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ABSTRACT
A repository of privacy incidents is essential for understanding the
attributes of products and policies that lead to privacy incidents.
We describe our vision for a novel privacy incidents database and
our progress toward building a prototype. Key challenges in gath-
ering such a database include bootstrapping and sustainability. We
propose a semi-automated framework that can recognize privacy
incidents and related information from various online sources such
as news, blogs, and social media. The crux of our framework is an
incident classi�er that identi�es whether a piece of text in natural
language is related to a privacy incident or not. We curate a dataset
consisting of 1324 news articles of which 543 articles are about
one or more privacy incidents. We train the incident classi�er on
this dataset, considering a variety of feature engineering, feature
selection, and classi�cation techniques. We �nd that our incident
classi�er yields an F1 measure of 93.1%, which is about 12% higher
than the keyword search-based baselines we adopt.

CCS CONCEPTS
• Security and privacy → Human and societal aspects of se-
curity and privacy; • Information systems → Data analytics;
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Privacy, incidents, database, analytics

1 INTRODUCTION
Many databases exist for security incidents. Indeed, the patterns and
characteristics of security incidents, as captured by these databases,
are a signi�cant driver of security technology innovation. Patterns
are detected by analyzing repositories of malware/viruses/worms
(e.g. [15, 28, 44]), incidents a�ecting control/SCADA systems [40],
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general security alerts and updates [46] and data breaches (e.g., [34]).
For example, the malware database VX Heavens [10] is referenced
in almost 8, 000 research papers according to Google Scholar, many
of which tested algorithms on data supplied by VX Heavens before
it was shut down in 2012.

Although there is some overlap between privacy and security
incidents, most types of privacy incidents are not represented in
these security incident repositories. In particular, incidents of cyber-
bullying/stalking, revenge porn, social media oversharing, data
reidenti�cation and surveillance, generally do not involve a security
incident and so are not included in the current repositories. Table 1
demonstrates the diversity of privacy incident types.

Even for areas in which security incident databases include pri-
vacy incidents (e.g. data breaches), analysis is di�cult. Current
databases are not synchronized, making it di�cult to compare
across them and calculate accurate statistics. For example, for the
year 2014, the Privacy Rights Clearinghouse data [34] �nds less
than 400 data breach incidents [22], Romanosky �nds approxi-
mately 1200 [37], and, using proprietary data from 70 companies
and organizations, Verizon �nds over 2000 breaches [47]. The di�-
culty of tracking the frequency and consequences of data breaches
in the absence of a comprehensive database was noted as early as
2007 in a U.S. Government accountability report [45].

While a complete analysis requires a comprehensive database,
even an ad hoc incident analysis indicates that there are common
elements of incidents that, when identi�ed, improve system privacy.
For example, a number of Internet companies have introduced new
privacy policies and user consent approaches that have received
negative reactions from end users or regulators. Privacy policy
changes at Spotify [2] and Google [7], and user consent mechanisms
at Facebook [16], have all been criticized as having de�ciencies in
user comprehension, visual presentation and user-utility. Analysis
of these and other consent-related privacy incidents may suggest
design patterns that diminish the chances of similar incidents going
forward. For example, the fact that many of the criticisms of these
“dark design patterns” (cf. [21]) are similar in nature has led the FTC
to specify user interface requirements for disclosures, including
that they be made in “print that contrasts highly with the back-
ground on which they appear” [16], and the Article 29 Working
Party recommends that privacy policies be “immediately visible
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and accessible, for instance visible without scrolling and accessible
via one click, from each service landing page” [7].

Incident patterns may also suggest engineering improvements.
Recent years have seen repeated incidents of accidental sharing
of personally identi�able information (PII), occurring at govern-
ment agencies [3], healthcare providers [11], online retailers [14]
and pharmaceutical companies [17]. Analyzing such incidents may
suggest better technological approaches to detecting sensitive data
before they are shared.

We are building the �rst comprehensive database of privacy
incidents. While the potential to identify the trends and patterns
described above using an incident database is a huge data mining
opportunity, building such a database is a substantial data min-
ing challenge, in itself, in terms of both e�ciently gathering past
privacy incidents and sustaining incident coverage going forward.
To address this challenge we have manually evaluated over 1300
articles to build positive and negative training sets from which
to learn a privacy incidents classi�er. Since our high-dimensional
data is vulnerable to classi�er over-�tting, we use the information-
theoretic measure of mutual information to reduce the feature set.
Our best, SVM-based, classi�er, achieves precision and recall that
are both signi�cantly better than keyword-based classi�ers that
�ag articles as privacy incident-related if they contain “privacy” or
related keywords. This classi�er thus greatly reduces the human-
review time needed when news articles are used to maintain and
augment a privacy incidents database over time.

Related Work
As mentioned earlier, privacy incidents involving the disclosure
of sensitive personal, �nancial and health information (e.g. social
security numbers) have been collected by several organizations
including the Privacy Rights Clearinghouse [34], Verizon [47], the
Identity Theft Resource Center [23], and Advisen (e.g., [6]). Existing
analyses of data breaches include the consideration of organization
response to breaches and the cost of such breaches (e.g., [5, 37, 42]),
visualizations of breach data [1], and, more recently, the consumer
perspective on breach noti�cations [4].

Data breaches as collected and analyzed in these works, involve
the breach of a company database storing such data for multiple
users, often due to a security attack. However, breaches that do not
involve a company or organization database (e.g. wi� payload col-
lection [12]) and non-breach privacy incidents are not documented
by such repositories.

The privacy research community is increasingly focused on gath-
ering and analyzing privacy incidents (e.g., [18, 37]). Our work sup-
ports those e�orts by providing an e�cient means for gathering a
repository of privacy incidents.

Finally, we note that this paper overlaps with and extends an
unpublished working paper [31].

2 VISION AND PROTOTYPE
We adopt a deliberately broad de�nition of “privacy incident” [32],
in particular, as an event involving accidental or unauthorized collec-
tion, use or exposure of sensitive information about an individual, or
an event that creates the perception that unauthorized collection, use

or exposure of sensitive information about an individual may happen
or is happening, and the event involves data in digital form.

With this de�nition we choose to include both realized privacy
“harms” (e.g., as discussed in [9]) and perceived or expected harms.
The latter are important to include as they indicate policies, product
features or practices that are disliked or misunderstood by users.

As an example of the importance of including perceived pri-
vacy risk, consider the revamped privacy policy introduced by the
streaming music service Spotify in August 2015. The new policy
included vague language about data usage and sparked a lot of
criticism, leading to a reversal in September of 2015 [2]. There is no
evidence any concrete privacy harm happened while this transitory
privacy policy was in place, but under our de�nition it is a privacy
incident because it was perceived as harmful and is therefore a use-
ful data point toward understanding users’ privacy preferences and
perceptions, improving policies and based on that understanding.

At a high level, a privacy incident involves end user(s), one or
more software systems and, potentially, adversarial user(s). These
entities may cause an incident in several ways including: a system
error (e.g. a bug or miscon�guration), a user error (e.g. accidental
disclosure), system design (e.g. poorly chosen default settings), a
system misuse or unintended use (e.g. unwanted personalization
features), and a system abuse or attack (e.g. a hacking incident or a
man-in-the-middle attack). These causes may overlap. For example,
a design �aw may lead to user errors, and an attacker may exploit
system miscon�guration. One goal of the incident database is to
better understand the frequencies of and correlations between these
causes. Table 1 demonstrates the diversity of privacy incidents.

One goal of the database is to support trend identi�cation, in par-
ticular, correlation of privacy incidents with external antecedents
and consequences. For example, Acquisti et al. [5] show that data
breaches have a negative impact on a company’s market value on
the announcement day of the breach. Romanosky et al. [38] show
that the adoption of data breach disclosure laws have signi�cantly
reduced identity theft caused by data breaches. The privacy in-
cidents database will markedly reduce the data collection e�ort
required to conduct such investigations.

Because many of these incidents details only emerge over time,
and may be spread out over many articles, we seek to automate the
identi�cation of articles about any privacy incident, rather than
just incidents that are new to the database.

Our prototype (go.ncsu.edu/privacyincidents) contains 276 inci-
dents dating from 1990 to the present, at the time of writing. For
each incident there is a short description, attribute tags associated
with the incident (e.g. names of entities involved), a link to public
information about the incident, and, in some cases, a case study that
answers the above questions in more depth. It is a closed database
only editable by the authors and their students. Figure 1 shows the
current landing page and some of the incidents.

The complexity of incident root causes, as well as variation in
the domains of incidents, the entities involved, and the populations
impacted, argues for a collaboratively maintained database. We
envision a Wikipedia-style space in which contributors can sug-
gest incidents, gather incident evidence and reach consensus on
incident attributes. The geographical range of privacy incidents
suggests that the database will bene�t from diverse contributors

go.ncsu.edu/privacyincidents
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Table 1: Examples of privacy incidents demonstrating the variety of root causes and other characteristics, bolded for readability.
Incidents are grouped by predominant cause.

Root Cause Entities Date First Description
Known

System Error Facebook 5/2010 Code used by the services allows referrer
LiveJournal, links containing user IDs to be
Xanga, Digg sent to advertisers when users

MySpace, Hi5 click on ads, thus identifying them. [13]

User Error Kazaa 6/2002 Many Kazaa users found to be sharing
personal �les on the Kazaa network. [19]

System Design Fitbit 7/2011 Default privacy setting allows FitBit
pro�les to be surfaced by search

engines, revealing sexual activities
of FitBit users. [25]

Unintended Use/ Net�ix 12/2009 Researchers de-anonymized
System Misuse Net�ix prize dataset, causing a

closeted gay mom to be outed based
on her Net�ix viewing pattern. [35]

System Misuse/ FBI 1/2010 FBI found to have improperly gained
Attack access to calling records of citizens.

In some cases, reporters were targeted
as part of leak investigations. [39]

(a) Lading page (b) Partial listing of the incidents.

Figure 1: Screenshots of the current prototype (http://go.ncsu.edu/privacyincidents). Visitors can click on the fourth column
link on the incidents list page to visit a public article about the incident and case studies authored by the team are linked to
in the �fth column. Clicking on a tag, highlights the same tag associated with di�erent incidents.

and the interdisciplinary aspect of privacy means a wide variety of
communities must be engaged in maintaining the database.

3 SEMI-AUTOMATED INCIDENT
IDENTIFICATION FROM NEWS

Information about privacy incidents is available from a variety of
sources such as news articles, blogs, and social media. However,
�nding privacy incidents manually, e.g., via ad hoc keyword search,

http://go.ncsu.edu/privacyincidents
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is nontrivial due to the vast amount of information available on
the Web and high potential for false positives when relying on
keyword search to identify incidents. For example, a search for the
keyword “privacy” would �ag articles such as, “Johnny Manziel
asks for privacy as he enters rehab” [26], and “Park visitors disturb
privacy of animals during mating season” [49], neither of which
meet our de�nition of privacy incident, as the former is primarily
concerned with news about a celebrity entering a hospital and the
latter does not concern the privacy of humans.

We posit that information about privacy incidents has distin-
guishing features such as keywords, entities, and sentiment. Our
objective is to develop automated techniques that exploit such
features to enable e�cient and large-scale identi�cation of arti-
cles related to privacy incidents. Figure 2 provides an overview of
our vision of a semi-automated framework for identifying privacy
incidents. The crux of the framework is the incident classi�er, a
machine-learned model, that automatically classi�es a given piece
of information as related to a privacy incident or not. Further, the
framework is semi-automated in the sense that an expert (human
user) reviews the incidents identi�ed by the classi�er before they
are added to our database.

We identify the key challenges in realizing an incident classi�er
as: (1) curating a training set, consisting of both articles that are
and are not related to privacy incidents; (2) engineering features
to represent training instances in a vector space; and (3) training a
classi�er to distinguish privacy incidents from nonincidents.

3.1 Training Set
As mentioned earlier, we focus on news articles as the source of
information for identifying information related to privacy incidents.
Many leading news agencies have public APIs (application program-
ming interface), e.g., [20, 30], providing programmatic search and
access to the news they publish, both current and historical.

Given a news article, our objective is to classify the article as
either primarily concerned with one or more privacy incidents or
not concerned with any privacy incidents. To do so, we develop an
incident classi�er via supervised machine learning . A supervised
model requires a curated training set: a set of news articles in which
each article is labeled as either primarily concerned with a privacy
incident(s) (positive example, included in the set, P ) or not (negative
example, included in the set N ). To make this determination, we
rely on the de�nition of a privacy incident from Section 2.

To form the initial pool of articles from which P and N were
extracted, we employed the following three data gathering methods.
First, we randomly selected articles using the New York Times
[30] and Guardian [20] APIs, expecting these articles, largely, to
be part of the set N (since most news is unrelated to privacy).
Second, we used the keyword “privacy” and keywords found to be
closely associated with privacy news [41] to retrieve articles via the
APIs. Third, we gathered articles that had been manual tagged as
privacy articles by the New York Times. We also manually reviewed
articles to identify examples that either narrowly failed to meet
our de�nition for subtle reasons (e.g., articles regarding physical,
non-digital, privacy incidents and incidents regarding security but
not privacy) and articles that represented particular privacy issues
falling in the Solove categories [43].

From the initial pool of 1104 articles gathered by these methods,
we extracted 4 sets of 100 and 1 set of 198 articles. For each set, 2
coders independently reviewed the articles and coded them as either
closely related to a privacy incident or unrelated to any privacy
incident. Overall, the inter-coder agreement was high, with an
average Cohen’s Kappa [48] of 0.9608. Given this high agreement,
we relied on a single coder for the remaining 506 articles.

For those articles reviewed by two coders, each article found
as related to a privacy incident by both coders, was put in set
P ; similarly each article that both coders agreed as not related
to privacy incidents was added to N . Any article on which there
was a disagreement was not used in training set. Similarly, articles
reviewed by a single coder were assigned to P or N based on the
code. Finally, we also included 249 articles that had already been
gathered by the Privacy Incidents Database project [29, 31], as part
of P . We did not code these 249 articles since they were already
reviewed by the Privacy Incidents Database project and determined
to be positive examples.

As a result of this process and some de-duplication, P consists of
543 articles and N consists of 781 articles (total of 1324 out of the
original pool of 1353). The most common publishers in our training
data are the New York Times and the Guardian. However, the �nal
training set (P ∪N ) also includes a variety of other news publishers
and tech blogs.

3.2 Feature Engineering
Our training set consists of the textual contents of a set of news
articles. In order to train the incident classi�er, we need to represent
each news article as a set of features. Figure 3 summarizes the steps
we followed to do so.

3.2.1 Text Preprocessing. We employ techniques from natural
language processing to preprocess our dataset. First, we extract
all sentences in a news article and perform parts-of-speech (PoS)
tagging. We retain only content words (nouns, verbs, adjectives, and
adverbs) and further remove stopwords [36], based on the intuition
that only the remaining words help classi�cation. Next, we perform
lemmatization to reduce in�ectional forms of words to their base or
dictionary forms (known as lemma), e.g., the words “collecting” and
“collected” are reduced to their root form “collect.” Lemmatization
helps reduce the number of words in an article, and consequently,
the number of features used for classi�cation.

3.2.2 Unigrams and Bigrams. After preprocessing, each news
article consists of the lemmas of content words in that article. Next,
we extract two types of tokens. A unigram is a unique lemma across
all articles in the dataset. A bigram is a unique pair of consecutive
lemmas across all articles in the dataset. Table 2 shows the number
of tokens in our dataset before and after preprocessing steps.

Table 2: Number of tokens in our dataset.

Unique words (before preprocessing) 59,864
Unigrams (after preprocessing) 34,537
Bigrams (after preprocessing) 449,988
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Figure 2: Our vision of a semi-automated technique for populating the privacy incidents database.
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Figure 3: An overview of the steps we follow to engineer features from news articles for performing classi�cation. The steps
marked as OR represent some of the variations we consider.

3.2.3 TF and TF-IDF Scores. Our next task is to represent each
news article as a feature vector. To do so, we treat each token
(unigram and/or bigram) in the entire dataset as a feature. To com-
pute feature values, we employ the TF scores or TF-IDF scores [27,
Chapter 6] described below. Note that although there are multi-
ple variants of these scores, we employ one set of commonly used
variants to demonstrate our overall approach.

The term frequency (TF) is de�ned as:

TF(t ,a) =



1 + log ft,a if ft,a > 0
0 Otherwise,

(1)

where ft,a is the frequency of the token t in article a. The logarithm
of raw frequency is used for sublinear scaling with the intuition
that a term occurring ten times in an article may not be ten times
as important as a term occurring once.

Next, the inverse document frequency (IDF) is de�ned as:

IDF(t ,A) = log N

|a ∈ A : t ∈ a | , (2)

where t is a token in article a,A is the set of all articles in the dataset,
N is the size of A, and |a ∈ A : t ∈ a | is the number of articles in
which t appears.

Finally, the TF-IDF score is the product of term frequency (Equa-
tion 1) and inverse document frequency (Equation 2):

TF-IDF(t ,a,A) = TF(t ,a) × IDF(t ,A). (3)
In a nutshell, the TF-IDF score indicates the importance of a

token in an article, considering all articles in the dataset. That is,
for a given token, the TF-IDF score increases as the token appears
more frequently in the article, but decreases as the token appears
in more articles.

3.2.4 Feature Selection. Our dataset consists of 1324 instances
(positive and negative examples combined), but a substantially
larger number of features—considering only unigrams yields 34,537
features; considering bigrams, in addition, increases the number of
features more than ten fold. A dataset in such a high-dimensional
space poses two key challenges. First, training a classi�er can be
ine�cient. Second, and more importantly, a classi�er trained in a
high-dimensional space can be prone to over�tting. That is, given a
large number of features, it is likely that some of them are “rare” and
exist only in the training data. Such features may yield a classi�er
highly accurate on the training data, but error-prone on new data.

To address these challenges, we select a subset of features before
performing classi�cation. Speci�cally, we employ the expected
mutual information (MI) of a token t and a class c [27, Chapter 13]
to determine whether to select a feature or not. MI is de�ned as:

MI(U ;C ) =
∑

et ∈{1,0}

∑
ec ∈{1,0}

P(et , ec ) × log2
P(et , ec )

P(et ) × P(ec )
, (4)

whereU is a random variable, taking the values of et = 1 for articles
containing token t and et = 0 for articles not containing t ; and C
is a random variable, taking values of ec = 1 for articles in class c
(articles related to privacy incidents) and ec = 0 for articles not in
c (articles not related to privacy incidents).

In a nutshell, the expected mutual information of a token t and
class c measures the extent to which the presence of t contributes
to classifying an article as belonging to class c . Thus, we rank
all features by their mutual information values and select top K
features. Table 3 shows top 20 features in our dataset ordered by
mutual information.
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Table 3: The top 20 features in our dataset ordered by their
MI values (features with an underscore are bigrams).

Token MI Token MI
privacy 0.3531 datum 0.2280
information 0.2225 company 0.1278
collect 0.0949 personal_information 0.0880
personal 0.0847 phone 0.0846
breach 0.0834 use 0.0824
access 0.0801 user 0.0753
customer 0.0736 privacy_policy 0.0712
address 0.0710 surveillance 0.0709
request 0.0621 law 0.0610
investigation 0.0575 print_april 0.0560

3.3 Classi�cation
In Section 3.2, we transformed news articles in natural language to
data instances in vector space. These data instances consist of two
non-overlapping sets: news articles related to privacy incidents and
those not related to privacy incidents. We refer to these two sets of
articles as privacy class and non-privacy class, respectively.

3.3.1 Classifiers. We incorporate classi�ers to identify whether
a news article belongs to the privacy or the non-privacy class.
We learn the parameters of the classi�er considering articles from
the sets P and N in Section 3.1 as privacy and non-privacy classes,
respectively, using the feature engineering of Section 3.2. We exploit
one of the following well-known classi�ers.
Naive Bayes (NB) [33, Chapter 5] is a probabilistic classi�er that

exploits Bayes’ theorem to compute the probability of an instance
belonging to a class. To estimate class-conditional probabilities,
NB makes a strong (naive) assumption that features are condi-
tionally independent of each other given the class.

Support Vector Machines (SVM) [33, Chapter 5] constructs a hy-
perplane to separate positive and negative data instances. Train-
ing an SVM model involves learning the parameters of a hyper-
plane that maximizes the margin between classes (informally,
the margin is the extent of separation between the classes given
the hyperplane). We employ SVM with a linear kernel.

Random Forests (RF) [8] operate by constructing a multitude of
decision trees at training time and outputting the class that is the
mode of the classes of the individual trees. Each tree is trained
in a greedy fashion on a randomly chosen subset of the training
data, selecting the TF-IDF feature that maximises information
utility. We employ a standard RF algorithm trained on 400 trees
each of depth 20 (these parameters were re�ned experimentally).

3.3.2 Baselines. We develop keyword-based classi�ers to serve
as baselines for evaluating the other classi�ers above.

A keyword-based classi�er identi�es a news article as privacy
or non-privacy depending on the presence or absence of certain
keywords, respectively. Identify a set of keywords is the crux of
this approach. Then, we predict a news article as belonging to the
privacy class if it contains one of the keywords identi�ed, and as
non-privacy class, otherwise. To identify the set of keywords we
employ one of the following techniques.

Privacy keyword technique employs the term “privacy” and its
in�ectional forms as the set of keywords.

Privacy and Solove keywords technique employs the term “pri-
vacy” and in addition, terms based on the names of Solove cate-
gories and subcategories [43] as the keyword set. Table 4 shows
the Solove keywords we add and their counts in the privacy class
(we also include the in�ectional forms of these words, but do not
show them in the table, for brevity).

Top-K keywords technique employs K most frequent tokens in
the privacy class as the set of keywords. We perform the text
preprocessing steps described in Section 3.2.1 on the articles in
the privacy class before identifying the keywords. Here, we only
consider nouns based on our observation that other frequent
content words may not to be useful for classi�cation (e.g., the
verb “say” was the most frequent content word in the privacy
class, but will likely not in�uence classi�cation). Table 5 shows
Top 20 keywords in the privacy class of our dataset.

Table 4: Counts of keywords representing Solove’s cate-
gories and subcategories for articles in the privacy class.

Token Count Token Count
Info. dissemination 24

Info. collection 935 Breach con�dentiality 694
Surveillance 545 Disclosure 289
Interrogation 3 Exposure 162

Info. processing 161 Increased accessibility 38
Aggregation 34 Blackmail 21
Identi�cation 354 Appropriation 72
Insecurity 15 Distortion 3
Secondary use 2 Invasion 66
Exclusion 21 Intrusion 118

Decisional interference 27

Table 5: The 20 most frequent tokens (nouns only) in our
dataset, considering articles in the privacy class.

Token Count Token Count
datum 2349 information 2023
privacy 1897 company 1838
security 1440 user 1330
government 1261 people 1089
google 1077 facebook 1005
apple 992 law 876
app 858 court 806
case 805 service 778
year 772 phone 735
site 689 time 667

4 EVALUATION
As Section 3.2 describes, our feature engineering pipeline consists
of several variation points. First, we perform a comprehensive eval-
uation to identify an optimal set of steps. Then, we compare the
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performance of our incident classi�er with those of the baselines.
We evaluate the performance of a classi�er via precision, recall, and
F1 scores de�ned below.

precision = TP
TP + FP , recall = TP

TP + FN ,

F1-score = 2 × precision × recall
precision + recall , (5)

where TP, TN, FP, and FN are true and false positives and negatives.
Our dataset consists slightly more negative instances (781) than

positive instances (543). We randomly excluded 238 (= 781 − 543)
negative instances to have a balanced training set of 543 positive
and negative instances, each. All results we report in this section
are based on ten-fold cross-validation on the balanced training set.

4.1 Feature Engineering
After text preprocessing, we have options of (1) unigram vs. un-
igrams and bigrams; (2) TF vs. TF-IDF scores; and (3) di�erent K
values for selecting top-K features. Figure 4 and Table 6 compare
the performances of classi�ers trained with features engineered
via di�erent combinations of these three options. For the values
K, considering the large number of possibilities, we experiment in
powers of two (1, 2, 4, 8, . . . up to maximum number of features).
We make three major observations from these results.

First, the choice of TF-IDF scores against TF scores makes little
di�erence to performance. Indeed, using TF scores yields slightly
better results than using TF-IDF scores.

Second, employing both unigrams and bigrams yields better re-
sults than employing only unigrams. In particular, the di�erence
in precision is quite noticeable. This suggests that using bigrams
yields certain features whose values are unique to a class, whereas
the values of their constituent unigrams are not unique to a class.
For example, the bigram “third_party” has higher TF scores, on av-
erage, for the privacy class, whereas the TF scores for the unigrams
“third” and “party” are about the same for the two classes.

Third, the performance of the classi�er increases as the number
of features increases, initially. However, after a certain threshold,
further increasing the number of features reduces both precision
and recall. We conjecture that models trained with more features
than this threshold over�t the training data. Thus, as Table 6 demon-
strates, choosing an optimal number of features yields a classi�er
with better performance than the one choosing all features yields.

4.2 Classi�cation
We identi�ed that choosing unigrams and bigrams as features, TF
scores as their values, and selecting a subset of features yields
best classi�er results for our dataset. Considering this combina-
tion, Table 7 compares performances of the three machine-learned
classi�ers (Naive Bayes, SVM, and Random Forests) and the three
baselines we evaluate. We observe the following from these results.

First, we �nd that machine-learned classi�ers based on our fea-
ture engineering perform better than keyword-based baselines.
Speci�cally, the SVM-based classi�er performs best, overall, with
the mean F1 score of 93.1%, which is about 12% higher than the

best F1 score among the three baselines. This suggests that sys-
tematically building an incident classi�er (data curation, feature
engineering, and classi�cation) is worth the e�ort.

Second, we note that even with an optimal number of features,
the datasets we train the machine-learned classi�ers on consist of
considerably more features than the number of data instances. SVM
is known to work-well in high-dimensional spaces. We conjecture
this to be a reason why SVM performs better than Naive Bayes and
Random Forests in our setting.

Third, we observe that employing “privacy” as the keyword
yields a classi�er with a high precision (91.8%) on the privacy class.
This indicates most articles mentioning “privacy” tend to be related
to a privacy incident. However, we note the recall of this classi�er
for the privacy class is only 70%. Thus, many articles that are about
a privacy incident do not explicitly mention the word “privacy.”

Fourth, we observe the keyword-based classi�ers based on Pri-
vacy and Solove keywords, and Top-3 keywords both yield a higher
recall on the privacy class compared to the Privacy keyword-based
classi�er. That is, whereas searching only for “privacy” recalls only
70% of articles about privacy incidents, adding more keywords re-
calls more than 90% articles about privacy incidents (notice from
Table 5 that privacy is one of the top-3 keywords). However, it is
important to note that, in these cases, as the recall improves pre-
cision reduces (i.e., false positives increase), consistently. Figure 5
demonstrates this trend of increased recall and reduced precision,
as K increases in the Top-K keyword-based classi�er.

5 DISCUSSION AND CONCLUSION
We envision a collaboratively maintained Privacy Incidents Data-
base that supports research, practice, and policy making. We de-
veloped an incident classi�er that recognizes information about
privacy incidents from news articles. Since �nding privacy-related
information online is like searching for needles in a haystack, the
classi�er can be of great value in bootstrapping the incidents data-
base and sustaining it (since the classi�er automatically identi�es
the information to be reviewed by experts, it reduces the overall
human e�ort required to add an incident to the database).

Our evaluation suggests that machine-learned incident classi�ers
outperform keyword search based approaches in recognizing news
articles about privacy incidents. The main challenge with keyword
based approaches is that identifying a good set of keywords is
nontrivial. Although we sought to systematically develop keyword
sets, the sets have limitations. For example, we added terms from
the Solove categories and subcategories [43], literally, as keywords.
However, an article about “secondary use” (a Solove subcategory)
may not explicitly contain the phrase “secondary use.” Similarly,
considering Top-K keywords may yield keywords that are in both
privacy and non-privacy articles (e.g., “Google,” “Facebook,” and
“Apple” in Table 5, and are thus, not e�ective in classifying news
articles. Nonetheless, the keyword based approaches achieve a
high recall, even better than the machine-learned classi�ers. As
Figure 5 shows, with as few as Top-8 keywords, the corresponding
classi�er’s recall on the privacy class is about 99%. Since an expert
reviews articles tagged by the classi�er before adding them to
the database, high recall is desirable. However, since the precision
of these classi�ers is quite low (e.g., the precision of the Top-8
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Figure 4: Comparing SVM classi�ers trained on di�erent top-K features selected based on information gain.

Table 6: Performance of an SVM-based classi�er, considering di�erent feature engineering techniques.

Feature Privacy Class Non-privacy Class Mean
Type Count Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

Unigrams (TF) 34536 (all) 0.904 0.869 0.886 0.874 0.908 0.891 0.889 0.889 0.889
Unigrams (TF) 4096 (optimal) 0.904 0.886 0.895 0.888 0.906 0.897 0.896 0.896 0.896
Unigrams (TF-IDF) 34536 (all) 0.899 0.890 0.895 0.891 0.901 0.896 0.895 0.895 0.895
Unigrams (TF-IDF) 8192 (optimal) 0.914 0.899 0.906 0.900 0.915 0.908 0.907 0.907 0.907
Uni & Bigrams (TF) 449987 (all) 0.907 0.866 0.886 0.871 0.912 0.891 0.889 0.889 0.889
Uni & Bigrams (TF) 8192 (optimal) 0.962 0.897 0.929 0.903 0.965 0.933 0.933 0.931 0.931
Uni & Bigrams (TF-IDF) 449987 (all) 0.891 0.847 0.869 0.854 0.897 0.875 0.873 0.872 0.872
Uni & Bigrams (TF-IDF) 8192 (optimal) 0.960 0.890 0.924 0.897 0.963 0.929 0.929 0.926 0.926

Table 7: Performances for di�erent classi�cation techniques (having 8192 selected TF unigrams as features) and baselines.

Privacy Class Non-privacy Class Mean
Classi�er Precision Recall F1 Precision Recall F1 Precision Recall F1

Naive Bayes 0.863 0.924 0.892 0.919 0.853 0.884 0.891 0.889 0.888
SVM 0.962 0.897 0.929 0.903 0.965 0.933 0.933 0.931 0.931
Random Forests 0.931 0.820 0.872 0.839 0.939 0.886 0.885 0.879 0.879
Privacy keyword 0.918 0.700 0.794 0.757 0.937 0.838 0.838 0.819 0.816
Privacy & Solove keywords 0.664 0.930 0.775 0.783 0.530 0.663 0.774 0.730 0.719
Top-3 keywords 0.721 0.932 0.813 0.904 0.639 0.749 0.812 0.785 0.781

keyword based classi�er in the privacy class is only 53.5%). The
tradeo� between increasing recall and reducing human e�ort (lower
precision means more false positives and more reviewing work for
experts) remains to be studied.

We have deliberately trained our classi�ers on a large set of pos-
itive (i.e. privacy incident-related) articles, rather than on training
data that is representatively balanced with positive and negative.
We did this both because a representative set would have few if any
positive examples, given the low support of privacy incidents, and
because, as the complexity of privacy taxonomies [24, 43] demon-
strates, privacy incidents are varied in nature and so argue for more

training data. That said, using a large positive training set has the
potential of making the classi�er’s job harder as well, particularly,
because we included many “grey” examples (i.e., incidents that
concern security but not privacy). Indeed, doing so may make it
appear more likely that an article both has a feature and is related
to a privacy incident than is actually the case. In future work, we
plan to experiment with di�erent proportions of training data and
test the classi�ers on an ongoing basis as in Figure 2.

Finally, we identify three avenues for future work. First, in addi-
tion to news, social media (e.g., Twitter) is an increasingly popular
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Figure 5: Performances of keyword-based classi�ers trained
on di�erent top-K keywords.

source of privacy incidents related information. An interesting di-
rection is to extend our incident classi�er to tag content on social
media as relating privacy incidents or not. Second, we performed
a binary classi�cation of privacy or non-privacy. However, it can
also be valuable to perform �ner classi�cation, e.g., recognizing the
Solove category to which a piece of information belongs. A key chal-
lenge in performing such classi�cation task is building a su�ciently
large expert-annotated dataset. Third, our eventual objective is to
support a variety of analyses on the data in the Privacy Incidents
Database. An interesting direction is to develop such analysis tools
considering the data in our database. Example analyses tasks in-
clude, identifying the organizations or software systems associated
with an incident (e.g., via named entity recognition); identifying
similar incidents (e.g., via clustering); and identifying the sequence
of events associated a privacy incident (e.g., via temporal analysis).
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