
acmqueue | january-february 2017 11

Dear KV,
I subscribe to, “The Morning Paper,” a daily summary
prepared by one person, Adrian Colyer, who curates
research papers and sends them out to interested readers
(https://blog.acolyer.org).

Last fall he reviewed “Simple Testing Can Prevent Most
Critical Failures: An Analysis of Production Failures in
Distributed Data-Intensive Systems” (https://blog.acolyer.
org/2016/10/06/simple-testing-can-prevent-most-critical-
failures/). It had some surprising results, including:
3 Almost all catastrophic failures (48 in total, or 92
percent) are the result of incorrect handling of nonfatal
errors explicitly signaled in software.
3 Error handlers with TODO or FIXME in the comments.
This example took down a 4,000-node production cluster.
3 Error handlers that catch an abstract exception type
(e.g., Exception or Throwable in Java) and then take drastic
action such as aborting the system. This example brought
down a whole HDFS (Hadoop Distributed File System)
cluster.

And the list went on from there.
I’ve been reading KV for quite a while, and as I read the

review and then the paper itself, it looked like something
you would be interested in, so I’ve sent along the link.

Helpfully Not in Error

Forced Exception
Handling You can never

discount the
human element
in programming.

1 of 5 TEXT
ONLY

who is
KV?

I

click for video

kode vicious

https://blog.acolyer.org/
https://blog.acolyer.org/2016/10/06/simple-testing-can-prevent-most-critical-failures/
https://blog.acolyer.org/2016/10/06/simple-testing-can-prevent-most-critical-failures/
https://blog.acolyer.org/2016/10/06/simple-testing-can-prevent-most-critical-failures/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3055301.3064643&domain=pdf&date_stamp=2017-02-01

acmqueue | january-february 2017 12

Dear Helpfully,
Yes, KV also reads “The Morning Paper,” although he has
to admit that he does not read everything that arrives in
his inbox from that list. Of course, the paper you mention
piqued my interest, and one of the things you don’t point
out is that it’s actually a study of distributed systems
failures. Now, how can we make programming harder?
I know! Let’s take a problem on a single system and
distribute it. Someday I would like to see a paper that tells
us if problems in distributed systems increase along with
the number of nodes, or the number of interconnections.
Being an optimist, I can only imagine that it’s N(N + 1) / 2, or
worse.

I don’t think you pointed out this paper to KV just to hear
me bang my head on my desk while thinking distributed
systems, so let’s assume you’re asking the “Why?” question:
“Why is it the case that 92 percent of the catastrophic
failures in this paper are caused by a failure to handle
nonfatal errors?”

Well, let’s see what else the paper had to say and then
think about how software is actually implemented in the
real world, rather than how we believe it ought to be
implemented in the illusory world that management and
marketing inhabit.

To get to the heart of why nonfatal errors might have
led to fatal errors, we need look no further than this
snippet from the paper: “This difference is likely because
(i) the Java compiler forces developers to catch all
the checked exceptions; and (ii) a variety of errors are

2 of 5

Ikode vicious

acmqueue | january-february 2017 13

expected to occur in large distributed systems, and the
developers program more defensively. However, we found
they were often simply sloppy in handling these errors”
(https://www.usenix.org/system/files/conference/osdi14/
osdi14-paper-yuan.pdf).

Hopefully anyone who has been a professional
programmer for more than a few days knows that many
developers will always write the code they are most
interested in, or pressured to deliver first, which is not
the error- and exception-handling code, nor is it test code,
nor documentation, the latter two of which I have already
harangued readers about, ad nauseam. What management
and the rest of the team want, is “the code,” and what most
people see as “the code” is only the part of it that explicitly
does the job you’re expected to do. It’s not even the
demands of others that cause this narrow focus; it’s often
just that the error-handling parts are not as interesting
to the person writing the code as getting a result. It would
seem that many programmers just want to move those
bits, munge that data, and show pictures of cats.

In point of fact we have a clear indication of the
importance programmers put on the error-handling
components of the code by this finding: “Error handlers
with TODO or FIXME in the comment.” Personally, I prefer
XXX, as it reminds me of my time in Amsterdam in the early
1990s, and unless you’re working in certain industries—
industries that might also serve photos, and might still
serve photos of cats—you’re unlikely to find XXX as a
variable in the code.

We can look at the fact that the Java compiler forces

3 of 5

I

I
t would seem
that many
programmers
just want to
move those

bits, munge that
data, and show
pictures of cats.

kode vicious

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-yuan.pdf
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-yuan.pdf

acmqueue | january-february 2017 14

programmers to catch all the unchecked exceptions in
one of two ways. If we are charitable—and KV is the heart
and soul of charity—we assume that the Java language
and compiler developers are simply helping programmers
make fewer mistakes and make sure that their code
not only does what it is meant to do, but also acts
appropriately when things go awry.

If we are less charitable, or perhaps more honest and
realistic, we see this enforcement quite differently: as a
naked attempt to control programmers and make them do
what the language and compiler people thought was right
at the time. “Programmers don’t do proper error handling. I
know, we will MAKE them handle errors, or their programs
won’t compile at all!” I believe this is said in the voice of an
overbearing schoolteacher. “You will dot your i’s! You will
catch all exceptions!” Except that unlike dotting an i, there
are ways to skate around handling the exception that was
meant to be handled. In a rush? Well then, just add a TODO
or FIXME or XXX in the comments and move on. You’ll come
back to it later… of course you will.

Both sides are a little bit wrong in this case. We can all
point fingers at the person who leaves a trail of FIXMEs
in the code, but who among us is without blame in that
regard? We can also blame the pedants who thought
that forcing every exception to be caught was doing us
a favor. You can never discount the human element in
programming. For everything you try to force on someone,
there is something they will work to avoid if at all possible.
Tool builders need to understand that the people who
use their tools are often trying to get a very narrow job
completed with a minimum amount of effort. Was it wrong

4 of 5

Ikode vicious

acmqueue | january-february 2017 15

to add the forced exception handling into the tool? Maybe
and maybe not. In the hands of someone with the time
and inclination to do the right thing, these errors are a
welcome way of finding problems that they do have to
handle.

Clearly, in the hands of a large percentage of
programmers who work on some of the most complex
systems yet devised, the feature is actually a nuisance,
and it is likely time to rethink how this particular exception
ought to be handled.

KV
Kode Vicious, known to mere mortals as George V. Neville-
Neil, works on networking and operating-system code for
fun and profit. He also teaches courses on various subjects
related to programming. His areas of interest are code
spelunking, operating systems, and rewriting your bad code
(OK, maybe not that last one). He earned his bachelor’s
degree in computer science at Northeastern University in
Boston, Massachusetts, and is a member of ACM, the Usenix
Association, and IEEE. Neville-Neil is the co-author with
Marshall Kirk McKusick and Robert N. M. Watson of The
Design and Implementation of the FreeBSD Operating
System (second edition). He is an avid bicyclist and traveler
who currently lives in New York City.
Copyright © 2017 held by owner/author. Publication rights licensed to ACM.

5 of 5

I

CONTENTS2

kode vicious

