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Abstract

We determine the probability, structure dependent, that the block Wiedemann
algorithm correctly computes leading invariant factors. This leads to a tight lower
bound for the probability, structure independent. We show, using block size slightly
larger than r, that the leading r invariant factors are computed correctly with high
probability over any field. Moreover, an algorithm is provided to compute the
probability bound for a given matrix size and thus to select the block size needed
to obtain the desired probability. The worst case probability bound is improved, post
hoc, by incorporating the partial information about the invariant factors.

1 Introduction

For prime power q, let F denote a finite field of cardinality q. Let A be a n × n matrix
over F. For chosen block size b, let U, V be uniformly random in Fn×b. Call the sequence
S = {UTAiV }i, i ∈ {0, 1, . . .} the (U,V)-projection of A. The Wiedemann (b = 1) and
Coppersmith’s block Wiedemann (b > 1) algorithms compute the minimal generating

polynomial, G ∈ F[x]b×b, of S. This means that
∑d

i=0 Sk+iGi = 0, for all k ≥ 0, where
d = deg(det(G)) > 0, and d is minimal [Wiedemann, 1986, Coppersmith, 1994]. Then
the i-th largest invariant factor of G divides the i-th largest invariant factor of xI − A,
and is equal with high probability [Kaltofen and Villard, 2001, 2004] for large enough field.
Observations of the behavior for small fields were noted by Coppersmith and the analysis
has been extended by Villard [1997a,b] and Brent et al. [2003] to small fields subject to
certain constraints. We call a projection and it’s minimal generator, G, r-faithful to A if
the r largest invariant factors of G are the r largest invariant factors of xI −A.

Wiedemann and Coppersmith developed their algorithms for the purpose of solving
linear systems and weren’t explicitly concerned with determining invariant factors. Prior
analysis of the block Wiedemann algorithm was motivated by this problem, and is therefore
one-sided (asymmetric in the treatment of projection from left and right). Given X ∈ Fb×n

and Y ∈ Fn×m chosen uniformly at random, where b ≥ m, Villard [1997a,b] gives a bound
on the probability that the minimal generating polynomial of {XAiY }i is m-faithful to the
minimal generating polynomial of {AiY }i. An exact formula and tighter bound for this
probability are given in Brent et al. [2003]. These analyses are dependent on b ≥ m and the
minimal generator of {AiY }i having at most m nontrivial invariant factors, thus eliminating
the “pathological” case discussed in Coppersmith [1994]. They do not speak directly to two
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sided analysis for situations in which xI − A has more than b nontrivial invariant factors.
Moreover, it is important for our purposes to have a probability bound that applies without
regard to the matrix structure and that quantifies the increased confidence that can be
achieved for computing r invariants by selecting block size b somewhat larger than r.

In this paper we develop an exact formula (Theorem 14), Pq,b,r(A), for the probability
that a random projection is r-faithful, for given eigenstructure of A. We then construct the
worst case and derive a sharp lower bound (Theorem 16), Pq,b,r(n) = minA∈Fn×n Pq,b,r(A),
on the probability that a random projection is r-faithful for arbitrary n×n matrix A. Since
the worst case occurs when there are exactly r invariant factors, the bounds from Brent
et al. [2003] can be applied to estimate Pq,b,r(n) (Theorem 18). Knowing Pq,b,r(n) allows b
to be computed such that Pq,b,r(n) ≥ p for any desired probability p. Using this we show
that with a block size slightly larger than r the projection is r-faithful with high probability.
This makes precise previous observations and estimates regarding block size. The results
in this paper are an extension of our previous work in which we presented formulas for
Pq,b,1(A) and Pq,b,1(n) [Harrison et al., 2016].

The worst case bound can be improved by incorporating information about the invariant
factors of the minimal generating matrix G. In the extreme case, where the sum of the
degrees of the invariant factors of G equals the matrix dimension, the invariant factors of G
are equal to those of xI −A. In less extreme cases the partial information obtained from G
can be used, post hoc, to improve the probability bounds for G to be r-faithful (Theorem
22).

The main results of this paper have been presented without the proofs as a poster
at ISSAC 2016, with abstract [Harrison et al., 2017]. They are presented here with full
development and proofs along with examples and new results on the post hoc analysis.

2 Probability Analysis

In this section we derive and prove an exact formula (Theorem 14), Pq,b,r(A), for the
probability that a random projection is r-faithful, for given eigenstructure of A. Similarly to
the proofs in Villard [1997a,b] and Brent et al. [2003], our analysis reduces the probability
calculation, first to primary components and then to a direct sum of companion matrices of
irreducible polynomials.

After introducing notation and some technical results, we show that the probability
calculation can be split into independent consideration of the distinct primary components
(Theorem 7). Then the probability for a primary component is reduced to that of a direct
sum of companion matrices (Theorem 8). Finally, we show that the sequences generated by
the individual companion matrices can mapped to vector outer products (Lemma 9), which
reduces the problem to a rank calculation (Theorems 11 and 14).

The following notation will be used throughout the paper. Starting with finite field F, we
will be working with the ring of polynomials P = F[x] and it’s modular images Pf = F[x]/〈f〉,
(f ∈ P). Let A ∈ Fn×n, U, V ∈ Fn×b. We are concerned with matrix sequences of the form
S = {UTAiV }∞i=0. Define an action of P on such sequences by, for polynomial f of degree

d, S → fS, where (fS)k =
∑d

i=0 fiSk+i. When fS = 0 we say that f generates S.

Let Sb×bf denote the set of b × b matrix sequences generated by the scalar polynomial

f ∈ P. Sb×bf is a module over P with respect to the action given above. For short we use

Sf = S1×1f to denote the scalar sequences. Let Pb×b denote b × b matrix polynomials and

similarly for Pb×b
f . We define a mapping, φf : Sb×bf → Pb×b

f that is both a vector space
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isomorphism over F and isomorphism of right P modules. It also satisfies the property
φf (SG) = φf (S)Gf , for Gf being G modulo f (this is Corollary 4). Note that Pb×b

f is a

P-module and for G,H ∈ Pb×b, we have φf (S)G = φf (S)H whenever H ≡ G(mod f). This
mapping is an extension of the mapping used by Wiedemann [1986] in his probabalistic
analysis to b× b blocks with the details made explicit.

Now consider the action from the right of Pb×b on matrix sequences. We say G ∈ Pb×b

generates S, if det(G) 6= 0 and (SG)k =
∑d

i=0 Sk+iGi = 0 for all k ≥ 0, where d = deg(G).
G is minimal if its columns form a basis for the annihilator of S, or equivalently deg(det(G))
is minimal [Kaltofen and Yuhasz, 2013]. It follows that two minimal generators for S are
unimodularly equivalent and thus have the same Smith normal form. By Theorem 2.12 in
Kaltofen and Villard [2004], if G is minimal then the i-th invariant factor of G divides the
i-th invariant factor of xI−A. This section analyzes the probability that for random U and
V that G is r-faithful to A.

Definition 1. Let A ∈ Fn×n, let U, V ∈ Fn×b be uniformly random, let S = {UTAiV }∞i=0,
and let G ∈ Pb×b minimally generate projection S. Define Pq,b,r(A) to be the probability
that G is r-faithful to A.

Let A = XJY where X,Y ∈ Fn×n are nonsingular and J ∈ Fn×n is a generalized Jordan
normal form. Because U, V are chosen uniformly at random, UX and Y V are also uniformly
random and Pq,b,r(A) = Pq,b,r(J). Therefore, we can restrict our analysis to matrices in
Jordan form: A = ⊕i,jJfei,j

i
where fi ∈ P are distinct monic irreducible polynomials and

Jfe denotes the generalized Jordan block associated with fe. Let Cf denote the companion
matrix of f , and note that Cf = Jf1 .

Cf =


0 0 . . . −f0
1 0 . . . −f1

0
. . .

. . .
...

0 0 1 −fd−1

 , Jfe =


Cf 0 . . . 0
I Cf . . . 0

0
. . .

. . . 0
0 0 I Cf

 ,
Definition 2. Let f ∈ P be a scalar polynomial of degree d. Define ρ : Pf → Fd×d, ρ(a)b =
ab mod f, to be the regular representation of the polynomial algebra Pf . Here we are
equating polynomials modulo f with their column vectors of coefficients and, explicitly, ρ(a)
is the Krylov matrix Kf (a) generated by the companion matrix Cf and a.

ρ(a) = Kf (a) =
d−1∑
i=0

aiC
i
f =

[
a Cfa . . . Cd−1

f a
]
.

Define ωf : Sf → Pf by ωf (S) =
∑d−1

i=0 Six
i, and then define φf : Sf → Pf by

φf (S) = Pωf (S), where P is a nonsingular matrix satisfying PρT (a) = ρ(a)P for all
a ∈ Pf . The existence of such P is shown in [Taussky and Zassenhaus, 1959]. Extend ωf

and φf componentwise to Sb×bf → Pb×b
f .

Lemma 3. Let f ∈ P be a polynomial of degree d, S ∈ Sf , and g ∈ P. Then φf (Sg) =
ρ(g)φf (S) = gφf (S).

Proof. Because S is generated by f , and deg(f) = d, the sequences S and Sg are fully
defined by their first d elements. We can write ωf (Sg) as a Hankel matrix times vector
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product and observe that

ωf (Sg) =


S0 S1 · · · Sd−1
S1 S2 Sd

...
. . .

...
Sd−1 Sd · · · S2d−2



g0
g1
...

gd−1

 =


ωT
f (S)

ωT
f (S)Cf

...

ωT
f (S)Cd−1

f



g0
g1
...

gd−1


=

(
ωT
f (S)

[
g Cfg · · · Cd−1

f g
])T

= (ωT
f (S)ρ(g))T = ρT (g)ωf (S),

Therefore, φf (Sg) = Pωf (Sg) (by definition), which by the previous observation equals
PρT (g)ωf (S). Using the definition of P and ρ, we have PρT (g)ωf (S) = ρ(g)Pωf (S) =
ρ(g)φf (S) = gφf (S).

Corollary 4. Let S ∈ Sb×bf , G ∈ Pb×b. Then, φf (SG) = φf (S)G.

Proof.

φf (SG)ij = φf ((SG)ij) = φf

(
d∑

k=0

SikGkj

)
=

d∑
k=0

φf (SikGkj)

=

d∑
k=0

φf (Sik)Gkj = (φf (S)G)ij ,

where d = deg(G).

In view of Corollary 4, G generates S if and only if φf (S)G = 0 and det(G) 6= 0.
Motivated by this we will also speak of generating matrices over Pf : G generates A ∈ Pb×b

f

if AG = 0 and det(G) 6= 0, and G minimally generates A if deg(det(G)) is minimal. Lemma
5 and Theorem 6 relate the Smith normal form (snf) of a matrix over Pf and the Smith
normal form of its minimal generating matrix in the case that f is an irreducible power.

Lemma 5. Let f ∈ P be an irreducible polynomial of degree d and let e be a positive integer.
Let A ∈ Pb×b

fe , and ri be the number of non-zero invariant factors of Af i. If G ∈ Pb×b

generates A, then deg(det(G)) ≥
∑e−1

i=0 rid.

Proof. Let G = X snf(G)Y , where X,Y ∈ Pb×b are unimodular. Let gj denote the number
of invariant factors of G divisible by f j and let Gj denote
diag(1, . . . , 1, f, . . . , f), in which f is repeated gj times. Since Afe = 0, we have that

snf(G) =
∏e−1

j=0Gj , with gj ≥ gj+1 being the count of invariant factors equal to f j .

Moreover, since G generates A, AX snf(G)Y = AX
∏e−1

j=0GjY = 0, and since Y is

unimodular, AX
∏e−1

j=0Gj = 0. Using this as the base case, it follows by induction that

Af iX
∏e−1

j=i Gj = 0, for 0 ≤ i < e. Since Af iX
∏e−1

j=i Gj = 0 and Gi has b− gi ones followed

by gi copies of f along the diagonal and gi ≥ gj for j = i+1, . . . , e−1, it follows that Af iX
is a matrix whose first b− gj columns are zero.

Af iX =

(
b−gi︷︸︸︷

0

gi︷︸︸︷
∗

)
.
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For a matrix in this form, multiplication from the right by Gi has the same effect as
multiplication by fI so that A(f iXGi)

∏e−1
j=i+1Gj = A(f i+1X)

∏e−1
j=i+1Gj . Finally, since

Af i has ri non-zero invariant factors, the maximum number of columns of Af iX which
are zero is equal to b − ri and we conclude that gi ≥ ri and deg(det(G)) =

∑e−1
i=0 gid ≥∑e−1

i=0 rid.

Theorem 6. Let f ∈ P be an irreducible polynomial of degree d, e be a positive integer,
A ∈ Pb×b

fe , and let G ∈ Pb×b minimally generate A. Let

snf(A) = diag(f0, . . . , f0︸ ︷︷ ︸
m0

, . . . , fe−1, . . . , fe−1︸ ︷︷ ︸
me−1

, 0, . . . , 0︸ ︷︷ ︸
me

).

Then
T snf(G)T = diag(fe, . . . , fe︸ ︷︷ ︸

m0

, . . . , f, . . . , f︸ ︷︷ ︸
me−1

, 1, . . . , 1︸ ︷︷ ︸
me

),

where T is the ones-on-antidiagonal matrix, i.e., we’ve reversed order of the invariants for
convenience. Moreover, mi = ri−1−ri, where ri is the number of non-zero invariant factors
of Af i.

Proof. Observe that ri =
∑e−i−1

j=0 mj for 0 ≤ i < e and consequently mi = ri−1 − ri. Let

A = P snf(A)Q, where P,Q ∈ Pb×b are unimodular, and let

H = Q−1 diag(fe, . . . , fe︸ ︷︷ ︸
m0

, . . . , f, . . . , f︸ ︷︷ ︸
me−1

, 1, . . . , 1︸ ︷︷ ︸
me

).

By definition, H generates A, and deg(det(H)) =
∑e−1

i=0 rid. By Lemma 5, H is minimal
because no generators with lower determinantal degree exist. Since minimal generators are
unimodularly equivalent, G has the same Smith form.

Let S ∈ Sb×bfg where gcd(f, g) = 1, G1 ∈ Pb×b
f minimally generate S modulo f , and G2 ∈

Pb×b
g minimally generate S modulo g. By the Chinese remainder theorem and Newman’s

Theorem II.14 [Newman, 1972], the Smith normal form of the minimal generator, G ∈ Pb×b,
of S is snf(G) = snf(G1) snf(G2). This observation leads to the following theorem, which
reduces the probability calculation to primary components.

Theorem 7. Let A and B be matrices with relatively prime minimal polynomials. Then

Pq,b,r (A⊕B) = Pq,b,r(A)Pq,b,r(B).

Proof. Let f and g be the minimal polynomials of A and B respectively, and let Sf =
{UT

1 A
iV1}∞i=0 and Sg = {UT

2 B
iV2}∞i=0 with minimal generators G1 and G2 respectively.

Then fg is the minimal polynomial of A⊕B. Let

Sfg =

{
(UT

1 U
T
2 )(A⊕B)i

(
V1
V2

)}∞
i=0

with minimal generator G. Since snf(G) = snf(G1) snf(G2), G is r-faithful if and only if G1

and G2 are r-faithful.
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In view of theorem 7 we may focus on each primary component. Henceforward the matrix
will be of the form ⊕m

i=1Ji, where for given irreducible polynomial f ∈ P and nonincreasing
exponent sequence e1, e2, . . . , em we let Ji denote the Jordan block Jfei .

Theorem 8. Using the primary component Jordan form notation just introduced, let t be
the greatest index such that et = e1 (thus first index such that et > et+1). For all r ≤ t,

Pq,b,r(⊕m
i=1Ji) = Pq,b,r(⊕t

i=1J1) = Pq,b,r(⊕t
i=1Cf ).

[Lower order invariants don’t matter, and the effect of a Jordan block is the same as that of
a companion matrix.]

Proof. Let A = ⊕m
i=1Ji, let G minimally generate S = {UAiV }∞i=0, and let e = e1. By

Theorem 6, G is r-faithful if the number of invariant factors of φfe

(
Sfe−1

)
is at least r.

Because Jif
e−1 = 0 for all i ≥ t, UAfe−1V =

∑m
i=1 UiJif

e−1Vi =
∑t

i=1 UiJif
e−1Vi, where

Ui, Vi are blocks of U, V conforming to the blocks of A. Furthermore, {UiJ
i
if

e−1Vi}∞i=0 =
{Ui,eC

i
fMV1,i}∞i=0, where M is nonsingular, and Ui,e and V1,i are the rightmost and topmost

blocks of Ui and Vi respectively [Harrison et al., 2016]. Because V1,i is uniformly random and
M is nonsingular, MV1,i is uniformly random, and therefore, Pq,b,r(A) = Pq,b,r (⊕t

i=1Cf ).

Thus we may focus attention on the probability in the case of companion matrices. To
complete the picture we will reduce to the probability that a sum of outer products has a
given rank. First (Lemma 9) we observe the relationship between sequences of projections
of companion matrices and outer products. Then (Theorem 11) we relate the sum of outer
products to the probability.

Lemma 9. Let S = {UTCi
fV }∞i=0, where f ∈ P is an irreducible polynomial of degree d,

and U, V ∈ Fd×b are chosen uniformly at random. Then φf (S) is the outer product of two
uniformly random vectors in Pb

f .

Proof. The ij entry of S satisfies

ωf (Sij) = (UT
i Vj , U

T
i CfVj , . . . , U

T
i C

d−1
f Vj)

T = ρ(Vj)
TUi,

where Ui denotes the i-th column of U and similarly for Vj . Consequently the ij entry of
φf (S)

φf (S)ij = Pρ(Vj)
TUi = ρ(Vj)(PUi) = Vj(PUi).

Since P is nonsingular and Ui is uniformly random, and PUi is also uniformly random.
Therefore, φf (S) is the outer product of two uniformly random vectors in Pb

f .

Definition 10. Let Qq,b,r(t) denote the probability that r = rank(A) when A is a sum of t

outer products, A =
∑t

i=1 uiv
T
i , and the vectors ui, vi ∈ Fb are chosen uniformly at random.

Theorem 11. For irreducible f ∈ P of degree d,

Pq,b,r(⊕t
i=1Cf ) =

t∑
i=r

Qqd,b,i(t).
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Proof. Let S = {UT ⊕t
i=1 C

i
fV }i, where U, V ∈ Fd×b are chosen at uniformly random. Let

G ∈ Pb×b minimally generate S. By Theorem 6, G has r nontrivial invariant factors, where
r = rank(φf (S)). By Lemma 9, φf (S) is the sum of outer products of uniformly random
vectors in Pb

f , and the probability that i = rank(φf (S)) is Qqd,b,i(t).

The probability that the sum of t outer products has rank r can be computed with the
following recurrence [Harrison et al., 2016].

Theorem 12.

Qq,b,r(t) =


0 if r < 0 or r > min(t, b),

1 if r = 0 and t = 0,

ψt,r otherwise,

where ψt,r = Qq,b,r−1(t − 1)Ur−1 + Qq,b,r(t − 1)(1 − Ur −Dr) + Qq,b,r+1(t − 1)Dr+1, with

Ur =
(
1− 1/qb−r

)2
and Dr = qr−1 (qr − 1) /q2b.

Now a formula for Pq,b,r(A) follows from Theorems 6, 8 and 11. A Schur complement
argument is involved in separating the leading repeated block from the lower exponent
blocks.

Lemma 13. Let f ∈ P be an irreducible polynomial of degree d, and let e > 1. Let

G = Ir ⊕ 0b−r and H =

(
A B
C D

)
∈ Pb×b

fe be uniformly random, where f |H and A,B,C,D

are blocks conforming to the dimensions of the blocks of G. Then, G + H ∼ (Ir + A)⊕ Y ,
where Y is a projection of H.

Proof. Because f |A and Pfe is a local ring, the matrix Ir +A is nonsingular. Let

P =

(
I 0

−C(Ir +A)−1 I

)
and Q =

(
I −(Ir +A)−1B
0 I

)
.

Then,
P (G+H)Q = (Ir +A)⊕ (−C(Ir +A)−1B +D) = (Ir +A)⊕ Y,

where Y = −C(Ir + A)−1B + D. P and Q are trivially unimodular, and −(Ir + A)−1B is
the top-right block of Q. Therefore , Y is a b− r × b− r projection of H.

Theorem 14. Let f ∈ P be an irreducible polynomial of degree d, and A = ⊕m
i=1Ji (notation

of theorem 8) and let t be the greatest index such that Jt = J1. Then

Pq,b,r(A) =


1 if A = 0,

Pq,b,t(A)Pq,b−t,r−t(⊕m
i=t+1Ji) if r > t,∑t

i=r Qqd,b,i(t) if r ≤ t.

Proof. The probability that the largest invariant factor is preserved at least r times is
given in Theorem 11, and by Theorem 8 is independent of smaller invariant factors being
preserved. Therefore, if r ≤ t, the probability that the largest r invariant factors are
preserved is Pq,b,r(⊕t

j=1Ji) =
∑t

i=r Qqd,b,t(i).
If r > t, the t largest invariant factors must be successfully preserved along with the

next r − t invariant factors. Let G minimally generate S = {UAiV }∞i=0. By Theorem 6,
if the leading t invariant factors of G are correct if there are t ones in the Smith normal

7



Table 1: Pq,b,r(Mi) (worst case probability Pq,b,r(8)), q = 2

r=2 r=3 r=4 r=5
b=2 b=3 b=3 b=4 b=4 b=5 b=5 b=6

M1 0.010 0.158 0.158 0.435 0.435 0.674 0.674 0.825
M2 0.053 0.439 0.011 0.142 0.142 0.398 0.398 0.639
M3 0.095 0.625 0.041 0.393 0.009 0.126 0.126 0.374
M4 0.084 0.570 0.028 0.286 0.069 0.382 0.056 0.275
M5 0.070 0.367 0.367 0.647 0.647 0.817 0.817 0.907

form of φfe(S). Therefore, by a unimodular transformation, φfe(⊕t
i=1Ji) is equivalent to

a block matrix It ⊕ 0b−r in the hypothesis of Lemma 13 and consequently the remaining
blocks φfe(⊕m

i=t+1Ji) are projected onto a (b− t)× (b− t) block. Since the projection was
accomplished by a unimodular transformation, the probability that the remaining r − t
invariant factors are successfully preserved is the probability that a uniformly random (b−
t)× (b− t) projection preserves them.

3 Examples

In this section we present several examples of how to compute Pq,b,r(A) for given matrix
structures. Let q = 2, and let f, g, h ∈ P be distinct irreducible with deg(f) = deg(g) = 1
and deg(h) = 2. Note that these are the three lowest degree irreducible polynomials in P.
For M ∈ Fn×n let F (M) denote the list of invariant factors of xI −M . For example, let
F (A) = {f2gh, fg}.

To compute Pq,b,r(A), first A is split into its distinct factors (Theorem 7)

Pq,b,r(A) = Pq,b,r(Cf2 ⊕ Cf )Pq,b,r(Cg ⊕ Cg)Pq,b,r(Ch).

When r = 1, applying Theorem 14 yields

Pq,b,r(A) = Pq,b,1(Cf2)Pq,b,1(Cg ⊕ Cg)Pq,b,1(Ch)

= Qq,b,1(1)(Qq,b,1(1) +Qq,b,1(2))Qq2,b,1(1)

Otherwise, when r ≥ 2,

Pq,b,r(A) = Pq,b,1(Cf2)Pq,b−1,1(Cf )Pq,b,2(Cg ⊕ Cg)Pq,b,1(Ch)

= Qq,b,1(1)Qq,b−1,1(1)Qq,b,2(2)Qq2,b,1(1)

= Qq,b,2(2)Qq,b,2(2)Qq2,b,1(1).

Let M1,M2,M3,M4,M5 ∈ F8×8, F (M1) = {fgh, fgh}, F (M2) = {fgh, fg, fg},
F (M3) = {fg, fg, fg, fg}, F (M4) = {fg, fg, fg, f, f}, and F (M5) = {f2h, f2h}. To
illustrate the effect of invariant structure on Pq,b,r(M), Table 1 shows Pq,b,r(Mi) computed
for b = {2 . . . 6} and r = {2 . . . 5}. Note that M1,M2,M3, and M4 are the worst case
matrices for r = 2, 3, 4, and 5, respectively, using the worst case construction given in the
following section.

We also performed an experimental check on the probabilities P3,5,r(M). In Novocin
et al. (2015) the Ding-Yuan family of matrices were among those studied, with the goal
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Table 2: Ten thousand trials, b = 5, M has 19 invariants: (x, . . . , x, xf, xfg)
b invariants x, x, x, xf, xfg 1, x, x, xf, xfg 1, 1, x, xf, xfg 1, 1, 1, ∗, ∗

r = number correct 5 4 3 2,1,0
probability 56.11 41.91 1.94 0.04
% of trials 55.80 42.08 2.10 0.02

of developing a formula for their ranks over the field F3. One matrix in this family is
M ∈ F27×27

3 having invariants {x, . . . , x, xf, xfg} wherein x appears 19 times and f =
x2 + x, g = x4 + x3 + x + 2. We computed with b = 5 and obtained the results in table
2, giving the probability P3,5,r(M)− P3,5,r+1(M) that exactly r invariants are correct and
for each r the percentage of the ten thousand trials in which exactly r correct invariants
resulted. The data is quite consistent with theory. It turns out that 3 or more correct
invariants is sufficient in this case to infer the rank. Only two trials failed to provide the
first 3 invariants. The example M is further discussed in section 7.

4 Worst Case

Recall from the introduction that we define Pq,b,r(n) = minA∈Fn×n Pq,b,r(A). The formula
we will derive for Pq,b,r(n) can be used to determine the necessary blocksize needed to
preserve the leading r invariant factors with a specified probability of success. It will show
that with a blocksize modestly larger than r the probability of preserving r invariant factors
is quite high, even for small fields. The construction and formula generalize Theorem 20
from [Harrison et al., 2016] which obtained a similar bound for preserving the minimal
polynomial. To develop the formula, we begin with the following properties derived from
Theorems 7 and 14 to compute the probability for the leading Jordan block and the Schur
complement to induct on the remaining blocks.

Lemma 15.

1. Pq,b,r(Cf ⊕ . . .⊕ Cf︸ ︷︷ ︸
r

) ≤ Pq,b,r(Cf ⊕ . . .⊕ Cf︸ ︷︷ ︸
t

) for r < t.

2. Let f and g be irreducible polynomials of degree d and e respectively with d < e, then
Pq,b,r(Cf ⊕ . . .⊕ Cf︸ ︷︷ ︸

r

) < Pq,b,r(Cg ⊕ . . .⊕ Cg︸ ︷︷ ︸
r

).

3. Let f and g be irreducible polynomials both of degree d and let r be given. Then
Pq,b,s(Cf ⊕ . . .⊕ Cf︸ ︷︷ ︸

s

⊕Cg ⊕ . . .⊕ Cg︸ ︷︷ ︸
t

), for s + t = r is minimized when s = r and

t = 0.

Proof. Parts 2 and 3 follow from Theorem 14 and are straightforward. Part 1, while
intuitively clear, is more complicated. For part 1, let m = qd, where d = deg(f). Let
Pt(r) = Pq,b,r(⊕t

i=1Cf ), and let Ur, Dr be defined as in Theorem 12. Note that Ur and Dr

denote the probability that given a matrix A ∈ Pb×b
f of rank r and random vectors u, v ∈ Pb

f

that rank(A+uvT ) = r+1 and r−1, respectively. By Theorem 15 of Harrison et al. [2016],
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P1(1) ≤ Pt(1) for all t ≥ 1. Applying induction, for all t ≥ r ≥ 2,

Pt+1(r) = Pt(r) +Qm,b,t(r − 1)Ur−1 −Qm,b,t(r)Dr

= Pt(r) + (Pt(r − 1)− Pt(r))Ur−1 −Qm,b,t(r)Dr

≥ Pt(r) + (Pt(r − 1)− Pt(r))Ur−1 − Pt(r)Dr

= Pt(r − 1)Ur−1 + Pt(r)(1− Ur−1 −Dr)

≥ Pt(r − 1)Ur−1

≥ Pr−1(r − 1)Ur−1

= Pr(r),

because Qm,b,t(r) ≤ Pt(r) and 1− Ur−1 −Dr = 2qb+r+1−q2r+1−q2r+qr+1

q2b+2 > 0.

Property 1 implies that, for a given irreducible and in the absence of other variation, the
probability is increased if more than r copies of Cf are included and property 3 implies that
the probability is increased if fewer than r copies of Cf are included. Property 2 implies
that the probability is larger if higher degree irreducibles are used. Therefore the probability
that the b× b projection of A ∈ Fn×n preserves the leading r invariant factors is minimized
when A is a direct sum of companion matrices for distinct irreducible polynomials, each
repeated r times (to the extent possible) and of the smallest degrees, subject only to the
requirement that the sum of the degrees is n. The construction begins by including r copies
of companion matrices for each irreducible over F of degree one, then r copies of companion
matrices for each irreducible of degree two over F, and so on until the sum of the degrees
is equal to n. It may be the case that fewer than r copies of the last irreducible fit and
in this case the probability is minimized by including as many copies as do fit. Moreover,
when filling in the last batch of companion matrices of degree m the dimension n may not
be reached exactly and in this case several companion matrices can be replaced by Jordan
blocks to fit the dimension without changing the probability.

Using this construction, a formula for Pq,b,r(n) can be derived. Let Lq(m) to be
the number of monic irreducible polynomials of degree m in P and define Lq,r(n,m) =

min
(
Lq(m),

⌊
s

rm

⌋)
, for s = n−

∑m−1
d=1 rdLq(d).

Theorem 16. Define m such that
∑m−1

d=1 rdLq(d) ≤ n and n <
∑m

d=1 rdLq(d). Let s =
n −

∑m
d=1 rdLq(n, d) and t =

⌊
s
m

⌋
. Then the worst case probability that r invariants are

preserved in projection to blocksize b on an n × n matrix over the field of cardinality q
satisfies

Pq,b,r(n) =

(
m∏

d=1

Qqd,b,r(r)Lq,r(n,d)

)
Qqm,b,t(t).

Proof. Let A ∈ Fn×n be the worst case matrix described by the construction
above, following from Lemma 15. Applying Theorem 14, Pq,b,r(n) = Pq,b,r(A) =(∏m

d=1Qqd,b,r(r)Lq,r(n,d)
)
Qqm,b,t(t).

The plot in Figure 1 shows the worst case probability of failure, (1−Pq,b,10(108)), versus
block size, b, for the field cardinalities 2,3,5, and 9991. This shows that with a blocksize of
a little over 30 the probability that the first ten invariants are not correct is approximately
one in a million, with substantially better probabilities for larger fields.
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Figure 1: Worst case probability of failure (1− Pq,b,10(108)) vs cardinality and block size

5 Bound

The worst case given in Theorem 16 is tight but not easily computed. A simplified bound
is offered in Theorem 17.

Theorem 17. For any n > 0, q ≥ 2, and b > r > 0,

Pq,b,r(n) > 1− 2r

qb−r − 1
.

Proof.

Pq,b,r(n) >

∞∏
d=1

r−1∏
i=0

(
1− 1

qd(b−i)

)2Lq,r(d)

≥
∞∏
d=1

(
1− 1

qd(b−r+1)

)2rqd

>

∞∏
d=1

(
1− 2r

qd(b−r)

)
> 1−

∞∑
d=1

2r

qd(b−r)

= 1− 2r

qb−r − 1

Theorem 17 implies that taking b =
⌈
logq

(
2r
1−p + 1

)
+ r
⌉

will yield Pq,b,r(n) > p. As

discussed in Section 4, there exists a matrix A ∈ Fn×n such that xI − A has at most r
nontrivial invariant factors and Pq,b,r(n) = Pq,b,r(A). Thus the bounds given in [Brent
et al., 2003] for matrices with r or fewer nontrivial invariants apply as well to Pq,b,r(A).

Theorem 18. For any n > 0, q ≥ 2, and b > r > 0, the probability that r invariants
are preserved in projection to blocksize b on an n × n matrix over the field of cardinality q
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satisfies

Pq,b,r(n) ≥


1
64 if b = r + 1 and q = 2,(
1− 3

2b−r

)2 ≥ 1
16 if b ≥ r + 2 and q = 2,(

1− 2
qb−r

)2
≥ 1

9 if b ≥ r + 1 and q > 2.

Proof. By Theorem 16 and its proof, there exists a matrix A ∈ Fn×n such that A has at
most r invariant factors and Pq,b,r(A) = Pq,b,r(n). Therefore, the bound (squared) given in
Brent et al. [2003] applies to Pq,b,r(n).

Theorem 18 implies that taking b =
⌈
log2

(
3

1−√p

)
+ r
⌉

when q = 2, and b =⌈
logq

(
2

1−√p

)
+ r
⌉

when q > 2 will yield Pq,b,r(n) ≥ p.

6 Post hoc analysis

In the block Wiedemann algorithm applied with blocksize b to matrix A ∈ Fn×n, we compute
candidates for the leading b invariant factors. The computed invariants list divides the true
leading invariant list componentwise. In the preceding sections we have been concerned
with the a priori probability of getting the true leading invariants. Here we consider what
we can know post hoc. For example, if the degrees of the computed invariants total n, then
with certainty, we have computed the true invariants. At the other extreme, if n is odd
and all irreducibles in the factors we found are of even degree, then with certainty we have
missed a factor in the first invariant, the minimal polynomial. There is a great variety of
cases between these extremes. For example if the b computed invariants are a nontrivial
minimal polynomial followed by x’s, as often occurs for low rank matrices, the chance of
error is low, since any error must include a missing factor in at least one of the leading two
invariants. The probability of this diminishes rapidly as b grows. For a more problematic
example, suppose b < n/2 and the computed invariants are x2 − x, x2 − x, . . . , x2 − x, x. In
other words, x− 1 is a computed factor b− 1 times and x is computed b times. Since each
invariant divides the preceding, the possibilities of location of the first error are limited to
the first invariant and the b-th. We may have missed an extra factor in the first position, but
with very low probability (depending on b). Also we may have missed a factor x− 1 in the
b-th invariant, a much more likely scenario. In this case, with high confidence there are no
irreducibles occurring other than x− 1 and x and no Jordan blocks for those two factors of
exponent greater than 1. On the other hand, confidence in knowing the rank of the matrix
is lower, as that depends on believing that x− 1 does not divide the b-th invariant.

Many of these observations can be derived using the a priori bound, Pq,b,r(n). The chance
of incorrectly computing the minimal polynomial is small, even when computation on a large
matrix over a small field using a modest block size, e.g., P2,10,1(109) ≈ 0.996. The a priori
bound also shows that computing the second and third invariants correctly is also very
likely, P2,10,2(109) ≈ 0.988 and P2,10,3(109) ≈ 0.973. The confidence given by the a priori
bound decreases dramatically as r approaches b. Reusing the previous example, suppose
the computed factors are x2 − x, . . . , x2 − x, x. Using the a priori bound, the probability
that the b-th invariant factors was correctly computed is at least P2,10,10(109) ≈ 0.00004.

Confidence in computed results are improved significantly by applying post hoc analysis.
The remainder of this section describes a practical framework for doing post hoc analysis.
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To develop these observations into post hoc bounds, we begin with some definitions.
Let Pq,b,r(G,A) denote the probability that block Wiedemann would produce the first r
invariant factors of G given A, where there exists U, V ∈ Fb such that G minimally generates
{UTAiV }i. Let Pq,b,r(G,n) be a lower bound on the probability that G was computed
r-faithfully to xI − A where A ∈ Fn×n is unknown. Let gi and ai denote the i-th largest
invariant factor of G and xI − A, respectively. Let A be the set of all A ∈ Fn×n such that
gi|ai and G is not r-faithful to xI−A. Then, Pq,b,r(G,n) = 1−max({Pq,b,r(G,A) | A ∈ A}).
Note that A = ∅ when deg(det(G)) = n and therefore Pq,b,r(G,n) = 1.

In practice, computing Pq,b,r(G,n) is prohibitively time consuming because of the
cardinality of A. Therefore, the rest of this section is dedicated to describing a lower bound
on Pq,b,r(G,n). We do this by locating the most likely error. The first lemma observes that
each primary component can be considered separately.

Lemma 19. Let fi ∈ P be distinct irreducible polynomials. Let A = ⊕iAi where feii =
min-poly(Ai). Let snf(G) =

∏
i snf(Gi), where Gi minimally generates {UT

i A
k
i Vi}k. Then,

Pq,b,r(G,A) =

k∏
i=1

Pq,b,r(Gi, Ai) ≤ max
i
Pq,b,r(Gi, Ai).

Proof. The equality follows from Theorem 7. The inequality is trivially true, because 0 <
Pq,b,r(Gi, Ai) < 1.

In the next lemma, we give a bound on Pq,b,r(G,A) for a single primary component and
a candidate matrix A where G is i-faithful but not (i+ 1)-faithful. The bound is then used
to compute a bound on the probability that the first error occurred in G at index i+ 1 for
unknown input.

Lemma 20. Let S = {UTAiV }i, where A ∈ Fn×n, and U, V ∈ Fn×b are uniformly random.
Let G ∈ Pb×b minimally generate S. Let min-poly(A) = fe, where f ∈ P is an irreducible
polynomial of degree d. Let G be i-faithful, but not (i + 1)-faithful, where i < r. Let j and
k be the first and last indices, respectively, such that aj = ai+1 = ak. Then,

Pq,b,r(G,A) ≤ Qqd,b,j−1(j − 1)Qqd,b−j+1,i−j+1(k − j + 1).

Proof. By definition, the Qqd,b,j−1(j − 1) is the probability that G is (j − 1)-faithful to
xI − A. Following from Theorem 14, Qqd,b−j+1,i−j+1(k − j + 1) is the probability that
exactly i− j+ 1 copies of ai+1 were preserved by random (b− j+ 1)× (b− j+ 1) projection.
The probability, p, that the remaining invariant factors of G would be computed is left out
to simplify the calculation and reduce the search space. Therefore,

Pq,b,r(G,A) = Qqd,b,j−1(j − 1)Qqd,b−j+1,i−j+1(k − j + 1)p

≤ Qqd,b,j−1(j − 1)Qqd,b−j+1,i−j+1(k − j + 1),

because 0 < p ≤ 1.

Let f ∈ P be an irreducible polynomial of degree d, and let det(G) = fe. Let Mq,n(G, i)
denote the probability that the first error in G occurs at the (i + 1)-st largest invariant
factor. Let Ai denote the set of all matrices A ∈ Fn×n such that min-poly(A) = fk. Then,
Mq,n(G, i) = maxA∈Ai Pq,b,r(G,A) where gj = aj for all j ≤ i, gi+1 6= ai+1, and i < r. The
following lemma gives an upper bound on Mq,n(G, i) by applying Lemma 20 to all matrices
in Ai.
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Lemma 21. Let f ∈ P be an irreducible polynomial of degree d. Let G ∈ Pb×b, where the
i-th largest invariant factor of G is gi = fei . Let m = (n− deg(det(G)))/d. Then,

Mq,n(G, i) ≤


0, gi = gi+1

max(X), gi/gi+1 = f,

max(X
⋃

Y ), otherwise,

where X = {Qqd,b,k(k)Qqd,b−k,i−k(i − k + t) | t = 1...m}, Y = {Qqd,b,i(i)Qqd,b−i,0(t) | t =
1...m}, and k is the least index such that gk+1 = gi.

Proof. Let A ∈ Fn×n, and let ai denote the i-th largest invariant factor of xI − A. Let G
be i-faithful but not (i+ 1)-faithful to xI −A.

If gi = gi+1 then it is impossible for G to be i-faithful and not (i+ 1)-faithful to xI −A,
because ai+1|ai and gj |aj for all j. Therefore, if G is i-faithful to xI −A and gi = gi+1 = ai
then ai+1 = ai = gi+1 and G is (i+ 1)-faithful to xI −A.

The set X results from the application of Lemma 20 to all A such that ai+t = ai for all
1 ≤ t ≤ m.

The set Y results from the application of Lemma 20 to all A such that ai+1 6= ai
and gi+1 6= ai+1. That is, G missed the factor ai+1 entirely, which is only possible if
ei − ei+1 > 1.

Note that Lemma 21 applies to i = 0, because all generators are 0-faithful and there is a
chance that G is not 1-faithful. Also, m as defined in Lemma 21 is given for the purposes of
bounding the number computations. For almost all situations, using t = 1 for the calculation
gives the minimum probability for a given i.

Applying Lemma 19 means that a lower bound for Pq,b,r(G,n) can be computed by
computing a bound for each primary component and taking the max, applying Lemma 21
as described in the following theorem.

Theorem 22. Let f ∈ P be an irreducible polynomial of degree d. Let G ∈ Pb×b, and let
det(G) = fe. Then,

Pq,b,r(G,n) ≥ 1−max({Mq,n(G, i) | 0 ≤ i < r}).

As in the earlier example, let g1 = . . . = g9 = x2 + x and g10 = x. Let H be the
primary component of G associated with x + 1. There are two possible places where the
first error could occur, at the h1 and h10. Applying Lemma 21, M2,109(H, 0) ≈ 0.002 and
M2,109(H, 10) ≈ 0.578. Therefore, by Theorem 22, P2,10,10(G, 109) ≥ 1 − 0.578 = 0.422.
This is a dramatic improvement over the a priori bound, P2,10,10(109) ≈ 0.00004.

7 Post-Hoc Example

In Novocin et al. [2015] the Ding-Yuan family of matrices were among those studied, with
the goal of developing a formula for their ranks over the field F3. We discuss two examples
from that sequence, showing that the rank is learned with high confidence by using block
Wiedemann with no preconditioning. Here q = 3, n = 27 and A ∈ Fn×n is as defined in
Novocin et al. [2015]. If we set out to compute the first r = 3 invariant factors of A and chose
a block size of b = 5, we may calculate that Pq,b,r(A) ≥ Pq,b,r(n) ≈ 0.715. Selecting random
U, V ∈ Fn×b, we computed G such that G minimally generates S = {UTAiV }i, and leading
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invariant factors of snf(G) are (xfg, xf, x, x, 1), where f = x2 + 1, and g = x4 + x3 + x+ 2.
G is clearly not 5-faithful since the total degree of the invariants is 12 while the total degree
of the invariants of xI −A will be 27. But it will suffice that G be 3-faithful to infer the the
full list of invariants and thus the desired rank. The a priori probability of 3-faithfulness
is 0.715. We are able to improve our confidence in the faithfulness of G using the post-hoc
analysis developed in the Section 6.

The candidates for first errors are: missing a higher power of x, f , or g in the first
invariant, missing g in the second, or missing f in the third. Bounds on those possibilities
are,

Mq,n(Gx, 0) ≤ max({Qq,b,0(0)Qq,b,0(t) | t = 1...15}) = 0.0082

Mq,n(Gf , 0) ≤ max({Qq2,b,0(0)Qq2,b,0(t) | t = 1...7}) = 0.0000338

Mq,n(Gg, 0) ≤ max({Qq4,b,0(0)Qq4,b,0(t) | t = 1...3}) = 0.000000000573

Mq,n(Gg, 1) ≤ max({Qq4,b,0(0)Qq4,b,1(1 + t) | t = 1...3}) = 0.000000047

Mq,n(Gf , 2) ≤ max({Qq2,b,0(0)Qq2,b,2(2 + t) | t = 1...7}) = 0.0031

Therefore, the probability that the 3 largest invariant factors of G were computed
unfaithfully from any matrix A ∈ Fn×n is at most 0.0082, and our confidence in G being
3-faithful is at least Pq,b,r(G,n) ≥ 0.9918, compared to Pq,b,r(n) ≈ 0.715 a priori.

Taking another example from the Ding-Yuan family. we have n = 39 and A ∈ Fn×n.
We chose a block size of 10 hoping to get as many as 9 invariant factors of xI − A correct,
P3,10,9(n) ≈ 0.314. Let G be the result of the block Wiedemann computation with snf(G) =
(xa2b2cd, xa2b2c, xa2b2, xa2b2, x, . . . , x, 1, 1) where a, b, c, d ∈ P are distinct irreducibles and
deg(a) = deg(b) = 1, deg(c) = 537, and deg(d) = 139. Because the 5th invariant factor of
G is irreducible, if we are confident that G is 5-faithful to A, then we are confident that
we have computed the entire eigenstructure of A. The worst case is that G misses a or
b in the fifth invariant. Thus the probability of 5-faithfulness is at least P3,10,5(G,n) ≥
1 − Q3,10,5(4) ≈ 0.996. So in fact we can be this confident that the two 1’s should be x’s.
Note also that in this case, since 5 invariants suffice to determine the entire structure, we
do nearly as well using the a priori bound for 5-faithfulness: P3,10,5(n) ≈ 0.988.

8 Conclusion

We have extended the tight bounds of Brent et al. [2003] for probability of faithfulness
of the invariants of a projected sequence so that the bounds apply regardless of the total
number of invariants (theorem 18). The strategy was to exactly compute the probability
as a function of the invariant factor structure of the given matrix (theorem 16). We can
compute the necessary block size required to obtain any desired confidence of obtaining the
leading r invariant factors. We show, using block size slightly larger than r, that the leading
r invariant factors are correct with high probability over any field.

In addition to the a priori bounds, we have provided tools for calculating sharper bounds
when something is known about the invariants. A post hoc analysis (Section 6) can often
assert a much higher probability of correctness than is available a priori. Conditions sufficient
for a strong post hoc analysis — such as few nontrivial invariants — often hold in practice.
When that doesn’t apply, preconditioning can be used. However the preconditioners that
have been proposed and analyzed focus on the relation of the minimal polynomial to the
characteristic polynomial. Invariably they require a large field for high worst case probability
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of success (all invariants beyond the minimal polynomial equal to x or 1). Observe that,
in view of the analysis here, block Wiedemann can be used over small fields and with no
preconditioner or a preconditioner used heuristically. If the condition of few nontrivial
invariants is achieved, the method is successful even with very modest block size used.

Consider, for example, a standard rank algorithm: use diagonal preconditioning and
apply Wiedemann (block size of one) [Chen et al., 2002]. The result is a minimal polynomial
of the form xf(x) where f(0) 6= 0. The expectation is that this minpoly is a shift of the
characteristic polynomial so that the rank is deg(f). The algorithm works very well over
large fields but fails utterly over F2. Blocking increases the probability of a correct minpoly,
removes the requirement to believe that charpoly is xe times minpoly, and does not require
any proof of the efficacy of the preconditioner (when successful as determined by post hoc
analysis). This is very helpful in the typical situation where the given matrix is far from a
worst case.

Similar points apply to other linear algebra problems. For example, determinant,
rank, solving nonsingular and singular consistent systems, nullspace random sampling and
nullspace basis are all problems that can be usefully attacked using block Wiedemann, very
often with small block size and little or no preconditioning. Strong probability of success
can be had for any field size and without relying on preconditioner worst case probability
analysis.
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