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures. Journal of Cryptology, 13(3):361--396, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. A. Sahai and B. R. Waters. Fuzzy identity-based encryption. In R. Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 457--473. Springer, Heidelberg, May 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. C.-P. Schnorr. Efficient identification and signatures for smart cards. In G. Brassard, editor, CRYPTO'89, volume 435 of LNCS, pages 239--252. Springer, Heidelberg, Aug. 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. C.-P. Schnorr. Efficient identification and signatures for smart cards (abstract) (rump session). In J.-J. Quisquater and J. Vandewalle, editors, EUROCRYPT'89, volume 434 of LNCS, pages 688--689. Springer, Heidelberg, Apr. 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. C.-P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4(3):161--174, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. B. Scholkopf and A. J. Smola. Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. A. Shamir. How to share a secret. Communications of the Association for Computing Machinery, 22(11):612--613, Nov. 1979. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. B. Waters. A punctured programming approach to adaptively secure functional encryption. In R. Gennaro and M. J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 678--697. Springer, Heidelberg, Aug. 2015.Google ScholarGoogle Scholar

Index Terms

  1. Functional Encryption with Oblivious Helper

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in
            • Published in

              cover image ACM Conferences
              ASIA CCS '17: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security
              April 2017
              952 pages
              ISBN:9781450349444
              DOI:10.1145/3052973

              Copyright © 2017 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 2 April 2017

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • research-article

              Acceptance Rates

              ASIA CCS '17 Paper Acceptance Rate67of359submissions,19%Overall Acceptance Rate418of2,322submissions,18%

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader