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ABSTRACT
We propose a new algorithmic framework, called “partial rejection

sampling”, to draw samples exactly from a product distribution,

conditioned on none of a number of bad events occurring. Our

framework builds (perhaps surprising) new connections between

the variable framework of the Lovász Local Lemma and some clas-

sical sampling algorithms such as the “cycle-popping” algorithm

for rooted spanning trees by Wilson. Among other applications,

we discover new algorithms to sample satisfying assignments of

k-CNF formulas with bounded variable occurrences.
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KEYWORDS
Exact sampling, Lovász Local Lemma, #SAT

ACM Reference format:
Heng Guo, Mark Jerrum, and Jingcheng Liu. 2017. Uniform Sampling through

the Lovász Local Lemma. In Proceedings of 49th Annual ACM SIGACT Sym-
posium on the Theory of Computing, Montreal, Canada, June 2017 (STOC’17),
14 pages.

DOI: 10.1145/3055399.3055410

1 INTRODUCTION
The Lovász Local Lemma [9] is a classical gem in combinatorics that

guarantees the existence of a perfect object that avoids all events

deemed to be “bad”. The original proof is non-constructive but

there has been great progress in the algorithmic aspects of the local

lemma. After a long line of research [2, 3, 8, 23, 29], the celebrated

result by Moser and Tardos [24] gives e�cient algorithms to �nd

such a perfect object under conditions that match the Lovász Local

Lemma in the so-called variable framework. However, it is natural

to ask whether, under the same condition, we can also sample a

perfect object uniformly at random instead of merely �nding one.

Roughly speaking, the resampling algorithm by Moser and Tar-

dos [24] works as follows. We initialize all variables randomly. If

bad events occur, then we arbitrarily choose a bad event and re-

sample all the involved variables. Unfortunately, it is not hard to
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see that this algorithm can produce biased samples. This seems

inevitable. As Bezáková et al. showed [4], sampling can be NP-hard

even under conditions that are stronger than those of the local

lemma. On the one hand, the symmetric Lovász Local Lemma only

requires ep∆ ≤ 1, where p is the probability of bad events and ∆ is

the maximum degree of the dependency graph. On the other hand,

translating the result of [4] to this setting, one sees that as soon as

p∆2 ≥ C for some constant C , then even approximately sampling

perfect objects in the variable framework becomes NP-hard.

The starting point of our work is a new condition (see Condi-

tion 2.5) under which we show that the output of the Moser-Tardos

algorithm is in fact uniform (see Theorem 2.7). Intuitively, the con-

dition requires any two dependent bad events to be disjoint. Indeed,

instances satisfying this condition are called “extremal” in the study

of Lovász Local Lemma. For these extremal instances, we can in fact

resample in a parallel fashion, since the occurring bad events form

an independent set in the dependency graph. We call this algorithm

“partial rejection sampling”,
1

in the sense that it is like rejection

sampling, but only resamples an appropriate subset of variables.

Our result puts some classical sampling algorithms under a uni-

�ed framework, including the “cycle-popping” algorithm by Wil-

son [31] for sampling rooted spanning trees, and the “sink-popping”

algorithm by Cohn, Pemantle, and Propp [7] for sampling sink-free

orientations of an undirected graph. Indeed, Cohn et al. [7] coined

the term “partial rejection sampling” and asked for a general theory,

and we believe that extremal instances under the variable frame-

work is a satisfactory answer. With our techniques, we are able to

give a new algorithm to sample solutions for a special class of k-

CNF formulas, under conditions matching the Lovász Local Lemma,

which is an NP-hard task for general k-CNF formulas. Furthermore,

we provide explicit formulas for the expected running time of these

algorithms (see Theorem 2.8), which matches the running time

upper bound given by Kolipaka and Szegedy [20] under Shearer’s

condition [27].

The next natural question is thus whether we can go beyond

extremal instances. Indeed, our main technical contribution is a

general uniform sampler (Algorithm 6) that applies to any problem

under the variable framework. The main idea is that, instead of only

resampling occurring bad events, we resample a larger set of events

so that the choices made do not block any perfect assignments in

the end, in order to make sure of uniformity in the �nal output.

As a simple example, we describe how our algorithm samples

independent sets. The algorithm starts by choosing each vertex with

probability 1/2 independently. At each subsequent round, in the

induced subgraph on the currently chosen vertices, the algorithm

1
Despite the apparent similarity in names, our algorithm is di�erent from “partial

resampling” in [15, 16]. We resample all variables in certain sets of events whereas

“partial resampling” only resamples a subset of variables from some bad event.
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�nds all the connected components of size ≥ 2. It marks these

vertices and their boundaries (which are unoccupied) as “to be

resampled”. Then it resamples all marked vertices, and repeats

this process until there is no edge with both endpoints occupied.

What seems surprising is that this simple process does yield a

uniformly random independent set when it stops. Indeed, as we

will show in Theorem 6.5, this simple process is an exact sampler

for weighted independent sets (also known as the hard-core model in

statistical physics). In addition, it runs in expected linear time under

a condition that matches, up to a constant factor, the uniqueness
threshold of the model (beyond which the problem of approximate

sampling becomes NP-hard).

In the more general setting, we will mark the set of events to

be resampled, denoted by Res, iteratively. We start from the set

of occurring bad events. Then we mark neighbouring events of

the current set Res, until there is no event A on the boundary of

Res such that the current assignment, projected on the common

variables of A and Res, can be extended so that A may happen. In

the worst case, we will resample all events (there is no event in the

boundary at all). In that scenario the algorithm is the same as a naive

rejection sampling, but typically we resample fewer variables in

every step. We show that this is a uniform sampler on assignments

that avoid all bad events once it stops (see Theorem 4.5).

One interesting feature of our algorithm is that, unlike Markov

chain based algorithms, ours does not require the solution space

(or any augmented space) to be connected. Moreover, our sampler

is exact; that is, when the algorithm halts, the �nal distribution

is precisely from the desired distribution. Prior to our work, most

exact sampling algorithms were obtained by coupling from the

past [25]. We also note that previous work on the Moser-Tardos

output distribution, such as [14], is not strong enough to guarantee

a uniform sample (or ε-close to uniform in terms of total variation

distances).

We give su�cient conditions that guarantee a linear expected

running time of our algorithm in the general setting (see Theo-

rem 5.1). The �rst condition is that p∆2
is bounded above by a

constant. This is optimal up to constants in observance of the NP-

hardness result in [4]. Unfortunately, the condition on p∆2
alone

does not make the algorithm e�cient. In addition, we also need to

bound the expansion from bad events to resampling events, which

leads to an extra condition on intersections of bad events. Removing

this extra condition seems to require substantial changes to our

current algorithm.

To illustrate the result, we apply our algorithm to sample satis-

fying assignments of k-CNF formulas in which the degree of each

variable (the number of clauses containing it) is at most d . We say

that ak-CNF formula has intersection s if any two dependent clauses

share at least s variables. The extra condition from our analysis

naturally leads to a lower bound on s . Let n be the number of vari-

ables. We (informally) summarize our results on k-CNF formulas

as follows (see Corollary 6.2 and Theorem 6.3):

• If d ≤ 1

6e · 2
k/2

, dk ≥ 2
3e

and s ≥ min{log
2
dk,k/2}, then

the general partial rejection resampling algorithm outputs

a uniformly random solution to a k-CNF formula with

degree d and intersection s in expected running time O(n).

• If d ≥ 4 · 2k/2 (for an even k), then even if s = k/2, it

is NP-hard even to approximately sample a solution to a

k-CNF formula with degree d and intersection s .

As shown in the hardness result, the intersection bound does not

render the problem trivial.

Previously, sampling/counting satisfying assignments of k-CNF

formulas required the formula to be monotone andd ≤ k to be large

enough [4] (see also [5, 21]). Although our result requires an addi-

tional lower bound on intersections, not only does it improve the

dependency of k and d exponentially, but also achieves a matching
constant 1/2 in the exponent. Furthermore the samples produced

are exactly uniform. Thus, if the extra condition on intersections

can be removed, we will have a sharp phase transition at around

d = O(2k/2) in the computational complexity of sampling solutions

to k-CNF formulas with bounded variable occurrences. A similar

sharp transition has been recently established for, e.g., sampling

con�gurations in the hard-core model [11, 28, 30].

Simultaneous to our work, Hermon, Sly, and Zhang [19] showed

that Markov chains for monotone k-CNF formulas are rapidly

mixing, if d ≤ c2k/2 for a constant c . In another parallel work,

Moitra [22] gave a novel algorithm to sample solutions for general

k-CNF when d . 2
k/60

. We note that neither results are directly

comparable to ours and the techniques are very di�erent. Both of

these two samplers are approximate while ours is exact. Moreover,

ours does not require monotonicity (unlike [19]), and allows larger

d than [22] but at the cost of an extra intersection lower bound.

Unfortunately, our algorithm can be exponentially slow when the

intersection s is not large enough. In sharp contrast, as shown by

Hermon et al. [19], Markov chains mix rapidly ford ≤ c2k/k2 when

s = 1.

While the study of algorithmic Lovász Local Lemma has pro-

gressed beyond the variable framework [1, 17, 18], we restrict our

focus to the variable framework in this work. It is also an inter-

esting future direction to investigate and extend our techniques

of uniform sampling beyond the variable framework. For example,

one may want to sample a permutation that avoids certain patterns.

The classical sampling problem of perfect matchings in a bipartite

graph can be formulated in this way.

2 PARTIAL REJECTION SAMPLING
We �rst describe the “variable” framework. Let {X1, . . . ,Xn } be a

set of random variables. Each Xi can have its own distribution and

range Di . Let {A1, . . . ,Am } be a set of “bad” events that depend on

Xi ’s. For example, for a constraint satisfaction problem (CSP) with

variables Xi (1 ≤ i ≤ n) and constraints Cj (1 ≤ j ≤ m), each Aj is

the set of unsatisfying assignments ofCj for 1 ≤ j ≤ m. Let var(Ai )
be the (index) set of variables that Ai depends on.

The dependency graphG = (V ,E) hasm vertices, identi�ed with

the integers {1, 2, . . . ,m}, corresponding to the events Ai , and (i, j)
is an edge if Ai and Aj depend on one or more common variables.

In other words, (i, j) ∈ E if var(Ai )∩var(Aj ) , ∅. We writeAi ∼ Aj
if the vertices i and j are adjacent in G. The asymmetric Lovász

Local Lemma [9] states the following.
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Theorem 2.1. If there exist non-negative real numbers xi < 1

(1 ≤ i ≤ m) such that ∀i ,
Pr(Ai ) ≤ xi

∏
(i, j)∈E

(1 − x j ), (1)

then Pr

( m∧
i=1

Ai

)
≥

m∏
i=1
(1 − xi ) > 0.

Theorem 2.1 has a condition that is easy to verify, but not neces-

sarily optimal. Shearer [27] gave the optimal condition for the local

lemma to hold for a �xed dependency graph G. To state Shearer’s

condition, we will need the following de�nitions. Let pi := Pr(Ai )
for all 1 ≤ i ≤ m. Let I be the collection of independent sets of G.

De�ne the following quantity:

qI (p) :=
∑

J ∈I, I ⊆ J

(−1) | J |− |I |
∏
i ∈J

pi ,

where p = (p1, . . . ,pm ). When there is no confusion we also simply

write qI instead of the more cumbersome qI (p). Note that if I < I,

qI = 0.

Theorem 2.2 (Shearer [27]). If qI ≥ 0 for all I ⊆ V , then

Pr

(∧m
i=1Ai

)
≥ q∅ .

In particular, if the condition holds with q∅ > 0, then

Pr

( m∧
i=1

Ai

)
> 0.

Neither Theorem 2.1 nor Theorem 2.2 yields an e�cient algo-

rithm to �nd the assignment avoiding all bad events, since they

only guarantee an exponentially small probability. There has been

a long line of research devoting to an algorithmic version of LLL,

culminating in Moser and Tardos [24] with essentially the same

condition as in Theorem 2.1. The Resample algorithm of Moser

and Tardos is very simple, described in Algorithm 1.

Algorithm 1 The Resample algorithm

(1) Draw independent samples of all variablesX1, . . . ,Xn from

their respective distributions.

(2) While at least one Ai holds, uniformly at random pick one

of such Ai and resample all variables in var(Ai ).

(3) Output the current assignment.

In [24], Moser and Tardos showed that Algorithm 1 �nds a good

assignment very e�ciently.

Theorem 2.3 (Moser and Tardos [24]). Under the condition of
Theorem 2.1, the expected number of resampling steps in Algorithm 1
is at most

∑m
i=1

xi
1−xi .

Unfortunately, the �nal output of Algorithm 1 is not distributed

as we would like, namely as a product distribution conditioned on

avoiding all bad events.

In addition, Kolipaka and Szegedy [20] showed that up to the con-

dition of Shearer, Algorithm 1 is e�cient. To simplify the notation,

let qi := q {i } for 1 ≤ i ≤ m.

Theorem 2.4 (Kolipaka and Szegedy [20]). If qI ≥ 0 for all
I ∈ I and q∅ > 0, then the expected number of resampling steps
in Algorithm 1 is at most

∑m
i=1

qi
q∅ .

On the other hand, Wilson’s cycle-popping algorithm [31] is

very similar to the Resample algorithm but it outputs a uniformly

random rooted spanning tree. Another similar algorithm is the sink-

popping algorithm by Cohn, Pemantle, and Propp [7] to generate

a sink-free orientation uniformly at random. Upon close examina-

tion of these two algorithms, we found a common feature of both

problems.

Condition 2.5. If (i, j) ∈ E (or equivalently Ai ∼ Aj ), then
Pr(Ai ∧Aj ) = 0; namely the two events Ai and Aj are disjoint if they
are dependent.

In other words, any two eventsAi andAj are either independent

or disjoint. These instances have been noticed in the study of Lovász

Local Lemma. They are the ones that minimize Pr

(∧m
i=1Ai

)
given

Shearer’s condition (namely Pr

(∧m
i=1Ai

)
= q∅). Instances satisfy-

ing Condition 2.5 have been named extremal [20].

We will show that, given Condition 2.5, the �nal output of the

Resample algorithm is a sample from a conditional product distri-

bution (Theorem 2.7). Moreover, we will show that under Condition

2.5, the running time upper bound

∑m
i=1

qi
q∅ given by Kolipaka and

Szegedy (Theorem 2.4) is indeed the exact expected running time.

See Theorem 2.8.

In fact, when Condition 2.5 holds, at each step of Algorithm 1,

the occurring events form an independent set of the dependency

graph G . Think of the execution of Algorithm 1 as going in rounds.

In each round we �nd the set I of bad events that occur. Due to

Condition 2.5, var(Ai ) ∩ var(Aj ) = ∅ for any i, j ∈ I , i.e., I is an

independent set in the dependency graph. Therefore, we can re-

sample all variables involved in the occurring bad events without

interfering with each other. This motivates Algorithm 2.

We call Algorithm 2 the Partial Rejection Sampling algorithm.

This name was coined by Cohn, Pemantle, and Propp [7]. Indeed,

they ask as an open problem how to generalize their sink-popping

algorithm and Wilson’s cycle popping algorithm. We answer this

question under the variable framework. Partial Rejection Sam-

pling di�ers from the normal rejection sampling algorithm by only

resampling “bad” events. Moreover, Algorithm 2 is uniform only

on extremal instances, and is a special case of Algorithm 6 given in

Section 4, which is a uniform sampler for all instances.

Algorithm 2 Partial Rejection Sampling for extremal instances

(1) Draw independent samples of all variablesX1, . . . ,Xn from

their respective distributions.

(2) While at least one bad event holds, �nd the independent set

I of occurring Ai ’s. Independently resample all variables

in

⋃
i ∈I var(Ai ).

(3) Output the current assignment.

In fact, Algorithm 2 is the same as the parallel version of Algo-

rithm 1 by Moser and Tardos [24]. Suppose each event is assigned to
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a processor, which determines whether the event holds by looking

at the variables associated with the event. If the event holds then

all associated variables are resampled. No con�ict will be created

due to Condition 2.5.

In the following analysis, we will use the resampling table idea,

which has appeared in both the analysis of Moser and Tardos [24]

and Wilson [31]. Note that we only use this idea to analyze the

algorithm rather than to really create the table in the execution.

Associate each variable Xi with an in�nite stack of random values

{Xi,1,Xi,2, . . . }. This forms the resampling table where each row

represents a variable and there are in�nitely many columns. In the

execution of the algorithm, when a variable needs to be resampled,

the algorithm draws the top value from the stack, or equivalently

moves from the current entry in the resampling table to its right.

Let t be a positive integer to denote the round of Algorithm 2.

Let ji,t be the index of the variable Xi in the resampling table at

round t . In other words, at the t-th round, Xi takes value Xi, ji,t .

Thus, the set σt = {Xi, ji,t | 1 ≤ i ≤ n} is the current assignment of

variables at round t . This σt determines which events happen. Call

the set of occurring events, viewed as a subset of the vertex set of

the dependency graph, It . (For convenience, we shall sometimes

identify the event Ai with its index i; thus, we shall refer to the

“events in S” rather than the “events indexed by S”.) As explained

above, It is an independent set of G due to Condition 2.5. Then

variables that are involved in any of the events in It are resampled.

In other words, if ∃` ∈ It such that Xi ∈ var(A`), then ji,t+1 =
ji,t + 1; otherwise ji,t+1 = ji,t .

Let M be a resampling table. Suppose running Algorithm 2 on

M does not terminate up to some integer ` ≥ 1 rounds. De�ne the

log of running Algorithm 2 on M up to round ` as the sequence of

independent sets I1, I2, . . . , I` created by this run. Thus, for any M
and 1 ≤ t ≤ `, It+1 ⊆ Γ+(It ).

Lemma 2.6. Suppose Condition 2.5 holds. Given any log S =
S1, S2, . . . , S` of length ` ≥ 1, σ`+1 is a random sample from the
product distribution conditioned on none of the events Ai occurring,
where i < Γ+(S`).

Proof. The set of occurring events at round ` is S` . Hence σ`+1
does not make any of the Ai ’s happen where i < Γ+(S`). Call an

assignment σ valid if none of Ai ’s happen where i < Γ+(S`). To

show that σ`+1 has the desired conditional product distribution, we

will show that the probabilities of getting any two valid assignments

σ and σ ′ are proportional to their probabilities of occurrence in the

product distribution.

Let M be the resampling table so that the log of the algorithm

is S up to round ` ≥ 1, and σ`+1 = σ . Indeed, since we only care

about events up to round ` + 1, we may truncate the table so that

M = {Xi, j | 1 ≤ i ≤ n, 1 ≤ j ≤ ji, `+1}. Let M ′ = {X ′i, j | 1 ≤ i ≤

n, 1 ≤ j ≤ ji, `+1} be another table where X ′i, j = Xi, j if j < ji, `+1
for any i ∈ [n], but σ`+1 = σ ′. In other words, we only change

the values in the �nal round (Xi, ji, `+1 ), and only to another valid

assignment.

The lemma follows if the algorithm running on M ′ generates

the same log S. Since if this is the case, then conditioned on the log

S, every possible table M is one-to-one corresponding to another

table M ′ where σ`+1 = σ ′. Hence the probability of getting σ is

proportional to its weight in the product distribution.

Suppose otherwise and the logs obtained by running the algo-

rithm on M and M ′ di�er. Let t0 ≤ ` be the �rst round where

resampling changes. Since X ′i, j = Xi, j if j < ji, `+1 for any i ∈ [n],

any eventA that occurs inS should still occur when running on M ′.
(If this is not the case, then A must depend on values at the �nal

round of the resampling table. When the variables of A are resam-

pled, the algorithm will attempt to access values beyond the table,

a contradiction.) There must be an occurring event, say A, that

happens at t0 on M ′ but not on M . Moreover, there must be a set of

variables in var(A) that have values (Xi, ji, `+1 ), as otherwise the two

runs should be identical. Let us call this set of variables Y . Since

resampling does not change before t0, in theM ′ run, the assignment

of variables in Y must be (X ′i, ji, `+1 ) at time t0.

We claim that Y = var(A). If the claim does not hold, then Z :=

var(A) \ Y , ∅. Any variable in Z has not reached �nal round,

and must be resampled in the M run. Let X j ∈ Z be the �rst such

variable being resampled at or after round t0 in the M run. (The

choice of X j may not be unique, and we just choose an arbitrary

one.) Recall that Y , ∅, A can no longer happen, thus there must be

A′ , A causing such a resampling of X j . Then var(A) ∩ var(A′) , ∅.
Consider any variable Xk ∈ var(A) ∩ var(A′). It is resampled at

or after time t0 in the M run due to A′. Hence Xk ∈ Z for any

such k . Moreover, in the M run, until A′ happens, Xk has not been

resampled since time t0, because A′ is the �rst resampling event at

or after time t0 that involves variables in Z . On the other hand, in

the M ′ run, Xk ’s value causes A to happen at time t0. Hence, there

exists an assignment on variables in var(A)∩var(A′) such that both

A and A′ happen. Clearly this assignment can be extended to a

full assignment so that both A and A′ happen. However, A ∼ A′

as they share the variable X j . Due to Condition 2.5, A ∩ A′ = ∅.
Contradiction! Therefore the claim holds.

We argue that the remaining case,Y = var(A), is also not possible.

Since A occurs in the M ′ run, we know, by the de�nition of σ ′, that

A ∈ Γ+(S`). Thus, some event whose variables intersect with those

in A must occur in the M run. But when the algorithm attempts

to update variables shared by these two events in the M run, it

will access values beyond the �nal round of the resampling table, a

contradiction. �

We remark that Lemma 2.6 is not true for non-extremal instances

(that is, if Condition 2.5 fails). In particular, Lemma 2.6 says that

given any log, every valid assignment is not only reachable, but

also with the correct probability. This is no longer the case for

non-extremal instances — some valid assignments from the desired

conditional product distribution could be “blocked” under the log

S. In Section 4 we show how to instead achieve uniformity by

resampling an “unblocking” set of bad events.

Using Lemma 2.6 it is not hard to see the �nal output of Algo-

rithm 2 is uniform.

Theorem 2.7. When Condition 2.5 holds and Algorithm 2 halts,
its output is a product distribution conditioned on avoiding all bad
events.

The running time of Algorithm 2 actually matches exactly the

upper bound given by Kolipaka and Szegedy [20] (see Theorem 2.4).
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We omit the proof here and it can be found in Section 3 of the full

version [13].

Theorem 2.8. If q∅ > 0, then the expected number of resampling
steps in Algorithm 2 is given by

∑m
i=1

qi
q∅ .

The quantity

∑m
i=1

qi
q∅ has a simple combinatorial explanation

under Condition 2.5. Call an assignment is perfect if it avoids all

bad events, and near-perfect if it avoids all but one bad events.

Then

∑m
i=1

qi
q∅ is the ratio between the number of near-perfect

assignments and the number of perfect assignments. However it is

not always easy to bound. Kolipaka and Szegedy [20] showed that

when the probability vector p satis�es Shearer’s condition with a

constant “slack”, the running time is in fact linear in the number of

events. Let p = maxi ∈[m]{pi }.

Corollary 2.9 ([20, Theorem 5]). Let d ≥ 2 be a positive integer

and pc =
(d−1)(d−1)

dd
. If G has maximum degree d and p < pc , then

Algorithm 2 resamples at most p
pc−p ·m events in expectation.

3 APPLICATIONS OF ALGORITHM 2
3.1 Sink-free Orientations
The goal of this application is to sample a sink-free orientation.

Given a graph G = (V ,E), an orientation of edges is a mapping σ
so that σ (e) = (u,v) or (v,u) where e = (u,v) ∈ E. A sink under

orientation σ is a vertex v so that for any adjacent edge e = (u,v),
σ (e) = (u,v). A sink-free orientation is an orientation so that no

vertex is a sink.

Name Sampling Sink-free Orientations

Instance A Graph G.

Output A uniform sink-free orientation.

The �rst algorithm for this problem is given by Bubley and Dyer

[6], using Markov chains and path coupling techniques.

In this application, we associate with each edge a random vari-

able, whose possible values are (u,v) or (v,u). For each vertex vi ,
we associate it with a bad event Ai , which happens when vi is a

sink. Thus the graph G itself is also the dependency graph. Condi-

tion 2.5 is satis�ed. This follows because if a vertex is a sink, then

none of its neighbours can be a sink. Thus we may apply Algorithm

2, which yields Algorithm 3. This is the “sink-popping” algorithm

given by Cohn, Pemantle, and Propp [7].

Algorithm 3 Sample Sink-free Orientations

(1) Orient each edge independently and uniformly at random.

(2) While there is at least one sink, re-orient all edges that are

adjacent to a sink.

(3) Output the current assignment.

LetZ
sink,0 be the number of sink-free orientations, and letZ

sink,1

be the number of orientations having exactly one sink. Then Theo-

rem 2.8 specializes into the following.

Theorem 3.1. The expected number of resampled sinks in Algo-
rithm 3 is Z

sink,1

Z
sink,0

.

The next theorem gives an explicit bound on

Z
sink,1

Z
sink,0

.

Theorem 3.2. LetG be a connected graph on n vertices. IfG is not
a tree, then Z

sink,1

Z
sink,0
≤ n(n − 1), where n = |V (G)|.

Proof. Consider an orientation of the edges of G with a unique

sink at vertex v . We give a systematic procedure for transforming

this orientation to a sink-free orientation. Since G is connected

and not a tree, there exists an (undirected) path Π in G of the form

v = v0,v1, . . . ,v`−1,v` = vk , where the vertices v0,v1, . . . ,v`−1
are all distinct and 0 ≤ k ≤ `−2. In other words,Π is a simple path of

length `−1 followed by a single edge back to some previously visited

vertex. We will choose a canonical path of this form (depending

only onG and not on the current orientation) for each start vertexv .

We now proceed as follows. Since v is a sink, the �rst edge on Π
is directed (v1,v0). Reverse the orientation of this edge so that it is

now oriented (v0,v1). This operation destroys the sink atv = v0 but

may create a new sink at v1. If v1 is not a sink then halt. Otherwise,

reverse the orientation of the second edge of Π from (v2,v1) to

(v1,v2). Continue in this fashion: if we reach vi and it is not a sink

then halt; otherwise reverse the orientation of the (i + 1)th edge

from (vi+1,vi ) to (vi ,vi+1). This procedure must terminate with

a sink-free graph before we reach v` . To see this, note that if we

reach the vertex v`−1 then the �nal edge of Π must be oriented

(v`−1,v`), otherwise the procedure would have terminated already

at vertex vk (= v`).
The e�ect of the above procedure is to reverse the orientation of

edges on some initial segmentv0, . . . ,vi of Π. To put the procedure

into reverse, we just need to know the identity of the vertex vi . So

our procedure associates at most n orientations having a single sink

at vertexv with each sink-free orientation. There aren(n−1) choices

for the pair (v,vi ), and hence n(n − 1) single-sink orientations

associated with each sink-free orientation. This establishes the

result. �

Remark. The bound in Theorem 3.2 is optimal up to a factor of 2.
Consider a cycle of length n. Then there are 2 sink-free orientations,
and n(n − 1) single-sink orientations.

Theorem 3.2 and Theorem 3.1 together yield an n2 bound on the ex-
pected number of resamplings that occur during a run of Algorithm 3.
A cycle of length n is an interesting special case. Consider the number
of clockwise oriented edges during a run of the algorithm. It is easy to
check that this number evolves as an unbiased lazy simple random
walk on [0,n]. Since the walk starts close to n/2 with high probability,
we know that it will take Ω(n2) steps to reach one of the sink-free
states, i.e., 0 or n.

On the other hand, if G is a regular graph of degree ∆ ≥ 3, then
we get a much better linear bound from Corollary 2.9. In the case
∆ = 3, we have pc = 4/27, p = 1/8 and p/(pc − p) = 27/5. So the
expected number of resamplings is bounded by 27n/5. The constant
in the bound improves as ∆ increases. Conversely, since the expected
running time is exact, we can also apply Corollary 2.9 to give an upper
bound of Z

sink,1

Z
sink,0

when G is a regular graph.

3.2 Rooted Spanning Trees
Given a graphG = (V ,E)with a special vertex r , we want to sample

a uniform spanning tree with r as the root.
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Name Sampling Rooted Spanning Trees

Instance A Graph G with a vertex r .

Output A uniform spanning tree rooted at r .

Of course, any given spanning tree may be rooted at any ver-

tex r , so there is no real di�erence between rooted and unrooted

spanning trees. However, since this approach to sampling generates

an oriented tree, it is easier to think of the trees as being rooted at

a particular vertex r .

For all vertices other than r , we randomly assign it to point to one

of its neighbours. This is the random variable associated withv . We

will think of this random variable as an arrow v → s(v) pointing

from v to its successor s(v). The arrows point out an oriented

subgraph of G with n − 1 edges {{v, s(v)} : v ∈ V \ {r }} directed

as speci�ed by the arrows. The constraint for this subgraph to be

a tree rooted at r is that it contains no directed cycles. Note that

there are 2
|E |− |V |+κ(G)

(undirected) cycles in G, where κ(G) is the

number of connected components of G. Hence, we have possibly

exponentially many constraints.

Two cycles are dependent if they share at least one vertex. We

claim that Condition 2.5 is satis�ed. Suppose a cycle C is present,

and C ′ , C is another cycle that shares at least one vertex with C .

If C ′ is also present, then we may start from any vertex v ∈ C ∩C ′,
and then follow the arrowsv → v ′. Since bothC andC ′ are present,

it must be that v ′ ∈ C ∩C ′ as well. Continuing this argument we

see that C = C ′. Contradiction!

As Condition 2.5 is met, we may apply Algorithm 2, yielding Al-

gorithm 4. This is exactly the “cycle-popping” algorithm by Wilson

[31], as described in [26].

Algorithm 4 Sample Rooted Spanning Trees

(1) Let T be an empty set. For each vertex v , r , randomly

choose a neighbour u ∈ Γ(v) and add an edge (v,u) to T .

(2) While there is at least one cycle in T , remove all edges in

all cycles, and for all vertices whose edges are removed,

redo step (1).

(3) Output the current set of edges.

Let Ztree,0 be the number of possible assignments of arrows to

the vertices of G , that yield a (directed) tree with root r , and Ztree,1
be the number of assignments that yield a unicyclic subgraph. A

unicyclic subgraph has two components: a directed tree with root r ,

and a directed cycle with a number of directed subtrees rooted on

the cycle. The next theorem gives an explicit bound on
Ztree,1

Ztree,0
.

Theorem 3.3. Suppose G is a connected graph on n vertices, with
m edges. Then Ztree,1

Ztree,0
≤ mn.

Proof. Consider an assignment of arrows to the vertices of G
that forms a unicyclic graph. As previously observed, this graph

has two components. AsG is connected, there must be an edge inG
joining the two components; let this edge be {v0,v1}, wherev0 is in

the tree component andv1 in the unicyclic component. Now extend

this edge to a pathv0,v1, . . . ,v` , by following arrows until we reach

the cycle. Thus, v1 → v2, v2 → v3, . . . , v`−1 → v` are all arrows,

and v` is the �rst vertex that lies on the cycle. (It may happen

that ` = 1.) Let v` → v`+1 be the arrow out of v` . Now reassign

the arrows from vertices v1, . . . ,v` thus: v` → v`−1, . . . ,v2 →
v1, v1 → v0. Notice that the result is a directed tree rooted at r .

As before, we would like to bound the number of unicyclic sub-

graphs associated with a given tree by this procedure. We claim

that the procedure can be reversed given just two pieces of infor-

mation, namely, the edge {v` ,v`+1} and the vertex v0. Note that,

even though the edge {v` ,v`+1} is undirected, we can disambiguate

the endpoints, as v` is the vertex closer to the root r . The vertices

v`−1, . . . ,v1 are easy to recover, as they are the vertices on the

unique path in the tree from v` to v0. To recover the unicyclic sub-

graph, we just need to reassign the arrows for vertices v1, . . . ,v`
as follows: v1 → v2, . . . , v` → v`+1.

As the procedure can be reversed knowing one edge and one

vertex, the number of unicyclic graphs associated with each tree

can be at mostmn. �

Theorem 3.3 combined with Theorem 2.8 yields an mn upper

bound on the expected number of “popped cycles” during a run

of Algorithm 4.

On the other hand, the bound of Theorem 3.3 is tight up to

constant factors. For example, take a cycle of length n. Then there

are n spanning trees with a particular root v , and there are Ω(n3)
unicyclic graphs (here a cycle has to be of length 2). Thus the ratio

is Ω(n2) = Ω(mn) sincem = n.

3.3 Extremal CNF formulas
A classical setting in the study of algorithmic Lovász Local Lemma

is to �nd satisfying assignments in k-CNF formulas
2
, when the

number of appearances of every variable is bounded by d . Theorem

2.1 guarantees the existence of a satisfying assignment as long as

d ≤ 2
k

ek + 1. On the other hand, sampling is apparently harder than

searching in this setting. As shown in [4, Corollary 30], it isNP-hard

to approximately sample satisfying assignments when d ≥ 5 · 2k/2,

even restricted to the special case of monotone formulas.

Meanwhile, sink-free orientations can be recast in terms of CNF

formulas. Every vertex in the graph is mapped to a clause, and every

edge is a variable. Thus every variable appears exactly twice, and we

require that the two literals of the same variable are always opposite.

Interpreting an orientation from u to v as making the literal in the

clause corresponding to v false, the “sink-free” requirement is thus

“not all literals in a clause are false”. Hence a “sink-free” orientation

is just a satisfying assignment for the corresponding CNF formula.

To apply Algorithm 2, we need to require that the CNF formula

satis�es Condition 2.5. Such formulas are de�ned as follows.

De�nition 3.4. We call a CNF formula extremal if for every two

clauses Ci and Cj , if there is a common variable shared by Ci and

Cj , then there exists some variable x such that x appears in both

Ci and Cj and the two literals are one positive and one negative.

LetC1, . . . ,Cm be the clauses of a formula φ. Then de�ne the bad

event Ai as the set of unsatisfying assignments of clauseCi . For an

extremal CNF formula, these bad events satisfy Condition 2.5. This

is because if Ai ∼ Aj , then by De�nition 3.4, there exists a variable

2
As usual in the study of Lovász Local Lemma, by “k -CNF” we mean that every clause

has exactly size k .
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x ∈ var(Ai ) ∩ var(Aj ) such that the unsatisfying assignment of Ci
and Cj di�er on x . Hence Ai ∩Aj = ∅.

In this formulation, if the size of Ci is k , then the corresponding

eventAi happens with probabilitypi = Pr(Ai ) = 2
−k

. Suppose each

variable appears at most d times. Then the maximum degree in the

dependency graph is at most ∆ = (d−1)k . Note that in Corollary 2.9,

pc =
(∆−1)(∆−1)

∆∆ ≥ 1

e∆ . Thus if d ≤ 2
k

ek + 1, then pi = 2
−k < pc and

we may apply Corollary 2.9 to obtain a polynomial time sampling

algorithm.

Corollary 3.5. For extremal k-CNF formulas where each variable
appears in at most d clauses, if d ≤ 2

k

ek + 1, then Algorithm 2 samples
satisfying assignments uniformly at random, with O(m) expected
resamplings wherem is the number of clauses.

The condition in Corollary 3.5 essentially matches the condition

of Theorem 2.1. On the other hand, if we only require Shearer’s con-

dition as in Theorem 2.2, the algorithm may no longer be e�cient.

More precisely, let ZCNF,0 be the number of satisfying assignments,

and ZCNF,1 be the number of assignments satisfying all but one

clause. then the expected number of resamplings
ZCNF,1

ZCNF,0
can be

exponential, as shown in the next example.

Example 3.6. Construct an extremal CNF formula φ = C1 ∧C2 ∧

· · · ∧C4m as follows. Let C1 := x1. Then the variable x1 is pinned

to 1 to satisfy C1. Let C2 := x1 ∨ y1 ∨ y2, C3 := x1 ∨ y1 ∨ y2, and

C4 := x1 ∨ y1 ∨ y2. Then y1 and y2 are also pinned to 1 to satisfy

all C1 −C4.

We continue this construction by letting

C
4k+1 := y2k−1 ∨ y2k ∨ xk+1,

C
4k+2 := xk+1 ∨ y2k+1 ∨ y2k+2,

C
4k+3 := xk+1 ∨ y2k+1 ∨ y2k+2,

C
4k+4 := xk+1 ∨ y2k+1 ∨ y2k+2,

for all 1 ≤ k ≤ m − 1. It is easy to see by induction that to satisfy

all of them, all xi ’s and yi ’s have to be 1. Moreover, one can verify

that this is indeed an extremal formula. Thus ZCNF,0 = 1.

On the other hand, if we are allowed to ignore C1, then x1 can

be 0. In that case, there are 3 choices of y1 and y2 so that x2 to be 0

as well. Thus, there are at least 3
m

assignments that only violate

C1, where x1 = x2 = · · · = xm = 0. It implies that ZCNF,1 ≥ 3
m

.

Hence we see that
ZCNF,1

ZCNF,0
≥ 3

m
. Due to Theorem 2.8, the expected

running time of Algorithm 2 on this formula φ is exponential in m.

We will discuss more on sampling satisfying assignments of a

k-CNF formula in Section 6.1.

4 GENERAL PARTIAL REJECTION SAMPLING
In this section we give a general version of Algorithm 2 which can

be applied to arbitrary instances in the variable framework, even

without Condition 2.5.

Recall the notation introduced at the beginning of Section 2.

So, {X1, . . . ,Xn } is a set of random variables, each with its own

distribution and range Di , and {A1, . . . ,Am } is a set of bad events

that depend onXi ’s. The dependencies between events are encoded

in the dependency graphG = (V ,E). As before, we will use the idea

of a resampling table. Recall that σ = σt = {Xi, ji,t | 1 ≤ i ≤ n}

denotes the current assignment of variables at round t , i.e., the

elements of the resampling table that are active at time t . Given

σ , let Bad(σ ) be the set of occurring bad events; that is, Bad(σ ) =
{i | σ ∈ Ai }. For a subset S ⊂ V , let ∂S be the boundary of S ;

that is, ∂S = {i | i < S and ∃j ∈ S, (i, j) ∈ E}. Moreover, let

var(S) :=
⋃
i ∈S var(Ai ). Let σ |S (or simply σS when there is no

confusion) be the partial assignment of σ restricted to var(S). For

an eventAi and S ⊆ V , we writeAi ∩σS = ∅ if var(Ai )∩var(S) = ∅,
or Ai is disjoint from the partial assignment of σ , when both are

restricted to var(Ai ) ∩ var(S). Informally, Ai cannot occur given

partial assignment σS . Otherwise we write Ai ∩ σS , ∅.

De�nition 4.1. A set S ⊆ V is unblocking under σ if for every

i ∈ ∂S , Ai ∩ σS = ∅.

Given σ , our goal is to resample a set of events that is unblocking

and contains Bad(σ ). Such a set must exist becauseV is unblocking

(∂V is empty) and Bad(σ ) ⊆ V . However, we want to resample as

few events as possible.

Algorithm 5 Select the resampling set Res(σ )

(1) Let R = Bad(σ ), which is the set of events that will be

resampled. Let N = ∅, which is the set of events that will

not be resampled.

(2) While ∂R \ N , ∅, go through i ∈ ∂R \ N ; if Ai ∩ σR , ∅,
add i into R, otherwise add i into N .

(3) Output R.

Intuitively, we start by setting the resampling set R0 as the set of

bad events Bad(σ ). We mark resampling events in rounds, similar

to a breadth �rst search. Let Rt be the resampling set of round t ≥ 0.

In round t + 1, let Ai be an event on the boundary of Rt that hasn’t

been marked yet. We mark it “resampling” if the partial assignments

on the shared variables of Ai and Rt can be extended so that Ai
occurs. Otherwise we mark it “not resampling”. We continue this

process until there is no unmarked event left on the boundary of

the current R. An event outside of Γ+(R) may be left unmarked at

the end of Algorithm 5. Note that once we mark some event “not

resampling”, it will never be added into the resampling set.

It it easy to see that the output of Algorithm 5 is deterministic

under σ . Call it Res(σ ).

Lemma 4.2. Let σ be an assignment. For any i ∈ ∂Res(σ ), Ai ∩
σRes(σ ) = ∅.

Proof. Since i ∈ ∂Res(σ ), it must have been marked. Moreover,

i < Res(σ ), so it must be marked as “not resampling”. Thus, there

exists an intermediate set R ⊆ Res(σ ) during the execution of

Algorithm 5 such that Ai ∩ σR = ∅ and i ∈ ∂R. It implies that Ai
is disjoint from the partial assignment of σ restricted to var(Ai ) ∩
var(R). However,

var(Ai ) ∩ var(R) ⊆ var(Ai ) ∩ var(Res(σ ))

as R ⊆ Res(σ ). We have that Ai ∩ σRes(σ ) = ∅. �

If Condition 2.5 is met, then Res(σ ) = Bad(σ ). This is because at

the �rst step, R = Bad(σ ). By Condition 2.5, for any i ∈ ∂Bad(σ ),
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Ai is disjoint from all Aj ’s where j ∈ Bad(σ ) and Ai ∼ Aj . Since

Aj occurs under σ , Ai ∩ σR = ∅. Algorithm 5 halts at the �rst

step. In this case, since the resampling set is just the (independent)

set of occurring bad events, the later Algorithm 6 coincides with

Algorithm 2.

The key to Res(σ ) is that if we change the assignment outside of

Res(σ ), then Res(σ ) does not change, unless the new assignment

introduces a new bad event outside of Res(σ ).

Lemma 4.3. Let σ be an assignment. Let σ ′ be another assignment
such that Bad(σ ′) ⊆ Res(σ ) and such that σ and σ ′ agree on all vari-
ables in var(Res(σ )) =

⋃
i ∈Res(σ ) var(Ai ). Then, Res(σ ′) = Res(σ ).

Proof. Let Rt (σ ),Nt (σ ) be the intermediate sets R,N , respec-

tively, at time t of the execution of Algorithm 5 under σ . Thus

R0(σ ) = Bad(σ ) and R0(σ ) ⊆ R1(σ ) ⊆ · · · ⊆ Res(σ ). Moreover,

N0(σ ) ⊆ N1(σ ) ⊆ · · · . We will show by induction that Rt (σ ) =
Rt (σ

′) and Nt (σ ) = Nt (σ
′) for any t ≥ 0.

For the base case of t = 0, by the condition of the lemma, for every

i ∈ Bad(σ ) ⊆ Res(σ ), the assignments σ and σ ′ agree on var(Ai );
or equivalently σRes(σ ) = σ

′
Res(σ ). Together with Bad(σ ′) ⊆ Res(σ ),

it implies that Bad(σ ) = Bad(σ ′) and R0(σ ) = R0(σ
′). Moreover,

N0(σ ) = N0(σ
′) = ∅.

For the induction step t > 0, we have that Rt−1(σ ) = Rt−1(σ
′) ⊆

Res(σ ) and Nt−1(σ ) = Nt−1(σ
′). Let R = Rt−1(σ ) = Rt−1(σ

′) and

N = Nt−1(σ ) = Nt−1(σ
′). Then we will go through ∂R \ N , which

is the same for both σ and σ ′. Moreover, while marking individual

events “resampling” or not, it is su�cient to look at only σR = σ
′
R

since R ⊆ Res(σ ). Thus the markings are exactly the same, implying

that Rt (σ ) = Rt (σ
′) ⊆ Res(σ ) and Nt (σ ) = Nt (σ

′). �

Algorithm 6 General Partial Rejection Sampling

(1) Draw independent samples of all variablesX1, . . . ,Xn from

their respective distributions.

(2) While at least one bad event occurs under the current

assignment σ , use Algorithm 5 to �nd Res(σ ). Resample

all variables in

⋃
i ∈Res(σ ) var(Ai ).

(3) When none of the bad events holds, output the current

assignment.

To prove the correctness of Algorithm 6, we will only use three

properties of Res(σ ), which are intuitively summarized as follows:

(1) Bad(σ ) ⊆ Res(σ );
(2) For any i ∈ ∂Res(σ ), Ai is disjoint from the partial assign-

ment of σ projected on var(Ai ) ∩ var(Res(σ )) (Lemma 4.2);

(3) If we �x the partial assignment ofσ projected on var(Res(σ )),
then the output of Algorithm 5 is �xed, unless there are

new bad events occurring outside of Res(σ ) (Lemma 4.3).

Similarly to the analysis of Algorithm 2, we call S = S1, . . . , S`
the log, if Si is the set of resampling events in step i of Algorithm 6.

Note that for Algorithm 6, the log is not necessarily an independent

set sequence. Also, recall that σi is the assignment of variables in

step i .

Lemma 4.4. Given any log S of length ` ≥ 1, σ`+1 has the product
distribution conditioned on none of Ai ’s occurring where i < Γ+(S`).

Proof. Suppose i < Γ+(S`). By construction, S` contains all

occurring bad events of σ` , and hence Ai does not occur under σ` .

In step `, we only resample variables that are involved in S` , so σ`+1
and σ` agree on var(Ai ). HenceAi cannot occur under σ`+1. Call an

assignment σ valid if none of Ai occurs where i < Γ+(S`). To show

that σ`+1 has the desired conditional product distribution, we will

show that the probabilities of getting any two valid assignments σ
and σ ′ are proportional to their probabilities of occurrence in the

product distribution.

Let M be the resampling table so that the log of Algorithm 6

is S up to round `, and σ`+1 = σ . Indeed, since we only care

about events up to round ` + 1, we may truncate the table so that

M = {Xi, j | 1 ≤ i ≤ n, 1 ≤ j ≤ ji, `+1}. Let M ′ = {X ′i, j | 1 ≤

i ≤ n, 1 ≤ j ≤ ji, `+1} be another table where X ′i, j = Xi, j if

j < ji, `+1 for any i ∈ [n], and σ ′ = (X ′i, ji, `+1 : 1 ≤ i ≤ n) is a valid

assignment. In other words, we only change the last assignment

(Xi, ji, `+1 ) to another valid assignment. We will use σ ′t = (X
′
i, ji,t ) to

denote the active elements of the second resampling table at time t ;
thus σ ′ = σ ′

`+1
.

The lemma follows if Algorithm 6 running on M ′ generates the

same log S up to round `, since, if this is the case, then conditioned

on the log S, every possible table M where σ`+1 = σ is one-to-one

correspondence with another table M ′ where σ ′
`+1
= σ ′. Hence the

probability of getting σ is proportional to its weight in the product

distribution.

Suppose otherwise and the log of running Algorithm 6 on M and

M ′ di�er. Let t0 ≤ ` be the �rst round where resampling changes, by

which we mean that Res(σt0 ) , Res(σ ′t0 ). By Lemma 4.3, there must

be a variableXi such that ji,t0 = ji, `+1 (otherwiseXi, ji,t
0

= X ′i, ji,t
0

)

and Xi is involved in some event of Res(σt0 ) or Xi is involved in

Bad(σ ′t0 ) \ Res(σt0 ).

(1) If Xi is involved in some event in Res(σt0 ), then Xi is re-

sampled once more in the original run on M , and its index

goes up to at least ji, `+1 + 1 at round ` + 1. Contradiction!

This in particular implies that restricted to variables

of Res(σt0 ), σ and σ ′ should agree; that is, σt0 |Res(σt
0
) =

σ ′t0 |Res(σt0 )
.

(2) Otherwise there exists j such thatXi ∈ var(Aj ), j ∈ Bad(σ ′t0 )
but j < Res(σt0 ).

Suppose �rst that ∀k ∈ var(Aj ), jk,t0 = jk, `+1, which

means that all variables of Aj have reached their �nal val-

ues in the M run at time t0. This implies that j < Γ+(St ) for

any t ≥ t0 as otherwise some of the variables in var(Aj )

would be resampled at least once after round t0. In particu-

lar, j < Γ+(S`). This contradicts with σ ′ being valid.

Otherwise there are some variables in var(Aj ) that get

resampled after time t0 in the M run. Let t1 be the �rst such

time and Y ⊂ var(Aj ) be the set of variables resampled at

round t1; namely, Y = var(Aj ) ∩ var(Res(σt1 )). We have

that σt1 |Y = σt0 |Y because t1 is the �rst time of resampling

variables inY . Moreover, as variables ofY have not reached

their �nal values yet in the M run, σt0 |Y = σ ′t0 |Y . Thus,

σt1 |Y = σ
′
t0 |Y .
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Assuming j ∈ Res(σt1 ) would contradict the fact that

Xi has reached its �nal value in the M run. Hence j <
Res(σt1 ), but nevertheless variables in Y ⊂ var(Aj ) are

resampled. This implies that j ∈ ∂Res(σt1 ). By Lemma

4.2, Aj ∩ σt1 |Res(σt
1
) = ∅. This means that Aj is disjoint

from the partial assignment of σt1 restricted to var(Aj ) ∩

var(Res(σt1 )) = Y . Equivalently, Aj ∩ σt1 |Y = ∅. However

we know that σt1 |Y = σ
′
t0 |Y , so Aj ∩ σ

′
t0 |Y = ∅, contradict-

ing j ∈ Bad(σ ′t0 ). �

Theorem 4.5. If Algorithm 6 halts, then its output has the product
distribution conditioned on none of Ai ’s occurring.

Proof. Clearly the output of Algorithm 6 avoids all bad events,

since otherwise it does not halt.

Let a sequence S of sets of events be the log of any successful

run. By Lemma 4.4, conditioned on S, the output assignment σ

has the product distribution conditioned on

∧
i<Γ+(S` )Ai . Since the

algorithm terminates we further condition on none of the other

bad events occurring either. The resulting output distribution still

has the property that valid assignments occur with probability

proportional to those in the product distribution. Since the above

argument is valid for any possible log, the theorem follows. �

5 RUNNING TIME ANALYSIS OF
ALGORITHM 6

Obviously when there is no assignment avoiding all bad events,

then Algorithm 6 will never halt. Thus we want to assume some

conditions to guarantee a desired assignment. However, the optimal

condition of Theorem 2.2 is quite di�cult to work under. Instead, in

this section we will be working under the assumption that Theorem

2.1’s condition (1) holds. In fact, to make the presentation clean, we

will mostly work with the simpler symmetric case.

However, as mentioned in Section 3.3, [4, Corollary 30] showed

that even under the condition (1), sampling can still be NP-hard.

We thus in turn look for some further condition to make Algorithm

6 e�cient.

Let µ(·) be the product distribution of sampling all variables

independently. For two distinct events Ai ∼ Aj , let Ri j be the event

that the partial assignments on var(Ai )∩var(Aj ) can be extended to

an assignment making Aj true. Thus, if Ai is added by Algorithm 5

at round t ≥ 1, then for any event Aj added in round t − 1 such

that Ai ∼ Aj , the event Rji has to be true. Conversely, suppose Ai
is unmarked and is under examination at round t . Then even if Rji
is true for all j ∈ Γ(i) where Aj is added in round t − 1, Ai is not

necessarily marked “resampling” in round t by Algorithm 5. (It is

possible for Ai ∩ σR = ∅ even if all the Rji are true.) Note that Ri j
is not necessarily the same as Rji . Let ri j := µ(Ri j ).

De�ne p := max

i ∈[m]
pi and r := max

Ai∼Aj , i,j
ri j . Let ∆ be the maxi-

mum degree of the dependency graph G. The main result of the

section is the following theorem.

Theorem 5.1. Letm be the number of events and n be the number
of variables. For any ∆ ≥ 2, if 6ep∆2 ≤ 1 and 3er∆ ≤ 1, then the
expected number of resampled events of Algorithm 6 is O(m).

Moreover, in this case, the expected number of rounds is O(logm)
and thus the expected number of variable resamples is O(n logm).

The �rst condition 6ep∆2 ≤ 1 is stronger than the condition of

the symmetric Lovász Local Lemma, but this seems necessary since

[4, Corollary 30] implies that if p∆2 ≥ C for some constant C then

the sampling problem is NP-hard. Intuitively, the second condition

3er∆ ≤ 1 bounds the expansion from bad events to resampling

events at every step of Algorithm 6. We will prove Theorem 5.1 in

the rest of the section.

Let S ⊆ [m] be a subset of vertices of the dependency graph G.

Recall that A(S) is the event

∧
i ∈S Ai and B(S) is the event

∧
i ∈S Ai .

Moreover, Sc is the complement of S , namely Sc = [m] \ S , and Se

is the “exterior” of S , namely Se = [m] \ Γ+(S).
Lemma 4.4 implies that if we resample S at some step t of Algo-

rithm 6, then at step t + 1 the distribution is the product measure µ
conditioned on none of the events in the exterior of S holds; namely

Prµ (· | B(S
e )).

Let E be an event (not necessarily one of Ai ) depending on

variables in var(E). Let Γ(E) := {i | i ∈ [m], var(Ai ) ∩ var(E) , ∅}
if E is not one of Ai , and Γ(Ai ) := {j | j ∈ [m], j , i and var(Aj ) ∩

var(Ai ) , ∅} is de�ned as usual. Let S ⊆ [m] be a subset of vertices

of G. The next lemma bounds the probability of E conditioned on

none of the events in S happening. It was �rst observed in [14].

Lemma 5.2 ([14, Theorem 2.1]). Suppose (1) holds. For an event E
and any set S ⊆ [m],

Prµ (E | B(S)) ≤ Prµ (E)
∏

i ∈Γ(E)∩S

(1 − xi )
−1,

where xi ’s are from (1).

Typically we set xi =
1

∆+1 in the symmetric setting. Then (1)

holds if ep(∆ + 1) ≤ 1. In this setting, Lemma 5.2 is specialized into

the following.

Corollary 5.3. If ep(∆ + 1) ≤ 1, then

Prµ (E | B(S)) ≤ Prµ (E)

(
1 +

1

∆

) |Γ(E) |
.

In particular, if ep(∆ + 1) ≤ 1, for any event Ai where i < S , by

Corollary 5.3,

Prµ (Ai | B(S)) ≤ pi

(
∆ + 1

∆

)∆
≤ ep. (2)

Let Rest be the resampling set of Algorithm 6 at round t ≥ 1, and

let Badt be the set of bad events present at round t . If Algorithm 6

has already stopped at round t , then Rest = Badt = ∅. Furthermore,

let Bad0 = Res0 = [m] since in the �rst step all random variables

are fresh.

De�ne a random variable Zt := C−t |Rest | for C := 1 − p < 1

and t ≥ 0. Note that Z0 = C
0 |[m]| =m.

Lemma 5.4. For any ∆ ≥ 2, if 6ep∆2 ≤ 1 and 3er∆ ≤ 1, then Zt
is a supermartingale.

Proof. Clearly for any ∆ ≥ 2, the condition 6ep∆2 ≤ 1 implies

that ep(∆ + 1) ≤ 1. Therefore the prerequisite of Corollary 5.3 is

met. We will show that Zt is a supermartingale with respect to

the sequence (Rest ) [12, §7.6(3)]. Since |Zt | < ∞, and Zt is clearly

determined by Rest , we just need to show that

E (Zt+1 | Res0, . . . ,Rest ) ≤ Zt .
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Notice that, by Lemma 4.4, we have that

E (Zt+1 | Res0, . . . ,Rest ) = E (Zt+1 | Rest ) .

We will show in the following that conditioned on the set of

resampling events at round t is (exactly) Rest , the expectation of

|Rest+1 | at round t + 1 is at most C |Rest |, where C = 1 − p. This

implies the lemma.

Let us consider how an event i ∈ [m] is added into Rest+1. For

any i ∈ Badt+1, it is always resampled. If i ∈ Rest+1 \Badt+1, then

it is added due to Algorithm 5 at some round ` ≥ 1. We handle the

more complicated latter case �rst.

Call a path i0, i1, . . . , i` in the dependency graph G bad if the

following holds:

(1) i0 ∈ Badt+1;

(2) the event Rik−1ik holds for every 1 ≤ k ≤ `;
(3) any ik (k ∈ [`]) is not adjacent to ik ′ unless k ′ = k − 1 or

k + 1.

Indeed, paths having the third property are induced paths in G.

We claim that for any i ∈ Rest+1 \ Badt+1 added in round ` ≥ 1

by Algorithm 5, there exists at least one bad path i0, i1, . . . , i` = i .
We show the claim by an induction on `.

• If ` = 1, then i = i1 ∈ ∂Badt+1 and there must be an

i0 ∈ Badt+1 such that (i0, i1) is an edge. Since i is marked

“resampling” by Algorithm 5,Ai∩σBadt+1 , ∅. This implies

that Ri0i1 occurs and the claim holds.

• For the induction step ` ≥ 2, due to Algorithm 5, there

must exist i`−1 adjacent to i` = i such that it is marked

“resampling” at round ` − 1, and Ri`−1i` occurs. By the

induction hypothesis, there exists a bad path i0, . . . , i`−1.

Since i is not marked at the round ` − 1, i is not adjacent to

any vertices that has been marked up to round ` − 2. Thus

i` is not adjacent to any ik where k ≤ ` − 2, and the path

i0, . . . , i`−1, i` is bad.

Let P = i0, . . . , i` be an induced path; that is, for any k ∈ [`],
ik is not adjacent to ik ′ unless k ′ = k − 1 or k + 1. Only induced

paths are potentially bad. Let DP be the event that P is bad. In other

words, DP := Ai0 ∧ Ri0i1 ∧ · · · ∧ Ri`−1i` . By Lemma 4.4, we have

that

Pr(P is bad at round t + 1 |

the set of resampling events at round t is Rest )

= Prµ (DP | B(Res
e
t )), (3)

where we recall that we denote Reset = [m] \ Γ
+(Rest ). Applying

Corollary 5.3 with S = Reset , we have that

Prµ (DP | B(Res
e
t )) ≤ Prµ (DP )

(
1 +

1

∆

) |Γ(DP ) |

. (4)

Note that Γ(Ri0i1 ) ⊆ Γ+(Ai0 ). By the de�nition of DP ,

Γ(DP ) ⊆ Γ(Ai0 ) ∪ Γ(Ri0i1 ) ∪ · · · ∪ Γ(Ri`−1i` )

= Γ+(Ai0 ) ∪ Γ(Ri1i2 ) ∪ · · · ∪ Γ(Ri`−1i` ),

implying that

|Γ(DP )| ≤
��Γ+(Ai0 )�� + ��Ri1i2 �� + · · · + ��Ri`−1i` ��
≤ `(∆ + 1), (5)

as

��Γ(Ri j )�� ≤ ��Γ+(Ai )�� ≤ ∆ + 1 for any (i, j) ∈ E.

We claim that Ai0 is independent from Rik−1ik for any 2 ≤ k ≤ `.
This is because ik is not adjacent to i0 for any k ≥ 2, implying that

var(Rik−1ik ) ∩ var(Ai0 ) = var(Aik−1 ) ∩ var(Aik ) ∩ var(Ai0 )

⊆ var(Aik ) ∩ var(Ai0 ) = ∅.

Moreover, any two events Rik−1ik and Rik′−1ik′ are independent of

each other as long as k < k ′. This is also due to the third property

of bad paths. Since k < k ′, we see that |k ′ − (k − 1)| ≥ 2 and ik ′ is

not adjacent to ik−1. It implies that

var(Rik−1ik ) ∩ var(Rik′−1ik′ )

= var(Aik−1 ) ∩ var(Aik ) ∩ var(Aik′−1 ) ∩ var(Aik′ )

⊆ var(Aik−1 ) ∩ var(Aik′ ) = ∅.

The consequence of these independences is

Prµ (DP ) ≤ Prµ (Ai0 ∧ Ri1i2 ∧ · · · ∧ Ri`−1i` )

= Prµ (Ai0 )
∏̀
k=2

Prµ (Rik−1ik )

≤ pr `−1. (6)

Note that in the calculation above we ignore Ri0i1 as it can be

positively correlated to Ai0 .

Combining (3), (4), (5), and (6), we have that

Pr(DP | the resampling set at round t is (exactly) Rest )

≤ pr `−1
(
1 +

1

∆

)`(∆+1)
≤

p

r

((
1 +

1

∆

)
er

)`
. (7)

In order to apply a union bound on all bad paths, we need to

bound their number. The �rst vertex i0 must be in Badt+1, implying

that i0 ∈ Γ
+(Rest ). Hence there are at most (∆ + 1) |Rest | choices.

Then there are at most ∆ choices of i1 and (∆ − 1) choices of every

subsequent ik where k ≥ 2. Hence, there are at most ∆(∆ − 1)`−1

induced paths of length ` ≥ 1, originating from a particular i0 ∈
Γ+(Rest ). Thus, by a union bound on all potentially bad paths and

(7),

E
(
|Rest+1 \ Badt+1 |

��
the set of resampling events at round t is (exactly) Rest

)
≤

∞∑
`=1

(∆ + 1) |Rest | ∆(∆ − 1)`−1p/r
((
1 +

1

∆

)
er

)`
=
(∆ + 1)∆p

(∆ − 1)r
|Rest |

∞∑
`=1

((
∆2 − 1

∆

)
er

)`
≤
(∆ + 1)∆p

(∆ − 1)r
|Rest |

∞∑
`=1

(er∆)` =
(∆ + 1)∆p

(∆ − 1)r
·

er∆

1 − er∆
|Rest |

=
∆ + 1

∆ − 1
·
3

2

· ep∆2 |Rest | , (8)

where we use the condition that er∆ ≤ 1/3.

On the other hand, it is straightforward to bound the size of

Badt+1 ⊆ Γ+(Rest ). If i ∈ Badt+1, then there are two possibilities.

The �rst scenario is that i ∈ Rest and then all of its random variables

are fresh. In this case it occurs with probability pi ≤ p. Otherwise
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i ∈ ∂Rest . Recall that by Lemma 4.4, the distribution at round t + 1
is Prµ (· | B(Reset )). By Corollary 5.3, for any i ∈ ∂Rest ,

Prµ
(
Ai | B(Reset )

)
≤ p

(
1 +

1

∆

)∆
≤ ep.

This implies that

E
(
|Badt+1 | |

the set of resampling events at round t is (exactly) Rest
)

≤ p |Rest | + ep |∂Rest | ≤ p(1 + e∆) |Rest | . (9)

Combining (8) and (9), we have that

E
(
|Rest+1 | |

the set of resampling events at round t is (exactly) Rest
)

≤
∆ + 1

∆ − 1
·
3

2

· ep∆2 |Rest | + p(1 + e∆) |Rest |

= p

(
∆ + 1

∆ − 1
·
3

2

· e∆2 + (1 + e∆)

)
|Rest | .

All that is left is to verify that

p

(
∆ + 1

∆ − 1
·
3

2

· e∆2 + (1 + e∆)

)
≤ C .

This is straightforward by the condition 6ep∆2 ≤ 1 and ∆ ≥ 2, as

C − p

(
∆ + 1

∆ − 1
·
3

2

· e∆2 + (1 + e∆)

)
≥ 6ep∆2 − p − p

(
∆ + 1

∆ − 1
·
3

2

· e∆2 + (1 + e∆)

)
≥ p

(
6e∆2 − 1 −

∆ + 1

∆ − 1
·
3

2

· e∆2 − (1 + e∆)

)
≥ 0. �

Since Zt is a supermartingale by Lemma 5.4, we have, by the

tower property of expectations [12, §7.7(16)],

EZt ≤ EZ0 =m.

In other words, E |Rest | ≤ Ctm. As C < 1, the expected number of

resampling events is

∞∑
t=0
E |Rest | ≤

∞∑
t=0

Ctm =
1

1 −C
·m.

This implies the �rst part of Theorem 5.1. For the second part, just

observe that within O(logm) rounds, the expected number of bad

events is less than 1.

The �rst condition of Theorem 5.1 requires p to be roughly

O(∆−2). This is necessary, due to the hardness result in [4] (see also

Theorem 6.3). Also, in the analysis, it is possible to always add all of

∂Badt into Rest . Consider a monotone CNF formula. If a clause is

unsatis�ed, then all of its neighbours need to be added into the re-

sampling set. Such behaviours would eventually lead to theO(∆−2)
bound. This situation is in contrast to the resampling algorithm of

Moser and Tardos [24], which only requires p = O(∆−1) as in the

symmetric Lovász Local Lemma.

Also, we note that monotone CNF formulas, in which all correla-

tions are positive, seem to be the worst instances for our algorithms.

In particular, Algorithm 6 is exponentially slow when the under-

lying hypergraph of the monotone CNF is a (hyper-)tree. This

indicates that our condition on r in Theorem 5.1 is necessary for

Algorithm 6. In contrast, Hermon et al. [19] show that on a lin-

ear hypergraph (including the hypertree), the Markov chain mixes

rapidly for degrees higher than the general bound. It is unclear how

to combine the advantages from these two approaches.

6 APPLICATIONS OF ALGORITHM 6
6.1 k-CNF Formulas
Consider a k-CNF formula where every variable appears in at most

d clauses. Then Theorem 2.1 says that if d ≤ 2
k/(ek)+ 1, then there

exists a satisfying assignment. However, [4, Corollary 30] showed

that when d ≥ 5 · 2k/2, then sampling satisfying assignments is

NP-hard, even restricted to monotone formulas.

To apply Algorithm 6 in this setting, we need to bound the pa-

rameter r in Theorem 5.1. A natural way is to lower bound the

number of shared variables between any two dependent clauses. If

this lower bound is s , then r = 2
−s

since there is a unique assign-

ment on these s variables that can be extended in such a way as to

falsify the clauses.

De�nition 6.1. Let d ≥ 2 and s ≥ 1. A k-CNF formula is said

to have degree d if every variable appears in at most d clauses.

Moreover, it has intersection s if for any two clauses Ci and Cj that

share at least one variable,

��var(Ci ) ∩ var(Cj )
�� ≥ s .

Note that by the de�nition if k < s then the formula is simply

isolated clauses. Otherwise, k ≥ s and we have that pi = p = 2
−k

and r ≤ 2
−s

. A simple double counting argument indicates that

the maximum degree ∆ in the dependency graph satis�es ∆ ≤ dk
s .

It is easy to check that for integers d and k such that d ≥ 3 and

dk ≥ 2
3e

, conditions d ≤ 2
k/2

6e and s ≥ min{log
2
dk,k/2} imply the

conditions of Theorem 5.1, namely, 6ep∆2 ≤ 1 and 3er∆ ≤ 1. Thus

by Theorem 5.1 we have the following result.

Corollary 6.2. For integers d and k such that d ≥ 3 and dk ≥
2
3e , if d ≤ 1

6e · 2
k/2 and s ≥ min{log

2
dk,k/2}, then Algorithm

6 samples satisfying assignments of k-CNF formulas with degree d
and intersection s in expected O(n) time where n is the number of
variables.

We remark that the lower bound on s in Corollary 6.2 is never

larger than k/2. This lower bound on intersections does not make

the problem trivial. Indeed, the bad instance in the proof of [4,

Corollary 30] has roughly k/2 shared variables for each pair of

dependent clauses. For completeness, we will show that if k is even,

and d ≥ 4 ·2k/2 and s = k/2, then the sampling problem is NP-hard.

The proof is almost identical to that of [4, Corollary 30]. The case

of odd k can be similarly handled but with larger constants.

Theorem 6.3. Let k be an even integer. If d ≥ 4 · 2k/2 and s = k/2,
then it isNP-hard to sample satisfying assignments ofk-CNF formulas
with degree d and intersection s uniformly at random.

Theorem 6.3 is based on the inapproximability result of Sly and

Sun [28] (or equivalently, of Galanis et al. [11]) for the hard-core

model. The proof is omitted and can be found in the full version

[13].
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Due to Theorem 6.3, we see that the dependence between k and

d in Corollary 6.2 is tight in the exponent, even with the further

assumption on intersection s .

6.2 Independent Sets
We may also apply Algorithm 6 to sample hard-core con�gurations

with parameter λ. Every vertex is associated with a random variable

which is occupied with probability
λ

1+λ . In this case, each edge

de�nes a bad event which holds if both endpoints are occupied.

Thus p =
(
λ

1+λ

)
2

. Algorithm 6 is specialized to Algorithm 7.

Algorithm 7 Sample Hard-core Con�gurations

(1) Mark each vertex occupied with probability
λ

1+λ indepen-

dently.

(2) While there is at least one edge with both end points occu-

pied, resample all occupied components of sizes at least 2

and their boundaries.

(3) Output the set of vertices.

Let the graph be G = (V ,E) with maximum degree d . Given a

con�guration σ : V → {0, 1}, we denote by BadVtx(σ ) the vertices

in any occupied component of size at least 2. Then the output

of Algorithm 5 is ResVtx(σ ) := BadVtx(σ ) ∪ ∂BadVtx(σ ). This is

because �rst, all of ∂BadVtx(σ ) would be resampled, since any of

them has at least one occupied neighbour in BadVtx(σ ). Secondly,

v ∈ ∂BadVtx(σ ) is unoccupied (otherwise v ∈ BadVtx(σ )), and

Algorithm 5 stops after adding all of ∂BadVtx(σ ). This explains

Algorithm 7.

Moreover, let Bad(σ ) be the set of edges whose both endpoints

are occupied under σ . Let Res(σ ) be the set of edges whose both

endpoints are in ResVtx(σ ). Let σt be the random con�guration of

Algorithm 7 at round t if it has not halted, and Badt = Bad(σt ),
Rest = Res(σt ).

Lemma 6.4. If ep(2d − 1) < 1, then E |Badt+1 | ≤ (4epd2 − p) ·
E |Badt |.

Lemma 6.4 implies that, if 4epd2 ≤ 1, then the number of bad

edges shrinks with a constant factor, and Algorithm 7 resamples

O(n) vertices in expectation. Since p =
(
λ

1+λ

)
2

, the condition

4epd2 ≤ 1 is equivalent to λ ≤ 1

2

√
ed−1

. Thus we have the follow-

ing theorem, where the constants are slightly better than directly

applying Theorem 5.1.

Theorem 6.5. If λ ≤ 1

2

√
ed−1

, then Algorithm 7 draws a uni-
form hard-core con�guration with parameter λ from a graph with
maximum degree d in expected O(n) time.

The optimal bound of sampling hard-core con�gurations is λ <

λc ≈
e
d where λc := (d − 1)d−1/(d − 2)d . The algorithm is due to

Weitz [30] and the hardness is shown in [11, 28]. The condition of

our Theorem 6.5 is more restricted than correlation decay based

algorithms [30] or traditional Markov chain based algorithms. Nev-

ertheless, our algorithm matches the correct order of magnitude

λ = O(d−1). Moreover, our algorithm has the advantage of being

simple, exact, and running in linear time in expectation.

7 DISTRIBUTED ALGORITHMS FOR
SAMPLING

An interesting feature of Algorithm 6 is that it is distributed.
3

For

concreteness, consider the algorithm applied to sampling hard-core

con�gurations on a graph G (i.e. Algorithm 7), assumed to be of

bounded maximum degree. Imagine that each vertex is assigned a

processor that has access to a source of random bits. Communica-

tion is possible between adjacent processors and is assumed to take

constant time. Then, in each parallel round of the algorithm, the

processor at vertexv can update the value σ (v) in constant time, as

this requires access only to the values of σ (u) for vertices u ∈ V (G)
within a bounded distance r ofv . In the case of the hard-core model,

we have r = 2, since the value σ (v) at vertex v should be updated

precisely if there are vertices u and u ′ such that v ∼ u and u ∼ u ′

and σ (u) = σ (u ′) = 1. Note that we allow u ′ = v here.

In certain applications, including the hard-core model, Algo-

rithm 6 runs in a number of rounds that is bounded in expectation

by a logarithmic function of the size of the input. We show that

this is optimal. (Although the argument is presented in the con-

text of the hard-core model, it ought to generalise to many other

applications.)

Set L = dc logne for some constant c > 0 to be chosen later. The

instance that establishes the lower bound is a graph G consisting

of a collection of n/L disjoint paths Π1, . . . ,Πn/L with L vertices

each. (Assume that n is an exact multiple of L; this is not a sig-

ni�cant restriction.) The high-level idea behind the lower bound

is simple, and consists of two observations. We assume �rst that

the distributed algorithm we are considering always produces an

output, say σ̂ : V (G) → {0, 1}, within t rounds. It will be easy at

the end to extend the argument to the situation where the run-

ning time is a possibly unbounded random variable with bounded

expectation.

Focus attention on a particular path Π with endpoints u and v .

The �rst observation is that if rt < L/2 thenσ (u) (respectively,σ (v))
depends only on the computations performed by processors in the

half of Π containingu (respectivelyv). Therefore, in the algorithm’s

output, σ̂ (u) and σ̂ (v) are probabilistically independent. The second

observation is that if the constant c is su�ciently small then, in the

hard-core distribution, σ (u) and σ (v) are signi�cantly correlated.

Since the algorithm operates independently on each of the n/L
paths, these small but signi�cant correlations combine to force to a

large variation distance between the hard-core distribution and the

output distribution of the algorithm.

We now quantify the second observation. Let σ : V (G) → {0, 1}
be a sample from the hard-core distribution on a pathΠ onk vertices

with endpoints u and v , and let Ik denote the corresponding hard-

core partition function. De�ne the matrixWk =
(w00 w01

w10 w11

)
, where

wi j = Pr(σ (u) = i ∧ σ (v) = j). Then

Wk =
1

Ik

(
Ik−2 λIk−3
λIk−3 λ2Ik−4

)
,

since Ik is the total weight of independent sets in Π, Ik−2 is the

total weight of independent sets with σ (u) = σ (v) = 0, Ik−3 is the

total weight of independent sets with σ (u) = 0 and σ (v) = 1, and

3
See [10] for a very recent work by Feng, Sun, and Yin on distributed sampling

algorithms. In particular, they show a similar lower bound in [10, Section 5].
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so on. Also note that Ik satis�es the recurrence

I0 = 1, I1 = λ + 1, and Ik = Ik−1 + λIk−2, for k ≥ 2. (10)

We will use detWk to measure the deviation of the distribution

of (σ (u),σ (v)) from a product distribution. Write

W ′k =

(
Ik−2 Ik−3
Ik−3 Ik−4

)
,

and note that detWk = λ2I−2k detW ′k . Applying recurrence (10)

once to each of the four entries ofW ′k , we have

detW ′k = Ik−2Ik−4 − I
2

k−3

= (Ik−3 + λIk−4)(Ik−5 + λIk−6) − (Ik−4 + λIk−5)
2

= Ik−3(Ik−5 + λIk−6) − Ik−4(Ik−4 + λIk−5) + λ
2(Ik−4Ik−6 − I

2

k−5)

= Ik−3Ik−4 − Ik−4Ik−3 + λ
2
detW ′k−2

= λ2 detW ′k−2,

for all k ≥ 6. By direct calculation, detW ′
4
= −λ2 and detW ′

5
= λ3.

Hence, by induction, detW ′k = (−1)
k−1λk−2, and

detWk =
(−1)k−1λk

I2k
, (11)

for all k ≥ 4.

Solving the recurrence (10) gives the following asymptotic for-

mula for Ik :

Ik '

(
1

2

+
2λ + 1

2

√
4λ + 1

) (
1 +
√
4λ + 1

2

)k
.

Combined with (11), this yields | detWk | = Θ(αk ) where

α =
2λ

2λ +
√
4λ + 1 + 1

.

Note that 0 < α < 1 and α depends only on λ.

Now let the matrix Ŵk =
( ŵ00 ŵ01

ŵ10 ŵ11

)
be de�ned as for Wk , but

with respect to the output distribution of the distributed sampling

algorithm rather than the true hard-core distribution. Recall that

we choose L = dc logne > 2rt , which implies that σ̂ (u) and σ̂ (v)

are independent and detŴL = 0. It is easy to check that if ‖Ŵk −

Wk ‖∞ ≤ ε , where the matrix norm is entrywise, then | detWk | ≤ ε .
Thus, for c su�ciently small (and L = dc logne), we can ensure that

‖ŴL −WL ‖∞ ≥ n−1/3. Thus, |ŵi j −wi j | ≥ n−1/3, for some i, j; for

de�niteness, suppose that i = j = 0 and that ŵ00 > w00.

Let Z (respectively Ẑ ) be the number of paths whose endpoints

are both assigned 0 in the hard-core distribution (respectively, the

algorithm’s output distribution). Then Z (respectively Ẑ ) is a bino-

mial random variable with expectation µ = w00n/L (respectively

µ̂ = ŵ00n/L). Since | EZ − E Ẑ | > Ω(n2/3/logn), a Cherno� bound

gives that Pr(Z ≥ (µ + µ̂)/2) and Pr(Ẑ ≤ (µ + µ̂)/2) both tend to

zero exponentially fast with n. It follows that the variation distance

between the distributions of σ and σ̂ is 1 − o(1).
The above argument assumes an absolute bound on running

time, whereas the running time of an exact sampling algorithm

will in general be a random variable T . To bridge the gap, suppose

Pr(T ≤ t) ≥ 2

3
. Then

‖σ̂ − σ ‖TV = max

A

��
Pr(σ̂ ∈ A) − Pr(σ ∈ A)

��
= max

A

��� ( Pr(σ̂ ∈ A | T ≤ t) − Pr(σ ∈ A)
)
Pr(T ≤ t)

+
(
Pr(σ̂ ∈ A | T > t) − Pr(σ ∈ A)

)
Pr(T > t)

���
≥ 2

3
(1 − o(1)) − 1

3
× 1,

Where ‖ · ‖TV denotes variation distance, and A ranges over events

A ⊆ {0, 1} |V (G) | . Thus ‖σ − σ̂ ‖TV ≥
1

3
− o(1), which is a contradic-

tion. It follows that Pr(T ≤ t) < 2

3
and hence E(T ) ≥ 1

3
t . Note that

this argument places a lower bound on parallel time not just for

exact samplers, but even for (very) approximate ones.

With only a slight increase in work, one could take the instance

G to be a path of length n, which might be considered more natural.

IdentifyO(n/L) subpaths withinG , suitably spaced, and of length L.

The only complication is that the hard-core distribution does not

have independent marginals on distinct subpaths. However, by

ensuring that the subpaths are separated by distance nα , for some

small α > 0, the correlations can be controlled, and the argument

proceeds, with only slight modi�cation, as before.
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