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ABSTRACT
Current trends in technology, such as cloud computing, al-
low outsourcing the storage, backup, and archiving of data.
This provides efficiency and flexibility, but also poses new
risks for data security. It in particular became crucial to
develop protection schemes that ensure security even in the
long-term, i.e. beyond the lifetime of keys, certificates, and
cryptographic primitives. However, all current solutions fail
to provide optimal performance for different application sce-
narios. Thus, in this work, we present MoPS, a modular pro-
tection scheme to ensure authenticity and integrity for data
stored over long periods of time. MoPS does not come with
any requirements regarding the storage architecture and can
therefore be used together with existing archiving or stor-
age systems. It supports a set of techniques which can be
plugged together, combined, and migrated in order to create
customized solutions that fulfill the requirements of different
application scenarios in the best possible way. As a proof
of concept we implemented MoPS and provide performance
measurements. Furthermore, our implementation provides
additional features, such as guidance for non-expert users
and export functionalities for external verifiers.

Keywords
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1. INTRODUCTION
The development of solutions that allow to preserve im-

portant security goals such as authenticity and integrity
even in the long run has become an important research di-
rection. During the last decades, the way documents are
stored changed from secure offline media, e.g. hard disks,
to company-wide document management systems. Besides
these interconnected systems, the increasing availability of
reliable high-bandwidth Internet connections makes outsour-
cing of storage, backup, and archiving into the cloud increas-

* Please cite the conference version of this work published at ASIACCS’17
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ingly attractive. These technological trends allow for higher
efficiency and flexibility, but also pose new risks for data
security.

Classical protection schemes provide only a sufficient level
of protection for the time interval these schemes are consid-
ered secure for the chosen parameters and keys. Also, in
practice, it must be considered that attackers might get ac-
cess to keys, e.g. by stealing smartcards or hacking backup
servers.

Related Work and Problem Description.
Up until now, various protection schemes that allow to

archive data securely even in the long-term have been de-
veloped, i.e. the AdES family of schemes [3], ERS [4, 2],
CIS [5], CISS [13], CN [6], and AC [11]. In [10], the au-
thors provide a rigorous summary of all existing protection
schemes that provide long-term authenticity and integrity
in archiving systems. However, none of them provides an
efficient solution for different scenarios which may appear
in practice and the authors do not discuss solutions to this
problem.

Assume, for instance, all electronic documents generated
in a hospital should be stored such that their authenticity
and integrity is protected. If such large amounts of docu-
ments are generated and stored, ERS is currently the most
efficient solution with respect to initializing and maintain-
ing the protection. However, when the record of a patient
consisting of several files is opened and an efficient proce-
dure for checking its authenticity and integrity is needed,
CIS or CISS are the methods of choice. Thus, a new scheme
would be required which, at the same time, provides an ef-
ficient verification process for folders, like CIS or CISS, and
an efficient process for generating and maintaining the data
needed to protect the folders, like ERS. For some scenarios
it might be possible to identify exactly one approach after
reviewing the state of the art. However, besides the fact
that an expert is needed who selects and implements the so-
lution, another drawback of this approach is that the access
pattern for documents might change over time. While the
patients are still alive, their medical records are opened and
new files are added on a regular basis. This makes CIS or
CISS an interesting solution. However, when a patient is
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deceased, the access pattern changes and a migration to a
simple document protection, e.g. AdES, CN, or AC, would
be more efficient.

Contribution.
The previously mentioned archiving schemes have the fol-

lowing shortcomings: First, each scheme is only efficient for
very specific access patterns. This requires the existence of
experienced users who are able to review the state of the
art to choose the most suitable solution. Furthermore, in
many cases the most efficient solution can only be gained by
combining several techniques, thereby requiring even expert
knowledge. Second, there are scenarios in which access pat-
tern change over time and no archiving scheme is available
that supports migration.

To address these shortcomings we first analyzed the ex-
isting proposals for long-term archiving in order to extract
reusable techniques and identified for which trust assump-
tions and access patterns they are most suitable. The out-
come is a toolbox of several techniques (presented in Section
3), i.e. attestation techniques and data structures, that can
be plugged together in order to instantiate customized pro-
tection schemes, thereby addressing many different appli-
cation scenarios. We focused on authenticity and integrity
protection, as these two security goals are addressed with
similar measures. Performing a corresponding analysis for
protection schemes providing long-term confidentiality is left
for future work.

Furthermore, our toolbox comes with two features: First,
it allows combining data structures, thereby increasing the
amount of possible protection schemes and correspondingly
the amount of applications for which efficient solutions are
available (presented in Section 4). Second, it allows migrat-
ing between different protections schemes, thereby address-
ing that application scenarios change over time (presented
in Section 5).

Based on this toolbox we developed and implemented the
first modular protection scheme for long-term storage, called
MoPS. Our implementation provides tools with graphical
user interfaces for signing documents, protecting documents
in the long-term, and verifying the protection of documents.
Furthermore, it comes with wizard-based guidance to sup-
port non-expert users when creating protection schemes and
updating the protection of documents. Note that this makes
our solution a very important contribution for practical use
since each user can set up and maintain customized storage
solutions even without expert knowledge. Finally, MoPS
contains export functionalities for stored documents and
their proofs of existence.

Structure.
This paper is organized as follows: First, in Section 2,

we explain how authenticity and integrity can be preserved
in the long run. Then, in Section 3, we present our set of
techniques, show how they can be combined in Section 4,
and explain how migrating between different configurations
is possible in Section 5. In Section 6 we provide details
regarding our implementation and conclude with a summary
and future work in Section 7.

2. LONG-TERM AUTHENTICITY AND IN-
TEGRITY PROTECTION

To provide authenticity and integrity for electronic docu-
ments, digital signature schemes are used. More precisely,
when a document is stored, the document owner signs the
document with its private signature key following the hash-
and-sign paradigm1. This allows any third party retrieving
the document to verify that it has been signed by the doc-
ument owner (authenticity) and that the document has not
been modified (integrity). However, this solution does not
provide authenticity and integrity in the long run, because
signatures and hashes are only secure for a limited period of
time. One threat to the security of signature schemes is that
a malicious party might get access to the private keys, e.g.
by stealing smartcards. Alternatively, an attacker can run a
brute force attack by simply trying out all possible private
keys, thereby identifying the used ones. This attack also
allows violating the security of hash functions, since they
are only secure as long as an attacker is not able to find a
collision, i.e. two documents which lead to the same hash
value. Furthermore, over time new attacks or technologi-
cal progress may allow breaking signature schemes or hash
functions even more efficiently. In practice, the validity of
signature keys is the limiting factor since they are only valid
for some years. This makes it very likely that the storage
period of a document exceeds the time frame for which a
signature remains secure. In the following, we will denote
the time period in which signature keys, signatures, or hash
values are secure with the term validity period.

To address that signatures come with a limited validity
period and to provide authenticity and integrity even in the
long run, the security of signatures is prolonged. More pre-
cisely, before the validity period of a signature is about to
end, a so-called proof of existence for the signature and the
document is generated. A simple approach to create such
a proof is to generate an attestation for the data by send-
ing it to a trusted third party, e.g. a timestamping author-
ity (TSA), which signs it together with the current time.
Thus, although an attacker might get access to the private
signing key of the document owner enabling it to forge sig-
natures, a verifier can distinguish whether a signature has
been generated before or after the signature key became in-
secure. Furthermore, the attacker cannot change signatures
which have already been generated. Therefore, the attesta-
tion prolongs the security of the signature and consequently
the authenticity and integrity of the signed document.

However, also attestations come with a validity period de-
termined by the generated signatures and hash values. Thus,
this procedure is performed repetitively. One example to ac-
complish this works as follows: The initial attestation a0 is
generated by hashing the document together with its signa-
ture and signing the resulting hash value together with the
current time. We will refer to the procedure generating the
initial attestation as initialization procedure. Then, when
the security of the signature or the hash value is about to
fade out, i.e. the validity period of a0 is about to end, a
renewal procedure is performed during which an attestation
a1 for a0 is generated. In other words, the proof of exis-
tence consists of a chain a0, . . . , an of n + 1 attestations. If
the latest attestation an is still secure, it proves that an−1

1Using the hash-and-sign paradigm, the size of messages is
reduced using a hash function and the hash value is signed.



Table 1: Assumptions and requirements for attesta-
tion techniques grouped by corresponding issuers.

Attestation Issuer WVM TSA NA

Issuer Trust Assumptions
WVM cannot be modified or deleted 3
Correct time included 3 3
Input verified correctly 3

Security Assumptions
Hash function security 3 3 3
Signature scheme security 3 3

Infrastructure Requirements
Witnesses for issuing 3
Public key infrastructure 3 3

existed at a point in time when the parameters used to gen-
erate an−1 were still secure. In the same way an−1 proves
the existence of an−2, and so on, until a0. a0 then proves
the existence of the signature to a document, which in turn
proves the authenticity and integrity of the document.

3. MODULARIZATION OF TECHNIQUES
Analyzing the state of the art in long-term archiving, there

are mainly two criteria to distinguish different techniques.
First, the attestation techniques used to generate the attes-
tations. Second, the data structures specifying which infor-
mation is encapsulated in the proofs of existence and which
additional metadata must be stored.

3.1 Attestation Techniques
The long-term archiving schemes proposed so far make use

of three different techniques to generate attestations, where
each technique comes with different security and trust as-
sumptions. Table 1 provides an overview of these assump-
tions as well as infrastructure requirements for the attesta-
tion techniques grouped by the corresponding issuers. All
approaches described below make use of cryptographic prim-
itives which are only secure for a limited period of time for
the chosen parameters. Thus, all attestations generated with
these techniques are only secure within a certain validity pe-
riod.

3.1.1 WVM-Based Timestamps
WVM-based timestamps [1] are generated by publishing

the input data, usually received in hashed form, on widely
visible media (WVM), e.g. bulletin boards or newspapers.
To verify such a timestamp, the verifier must check that the
hash has been published at the claimed point in time. The
verification data needed to perform this procedure depends
on the instantiation of the WVM and is out of scope.

Using this attestation technique, it is necessary to trust
in the correct functionality of the WVM. More precisely, it
must not be possible to delete or modify published data.
Furthermore, since only hashed data is published, it is as-
sumed that the used hash function is secure for the cho-
sen parameters within the validity period of the attestation.
When the security of the hash function is about to fade out,
all data must be rehashed. Furthermore, since these attesta-
tions inherit the time from the WVM, witnesses are needed
testifying that the data has been published at the claimed
point in time.

3.1.2 Signature-Based Timestamps
Signature-based timestamps are issued by a trusted third

party called timestamping authority (TSA). More precisely,
when receiving some input data, usually in hashed form, the
TSA generates a timestamp by signing the data together
with the current time. To verify the correctness of this at-
testation, the verifier must check whether the signature gen-
erated by the TSA is correct and whether the certificate for
the used signature key was still valid at the time the at-
testation got renewed. It follows that the verification data
should contain all data necessary to verify the certificate of
the TSA, including revocation information collected at the
time when the attestation got renewed.

Compared to WVM-based timestamps, this type of attes-
tation can also be used for applications where no witnesses
are available to testify the generation of attestations. How-
ever, on the downside, the TSA is trusted to include the
correct time, i.e. the time when the attestation was issued,
in the timestamp. Furthermore, a public key infrastructure
(PKI) is needed which binds the TSA to its public signature
key by means of certificates. Finally, it is necessary to trust
in the security of the employed signature scheme and the
hash function within the validity period of the attestation.

3.1.3 Notarial Attestation
Notarial attestations [6, 11] are issued by an instance that

is able to verify certain properties of the received input be-
fore signing the data together with a date. In the following
we will refer to this instance as notarial authority (NA).
Which properties are verified depends on the application
and can, for instance, be the signature(s), and/or the certifi-
cate(s), and/or the attestation(s) of one or multiple signed
documents. This is also the main difference compared to
signature- and WVM-based timestamps which are generated
blindly for the received data.

More precisely, notarial attestations are generated as fol-
lows: During the initialization procedure, the required prop-
erties of the input data are verified and, if valid, the data
is signed together with the current time. For most of the
data structures presented in the next section, the attesta-
tions generated during the renewal procedure equal those
of the initialization procedure. The only exception is when
using this technique together with the notarial attestation
wrapper (see Section 3.2.6). In this case, after verification,
the data is signed together with the time the proof of ex-
istence has been initialized. During verification, the signa-
tures of all notarial attestations contained in the proof of
existence are verified and, if more than one attestation was
generated, it is checked whether the certificates for the used
signature keys were valid until the attestations got renewed.
Thus, like for signature-based timestamps, the verification
data for attestations which got renewed should contain all
data necessary to verify the certificate of the NA, including
revocation information.

The advantage of notarial attestations is that since they
allow to verify, for example, the correctness of document
signatures before prolonging them and attestations before
renewing them, it is more likely to detect failures. However,
this requires that significantly more and possibly sensitive
data is sent to the NA and leads to a much higher compu-
tation and communication complexity. Furthermore, since
the NA issuing the notarial attestations is not restricted to
include the current time in the attestations, it can, if ma-



Table 2: Overview of the different data structures
and the access patterns they are most suitable for.

Data Structure AS MTS MDS SLS NAW

Retrieval
Single documents 3 3 3
Ranges of documents 3 3
All documents 3

Storage
Few documents 3 3
Sets of documents 3
Documents added to

3 3
folders sequentially

licious, backdate documents. Thus, this instance must be
trusted to verify the properties of the data received correctly
and to include the appropriate time in the attestation. Fi-
nally, like for signature-based timestamps, a PKI is needed
which binds the NA to its public signature key. Also, the
employed signature scheme and hash function must be se-
cure within the validity period of the attestation.

3.2 Data Structures
Attestation techniques are used to generate proofs of exis-

tence for signed documents. These proofs allow a third party
to verify that a given document has been generated by a spe-
cific data owner and that no unauthorized changes have been
performed since. To provide an efficient proof generation
and verification process, several data structures were pro-
posed. However, whether a certain approach is indeed more
efficient than another depends on the access pattern with
which documents are stored and opened and, correspond-
ingly, with which the proofs of existence for documents are
generated and verified. Furthermore, newer approaches pro-
pose improvements from which many schemes would benefit,
but they were not retrospectively adapted. Thus, we ana-
lyzed existing long-term archiving schemes, identified the
individual data structures, and generalized and improved
them.

In the following we first provide a generic description of
the procedures used to generate and verify proofs of ex-
istence. Then, we describe all identified data structures,
attestation sequence, Merkle tree sequence, multiple docu-
ments sequence, skip-list sequence, and notarial attestation
wrapper, compare them with related work, and highlight for
which access pattern which data structure is most suitable.
Table 2 summarizes the different data structures and the ac-
cess patterns for which they are the most efficient solution.
We assume that choosing a data structure not only deter-
mines the way resources (i.e. signed documents, attestations,
and verification data) are stored, but also how the stored
resources are hashed during the initialization, renewal, and
verification procedures.

While the notarial attestation wrapper can only be used
with notarial attestations, all attestation techniques can be
applied for the remaining data structures. While WVM-
based and signature-based timestamps are generated “blind-
ly”, the notarial attestation allows to check certain proper-
ties of the data before creating the attestation. However,
note that in this case the NA needs access to all data re-
quired to perform the checks.

3.2.1 Generation and Verification Procedures
Each data structure comes with mainly three procedures:

the initialization procedure, the renewal procedure, and the
verification procedure.

Initialization Procedure. During the initialization, an
attestation on input data d = D||s consisting of document D
and its signature s is generated as described in Section 3.1.
In the following we refer with Attest to a function that gen-
erates a WVM-based timestamp, a signature-based times-
tamp, or a notarial attestation by interacting with a third
party. This function is used to generate an initial attesta-
tion a0 for the hash of input data d and the current time t0.
The data stored for verification is attestation a0 and hash
function H0.

Renewal Procedure. To prolong the security of the
proof of existence, a new attestation an is generated. Here
two cases are distinguished: If the validity period of an−1 is
about to end, the attestation renewal procedure is triggered
and a new attestation is generated similarly to the process
described for the initialization procedure. If the security
of the hash function Hn−1 is about to fade out, the hash
renewal procedure is triggered. Here the document and, de-
pending on the data structure, also some additional data is
rehashed using a new hash function Hn and afterwards a
new attestation for this hash value is generated. Input to
both procedures are at least the old attestation an−1, up-
to-date verification data vn−1, the time tn when the new
attestation is generated, and additional data that depends
on the concrete data structure.

Verification. To verify the proof of existence for a signed
document, first, all data that got attested by calling Attest is
recomputed using the signed document, the hash functions,
the verification data, and additional data that depends on
the data structure. Then, the correctness of each attestation
is verified by using the recomputed attested data and the
verification data. Finally, it is verified that each attestation
was renewed before its validity period ended. Since this
procedure is equal for all data structures, it is not further
detailed in the following descriptions.

3.2.2 Attestation Sequence (AS)
Using the data structure attestation sequence (AS), a proof

of existence for a signed document d is generated by creating
a sequence of attestations a0, . . . , an. This process is basi-
cally as described in Section 3.2.1 and a detailed description
in form of pseudocode is given in Listing 1.

Listing 1: Attestation Sequence Procedures
Initialization(InputData d, Time t0, HashFunction H0)

h0 = H0(d)
a0 = Attest(H0||h0, t0)
Store a0 and H0 for verification

Renewal(InputData d, Attestations a0, ..., an−1, VerificationData
v0, ..., vn−1, Time tn, HashFunctions Hn−1, Hn)
If Hn = Hn−1

hn = AttestationRenewal(an−1, vn−1, Hn)
Else

hn = HashRenewal(d, a0, ..., an−1, v0, ..., vn−1, Hn)
an = Attest(Hn||hn, tn)
Store an, vn−1, and Hn for verification

AttestationRenewal(an−1, vn−1, Hn)
Return Hn(an−1||vn−1)

HashRenewal(d, a0, ..., an−1, v0, ..., vn−1, Hn)
Return Hn(d||a0||v0||...||an−1||vn−1)



A similar data structure is used by the AdES family that
even comes with ETSI standards (e.g. ETSI TS 101 903 [3]).
However, an important difference between their solution and
our component is that we distinguish whether only the va-
lidity period of the attestation or also of the hash function is
about to end. In the first case it is not necessary to choose
a new hash function and to rehash all existing sequence ele-
ments when creating new attestations. This leads to a much
more efficient solution when generating and verifying the
proof of existence.

Pros and Cons. The advantage of AS is that there
is no need to store additional information specific to the
data structure and there is also no need to hash additional
information. Thus, when single documents are protected,
this data structure is the most efficient approach regarding
computation and space complexity. For a rigorous perfor-
mance evaluation and a comparison between this approach
and the other approaches see [10]2. The performance eval-
uations confirmed that if a huge amount of data must be
protected, e.g. when storing or archiving medical records, a
huge amount of attestations must be generated and updated.
It follows that this is only a suitable approach if proofs of ex-
istence are generated for very few documents and the proofs
are verified individually.

3.2.3 Merkle Tree Sequence (MTS)
Using the data structure Merkle tree sequence (MTS), a

proof of existence for a set of signed documents is generated.
More precisely, instead of using a hash function to hash a
single document, a Merkle tree [9] is used to generate a sin-
gle hash value for a set of documents. Then, the attestation
a0 is generated for the computed Merkle tree root r0. Note
that when the hash function used to generate this Merkle
tree is about to become insecure, also the security of the
Merkle tree is about to fade out. Thus, when HashRenewal
is triggered, a new Merkle tree for the content, i.e. of the
previous Merkle tree, is computed and a new attestation is
generated for its root. The signed documents are stored to-
gether with the authentication paths of their leaves in the
different Merkle trees to prevent that each Merkle tree must
be completely recreated to verify single documents. Fur-
thermore, this still allows one to maintain a separate proof
of existence for each signed document. The pseudocode of
this process can be found in Listing 2.

A similar data structure is used by ERS and its XML ver-
sion XMLERS which were standardized and can be found in
the RFC standards RFC 4998 [4] and RFC 6283 [2], respec-
tively. Their construction is different from our component
with respect to the data used to compute the Merkle tree
leaves when the hash function is renewed during the hash
renewal procedure: In our construction, we put only the
documents and their authentication paths in the leaves. The
previous attestations and their verification data are rehashed
and attested together with the tree root. In ERS, also all
attestations and their verification data are added to each
leaf. Since this data is equal for all documents, this leads
to hashing redundant information, making our component
more efficient with respect to the hash renewal procedure.

Pros and Cons. Using our data structure MTS, a proof
of existence can be generated for a set of signed documents,
thereby making this technique a good solution when huge

2Although AS is an improved version of AdES, the main
observations still apply.

amounts of documents need to be protected, since it speeds
up the initialization and renewal procedure. For an efficiency
analysis of the usage of Merkle trees in archiving systems and
a comparison with alternative techniques, see [12] and [10].
The performance evaluation also showed that for use cases
where only few data is protected, MTS is less efficient with
respect to the renewal procedure and the space consumption
since authentication paths must be generated and stored3.
Furthermore, this approach only provides an efficient solu-
tion if sets of documents are stored, but not for use cases
where multiple documents of different sets are opened and
verified.

Listing 2: Merkle Tree Sequence Procedures
Initialization(InputData d0, ..., dm−1, Time t0, HashFunction H0)

MT0 = ComputeMerkleTree(d0, ..., dm−1) using H0

r0 = MT0.Root
a0 = Attest(H0||r0, t0)
Store a0 and H0 for verification
For i = 0, ...,m− 1

pi,0 = MT0.AuthenticationPathi

Store pi,0 with di for recomputing r0

Renewal(InputData d0, ..., dm−1, Attestations a0, ..., an−1,
VerificationData v0, ..., vn−1, AuthenticationPaths p0,0,
..., pm−1,k−1, Time tn, HashFunctions Hn−1, Hn)
If Hn = Hn−1

AttestationRenewal(an−1, vn−1, tn, Hn)
Else

HashRenewal(d0, ..., dm−1, a0, ..., an−1, v0, ..., vn−1,
p0,0, ..., pm−1,k−1, tn, Hn)

AttestationRenewal(an−1, vn−1, tn, Hn)
hn = Hn(an−1||vn−1)
an = Attest(Hn||hn, tn)
Store an, vn−1, and Hn for verification

HashRenewal(d0, ..., dm−1, a0, ..., an−1, v0, ..., vn−1,
p0,0, ..., pm−1,k−1, tn, Hn)
MTk = ComputeMerkleTree(d0||p0,0||...||p0,k−1, ...,

dm−1||pm−1,0||...||pm−1,k−1) using Hn

rk = MTk.Root
hn = Hn(a0||v0||...||an−1||vn−1)
an = Attest(Hn||rk||hn, tn)
Store an, vn−1, and Hn for verification
For i = 0, . . . ,m− 1

pi,k = MTk.AuthenticationPathi

Store pi,k with di for recomputing rk

3.2.4 Multiple Documents Sequence (MDS)
Using the multiple documents sequence (MDS), a proof of

existence for a batch of signed documents is generated where
the documents are added subsequently to the storage system
or archive. After a proof of existence for the initial signed
document has been generated, each time a new document
is added to the batch, it is appended to the proof and an
attestation for both, the new document and the proof, is gen-
erated. Like for MTS, the rehashing in HashRenewal is done
using Merkle trees to prevent that a verifier needs access
to all signed documents, attestations, and their verification
data contained in the chain in order to verify an. For sim-
plicity we assume that the time intervals in which documents
are added are smaller than the validity periods of attesta-
tions. This is a reasonable assumption, for instance, when
using signature-based timestamps to securely store medical
records. Due to the employed signature schemes, the va-
lidity period of attestations holds at least two years while

3Although MTS is an improved version of ERS, the main
observations still apply.



most patients consult their doctors multiple times a year.
However, if the security of the proof of existence must be
prolonged without adding a new document, this can be per-
formed by using the algorithms described for AS. For the
pseudocode see Listing 3.

Listing 3: Multiple Documents Sequence Proce-
dures (for 0 < j < n − 1, j denotes the penultimate
iteration HashRenewal was called)
Initialization(InputData d0, Time t0, HashFunction H0)

h0 = H0(d0)
a0 = Attest(H0||h0, t0)
Store a0 and H0 for verification

Renewal(InputData d0, ..., dn, Attestations a0, ..., an−1,
VerificationData v0, ..., vn−1, AuthenticationPaths p0,0, ...,
pj,k−1, Time tn, HashFunctions Hn−1, Hn)
If Hn = Hn−1

AttestationRenewal(dn, an−1, vn−1, tn, Hn)
Else

HashRenewal(d0, ..., dn, a0, ..., an−1, v0, ..., vn−1,
p0,0, ..., pj,k−1, tn, Hn)

AttestationRenewal(dn, an−1, vn−1, tn, Hn)
hn = Hn(Hn(dn)||an−1||vn−1)
an = Attest(Hn||hn, tn)
Store an, vn−1, and Hn for verification

HashRenewal(d0, ..., dn, a0, ..., an−1, v0, ..., vn−1,
p0,0, ..., pj,k−1, tn, Hn)
MTk = ComputeMerkleTree(d0||a0||v0||p0,0||...||p0,k−1,

..., dj ||aj ||vj ||pj,k−1, ..., dn−1||an−1||vn−1) using Hn

rk = MTk.Root
hn = Hn(dn)
an = Attest(Hn||rk||hn, tn)
Store an, vn−1, and Hn for verification
For i = 0, ..., n− 1

pi,k = MTk.AuthenticationPathi

Store pi,k with di for recomputing rk

Also CIS [5] allows generating one proof of existence for
a batch of sequentially archived documents. However, this
scheme uses WVM-based timestamps and a data structure
which looks like an unbalanced hash tree. There are two
significant differences between both approaches: First, our
data structure also provides an attestation renewal proce-
dure which is needed for signature-based timestamps and
which is not provided by CIS. Second, during the hash re-
newal procedure we rehash the data contained in the se-
quence using a Merkle tree. Thus, if verifiers want to verify
a range of documents, they need only access to the docu-
ments that should be verified and the data added after the
oldest document of the range. Using CIS, access to all docu-
ments, attestations, and verification data is needed in order
to verify a single document.

Pros and Cons. Our data structure MDS allows generat-
ing one proof of existence for a batch of sequentially stored or
archived documents. In contrast to the data structure MTS,
the documents are not protected as a single set, but added
sequentially to a common proof of existence. This is an
interesting technique for documents which have a content-
related dependency, e.g. when archiving folders or records.
In this case, opening a folder containing several documents
requires to verify only one chain of attestations where the
number of attestations equals the number of documents pro-
tected. However, if only single documents are opened, this
approach is less efficient than the data structure AS, see
[10]4: Each time a document is added, a new attestation is
4Although MDS is an improved version of CIS, the main
observations still apply.

appended to the chain. This leads to a much longer chain
compared to the chain generated with the data structure
AS where attestations are only appended when the validity
period of old attestations is about to end.

3.2.5 Skip-List Sequence (SLS)
The data structure skip-list sequence (SLS) allows an ef-

ficient archiving solution for both access patterns, verifying
ranges of documents and verifying single documents. The
drawback of MDS is that a new attestation is generated each
time a document is added. It follows that when retrieving
a single document, several attestations with overlapping va-
lidity periods must be verified. A possible solution to avoid
this are append-only skip-lists [8] which maintain linked lists
on multiple levels called parallel hash chains allowing one
to efficiently traverse lists of elements. This allows at the
same time generating one proof of existence for a sequence
of documents and reducing the amount of attestations which
must to be checked during the verification procedure. The
archiving scheme CISS [13] provides such a skip-list-based
solution. Since MoPS uses this scheme without any modi-
fication and the individual processes are very complex, we
refer for details to the original work.

Pros and Cons. SLS, like MDS, allows one to retrieve
and verify a batch of documents with a single attestation
sequence and in addition it also allows one to retrieve single
documents almost as efficient as when using the data struc-
ture AS. However, this comes at the cost of additional com-
plexity regarding time when appending new elements (due
to the need of creating the links) and storage space (due
to the need of storing the links). A rigorous performance
analysis of this approach and a comparison with other data
structures can be found in [13]. The performance analysis
shows that using this data structure is only recommended
when it is known in advance that in the given scenario there
is a high probability that the validity periods of attestations
will overlap. In this case the benefit of skipping attestations
during verification is greater than the cost of the additional
complexity.

3.2.6 Notarial Attestation Wrapper (NAW)
In contrast to all data structures described so far, the data

structure notarial attestation wrapper (NAW) is a special
case. The attestation renewal procedure is performed by
an NA which checks the correctness of the old attestation
and if it is correct replaces it with a new attestation. Thus,
each proof of existence consists only of one single attestation.
During initialization, it must be clarified which property the
NA is expected to verify. The NA can, for instance, verify
that the hash function H0 and the certificate c claimed to be
used by the document owner are still secure. Alternatively,
the NA could also be asked to verify whether the signature
key used to generate the signature s to document d indeed
belongs to certificate c and the signed document has been
hashed using H0. During the renewal, the NA can check
that the latest attestation an, i.e. its signature, is still valid
and that the hash function Hn−1 and, where applicable, also
the new hash function Hn is secure. The pseudocode for the
individual procedures can be found in Listing 4. Note that
except for the store and delete operations, it presents the
view of the NA since the client only sends and receives data.



Listing 4: Notarial Attestation Wrapper Procedures
Initialization(HashValue H0(d), Certificate c, Time t0,

HashFunction H0)
If c is valid at t0 AND H0 is secure at t0

a0 = Attest(H0||H0(d)||c, t0)
Store a0 and H0 for verification

Else
Abort

Renewal(HashValues H0(d), ..., Hn(d), Certificate c,
Attestation an−1, VerificationData vn−1, Times t0, tn,
HashFunctions H0, ..., Hn)
Verify an−1 with vn−1

If an−1 is valid AND Hn is secure at tn
If Hn = Hn−1

AttestationRenewal(H0(d), ..., Hn−1(d), c, an−1, t0,
H0, ..., Hn−1)

Else
HashRenewal(H0(d), ..., Hn(d), c, an−1, t0, tn,

H0, ..., Hn)
Else

Abort

AttestationRenewal(H0(d), ..., Hn−1(d), c, an−1, t0
H0, ..., Hn−1)
an = Attest(H0||H0(d)||...||Hn−1||Hn−1(d)||c, t0)
Store an for verification
Delete an−1

HashRenewal(H0(d), ..., Hn(d), c, an−1, t0, tn, H0, ..., Hn)
If Hn−1 is secure at tn

an = Attest(H0||H0(d)||...||Hn||Hn(d)||c, t0)
Store an and Hn for verification
Delete an−1

Else
Abort

CN [6] was the first approach that used this idea of notar-
ial attestations. However, it made use of two trusted third
parties which are involved in the attestation generation pro-
cess, namely TSAs and notaries. Based on CN, an improved
scheme called AC [11] was developed. This approach uses
notarial attestations and a data structure which equals our
data structure NAW.

Pros and Cons. Since the verifier only needs to verify
one attestation, this approach is by far the most efficient
data structure, see [10]. However, the data structure NAW
can only be used together with the attestation technique
notarial attestation. Furthermore, the NA generating the
attestation should be a person with legal training who is
licensed by the government to witness signatures on docu-
ments, such as a notary. The proof of existence only con-
tains the information at what time the proof of existence
for a document has been initialized and who generated the
latest attestation. The information at what time and by
which party the individual attestations have been renewed
is lost. Thus, all NAs that are involved in prolonging the
security of the proof of existence must be trusted to ver-
ify the received data correctly and to include the correct
time in the new attestation. It follows that this data struc-
ture comes with much stronger trust assumptions compared
to the data structures generating sequences of attestations.
Thus, before using this data structure for a use case, it must
be evaluated whether these trust assumptions are feasible.

4. COMBINATION OF TECHNIQUES
The data structures presented in the last section aim at

providing efficient solutions for initializing, renewing and
verifying proofs of existence. On the one hand, AS, MDS,
SLS, and NAW ensure efficient verification procedures for
different access patterns. On the other hand, MTS provides

efficient initialization and renewal procedures when proofs
of existence for huge amounts of documents are generated
at the same point in time. Thus, in the following we discuss
how for such large data sets MTS can be combined with
the remaining data structures in order to gain an efficient
solution with respect to all procedures.

First, we construct a combined data structure by cumu-
lating the attestation requests of different data structures in
one MTS. Then, we show that when large amounts of docu-
ments need to be archived, the data structures can be used
to generate proofs of existence for Merkle tree roots instead
of protecting single signed documents.

4.1 Merkle Tree Sequences Combining Multi-
ple Attestation Requests

MTS allows one to protect the integrity of a set of hash
values with a single attestation sequence. This technique
cannot only be used for the hashes of signed documents, but
also for the hash values generated during the initialization
and renewal procedures of all data structures.

Initialization Procedure. During the initialization, the
hash values which need to be attested are computed by run-
ning the initialization or renewal procedures of AS, MTS,
MDS, SLS, or NAW. Then, instead of calling Attest for the
individual hash values, they are input for the initialization
procedure of MTS which generates a Merkle tree and gener-
ates one attestation for the entire set of hash values. How-
ever, note that if the leaves of the Merkle tree contain a
hash generated with NAW, then the Merkle tree root must
be attested by an NA. Furthermore, the same hash func-
tion should be used for all data structures combined in the
Merkle tree in order to avoid executing the hash renewal
procedure more often than inevitable.

Renewal Procedure. Regarding the renewal of the at-
testation generated for the latest Merkle tree root, it must
be considered which data structures belong to the hashes in
the Merkle tree leaves. MDS and SLS automatically renew
attestations when new documents are added, while this is
not the case for AS, MTS, and NAW. Thus, we must distin-
guish three cases.

In the first case, all hashes in the leaves are used for MDS
or SLS. Then, the attestation renewal procedure of MDS or,
respectively, SLS can be performed independently. This is
done as follows: The Merkle tree root, the authentication
path corresponding to the data structure, and the common
attestations are appended to each data structure. Then,
the attestation renewal procedure of MDS or, respectively,
SLS is executed as usual. Cumulating the attestation re-
quests when adding new documents to these data structures
is not reasonable, except when new documents are added
to all data structures at the same time. When the hash
renewal procedure instead of the attestation renewal proce-
dure is triggered, all data contained in the respective data
structures must be rehashed. In MoPS, the hash renewal is
performed for all data structures at the same time in order
to be able to cumulate the attestation requests. Since af-
ter the generation of the latest MTS new documents have
been added to the individual sequences, the old MTS can-
not simply be rehashed. Thus, a new MTS is initialized by
running the hash renewal procedures of the individual data
structures and using the resulting hash values as input for
the initialization procedure of the new MTS.



In the second case, all hashes in the leaves are used for
AS, MTS, or NAW. Since these data structures do not re-
new attestations automatically, this is done by calling the
attestation or hash renewal procedure provided by MTS. In
case the hash renewal procedure is run and the Merkle tree
is rehashed using a new hash function Hn, also the hashes
in the leaves must be recomputed correspondingly. Thus,
the hash renewal procedure of AS, MTS, and, respectively,
NAW is triggered and the data is rehashed using Hn.

In the third case, the hashes in the leaves belong to both,
MDS or SLS and AS, MTS, or NAW. The data structures
MDS and SLS renew their attestations as described for the
first case. The remaining data structures can use the attes-
tation renewal technique as described for the second case.
When it is necessary to run the hash renewal procedure for
all data structures, a new MTS is initialized as reasoned for
the first case.

Verification. Verifying a document protected by such
a combined solution requires to additionally recompute the
hash values added to MTS. Then, using the correspond-
ing authentication paths, the roots of the Merkle trees are
recomputed and the correctness of the attestations for the
roots is verified by calling the verification procedure of MTS.

4.2 Data Structures Attesting Merkle Tree
Roots

Merkle trees can be combined with all data structures,
i.e. AS, MTS, MDS, SLS, and NAW. However, since MTS
results from combining the idea of Merkle trees with the
data structure AS, this combination will not be discussed
explicitly. Furthermore, the combination of MTS with MTS
in order to cumulate attestation requests has already been
discussed in the last section.

The data structures MDS, SLS, and NAW address the sce-
nario where at a given point in time only one new document
is attested. Considering medical records as a possible use
case, there are scenarios where this is not reasonable. As-
sume, for instance, that a person got injured in an accident.
In this case, various tests must be conducted, e.g. a blood
test, an x-ray scan, etc., and consequently a set of documents
must be added to the record. An efficient archiving solution
for such a scenario can be provided by combining MDS, SLS,
and NAW with Merkle trees. Note that these data structures
aim at providing the integrity of a given hash value which
usually corresponds to a signed document. This trivially
allows protecting the root of a Merkle tree which contains
hashes of multiple documents in the leaves instead.

Assume, for instance, a set of documents is added after
an attestation an−1 which has been generated using the ini-
tialization and renewal procedures of MDS. Then, if hash
function Hn−1 used to generate an−1 is still secure, first, the
Merkle tree root r′n is computed like in the initialization pro-
cedure of the data structure MTS using hash function Hn =
Hn−1. Second, an is computed as an = Attest(Hn||Hn(Hn(
dn)||an−1||vn−1), tn), where dn = r′n, vn−1 is the verifica-
tion data needed to verify an−1, and tn the time when an is
issued. In case the security of hash function Hn−1 is about
to fade out, the Merkle tree root r′n is computed with a new
hash function Hn. Then, the same hash function is used to
compute the Merkle tree root rk from all data contained in
the sequence as described for MDS. Finally, the new attesta-
tion an is computed as an = Attest(Hn||Hn(Hn(dn)||rk), tn),
where dn = r′n. To be able to recreate the Merkle tree roots

efficiently during verification, the authentication paths are
stored with the documents. The same way Merkle trees can
be combined with the data structures SLS and NAW.

The verification of a document requires to first recom-
pute the Merkle tree root using the authentication path.
Then, the correctness of the attestation for the root is veri-
fied by running the verification procedure of the data struc-
ture MDS, SLS, or NAW, respectively.

5. MIGRATION
In general, there are two reasons why it is necessary to

switch from one data structure to another. The first one
is that the requirements for the storage or archiving sys-
tem changed. Assume, for instance, the authenticity and
integrity of a medical record is protected using MDS or SLS.
Then, when the patient passed away, no new data will be
added to the record, which is why the folder should be mi-
grated to a simple data structure, such as AS or NAW. The
second reason is that documents are transferred to another
storage or archiving system which runs a different protection
scheme.

How the migration procedure works depends on the tar-
get system configuration. We first describe the migration
procedure when the target system supports sequences, i.e.
AS, MTS, MDS, or SLS. Then, we suggest a construction
for migrating to NAW.

5.1 Migration to Sequence-Based Data Struc-
tures

Moving from an arbitrary scheme to a sequence-based
data structure, i.e. AS, MTS, MDS, or SLS, requires mi-
grating the proof of existence generated with the old data
structure. More precisely, assume a proof of existence has
been generated and the latest attestation is an. Then, we
distinguish whether this is a proof protecting a single docu-
ment, i.e. with AS or NAW, or a set of documents, i.e. with
MTS, MDS, or SLS. In the first case the proof is migrated
by simply calling the renewal procedure of the target data
structure for an. This process automatically transfers the
proof of existence in the new format and provides a time
reference for the migration. If the data structure protects
multiple documents, first a Merkle tree is generated where
each leaf contains one document and its proof of existence.
Then, the root of the Merkle tree is added to the new data
structure. Note that in both cases, when the hash renewal
procedure of the new data structure is called, also the mi-
grated data is rehashed.

If the target data structure allows to add documents, e.g.
MDS or SLS, the migrated data can also be added to an
existing proof of existence. This allows to merge folders or
subsequently add older documents to existing folders. In
this case, signed documents and their proof of existence are
hashed and added as new data to a proof of existence main-
tained by the target system.

The verification of a migrated document is performed in
two steps. First, the old proof of existence for the docu-
ment is verified by running the verification procedure of the
data structure used before the migration. Then, the verifi-
cation procedure of the target data structure is performed
to verify that the data has been correctly protected after the
migration.



5.2 Migration to NAW
When migrating from a sequence-based data structure to

NAW, all documents together with their proofs of existence
are sent to an NA. The NA verifies the received data as
specified by the target system and migrates the data. De-
pending on the use case, it either returns a single notarial
attestation for each document of the old data structure or it
generates a Merkle tree with the documents as leaves and re-
turns a single notarial attestation for the root of the tree (see
Section 4.2). The new attestation(s) prove(s) the authentic-
ity and integrity of the signed document(s). However, note
that the proof(s) of existence generated before the migra-
tion is/are deleted after verification. Furthermore, the time
t0 contained in the notarial attestation does not refer to the
time the data has been migrated, but to the date when the
first attestation for the corresponding document or the set
of documents was created.

6. IMPLEMENTATION
In this section, we provide details regarding our imple-

mentation of MoPS. It consists of a web application which
provides the main user interface for a web service-based ar-
chitecture and two additional desktop applications for creat-
ing signatures and verifying stored documents, respectively.

The section is organized as follows: First we describe the
features supported by our implementation in Section 6.1.
In the following sections we present the three applications
which together form MoPS: the signing application in Sec-
tion 6.2.1, the web application in Section 6.2.2, and the ver-
ification application in Section 6.2.3. In Section 6.3, the ser-
vice architecture and the individual web services behind the
web application are explained. Finally, a short performance
evaluation in Section 6.4 reports the computation time and
the storage space consumption when using our implementa-
tion to protect documents.

6.1 Features
Our current implementation covers the following attesta-

tion techniques, data structures, combinations, and migra-
tions:

Regarding attestation techniques, we support signature-
based timestamps and notarial attestations. WVM-based
timestamps are not provided, because, first, to the best of
our knowledge, there is currently no provider offering WVM-
based timestamping services free of charge. Second, we do
not have access to WVM and therefore cannot create a re-
alistic prototype service. Notarial attestations in our im-
plementation attest during initialization that the received
certificate is valid and the employed hash function is secure.
When renewing an attestation, they attest that its signa-
ture is still valid and the employed hash function(s) is/are
secure, just as described in Section 3.2.6. The supported
cryptographic primitives for generating the attestations are
the SHA-2 family of hash functions (SHA-256, SHA-384,
SHA-512) and the RSA signature scheme where the length
of the signature key depends on the chosen hash function
(see Table 4 in Appendix A.1 for details).

Regarding data structures, our implementation supports
AS, MTS, MDS, SLS, and NAW. Furthermore, we imple-
mented the unbalanced hash tree used by the archiving
scheme CIS for testing purposes. We support the combina-
tion of MDS and SLS with Merkle trees exactly as described

MoPS Front-End

MoPS Back-End

Third-Party Services

Protection System

Web App

Core Service

Storage Service

TSA NA CAInformation Service

Database

Signing App Verification App

Figure 1: The different components in the MoPS
system architecture grouped into front-end, back-
end, and third-party services. Interactions between
different components are indicated by arrows.

in Section 4.2. The combination of multiple attestation re-
quests using MTS is left for future work.

Regarding migration, both of the migration procedures
presented in Section 5 are supported. However, when mi-
grating to NAW, always a single notarial attestation is re-
turned for each protected document. The reason for this
restriction is that, as explained previously, our notarial at-
testations attest the validity of single certificates and there-
fore cannot be used to attest an unsigned Merkle tree root.

Besides these basic MoPS features, our implementation
also provides import and export functionalities which al-
low transferring protected documents between different in-
stances of the system without losing protection.

6.2 MoPS Apps
The MoPS implementation consists of the following ap-

plications: First, we provide a platform-independent graph-
ical desktop application called Signing App which enables
non-expert users to create signatures. This application is
available for all major desktop operating systems. Second,
we provide a web application called Web App to which users
can upload signed documents. The Web App supports non-
expert users when creating protection schemes and perform-
ing updates by employing wizard-based guidance. It also al-
lows exporting protected documents for verification or trans-
ferring them to other Web App instances. Accessing the
actual protection system via a user interface in form of a
web front-end results in platform independence, i.e. the im-
plementation can be used on any device providing a web
browser. The third application is a platform-independent
graphical desktop application called Verification App which
allows external retrievers to verify exported documents. As
the Signing App, the Verification App is available for all ma-
jor desktop operating systems. An overview of the MoPS
components is illustrated in Figure 1.

6.2.1 Signing App
The Signing App is a graphical desktop application which

enables non-expert users to create signatures on documents.
To support a wide range of operating systems, the applica-
tion was implemented in Java 8 using Java Swing. When
launching the Signing App, the interface invites the users to
select a PKCS#12 key store containing their public-private



Figure 2: A screenshot of the Web App inter-
face showing all currently maintained protection
schemes. The side menu allows to manage these
protection schemes.

signature key pair and to add the documents to be signed via
drag & drop. After starting the signing process, a signature
is created for each document.

For creating signatures, the Signing App relies on
XAdES4j 5, a Java implementation of XAdES [3] which also
allows creating basic XML signatures containing only an
identifier for the employed signature method, the hash value
of the signed document, the signing time, the signer’s cer-
tificate, and the value of the signature on the previously
mentioned properties.

The Signing App creates a new MoPS ZIP file for each
signed file. The MoPS ZIP format is the file format used
for transferring signed and protected documents between
the Signing App, the Web App, and the Verification App.
Files in this format are ordinary ZIP files with the extension
“.mops.zip”. The MoPS ZIP file created by the Signing App
contains the signed document and its signature. The reason
for combining a document and its signature into a single file
with a custom extension is to facilitate accepting only legit
document-signature pairs for the Web App.

6.2.2 Web App
The Web App is the main front-end component of the

MoPS implementation. It is a wizard-based web interface
for the modular protection system. It allows one to create
protection schemes as well as importing, exporting, updat-
ing, migrating, and verifying documents. The implementa-
tion was done using Apache Wicket6, a server-side frame-
work for developing interactive web applications using Java
8 and HTML 5. Figure 2 shows a screenshot of the Web
App interface.

The protection scheme creation wizard allows non-expert
users to create protection schemes with configurations which
best suit their needs. Users can choose between a simple
mode and an expert mode. Using the simple mode, the users
are asked to select the expected access pattern for the doc-
uments and the trust assumptions they are willing to make.
Depending on the submitted choices, the system selects the
most suitable attestation technique and data structure (or
combination of data structures). The expert mode gives ex-
pert users the possibility to choose a default configuration for
one of the existing schemes surveyed in Section 3. Note that
due to the lack of support for WVM-based timestamps, the
scheme CIS is configured to use signature-based timestamps.

5https://github.com/luisgoncalves/xades4j
6https://wicket.apache.org/

In case the expert users prefer a modular scheme, they can
manually select the preferred data structure and attestation
technique. However, impossible combinations are blocked,
e.g. running NAW with signature-based timestamps.

In order to import signed documents, the users need to
select a) the MoPS ZIP files they want to import, b) the
hash function which should be used for hashing the uploaded
documents, and c) the remote address of the service issuing
the type of attestation they want to use. After starting the
import, first, the selected MoPS ZIP files are uploaded to
the Web App. Then, a proof of existence for the documents
is generated by adding them to the selected data structure
and creating an attestation with the help of the specified
third-party service. Finally, the proof of existence is stored
in an XML file called evidence record.

When exporting one or more protected documents, i.e.
folders of documents, a download of the data in form of a
MoPS ZIP file is offered. Such a MoPS ZIP file contains all
selected documents and their corresponding XML signature
files. In addition, for each folder containing one or more
documents, there is an XML file with the extension“.er.xml”
containing the corresponding proof of existence.

The import dialog can also be used to import protected
documents which were exported from an arbitrary Web App
instance. In this case, the existing proofs of existence are
migrated and updated instead of creating new ones.

The update/migration dialog allows users to update the
proof of existence for protected documents. To do so, they
need to decide whether they want to use a new data struc-
ture and/or attestation technique and/or hash function and/
or attestation service and if so, which one they want to se-
lect.

6.2.3 Verification App
The Verification App is a graphical desktop application

which allows non-expert users to verify protected documents.
This application is necessary to provide external retrievers
(i.e. users without access to the Web App) the possibility to
verify proofs of existence created by the Web App. When
launching the Verification App, the interface prompts the
user to open a MoPS ZIP file via drag & drop. Also, the
user needs to connect to an information service (see Section
6.3.1 for details). This can be done by selecting either the
remote address of an online service or the database shipped
with the Verification App which provides recommendations
according to Lenstra [7]. If issues occur during verification,
a modal window gives a tabular overview stating why veri-
fication failed for which document.

6.3 Web Services
The MoPS implementation incorporates many web ser-

vices for performing tasks which require no user interface.
They are RESTful web services implemented in Java 8 us-
ing Apache CXF7, a framework providing a compliant im-
plementation of the JAX-RS8 standard. These web services
can be categorized into two groups: third-party services and
back-end services. Third-party services are needed to pro-
vide timestamps, notarial attestations, information about
the lifetime of cryptographic primitives and parameters, cer-
tificates, and revocation information. The back-end services
provide the functionality offered by the Web App to its users:

7https://cxf.apache.org/
8https://jsr311.java.net/
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A so-called core service is responsible for performing opera-
tions on evidence records. Furthermore, a dedicated storage
service manages data objects and, finally, a protection sys-
tem maintains information about protection schemes and
protected documents in a database.

6.3.1 Third-Party Services
The MoPS implementation includes implementations of

all required third-party services as there are no existing im-
plementations available (in case of the NA and the infor-
mation service) or available services are commercial or have
limitations regarding free usage (in case of the CA and the
TSA service). In the following we explain only the services
for which currently no other implementations exist, i.e. the
NA and the information service. Details regarding the CA
and TSA service can be found in Appendix A.

Information Service.
The information service provides information about how

long certain cryptographic primitives and parameters are es-
timated to be secure. It is also possible to ask whether or not
a certain cryptographic method or parameter was considered
secure at a given point in time in the past. Supported cryp-
tographic primitives and parameters are hash functions as
well as signature schemes together with recommended key
lengths. In order to fulfill these tasks, the implementation
maintains an inventory showing for each of the supported
primitives and parameters until when they are expected to
be secure. These dates can be updated if new attacks are
discovered. This type of online service could, for instance,
be operated by governmental agencies such as NIST9.

Notarial Authority (NA).
The NA issues and renews notarial attestations, as de-

scribed in Section 6.1, which are transferred in the form of
XML documents. Our NA also supports the migration pro-
cess proposed in Section 5.2. This process requires sending a
MoPS ZIP file containing all documents together with their
proof of existence to the NA. The NA is in possession of mul-
tiple RSA signature keys with different key lengths. Which
one is used depends on the hash function submitted in the
initialization or renewal request (see Table 4 in Appendix
A.1 for details).

6.3.2 Storage Service
The storage service provides a simple object storage solu-

tion: When uploading a file, it will be stored in a single folder
on the service host and a random string will be returned.
This string serves as an identifier for further operations on
the object. In a cloud or enterprise deployment scenario, the
storage service could easily be adopted to work as a proxy
for Amazon S310 or a distributed network file system such
as Ceph11, thereby providing reliability and scalability for
extremely large data sets.

6.3.3 Core Service
The core service is responsible for performing operations

on evidence records: it a) initializes proofs of existence for
documents by creating new data structures according to a

9https://www.nist.gov/
10https://aws.amazon.com/s3/
11https://www.ceph.com/

given protection scheme configuration, b) adds documents
to an existing data structure, c) migrates proofs of exis-
tence from one protection scheme configuration to another,
d) updates proofs of existence according to the given update
parameters, and e) verifies a complete proof of existence or
only a specific document protected by an evidence record.

For creating attestations, the core service relies on the
third-party TSAs and notarial authorities specified in the
update parameters. A storage service is used for hashing
objects referenced by proofs of existence and for reading
or writing evidence records. An information service is em-
ployed for getting information about cryptographic primi-
tives and parameters during verification.

Following the only formally standardized protection
schemes AdES and ERS, MoPS stores proofs of existence
in the XML format. The XML schema defining valid XML
evidence records can be found online at http://encrypto.
de/code/MoPS. The Java JDK comes with a binding com-
piler called xjc which was used to generate Java Architecture
for XML Binding (JAXB) annotated Java classes from the
XML schema. These annotations are then used to automati-
cally create XML representations from Java objects and vice
versa.

6.3.4 Protection System
The protection system is the service back-end for the Web

App. It is responsible for maintaining (i.e. creating, renam-
ing, updating, and deleting) information about protection
schemes and protected documents in a database. The pro-
tection system is also responsible for importing and export-
ing protected documents. For performing operations on ev-
idence records, the protection system uses the core service.

In addition, whenever a document or a folder of docu-
ments is imported or updated, the protection system per-
forms validity estimations in order to predict how long a
proof of existence is considered valid. To do so, the latest
attestation is extracted from the evidence record. Then, the
protection system sets the estimation value to the earliest
of the following dates obtained from an information service:
a) the date until which the hash function used for creating
the attestation is considered secure, b) the date until which
the signature scheme used for signing the attestation is con-
sidered secure, c) the date until which the key length of the
signature key for signing the attestation is considered secure,
and d) the date after which the certificate for the signature
key is no longer valid.

6.4 Performance Evaluation
In this section, we provide the results of a short perfor-

mance evaluation. It is not intended to be a comprehensive
comparison between different protection schemes, as this
was done in [12, 10]. Instead, we want to give an intuition
for the additional computation time (given today’s hardware
and not considering potential increases of computer speed)
and storage space a user needs to invest in order to achieve
long-term protection using our implementation.

For the evaluation we run each data structure for 100 years
using the recommended access pattern for each of them. All
sequence-based data structures use signature-based times-
tamps, as our implementation does not support WVM-based
timestamps. For the public signature keys, we use certifi-
cates with a lifetime of two years. Thus, signatures must be
renewed after two years by the latest. As to the selection of

https://www.nist.gov/
https://aws.amazon.com/s3/
https://www.ceph.com/
http://encrypto.de/code/MoPS
http://encrypto.de/code/MoPS


Table 3: Performance evaluation results. Runtimes
are given in ms and sizes in KB.

Data Structure AS MTS MDS SLS NAW

Initialization 154 2 330 154 158 183
Updates 32 972 40 119 75 652 78 022 32 641

Attestation renewals 31 122 35 319 72 388 72 980 32 159
Hash renewals 1 850 4 800 3 264 5 042 482

Verification 1 282 1 315 203 1 467 174
Proof of existence (size) 680 1 609 2 115 2 127 9

hash functions and key lengths, we follow the predictions by
Lenstra [7] and therefore use SHA-256 with RSA 2048 until
2038 before switching to SHA-384 with RSA 4096 until 2084
before finally switching to SHA-512 with RSA 8192. Thus,
in our evaluation there occur two hash renewals.

For AS and NAW, we protect and verify a single docu-
ment. MTS protects a set of 100 documents added during
initialization while only one of them is verified. For MDS
and SLS, we add a single document every year. For MDS,
we verify the last document, whereas for SLS we verify the
first one. Each document is signed and has a size of 1 MB.

The evaluation test suite and all web services were hosted
on a single Tomcat 8 application server on Debian 8 powered
by an eight core AMD FXTM 8350 CPU @ 4.00 GHz with
16 GB of RAM. Therefore, the network connection between
the different parties had minimal influence on the results.
More realistic measurements in a distributed environment
are part of future work.

The results are summarized in Table 3. The table shows
average values for 10 executions. Regarding initialization,
AS and MDS perform equally, as expected. SLS is a bit
slower, as initializing the parallel hash chains requires addi-
tional effort. NAW is even slower than SLS, because the NA
performs a verification step before creating its attestation.
Of course, MTS is the slowest data structure regarding ini-
tialization, as it creates a Merkle tree for 100 documents,
instead of protecting only one initial document. Regarding
verification, MTS is a bit slower than AS as for MTS, au-
thentication paths must be used to reconstruct the attested
hash values. Although SLS contains twice as many attesta-
tions as AS and MTS, the verification of the first document
is only 14% and 12% slower, respectively. The reason why
MDS is slower than NAW is that for MDS a much larger
XML file needs to be opened and parsed before the actual
verification procedure can start.

7. CONCLUSIONS AND FUTURE WORK
In this work we proposed the first modular protection

scheme for long-term storage. More precisely, we provide
a set of techniques to build protection schemes which can
be plugged together, combined, and migrated. As a proof
of concept, we also implemented MoPS and provide perfor-
mance measurements.

For future work we plan to integrate techniques that pro-
vide long-term confidentiality protection and to further im-
prove our implementation, e.g. by supporting automated re-
newals of proofs.
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APPENDIX
A. ADDITIONAL THIRD-PARTY

SERVICES
Our MoPS prototype includes implementations for all re-

quired third-party services. In this section we provide details
regarding the CA and the TSA service.

A.1 Certification Authority (CA)
The main purpose of the CA service in this context is

to offer downloads of X.50912 certificates and CRLs. The
download URL of the former is embedded in the author-
ity information access (AIA) extension and of latter in the
CRL distribution point (CDP) extension. Downloading CA
certificates and CRLs is necessary for parties who need to
collect verification data for certificates.

In addition, the CA prototype implementation fulfills other
tasks which cannot be triggered via the service interface: it
issues certificates for services and users, revokes certificates
(e.g. after a key compromise), and updates CRLs. The cer-
tificates and CRLs are created and maintained using the
cryptography and SSL/TLS toolkit OpenSSL13.

Whereas in a real world deployment each CA hosts its own
dedicated service instance, our prototype provides certificate
and CRL downloads using a single service instance for three
hierarchical ordered CAs to simulate the existence of a real
PKI.

In fact, our implementation operates multiple PKIs with
the same entities and in the same hierarchy. Each of them
uses different hash functions and RSA signatures with dif-
ferent signature key lengths. On the one hand, this allows
one to use the implementation for simulating the aging of
cryptography. On the other hand, end users can choose from
different cryptographic primitives and parameters depend-
ing on the security level they feel most comfortable with.
For example, a user might want to use SHA-512 with RSA
8192 to sign an important document although SHA-256 with
RSA-2048 would be an appropriate choice according to all
current recommendations14. Table 4 shows the supported
hash functions and correspondingly used RSA key lengths.
Note that creating a signature using cryptographic primi-
tives with parameters which are expected to be still secure
for a very long time does not inevitably imply that less up-
dates are necessary to prolong the protection provided by
this signature: the lifetime of the corresponding certificates
is still a limiting factor.

12https://tools.ietf.org/html/rfc5280
13https://www.openssl.org/
14https://www.keylength.com/

Table 4: The supported hash functions and corre-
spondingly used RSA key lengths.

Hash function RSA key length (in bit)

SHA-256 2048
SHA-386 4096
SHA-512 8192

A.2 Time-Stamping Authority (TSA)
The TSA service provides signature-based timestamps.

It behaves according to the Time-Stamp Protocol (TSP15).
That is, it receives binary encoded attestation requests and
returns binary encoded attestations in form of signature-
based timestamps. A timestamp request contains a hash to
be attested and the attestation returned contains a so-called
timestamp token which in turn contains the timestamped
hash, the time at which the timestamp was generated, the
TSA’s signature, and the TSA’s certificate. Just as the NA,
the TSA service is in possession of multiple RSA signature
keys with different key lengths.

15https://www.ietf.org/rfc/rfc3161.txt

https://tools.ietf.org/html/rfc5280
https://www.openssl.org/
https://www.keylength.com/
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