
Strongly Refuting Random CSPs Below the Spectral Threshold

Prasad Raghavendra ∗ Satish Rao† Tselil Schramm‡

Abstract

Random constraint satisfaction problems (CSPs) are known to exhibit threshold phenomena: given
a uniformly random instance of a CSP with n variables and m clauses, there is a value of m = Ω(n)
beyond which the CSP will be unsatisfiable with high probability. Strong refutation is the problem
of certifying that no variable assignment satisfies more than a constant fraction of clauses; this is the
natural algorithmic problem in the unsatisfiable regime (when m/n = ω(1)).

Intuitively, strong refutation should become easier as the clause density m/n grows, because the
contradictions introduced by the random clauses become more locally apparent. For CSPs such as
k-SAT and k-XOR, there is a long-standing gap between the clause density at which efficient strong
refutation algorithms are known, m/n ≥ Õ(nk/2−1), and the clause density at which instances become
unsatisfiable with high probability, m/n = ω(1).

In this paper, we give spectral and sum-of-squares algorithms for strongly refuting random k-XOR
instances with clause density m/n ≥ Õ(n(k/2−1)(1−δ)) in time exp(Õ(nδ)) or in Õ(nδ) rounds of the
sum-of-squares hierarchy, for any δ ∈ [0, 1) and any integer k ≥ 3. Our algorithms provide a smooth
transition between the clause density at which polynomial-time algorithms are known at δ = 0, and
brute-force refutation at the satisfiability threshold when δ = 1. We also leverage our k-XOR results to
obtain strong refutation algorithms for SAT (or any other Boolean CSP) at similar clause densities.

Our algorithms match the known sum-of-squares lower bounds due to Grigoriev and Schonebeck,
up to logarithmic factors.

∗UC Berkeley, prasad@cs.berkeley.edu. Supported by NSF Career Award, NSF CCF-1407779 and the Alfred. P. Sloan
Fellowship.
†UC Berkeley, satishr@cs.berkeley.edu.
‡UC Berkeley, tschramm@cs.berkeley.edu. Supported by an NSF Graduate Research Fellowship (NSF award no 1106400).

ar
X

iv
:1

60
5.

00
05

8v
2

 [
cs

.D
S]

 3
 N

ov
 2

01
6

Contents

1 Introduction 1
1.1 Related work . 5
1.2 Organization . 5
1.3 Preliminaries . 5

2 Main Ideas: Proof for Random 4-Tensors 6
2.1 Improving on the natural spectral algorithm with higher-order symmetries 6
2.2 Matrix concentration for the certificate . 8
2.3 From k-XOR to tensor norms, and odd-order tensors . 11

3 Injective Tensor Norm for Subgaussian Random Tensors 12
3.1 Even-order tensors . 12
3.2 Odd-order tensors . 16
3.3 Useful combinatorial lemmas . 25

4 Refuting Random k-XOR Instances 27
4.1 Even k-XOR . 29
4.2 Odd k-XOR . 36
4.3 Bounding probabilities of sampling even hypergraphs . 46

5 Strong Refutation for All CSPs 50

6 Sum-of-Squares Algorithms 56
6.1 Background . 56
6.2 Relaxations for tensor norm and k-XOR . 56
6.3 Bounds for tensor norm . 57
6.4 Bounds for k-XOR . 58

References 60

A Useful matrix concentration facts 63
A.1 Bound on the norm of a Rademacher matrix . 63

1 Introduction

Random instances of constraint satisfaction problems (CSPs) have been a subject of intense study in
computer science, mathematics and statistical physics. Even if we restrict our attention to random k-SAT,
there is already a vast body of work across various communities–see [Ach09] for a survey. In this paper,
our focus is on refuting random CSPs: the task of algorithmically proving that a random instance of a
CSP is unsatisfiable. Refutation is a well-studied problem with connections to myriad areas of theoretical
computer science including proof complexity [BB02], inapproximability [Fei02], SAT solvers, cryptography
[ABW10], learning theory [DLS14], statistical physics [CLP02] and complexity theory [BKS13].

For the sake of concreteness, we will for a moment restrict our attention to k-SAT, the most well-studied
random CSP. In the random k-SAT model, we choose a k-uniform CNF formula Φ over n variables by
drawing m clauses independently and uniformly at random. The density of Φ is given by the ratio
α = m/n. It is conjectured that for each k, there is a critical value αk such that Φ is satisfiable with
high probability if α < αk, and unsatisfiable with high probability for α > αk. Such phase transition
phenomena are conjectured to occur for all nontrivial random CSPs; for the specific case case of k-SAT, it
was only recently rigorously established for all sufficiently large k [DSS15].

In the unsatisfiable regime, when α > αk, the natural algorithmic problem we associate with random
k-SAT formulas is the problem of refutation. We define the notion of a refutation algorithm formally:

Definition 1.1. (Refutation Algorithm) An algorithm A is a refutation algorithm for random k-SAT at
density α, if given a random instance Φ of k-SAT with density α, the algorithm A:

• Outputs YES with probability at least 1
2 over the choice of Φ.1

• Outputs NO if Φ is satisfiable.

Note that if the algorithm A outputs YES on an instance Φ, it certifies that the instance Φ is unsatisfiable.
Refuting random k-SAT is a seemingly intractable problem in that the best polynomial-time algorithms

require density α > Õ(nk/2−1)� Õ(1). We survey the prior work on refuting CSPs in Section 1.1.
At densities far exceeding the unsatisfiability threshold, i.e., α� αk, a simple union bound argument

can be used to show that a random instance Φ has no assignment satisfying more than a 1− 1
2k

+ δ(α)
fraction of constraints, where δ(α)→ 0 as α→∞. In this regime, a natural algorithmic task is strong
refutation:

Definition 1.2. (Strong Refutation) An algorithm A is a strong refutation algorithm for random k-SAT
at density α, if for a fixed constant δ > 0, given a random instance Φ of k-SAT with density α, the
algorithm A:

• Outputs YES with probability at least 1
2 over the choice of Φ.

• Outputs NO if Φ has an assignment satisfying at least a (1− δ)-fraction of clauses.

An important conjecture in complexity theory is Feige’s “R3SAT hypothesis,” which states that for any
δ > 0, there exists some constant c such that there is no polynomial-time algorithm that can certify that a
random 3-SAT instance has value at most 1− δ (that is, strongly refute 3-SAT) at clause density m/n = c.
Feige exhibited hardness of approximation results based on the hypothesis for a class of otherwise elusive
problems such as densest-k subgraph and min-bisection [Fei02]. This hypothesis has subsequently been
used as the starting point in a variety of reductions (see e.g. [AAM+11, BKS13, DLS13]).

The problem of strong refutation is non-trivial even for polynomial-time solvable CSPs such as k-
XOR.2 A random k-XOR instance Φ on n variables x1, . . . , xn ∈ {±1} consists of m equations of the form
xi1 · xi2 · · ·xik = ±1 By a simple union bound, one can show that at all super-linear densities m/n = ω(1),

1The choice of the fraction 1
2

here is arbitrary, and one could potentially consider any fixed constant.
2 The weak refutation problem for k-XOR can be easily solved using Gaussian elimination.

1

with high probability, no assignment satisfies more than 1
2 + o(1)-fraction of the equations.3 The problem

of strong refutation for random k-XOR amounts to certifying that no assignment satisfies more than 1− δ
fraction of equations for some constant δ > 0. A natural spectral algorithm can efficiently strongly refute
k-XOR at densities m/n ≥ nk/2−1 [CGL04, CGL07, AOW15, BM15]. However, strong refutation at any
lower density is widely believed to be an intractable problem [ABW10, BM15, DLS14, Dan15]. We refer
the reader to [Dan15] for a survey of the evidence pointing to the intractability of the problem.

To expose the stark difficulty of strongly refuting random k-XOR, consider the easier task of distin-
guishing random k-XOR instances from those generated from the following distribution: first, sample
a satisfiable instance of k-XOR uniformly at random, by sampling a planted solution z ∈ {±1}n and
randomly choosing m equations, each on k variables, satisfied by z. Then, corrupt each of the m equations
(so that z does not satisfy it) with probability δ. Equivalently, this problem can be described as learning
parity with noise, wherein z ∈ {±1}n defines the unknown parity and each equation Ci is an example to
the learning algorithm. An algorithm to learn parity from noisy examples can be used to distinguish the
planted instances sampled as described above from uniformly random instances of k-XOR. There is no
known distinguishing algorithm at any density m/n < nk/2−1, and the computational intractability of
this problem has recently been used to obtain lower bounds for improper learning [Dan15].

Sum-of-Squares Refutations. A natural proof system for strong refutation is the sum-of-squares
(SoS) proof system. Given an instance Φ of a Boolean k-CSP, the fraction of constraints satisfied by an
assignment x can be written as a polynomial PΦ(x) of degree at most k in x. Let opt(Φ) denote the
largest fraction of constraints satisfied by any assignment to the variables, i.e.,

opt(Φ)
def
= max

x∈{±1}n
PΦ(x) .

Therefore, certifying an upper bound c on opt(Φ) reduces to certifying that maxx∈{±1}n PΦ(x) < c.
A degree-d sum-of-squares proof for this fact is a polynomial identity of the form,

c− PΦ(x) =
∑
i

q2
i (x) mod I ,

where deg(q2
i) ≤ d and I is the ideal generated by the polynomials {x2

j − 1} that define the variety {±1}n.

The size of a degree-d SoS proof is at most nO(d), assuming the coefficients have a bit-complexity
of at most nO(d). Moreover, finding a degree-d SoS proof can be formulated as a semidefinite program,
also known as the degree-d sum-of-squares hierarchy or the d-round Lasserre/Parrillo SDP hierarchy
[Las00, Par00]. Therefore, if there is a degree-d SoS proof with bit complexity nO(d), then one can be
found in time nO(d).

SoS proof systems are very powerful in that they capture both local arguments, such as resolution-based
proofs, and global methods like spectral techniques. Furthermore, these proof systems subsume various
linear programming and SDP hierarchies such as the Sherali-Adams, Lovász Schrijver (LS) and LS+
hierarchies. In the recent past, the SoS SDP hierarchy has received considerable attention due to its ability
to certify the objective value on many candidate hard instances for the unique games problem [BBH+12].

Unfortunately, the lower bounds of Grigoriev [Gri01] and Schoenebeck [Sch08] rule out efficient strong
SoS refutations for random k-XOR and random k-SAT at densities significantly smaller than m/n < nk/2−1.
Specifically, Schonebeck’s result implies that with high probability over k-XOR instances Φ with clause
density m/n < O(n(k/2−1)(1−δ)), the SoS hierarchy cannot refute Φ at degree O(nδ).

Note that this leaves open the possibility that random k-XOR and random k-SAT admit subexponential-
sized strong refutations well-below the nk/2−1 threshold. This sets the stage for our main result.

3Random k-XOR can also be equivalently defined in terms of equations of the form xi1 ⊕ · · ·xik = 0/1. The equivalence
follows by mapping 0→ 1, 1→ −1, and ⊕ → ·.

2

Theorem 1.3. For all δ ∈ [0, 1) given a random k-XOR instance Φ on n variables, with high probability
over Φ, the degree O(nδ) sum-of-squares hierarchy can strongly refute Φ, certifying that

opt(Φ) ≤ 1

2
+ ε ,

for any constant ε > 0 as long as Φ has clause density m/n ≥ Õ(n(k/2−1)(1−δ)), where the Õ notation
hides logarithmic factors and a dependence on ε and k. Further, there is a spectral algorithm achieving

the same guarantees by computing the eigenvalue of an 2Õ(nδ) × 2Õ(nδ) matrix.

Remark 1.4. The algorithm from Theorem 1.3 yields tight refutations–certifying a tight upper bound of
opt(Φ) + ε for any constant ε > 0.

Notice that the result establishes a smooth trade-off between the clause density of Φ and the running
time of the refutation algorithm. Specifically for all δ ∈ [0, 1), the algorithm strongly refutes at density
m/n = Õ(n(k/2−1)(1−δ)) in time exp(Õ(nδ)), so that when δ = 0 the result matches the performance of
the best known polynomial-time algorithms, and at δ = 1, the algorithm refutes instances just above the
threshold of satisfiability in exponential time. Moreover, the degree of the sum-of-squares refutations
matches the degree lower bounds of [Gri01, Sch08] up to polylogarithmic factors.

Feige [Fei02] introduced a connection between the refutation of random XOR instances and the
refutation of other CSPs, and this connection was later used in several other works (e.g. [FKO06, AOW15,
BM15]). Using the machinery developed by Allen et al. [AOW15], we apply our algorithm for k-XOR to
refute other random CSPs involving arbitrary Boolean predicates P ; for example to k-SAT.

Theorem 1.5. Let P : {±1}k → {0, 1} be a predicate with expected value E[P] over a random assignment
in {±1}k. For all δ ∈ (0, 1], given an instance Φ of a random k-CSP with predicate P on n variables, the
degree O(nδ) SoS hierarchy strongly refutes Φ with high probability, certifying that

opt(Φ) ≤ E[P] + ε ,

for any constant ε > 0 so long as Φ has density at least m/n ≥ Õ(n(k/2−1)(1−δ)), where the Õ hides
a dependence on a polylog factor, k and ε. Further, there is a spectral algorithm achieving the same
guarantees.

We can extend Theorem 1.5 so that the density/runtime trade-off depends on the independence
parameter of the predicate P as defined by [AOW15]–we defer the details to Section 5.

Injective tensor norm

The proof techniques we develop are applicable beyond strongly refuting random k-XOR, to the problem
of certifying upper bounds on the injective tensor norm of random tensors.

The injective tensor norm generalizes the matrix operator norm, in the following sense. For an order-k
symmetric tensor with all dimensions equal to n, the injective tensor norm is defined as

‖T‖inj
def
= max

x∈Rn
‖x‖=1

∣∣∣〈T, x⊗k
〉∣∣∣ ,

where by x⊗k we mean the symmetric rank-1 tensor of order k given by tensoring x with itself, and by the
inner product we mean the entry-wise sum of the products of the entries of T and x⊗k, as is standard.

When k = 2, computing ‖T‖inj is equivalent to computing the matrix operator norm. Yet when k ≥ 3,
the injective tensor norm is hard to compute. The hardness of approximating the injective tensor norm
is not fully understood, but we do know that, assuming the exponential-time hypothesis, the injective

3

tensor norm requires quasipolynomial time to approximate, even within super-constant factors [BBH+12].
There are also reductions to the problem from a variety of problems such as Planted Clique [BV09] and
Small-Set Expansion [BBH+12].

The problem is nontrivial even when the tensor has i.i.d. random entries. It is well-known that the
norm of a tensor with i.i.d. symmetric subgaussian entries is of the same order as the norm of a random
matrix:

Theorem 1.6 ([TS14]). If k ∈ N is constant and T is a symmetric order-k tensor of dimension n with
i.i.d. symmetrically distributed subgaussian entries, then with probability at least 1−o(1), ‖T‖inj ≤ Õ(

√
n).

So the question arises naturally: is it easy to certify tensor norm bounds under distributional assumptions
on the entries? The current known polynomial-time algorithms fall short of the bound Õ(

√
n), and can

only certify bounds of ‖T‖inj ≤ Õ(nk/4) for tensors of order k [RM14, HSS15, HSSS15]. The algorithm
of Hopkins et al. [HSS15] is based on the degree-k SoS relaxation for the tensor norm problem. They also
give a lower bound for the SoS relaxation for the order-3 tensor at degree 4, proving that the relaxation
has value Ω̃(n3/4), which implies that their analysis is tight for the SoS hierarchy at degree 4.

By applying our techniques for random k-XOR refutations to the problem of certifying bounds on
tensor norms, we have the following result:

Theorem 1.7. For any δ ∈ [0, 1/120), given a symmetric order-k tensor T with i.i.d. standard Gaussian
entries, with high probability over the choice of T, the degree O(nδ) SoS hierarchy relaxation certifies that

‖T‖inj ≤ Õ(n1/2+(k−2)(1−δ)/4+3k2δ2
) ,

where the Õ notation hides a polylogarithmic factor and a dependence on k. Furthermore, there is a

spectral algorithm that computes the eigenvalues of a 2Õ(nδ) × 2Õ(nδ) matrix that certifies the same bound.

We remark that the above theorem also holds, up to constants, for symmetric tensors with i.i.d. entries
from any symmetric distribution D over R with subgaussian tails. Strong refutation for k-XOR instances
can be thought of as a special case of the problem of bounding the norm of a random tensor–we elaborate
on the connection at the start of Section 2. However, the underlying distribution for random k-XOR
yields tensors which are extremely sparse, which poses several additional technical challenges.

In an independent work, Bhattiprolu et al. [BGL16] have obtained a result similar to Theorem 1.7 for
low-order tensors (for order k = 3, 4); at k = 3, 4, they certify tighter bounds. They also obtain a tight
lower bound on the integrality gap of degree-k SoS relaxations for k-tensor norms.

Techniques. We give an overview of our techniques in Section 2, but here we give a brief teaser. For
both the k-XOR problem and the injective tensor norm problem, we want to bound the norm of a random
tensor with independent entries (under different distributional assumptions, and only for Boolean vectors
in the case of CSPs). A canonical upper bound for injective tensor norm is to take the maximum eigenvalue
of its natural matrix flattening. This bound is loose, because the top eigenvector of the matrix flattening
is not restricted to be a rank-1 Kronecker power of a vector in Rn–in a sense, the top eigenvector of the
matrix flattening does not have enough symmetry. Our algorithmic strategy is to exploit this lack of
symmetry.

The sum-of-squares SDP at degree d provides a linear map Ẽ : R[x]≤d → R, from the space of
polynomials of degree ≤ d over x ∈ Rn to the reals, with the property that Ẽ[p2(x)] ≥ 0 for any polynomial

p of degree ≤ d/2. Each monomial
∏
i∈S xi is identified with an SDP variable XS

def
= Ẽ[

∏
i∈S xi].

At a high level, the sum-of-squares SDP relaxations for CSPs contain two classes of constraints. First,
the symmetry constraints, such as the constraint that the SDP variable that we identify with the monomial
Xijk = Ẽ[xixjxk] be equal to the variable identified with the variable corresponding to the permuted
monomial Xjki = Ẽ[xjxkxi]. Second, the Booleanness constraints, which enforce Ẽ[x2

i] = 1 for each i.

4

Roughly speaking, our spectral algorithm relies mainly on the symmetry constraints in the SDP. In
Section 2, we describe how to harness these symmetry constraints to obtain better approximations with
increasing SoS degree (by showing how the symmetry constraints can be used to improve a spectral
algorithm). This technique adds to the arsenal of tools for algorithm design via the SoS SDP hierarchy,
and is the main technical contribution of this work.

1.1 Related work

We briefly survey the prior work on refuting random CSPs–we refer the reader to [AOW15] for a thorough
survey on the topic. Work on refuting random CSPs began with Chvátal and Szemerédi [CS88], who
showed that a random k-SAT instance with clause density α > c (for c constant) with high probability
requires Resolution refutations of exponential size. This lower bound was later complemented by the works
of [Fu98, BKPS98], which show that at clause density α ≥ O(nk−1), polynomial-sized resolution proofs
exist and can be found efficiently. At the turn of the century, Goerdt and Krivelevich [GK01] pioneered
the spectral approach to refuting CSPs, showing that a natural spectral algorithm gives refutations for
k-SAT in polynomial time when α = m/n ≥ ndk/2e−1. A series of improvements followed, first achieving
bounds for α ≥ O(n1/2+ε) for any constant ε for the special case of 3-SAT [FG01, FGK05], then achieving
strong refutation at densities α ≥ Õ(ndk/2e−1) [CGL04, CCF10]. Finally, the works of Allen et al. and
Barak and Moitra gave spectral algorithms for strongly refuting k-XOR and k-SAT for any α ≥ Õ(nk/2−1)
[AOW15, BM15], and Allen et al. also give a reduction from any CSP which is far from supporting
a t-wise independent distribution to t-XOR. These spectral algorithms are the algorithmic frontier for
efficient refutations of random CSPs.

Though not algorithmic, the work of [FKO06] is worth mentioning as well. Feige et al. show that,
at clause density α = m/n ≥ Õ(n0.4), there exists a polynomial-sized (weak) refutation for random
3-SAT given by a subset of O(n0.2) unsatisfiable clauses. Understanding whether polynomial-sized weak
refutations exist for smaller α is an intriguing open problem.

In a concurrent and independent work, Bhattiprolu et al. [BGL16] obtained a result similar to
Theorem 1.7 for bounding the norms of tensors of order 3 and 4. The bounds obtained in [BGL16] are
tighter for k = 3 and k = 4. The results of [BGL16] do not imply new results for refutation even for CSPs
of arity 3 and 4, since their upper bound is too weak on sparse tensors–a regime that poses additional
technical hurdles.

1.2 Organization

In Section 2, we illustrate our core ideas via a detailed exposition of our proof for certifying bounds on
the norm of order-4 tensors, and explain how these techniques can be built upon to strongly refute CSPs.
Section 3 contains the full proof our tensor norm results. Section 4 contains our results for refuting k-XOR
instances. In Section 5, we combine our k-XOR refutation algorithms with the framework of [AOW15] to
refute other CSPs. Finally, in Section 6 we argue that our spectral algorithms give SoS proofs.

1.3 Preliminaries

We represent tensors by boldface letters such as T. We refer to the map from a tensor T with entries
indexed by [n]⊗2k to a matrix T indexed by [n]k × [n]k as the “natural flattening” of T. For a matrix or
vector M ∈ Rn×m, the notation M⊗d refers both to the nd ×md d-wise Kronecker power of M , or to the
n× · · · ×m tensor given by the d-wise cross-product of M with itself. For matrices, tensors, or vectors
A,B whose entries are identified with the same space, 〈A,B〉 denotes the sum of the entrywise products
of A and B.

5

2 Main Ideas: Proof for Random 4-Tensors

In this section, we will survey the main ideas in our paper by proving Theorem 1.7 (our tensor norm
certification algorithm) for the case of random 4-tensors. This specific case yields the simplest proof, while
encapsulating the core ideas of our techniques for both injective tensor norm and k-XOR. We formally
state the injective tensor norm problem here.

Problem 2.1 (Certifying injective tensor norm). Given an order-k tensor T with dimension n, certify
that for all x ∈ Rn with ‖x‖ = 1, |〈T, x⊗k〉| ≤ ‖T‖inj ≤ τ for some upper bound τ .

From k-XOR to tensor norms. First, we briefly outline the connection between k-XOR refutation
and certifying bounds on tensor norms. Let Φ be a random k-XOR formula on x ∈ {±1}n with m ≈ pnk
clauses, sampled as follows: for each S ⊂ [n]k independently with probability p, add the constraint that∏
i∈S xi = ηS where ηS is a uniform bit ±1, and with probability 1− p, add no constraint. We can form

an order-k tensor T so that for each S ∈ [n]k, TS = 0 if there is no constraint, and otherwise TS = ηS .
For any assignment x ∈ {±1}n, the inner product 〈T, x⊗k〉 is equal to the difference in the number

of Φ’s constraints that x does and does not satisfy. Since Φ has m constraints in all, certifying that
maxx∈{±1}n |〈T, x⊗k〉| ≤ o(m) is equivalent to certifying that opt(Φ) ≤ 1

2 + o(1). On the other hand,

certifying the injective tensor norm amounts to exhibiting an upper bound on max‖y‖≤1 |〈T, y⊗k〉| where
the maximization is over all unit vectors y. Every Boolean vector x ∈ {±1}n is of length ‖x‖ =

√
n, which

implies that maxx∈{±1}n |〈T, x⊗k〉| ≤ nk/2 · ‖T‖inj .
While the above reduction from certifying that opt(Φ) ≤ 1

2 + o(1) to certifying a bound on ‖T‖inj
exposes the connection between the two problems, it is too lossy to be useful. In fact, for p < 1/nk/2,
the sparsity of the tensor T implies that the form 〈y⊗k,T〉 is maximized by sparse real-valued vectors y
that are completely unlike Boolean vectors. In other words, almost surely there exists a sparse y ∈ Rn,
‖y‖ =

√
n with |〈T, y⊗k〉| � maxx∈{±1}n |〈T, x⊗k〉|. As a result, our refutation algorithm for k-XOR is

more involved than the certification algorithm for injective tensor norm in two ways. First, it crucially
uses the non-sparseness of Boolean vectors and second, the sparsity of the tensor T calls for more nuanced
concentration arguments. We give a short overview of these differences in Section 2.3 after presenting the
broad strokes of the proof, via our algorithm for certifying tensor norms, and full details in Section 4.

Certifying injective tensor norm. In what follows, we will give a spectral algorithm for Problem 2.1
for random 4-tensors with i.i.d. subgaussian entries. We will show that this spectral algorithm is subsumed
by a SoS relaxation of appropriate degree in Section 6. The rest of this section is organized as follows.

1. We first describe the matrix whose maximum eigenvalue provides the upper bound on the injective
tensor norm. Rather than writing down the matrix immediately, we will build up our intuition by
first considering a simple spectral approach, and then seeing how we can improve.

2. We then obtain bounds on the eigenvalues of the matrix, which will hold with high probability
for tensors with i.i.d. subgaussian entries–this is the step in which we analyze the performance of
our algorithm. Because our matrix is somewhat complicated and not amenable to the application of
black-box matrix concentration inequalities, we will apply the trace power method. This amounts to
bounding the expected trace of a large power of our matrix, a goal which we split in to two steps.

(a) First, we reduce computing the expected trace to a hypergraph counting problem.

(b) Then, we simplify the counting by analyzing a particular hypergraph sampling process.

2.1 Improving on the natural spectral algorithm with higher-order symmetries

A natural spectral algorithm for Problem 2.1 is to flatten the tensor to a matrix, and then compute the
operator norm of the matrix. This is a valid relaxation because, given an order-4 tensor A with symmetric

6

i.i.d. standard normal entries, if we take A to be the natural n2 × n2 matrix flattening of A,

‖A‖inj = max
x∈Rn:‖x‖=1

∣∣∣(x⊗ x)>A(x⊗ x)
∣∣∣ ≤ max

y∈Rn2
:‖y‖=1

∣∣∣y>Ay∣∣∣ = ‖A‖op . (2.1)

So ‖A‖op gives a valid upper bound for ‖A‖inj . This is great–on the left, we have a program that we
cannot efficiently optimize, and on the right we have a relaxation which we can compute in polynomial
time.

On the other hand this bound is quite loose–classical results from random matrix theory assert that
with high probability, ‖A‖op = Θ̃(n) whereas with high probability ‖A‖inj ≤ O(

√
n). The issue is that

the relaxation in (2.1) is too lenient–the large eigenvalues of A correspond to eigenvectors y ∈ Rn2
, that

are far from vectors of the form x ⊗ x : x ∈ Rn. We want to decrease the spectrum of A along these
asymmetric non-tensor product directions.

A tensored vector of the form x⊗x satisfies the symmetry that (x⊗x)ij = (x⊗x)ji = xixj . Therefore,
a natural approach to decrease the spectrum of A along the non-tensor product directions is to average
the matrix A, along these symmetries. Specifically, for each (i, j), we would average the ijth and jith rows,
and then repeat the same operation on columns. Formally, the averaged matrix A′ is given by,

A′ = E
Σ,Π∈Ŝ2

[ΣAΠ]

where Ŝ2 is the set of matrices which perform the permutations corresponding to the symmetric group on
2 elements on the rows and columns of matrices indexed by [n]2. Unfortunately, for a symmetric 4-tensor
A, the matrix A is also symmetric with respect to these operations, so that A′ = A.

To better exploit the symmetries of tensored vectors x⊗ x, we will work with higher powers of the
injective tensor norm. For any d ∈ N, we can write the dth-power of ‖A‖inj as

‖A‖dinj = max
x∈Rn,‖x‖=1

∣∣∣〈x⊗4,A〉d
∣∣∣ = max

x∈Rn,‖x‖=1

∣∣∣(x⊗2d)>A⊗dx⊗2d
∣∣∣ ,

where A⊗d is the natural n2d × n2d matrix flattening of A⊗d. The symmetric vector x⊗2d is fixed by
averaging over any permutation of the indices, so averaging over such permutations does not change the
maximum:

= max
x∈Rn,‖x‖=1

∣∣∣∣∣ E
Π,Σ∈Ŝ2d

[
(Πx⊗2d)>A⊗d(Σx⊗2d)

]∣∣∣∣∣ ,
and by linearity of expectation,

= max
x∈Rn,‖x‖=1

∣∣∣∣∣(x⊗2d)>

(
E

Π,Σ∈Ŝ2d

[
Π>A⊗dΣ

])
x⊗2d

∣∣∣∣∣ ≤

∥∥∥∥∥ E
Π,Σ∈Ŝ2d

[
Π>A⊗dΣ

]∥∥∥∥∥
op

. (2.2)

The operator norm of the above described matrix will certify our upper bounds:

Proposition 2.2. Let k ∈ N be even. Let Ŝkd/2 be the set of matrices performing the permutations

of Skd/2 on matrices with rows and columns indexed by [n]kd/2. For any order-k tensor A with matrix
flattening A,

‖A‖inj ≤

∥∥∥∥∥ E
Π,Σ∈Ŝkd/2

[
ΠA⊗dΣ

]∥∥∥∥∥
op

1/d

.

7

Proof. The sequence of calculations culminating in (2.2) gives the proof.

Now, how can this give an improved upper bound over ‖A⊗d‖op = ‖A‖dop? The reason is that although

A had 4-wise symmetry, the tensor A⊗d does not have 4d-wise symmetry. For I, J ∈ [n]2d, I =
(i1, i

′
1), . . . , (id, i

′
d) and J = (j1, j

′
1), . . . , (jd, j

′
d) and for permutations π, σ on 2d elements,

(A⊗d)I,J =

d∏
`=1

(i`,i
′
`)∈I

(j`,j
′
`)∈J

Ai`,i′`,j`,j
′
`
6=

d∏
`=1

(a`,a
′
`)∈π(I)

(b`,b
′
`)∈σ(J)

Aa`,a′`,b`,b
′
`

= (A⊗d)π(I),σ(J) ,

because the identity of the base variables in the expression may change under the permutation of the
indices I and J . Thus, the typical entry of EΠ,Σ∈Ŝ2d

[
Π(A⊗d)Σ

]
is an average of (d/2!)2 random variables,

which are not independent, but also not identical. Since the entries of A are distributed symmetrically
about zero, we expect the magnitude of the typical entry to drop after this averaging. If we indulge the
heuristic assumption that the entries of EΠ,Σ∈Ŝ2d

[
Π(A⊗d)Σ

]
are averages of dΩ(d) independent random

symmetric variables of constant variance, then the magnitude of the typical entry should be ≈ 1
dΩ(d) . So

heuristically, we have that ∥∥∥∥∥ E
Π,Σ∈Ŝ2d

[
Π(A⊗d)Σ

]∥∥∥∥∥
F

≤ 1

dΩ(d)
· ‖A⊗d‖F .

By Wigner’s semicircle law, matrices with independent entries have eigenvalues that are all roughly of the
same magnitude. Because our matrix has roughly independent entries, we may hope that the semicircle
law holds for us, so that from the above heuristic calculations and from (2.2),

‖A‖inj ≤

∥∥∥∥∥ E
Π,Σ∈Ŝ2d

[
Π(A⊗d)Σ

]∥∥∥∥∥
op

1/d

≤
(

1

dΩ(d)
· ‖A⊗d‖op

)1/d

≤ n

dΩ(1)
.

Thus, we expect that as we increase d, and therefore increase the symmetry of the tensored vectors x⊗ x
relative to the “noisy” non-tensor product eigenvectors of A, we can certify a tighter upper bound on
‖A‖inj . Of course, since our certificate is the eigenvalue of a n2d × n2d matrix, the running time the
refutation algorithm grows exponentially in the choice of d.

2.2 Matrix concentration for the certificate

Our algorithm is now clear: we form our matrix certificate by averaging overrows and columns corresponding
to permutations of row and column indices in A⊗d, then use the certificate matrix’s eigenvalues to upper
bound ‖A‖dinj (by Proposition 2.2).

Theorem 2.3. Let n, d ∈ N. Let A be an order-4 tensor with independent entries, distributed according
to subgaussian distribution symmetric about 0. Then if d log n� n, with high probability over A,∥∥∥∥ E

Π,Σ

[
ΠA⊗dΣ

]∥∥∥∥1/d

≤ Õ
(n

d1/2
d

12 log d
logn

)
.

As a corollary of Theorem 2.3 and Proposition 2.2, we get Theorem 1.7 for the case of order-4 tensors.
At the end of the previous subsection we gave a heuristic argument that a statement along the lines of

Theorem 2.3 should be true. While the heuristic argument is plausible, it is very far from a formal proof;
we need to prove that the eigenvalues of E[ΠA⊗dΣ] are bounded by ≈ Õ(n/

√
d)d with high probability.

But the matrix E[ΠA⊗dΣ] is not a sum of independent random matrices, and it does not have independent
entries, so sophisticated matrix concentration tools (like the semicircle law or matrix Chernoff bounds) do
not apply. For tasks of this sort, the trace power method, or the method of moments, is the tool of choice:

8

Figure 1: Hypergraph interpretations of the entries of A⊗d, Cd, and Tr((CC>)`).

Proposition 2.4 (Trace power method). Let n, ` ∈ N, let c ∈ R, and let M be an n× n random matrix.
Then

E
M

[Tr((MM>)`)] ≤ β =⇒ P
(
‖M‖ ≥ c · β1/2`

)
≥ 1− c−2` .

The proof is essentially an application of Markov’s inequality; we give it in Appendix A.

2.2.1 From bounding the expected trace to a hypergraph counting problem

A classic way to apply the trace power method is to reduce to a graph counting problem. For example,
let M be a symmetric n × n random matrix with independent Rademacher entries. We can view the
row/column index set [n] as a set of “vertices,” and the entry Mi,j as an “edge” variable between vertices
i and j. The trace Tr(M `) is the sum over products of edge variables along closed walks of length ` in the
graph defined by M . When we take EM [Tr(M `)], any closed walk in which an edge appears with odd
multiplicity does not contribute to the sum, since E[Mm

i,j] = 0 for odd m. Therefore, E[Tr(M `)] is equal to
the number of closed walks of length ` in which every edge appears with even multiplicity, within the
complete graph Kn, and bounding E[Tr(M `)] becomes a counting problem.

We make a similar reduction for our matrix C
def
= EΣ,Π[ΠA⊗dΣ]. The rows and columns of A are

indexed by pairs [n]2, we interpret each variable Aij,k` as a (multi)hyperedge between the vertices (i, j)
and (k, `) corresponding to the row and column indices respectively. In the Kronecker power A⊗d, the rows
and columns are indexed by vertex multisets I, J ∈ [n]2d, I = (i1, i

′
1, . . . , id, i

′
d), J = (j1, j

′
1, . . . , jd, j

′
d),

and the entry (A⊗d)I,J is the product of the hyperedges
∏d
k=1Aiki′k,jkj

′
k
. We view this as a hyperedge

matching between I, J , in which the vertices (ik, i
′
k) are matched with the vertices (jk, j

′
k) for each k ∈ [d]

(see Figure 1).
Now to obtain our matrix C, we average over row and column symmetries, so that CI,J =

Eπ,σ∈S2d
[(A⊗d)π(I),σ(J)]. In each entry of C, we average over the permutations of the left and right

vertex sets, which is the same as averaging over all perfect hypergraph matchings from I to J (again see
Figure 1).

Just as in the case of the simple random matrix M , we can interpret Tr((CC>)`) as the sum over all
closed walks of length 2` on the complete graph (with self-loops) on the vertex set [n]2d, where the edge
variable between I, J is the average over all possible hyperedge matchings between I and J . When we
take the expectation over A, EA[Tr((CC>)`)], any hyperedge appearing with odd multiplicity will cause
the contribution of the closed walk to be 0, since the entries of A are distributed symmetrically about 0.

Our reduction is now complete. Because we will be dealing with subgaussian random variables, the
entries of A will concentrate well enough for us to reduce to the Rademacher case.

Lemma 2.5. Let A be an order-4 tensor with i.i.d. Rademacher entries, and let A be its matrix flattening.

Let Cd
def
= EΣ,Π∈Ŝ2d

[ΠA⊗dΣ]. For the 2` multisets of vertices I1, . . . , I2` ∈ [n]2d, let H be the set of all
sequences of perfect hyperedge matchings between each Ij and Ij+1 mod 2`, so that each hyperedge has
2 vertices from Ij and 2 vertices from Ij+1. For a fixed sequence of hyperedge matchings H ∈ H, let

9

EI1,...,I2`(H even) be the event that every hyperedge appears with even multiplicity. Then

E
A

[
Tr
(

(CdC
>
d)`
)]

=
∑

I1,...,I2`∈[n]2d

P
H∼H

[EI1,...,I2`(H even)]

Proof. Any product of Rademacher random variables has expectation 0 if some variable appears with
odd multiplicity, and 1 otherwise. This, along with the observations preceding the lemma statement,
implies that each I1, . . . , I2` contributes exactly the probability that hyperedges chosen for it all have even
multiplicity (where we get a probability since each entry CI,J is the average over hyperedge matchings
from I to J).

2.2.2 Bounding the probability of an even hypergraph

From Lemma 2.5 and Proposition 2.4, in order to prove Theorem 2.3 it suffices for us to bound∑
I1,...,I2`∈[n]2d

P
H∼H

[EI1,...,I2`(H even)] ≤ Õ(n/d1/2)2d`, (2.3)

for ` = Ω(log n). Since each probability is bounded by 1 and there are n4d` terms in the sum, (2.3) easily
gives us an upper bound of n4d`. We need to improve upon this naive bound twofold: first, we need the
dependence on n to be n2d`. This would give a bound of ‖E[ΣA⊗dΠ]‖ ≤ Õ(nd) w.h.p., but we can get
this bound trivially by ignoring the symmetrization, as ‖A⊗d‖ ≤ Õ(nd) w.h.p. To fully reap the rewards
of symmetrization, we must improve by a factor of ≈ (

√
d)−2d`.

At first, bounding (2.3) seems daunting–it is unclear how to count the number of such hypergraphs with
even multiplicity, while simultaneously getting the correct dependence on n and d. It will be helpful to use
the following two-step process for sampling hypergraphs: for a fixed vertex configuration I1, . . . , I2` ∈ [n]2d,

1. First, sample perfect simple edge matchings between Ij , Ij+1 for each j ∈ [2`].

2. Next, pair up the edges between Ij , Ij+1 and merge each pair to form a hyperedge.

We will use step 1 to bound the dependence on n, and step 2 to bound the dependence on d. In particular,
our arguments from Lemma 2.5 give us the following lemma almost immediately:

Lemma 2.6. Let M be the set of all possible choices of edge sets sampled in step 1. Let EI1,...,I2`(E even)
be the event that the graph given by the edges E ∈M on I1, . . . , I2` has every edge appearing with even
multiplicity. Then ∑

I1,...,I2`∈[n]2d

P
E∼M

[EI1,...,I2`(E even)] = E
M

[
Tr
(

(BB>)`
)]

, (2.4)

where M is an n× n matrix with i.i.d. Rademacher entries, and B
def
= EΠ,Σ∈Ŝ2d

[ΠM⊗2dΣ].

Lemma 2.6 lets us relate the probability that we sample a perfect matching in which every edge
appears with even multiplicity in step 1 to the norm of a matrix M with i.i.d. Rademacher entries, which
is an object we understand well: with very high probability, ‖M‖ ≤ O(

√
n), and because of the connection

between the expected trace and the norm of a matrix, we can then bound (2.4) by the desired Õ(n1/2)4d`.
To use (2.4), we need to relate the probability that the edges sampled in step 1 have even multiplicity

to the probability that the hyperedges sampled in step 2 have even multiplicity.

Lemma 2.7 (somewhat informal statement). Let I1, . . . , I2` ∈ [n]2d, and suppose we have sampled
hyperedges H ∈ H by first sampling simple edges E ∈M as in step 1 and then grouping them as in step 2.
Then

P(EI1,...,I2`(E even) | EI1,...,I2`(H even)) ≥
(

1

2

)2d`

.

10

Proof (sketch). For any given hyperedge (i, j, k, `) ∈ H, with i, j ∈ Ia and k, ` ∈ Ia+1, there are only two
ways it could have been sampled as pairs of edges, either as a merge of (i, k), (j, `) ∈ E or of (i, `), (j, k) ∈ E.
If all copies of a hyperedge of even multiplicity m are sampled the same way, then the corresponding edges
also have even multiplicity.4 For a hyperedge of multiplicity m, every copy of the hyperedge is sampled
in the same way with probability at least (1/2)m, which becomes (1/2)2d` for the 2d` hyperedges in the
graph.

Now, using the shorthand E(· even)
def
= EI1,...,I2`(· even), we already have that

P
H∼H

[E(H even)] =
P [E(H even), E(E even)]

P[E(E even) | E(H even))
≤ 22d` · P [E(H even) | E(E even)] · P [E(E even)] .

Further, we have our bound from Lemma 2.6, so if we could bound maxI1,...,I2` P[E(H even) | E(E even)] ≤
d−2k`, we would be done. But this conditional probability is not always small–for example, there is the
case when I1 = · · · = I2` are all multisets containing the same vertex i ∈ [n] with multiplicity 2d. In this
case, the probability that we sample an even hypergraph is 1.

Still, so long as there are sufficiently many different vertices in I1, . . . , I2`, we can prove that this
conditional probability is small enough:

Lemma 2.8. Let E1, . . . , E2` ∈ [n×n]2d be multisets of edges such that every edge is present in the union
at least twice, and the number of distinct edges in the union is at least (1−β)2d`, i.e., |∪2`

i=1Ei| ≥ (1−β)2d`.
Let Pi denote a uniformly random pairing of elements within Ei sampled independently for each i ∈ [2`].

Then there exists a constant cβ depending only on β such that

P[∪iPi has every pair with even multiplicity] ≤
(cβ
d

)(1−10β)d`
.

Proof (sketch, details in proof of Lemma 3.8). Suppose we make our pairing decisions one multiset at a
time. We must pair the last copy of each edge correctly, so that all its pairs have even multiplicity. There
are 2d edges per matching, so the probability that we make this last decision correctly is ≈ Ω(d)−1. We
make d pairing decisions per matching, and we make the “last” decision about half of the time since every
edge appears close to twice on average–this gives the probability to be roughly Ω(d)−d`.

Now, as there are only ≈ n(1−α)·2d` choices of sets I1, . . . , I2` which could have at most (1− α) · 2d`
different edges, these sets contribute negligibly to the sum, and we have that

∑
I1,...,I2`

P
H∼H

[EI1,...,I2`(H even)] ≤ 22d` ·

n(1−α)·2d` + P[E(H even) | E(E even)]
∑

I1,...,I2`

P [EI1,...,I2`(E even)]

≤ 22d` ·

(
n(1−α)·2d` +

(
cα√
d

)(1−10α)2d`

· n2d`

)

Balancing the terms concludes the proof; we will fill in the few remaining details in Section 3.1.

2.3 From k-XOR to tensor norms, and odd-order tensors

The proof of Theorem 2.3 generalizes to tensors of all even orders k almost immediately. For odd k we
need an extra idea or two, since all natural flattenings of the tensor to a matrix result in a non-square
matrix. We give the details for even and odd k in Section 3.1 and Section 3.2 respectively.

4In the formal proof, we’ll have to take care to start with an asymmetric tensor, with Aijk` 6= Aπ(ijk`) for permutations π,
so that no hyperedge can appear with even multiplicity by being grouped from the edges (i, k), (j, `) and also (i, j), (k, `).

11

As hinted earlier, to apply these ideas to strongly refute k-XOR we need to overcome two main hurdles.
First, as the number of clauses is small, m ≈ p · nk < nk/2, the tensor corresponding to the instance is
sparse enough that the injective tensor norm maxy∈Rn |〈T, y⊗k〉| is maximized by sparse vectors y. Sparse
vectors y ∈ Rn are too far from the solutions of interest, namely Boolean vectors x ∈ {±1}n, which are in
a sense maximally dense.

To address this issue, we will consider a sub-matrix of the tensored matrix A⊗d. Again, let us
consider the case of k = 4. Recall that, maxx∈{±1}n〈A, x⊗4〉d = maxx∈{±1}n

∣∣x⊗2dA⊗dx⊗2d
∣∣. The rows

and columns of A⊗d are indexed by I, J ∈ [n]2d. We refer to a tuple I ∈ [n]2d as high multiplicity if there
is some i ∈ [n] which has multiplicity greater than 100 log n in I (since we are interested in the case
when d = nδ � log n). The rows and columns of A⊗d corresponding to such tuples will be referred to
as high-multiplicity rows and columns. Let Γ denote the projection on to the low-multiplicity indices,
(Γx)I = xI · I[I not high-multiplicity].

The key idea is that for a Boolean vector x ∈ {±1}n, almost all of the `2-norm of x⊗2d is concentrated
within the low-multiplicity indices, i.e., ‖Γx⊗2d‖ ≈ ‖x⊗2d‖. However, for a sparse vector y ∈ Rn,
‖Γy⊗2d‖ � ‖y⊗2d‖. Therefore, we eliminate the sparse maxima of the polynomial, by restricting the
matrix to the low-multiplicity rows and columns, and then apply the averaging over row and column
permutations. Specifically, the spectral upper bound used by the refutation algorithm is,

max
x∈{±1}n

∣∣〈A, x⊗4〉
∣∣d = max

x∈{±1}n

∣∣∣(x⊗2d)>A⊗dx⊗2d
∣∣∣ ≈ max

x∈{±1}n

∣∣∣(x⊗2d)>
(

ΓA⊗dΓT
)
x⊗2d

∣∣∣
≤ n2d ·

∥∥∥∥∥ E
Π,Σ∈Ŝ2d

[
Π
(

ΓA⊗dΓT
)

Σ
]∥∥∥∥∥ .

The second challenge is that, in the sparse regime where p ≤ 1/nk/2, the entries of the random matrix
A are ill-behaved. Specifically, the entries of A have distributions with unusually large higher moments,
completely unlike Gaussian or Rademacher random variables. For example, the 2rth moment of an entry
E[A2r

ijk`] = p� (E[A2
ijk`])

r = pr. In the trace calculation we outlined earlier, each term of the sum was
either 0 if any variable had odd multiplicity, and otherwise 1. In the sparse regime, different terms in the
trace contribute vastly different amounts, depending on the multiplicities involved. So we must count
our hypergraphs precisely, taking into account the multiplicity of each hyperedge, rather than the just
the parity. We use the encoding technique to count the number of hypergraph structures accurately, in
a way reminiscent of similar arguments in random matrix theory (e.g. [FK81]). Although the counting
argument involved is more subtle than the case of random 4-tensors (see Section 4.3), we are still able to
use the same 2-step hyperedge sampling process to simplify the counting.

3 Injective Tensor Norm for Subgaussian Random Tensors

In this section, we show how to certify bounds on the norm of a random tensor, building on our proof of
the order-4 case in Section 2. We handle the even-order and odd-order cases separately, as the odd-order
case contains some additional intricacies.

Section 3.1 contains the proof for even tensors. Section 3.2 contains the proof for odd tensors. In
Section 3.3, we prove a combinatorial lemma that we rely upon in both proofs.

3.1 Even-order tensors

The case of order-k tensors when k is even is almost completely outlined in Section 2, in the proof
overview of Theorem 2.3. Some of the statements from the overview need additional proof, and some need
generalization for k > 4. We briefly fill in the gaps.

12

Recall that in our setting, we are given a symmetric order-k tensor A with i.i.d. standard Gaussian
entries, where k is even. Our algorithm consists of computing the operator norm of a certificate matrix;
though we described this certificate ion Section 2, we will require one small twist to make our proofs
easier:

Algorithm 3.1 (Certifying even k-tensor norms).
Input: An order-k dimension-n tensor A, for even k.

1. Form the asymmetric tensor A′ from A as follows. For each S ∈ [n]k,

(a) if S is lexicographically first among all permutations of S, set A′S =
∑

π∈Sk Aπ(S).

(b) otherwise, set A′S = 0.

2. Take the natural nk/2 × nk/2 matrix flattening A of A′, and form A⊗d.

3. Letting Ŝdk/2 be the set of all permutation matrices that perform the index permutations corre-

sponding to Sdk/2 on the rows and columns of A⊗d, form

Cd
def
= E

Π,Σ∈Ŝdk/2

[
ΠA⊗dΣ

]
.

Output: ‖Cd‖1/d as a bound on the objective value.

First, we verify the completeness of the certificate:

Lemma 3.2. Let A be a symmetric order-k tensor for even k, and let A be the natural matrix flattening
of A′ the asymmetrization of A described in Algorithm 3.1. Let Sdk/2 be the symmetric group on dk/2

elements, and further let Ŝdk/2 be the set of ndk/2 × ndk/2 matrices that apply the permutations of Sdk to

matrices whose rows and columns are identified with multisets in [n]dk. Then∥∥∥∥∥ E
Π,Σ∈Ŝdk

[
Π(A⊗d)Σ

]∥∥∥∥∥
1/d

≥ ‖A‖inj .

Proof. The proof is identical to that of Proposition 2.2, up to noticing that 〈A, x⊗k〉 = 〈A′, x⊗k〉.

Now, we will prove that in the case that A is a random tensor with i.i.d. subgaussian entries,
our certification algorithm improves smoothly upon the simple spectral algorithm as we invest more
computational resources.

Theorem 3.3. Let n, k, d ∈ N, with even k. Let A be a symmetric order-k tensor with independent
entries distributed symmetrically about 0. Let A be the matrix flattening of A′, the asymmetrization of A
described in Algorithm 3.1. Then if d� n1/3k2

, there exists a constant c such that with high probability
over A, ∥∥∥∥ E

Π,Σ

[
ΠA⊗dΣ

]∥∥∥∥1/d

≤ (c log2 n)k · d
k2 log d
4 logn · nk/4

d(k−2)/4
.

The proof is nearly identical to the k = 4 case from Section 2, so we will be brief.

Proof. We will assume that each entry of A′ is bounded in absolute value by γ = O(
√
d log n)), as by the

subgaussian assumption this is true with high probability, even after symmetrization. This assumption
preserves the symmetry of the distribution.

As in the proof of the k = 4 case from Section 2, we will use the trace power method. For shorthand, let

C
def
= EΠ,Σ∈Sdk

[
ΠA⊗kΣ

]
. Let H be the set of all hyperedge configurations possible (the set of all possible

length-2` sequences of hypergraph matchings on two sets of dk/2 vertices). Let V be the set of all vertex
configurations possible (the set of all possible length-2` sequences of vertex multisets I1, . . . , I2` ∈ [n]dk/2).
We note now that there are not many vertex configurations which use few vertices in [n]:

13

Fact 3.4. Let Vα be the set of vertex configurations on dk` vertices containing fewer than αdk`/2 distinct
vertices from [n]. Then

|Vα| ≤ (αdk`/2)(1−α/2)dk` · nαdk`/2.

Proof. There are only nαdk`/2 choices for vertex labels, and then (αdk`/2)(1−α/2)dk` choices for the rest.

For H ∈ H and V ∈ V , we let wA(V,H) denote the product of all hyperedge weights in the hyperedge
cycle (V,H) when the weights are given by entries of the tensor A. Because the entries are distributed
symmetrically about 0, we have that

E
A

[
Tr((CC>)`)

]
=
∑
V ∈V

E
H∈H

[
E
A

[wA(V,H)]

]
≤
∑
V ∈V

E
H∈H

[
γ2d` · I[(V,H) even, 6= 0]

]
= γ2d` ·

∑
V ∈V

P
H∈H

[(V,H) even, 6= 0] ,

where I[·] is the 0− 1 indicator for an event. Notice that now, evenness is not enough to ensure that we
have nonzero contribution–because we asymmetrized A, every hyperedge also has to be lexicographically
first, meaning it appears either as A′S,T or A′T,S depending on whether it comes from a C or C> term.
Using Fact 3.4 to argue that the number of vertex configurations with fewer than (1− β)dk`/2 distinct
vertices (the number of V ∈ V(1−β)) cannot be too large,

≤ γ2d`

((
1 + β

2
dk`)(1+β)n(1−β)

)dk`/2
+

∑
V 6∈V(1−β)

P
H∈H

[(V,H) even, 6= 0]

 . (3.1)

So for a fixed V ∈ V, we will bound PH [(V,H) even, 6= 0].
To do this, we repeat our argument from Section 2. Fixing a vertex configuration V = I1, . . . , I2`, we

sample H ∼ H uniformly in two steps:

1. Sample a random perfect matching (of edges, not hyperedges) between every two consecutive vertex
sets Ii, Ii+1, letting the configuration of edges we chose be E from the set of all such possible
configurations M.

2. Group the edges between Ii and Ii+1 into groups of size k/2, and merge every group into a hyperedge
(of order k).

Let (V,E) be the intermediate graph in this process that produces the hypergraph (V,H). Notice that
now, We restate, then prove, a more precise version of Lemma 2.7

Lemma 3.5 (formal version of Lemma 2.7). Let V = I1, . . . , I2` ∈ [n]dk/2, and suppose we have sampled
hyperedges H ∈ H by first sampling simple edges E ∈M as in step 1 and then grouping them into groups
of k/2 as in step 2. Then

P((V,E) even | (V,H) even, 6= 0) ≥

(
1
k
2 !

)2d`

.

Proof. Suppose every hyperedge in H is lexicographically first and has even multiplicity. Each hyperedge
h in H, h was sampled from one of the (k/2)! matchings of its left-hand vertices to its right-hand vertices
with equal probability. Let h1, . . . , hm be the distinct labeled hyperedges of our hypergraph. Since all our
hyperedges are lexicographically first, the same bipartition of vertices is common to every appearance
of hi for all i ∈ [m]. Thus, if we choose a uniformly random perfect matching of simple edges in each
hyperedge of the hypergraph, we choose the same simple matching for all copies of hi with probability
at least (k2 !)−#hi . It follows that if all hyperedges appear in (V,H) with even multiplicity, then with

probability at least (k2 !)−2d` all simple edges in (V,E) appear with even multiplicities.

14

Applying Lemma 3.5,

P((V,H) even, 6= 0) =
P((V,H) even, 6= 0 & (V,E) even)

P((V,E) even | (V,H) even, 6= 0)

≤
(
k

2
!

)2d`

· P((V,E) even) · P((V,H) even | (V,E) even) . (3.2)

We now relate the quantity
∑

V ∈V PE [(V,E) even] to a matrix quantity we can control well. Letting

B be an n× n matrix with symmetric i.i.d. entries uniform from {±1}, and letting C ′ = E[ΠB⊗dk/2Σ],

E
[
Tr((C ′C ′>)`)

]
=
∑
V ∈V

P
E

[(V,E) even] .

We now prove and apply the following proposition, which is a restatement of Lemma 2.6 for arbitrary k:

Proposition 3.6. Let n, d, k, ` ∈ N so that dk` log n� n. Let C ′ = EΠ,Σ∈Sdk/2
[
ΠB⊗dk/2Σ

]
, for an n×n

matrix B with i.i.d. Rademacher entries. Then

E
[
Tr((C ′C ′>)`)

]
≤ 24dk`+1ndk`/2+dk/2 .

Proof. Let B be an n× n matrix with i.i.d. Rademacher entries, and let d, ` ∈ N. We have that for any
N ×N PSD matrix P , Tr

(
P `
)
≤ N ·

∥∥P `∥∥, and because C ′C ′> is PSD it follows that

Tr
(

(C ′C ′>)`
)
≤ ndk/2 ·

∥∥∥(C ′C ′>)`
∥∥∥ . (3.3)

We will get a bound on E ‖(C ′C ′>)`‖. Because C ′ is symmetric, C ′C ′> = (C ′)2. Thus, a bound on
E ‖C ′2`‖ will suffice. We apply the triangle inequality and the submultiplicativity of the norm to deduce
that for any B,

‖C ′2`‖ =

∥∥∥∥∥∥
(

E
Π,Σ∈Ŝ2d

[
Π(B⊗dk/2)Σ

])2`
∥∥∥∥∥∥ ≤

(
E

Π,Σ∈Ŝ2d

[
‖Π‖ · ‖(B⊗dk/2)‖ · ‖Σ‖

])2`

≤ ‖B‖dk` ,

and now, we can use standard arguments from random matrix theory to get tail bounds on ‖B‖. From
Theorem A.2, we have that P[‖B‖ − 12n1/2 ≥ s] ≤ exp(−s2/16), and we also have that ‖B‖ ≤ ‖B‖F ≤ n,
and thus it follows that

E
[
‖C ′2`‖

]
≤ E

[
‖B‖dk`

]
≤ P[‖B‖ ≤ 16

√
n] · (16

√
n)dk` + P[‖B‖ > 16

√
n] · ndk`

≤ (1− exp(−n)) · (16
√
n)dk` + exp(dk` log n− n) ≤ 2(16

√
n)dk` ,

and the conclusion follows from combining the above with (3.3).

We thus have∑
V ∈V(1−β)

P
E

[(V,E) even] ≤
∑
V ∈V

P
E

[(V,E) even] ≤ E
[
Tr((C ′C ′>)`)

]
≤ 24dk`+1ndk`/2+dk/2 . (3.4)

Now, from (3.2) we are left to bound P[(V,H) even | (V,E) even, V ∈ V(1−β)]. We apply the following
lemma:

Lemma 3.7. Let m,n, c ∈ N, and let G be a graph which is a union of at most c disjoint cycles. Suppose
furthermore that each vertex receives labels from the set [n], that every labeled edge appears with even
multiplicity, and that there are exactly m distinct labeled edges. Then letting L be the number of distinct
vertex labels, we have

L ≤ m+ c.

15

The proof of Lemma 3.7 proceeds by a cute inductive argument, which we will reserve for Section 3.3.
Lemma 3.7 implies that if (V,E) has at least (1− β)dk`/2 distinct vertices, then it must have at least

(1 − β)dk`/2 − dk/2 distinct edges. Let E1, . . . , E2` be the matchings in E so that Ei gives the edges
between Ii, Ii+1. We invoke and prove a generalization of Lemma 2.8:

Lemma 3.8. Fix M, r, `,N ∈ N and β ∈ (0, 1). Let E1, . . . , EM ∈ [N]r·c be multisets of elements such
that the number of distinct elements in the union ∪i∈[M]Ei is at least (1− β)M · r · c/2. Let Gi denote a
uniformly random r-grouping of elements within Ei, sampled independently for each i ∈ [M]. Let

⊕
iGi

denote the set of r-groups (a1, . . . , ar) ∈ [N]r that appear an odd number of times within ∪iGi. Then for
any 0 < δ < 3.5β,

P[| ⊕i Gi| ≤ δMc] ≤
(

112

βc

)(1−(4r+1)β−2δ)(r−1)Mc/2

We will prove Lemma 3.8 in Section 3.3.
We apply Lemma 3.8 to the multisets Ei with parameters M ← 2`, c← d, r ← k/2, to conclude that

if the Si are each grouped into matchings of hyperedges with d edges each, then

P [(V,H) even | (V,E) has ≥ (1− β)dk`/2 edges] ≤
(

112

βd

)(1−(2k+1)β)(k/2−1)d`

≤ cdk`/2β

(
1

d

)(1−3kβ)(k/2−1)d`

.

for some constant cβ depending only on β. Putting this together with (3.1),(3.2), and (3.4),

E
A

[
Tr((CC>)`)

]
≤ γ2d`

((
((1 + β)dk`/2)(1+β) · n(1−β)

)dk`/2
+

(
k

2
!

)2d`

· (28n)dk`/2+dk/2 · cdk`/2β

(
1

d

)(1−3kβ)(k/2−1)d`
)

≤ (c′β · kkγ2`k)d`ndk/2

(
(d1+βn1−β)dk`/2 +

(
1

d

)(1−3kβ)(k/2−1)d`

ndk`/2

)

for some constant c′β. Choosing β = 2(k−1) log d
k(3k−7) log d+logn balances the terms, so for smaller β we have

E
A

[
Tr((CC>)`)

]
≤ 2(c′β · kkγ2`k)d`ndk/2 ·

(
nk/2

dk/2−1

)d`
· dβ(k/2−1)d` .

Now, requiring that d ≤ n1/3k2
and choosing β ← (k − 1) log d

logn , we have that

E
[
Tr((CC>)`)

]1/2`
≤ 2(c′β · kkγ2`k)d/2ndk/4` ·

(
nk/2

dk/2−1

)d/2
· d

k2 log d
2 logn

·d/2

Taking ` = O(log n) and applying Proposition 2.4, the conclusion of Theorem 3.3 follows.

3.2 Odd-order tensors

In this section, we give our algorithm for certifying bounds on the injective tensor norm of random
odd-order tensors. Because there is no canonical way to flatten an odd-order tensor to a square matrix,
the algorithm includes an additional step, similar to the one we employ for k-XOR instances when k is
odd (Section 4.2).

16

We begin with a brief high-level overview of our algorithm. To begin with, let A ∈ R[n]k be an order-k
symmetric tensor of dimension n. For convenience, we define an integer κ such that k = 2κ+ 1. For the
rest of this section, we will use Ai to denote the [n]κ × [n]κ matrix obtained by flattening the ith slice of
A, i.e.,

Ai(I, J)
def
= A(i,I,J) ∀I, J ∈ [n]κ .

Using the Cauchy-Schwarz inequality, we can bound the injective norm in terms of the matrices Ai,

〈x⊗2κ+1,A〉 =
∑
i

xi · 〈x⊗κ, Aix⊗κ〉

≤

(∑
i

x2
i

)1/2

·

(∑
i

〈x⊗κ, Aix⊗κ〉2
)1/2

=

(
〈x⊗2κ,

(∑
i

Ai ⊗Ai

)
x⊗2κ〉

)1/2

. (3.5)

Therefore, in order to bound ‖A‖inj , it is sufficient to bound the following quantity.

max
‖x‖≤1

〈
x⊗2κ,

(∑
i

Ai ⊗Ai

)
x⊗2κ

〉
(3.6)

For a tensor A whose entries are i.i.d. subgaussian variables, we bound the value of the maximization
problem (3.6).

The matrix
∑

iAi⊗Ai has large diagonal entries. However, our tensoring and symmetrizing algorithm
requires a matrix with eigenvalues roughly symmetric about 0 (see the heuristic explanation in Section 2).
Thus, we will work with a diagonal-free version of the matrix. Define the matrix N ∈ R[n]2κ×[n]2κ as
follows:

Ni((a, b), (c, d)) = Ai(a, c) ·Ai(b, d) · I[(a, c) 6= (b, d)] ∀a, b, c, d ∈ [n]κ

We can rewrite the polynomial in (3.6) as,〈
x⊗2κ,

(∑
i

Ai ⊗Ai

)
x⊗2κ

〉
=

〈
x⊗2κ,

(∑
i

Ni

)
x⊗2κ

〉
+

∑
i∈[n],a,b∈[n]κ

x2
ax

2
bA

2
i (a, b)

And we can upper bound the latter term by

∑
i∈[n],a,b∈[n]κ

x2
ax

2
bA

2
i (a, b) ≤

∑
a,b∈[n]κ

x2
ax

2
b

(∑
i

A2
i (a, b)

)
≤ max

a,b

(∑
i

A2
i (a, b)

)
(3.7)

where we have used the fact that ‖x‖2 = 1. Bounding the norm of tensor A thus reduces to upper
bounding 〈x⊗2κ, (

∑
iNi)x

⊗2κ〉. Now our strategy is as before–we take a dth tensor power of our matrix,
then average over the symmetries of x⊗2κd.

Having discussed the differences between the even and odd cases, we are ready to give our algorithm.

Algorithm 3.9 (Odd-order Injective tensor norm).
Input: A random tensor A of dimension n and odd order k = 2κ+ 1, and a parameter d.

1. Form the asymmetric tensor A′ as described in Algorithm 3.1, so that 〈x⊗k,A〉 = 〈x⊗k,A′〉 but
only lexicographically first entries are nonzero.

2. Let Ai be the nκ × nκ matrix flattening of the ith slice of A′, and form the matrix

M :=
∑
i∈[n]

Ai ⊗Ai

17

3. Zero out all entries of the matrix corresponding to (I1, I2), (J1, J2) ∈ [n]2κ such that (I1, J1) = (I2, J2),
forming a new matrix N :

N(I1,I2),(J1,J2) := M(I1,I2),(J1,J2) · I((I1, J1) 6= (I2, J2)) .

4. Take the dth tensor power of N ,
N → N⊗d .

5. Symmetrize the rows and columns of N⊗d according to the symmetries of S2dκ to obtain the matrix
C,

Cd
def
= E

Π,Σ∈Ŝ2dκ

[
Π(N⊗d)Σ

]
.

Output: The quantity
(
‖Cd‖1/d + maxa,b∈[n]κ

∑
i∈[n]Ai(a, b)

2
)1/2

as an upper bound on ‖A‖inj .

Proposition 3.10. For any symmetric tensor A, Algorithm 3.9 outputs a valid upper bound on ‖A‖inj.

Proof. Our asymmetrization in step 1 ensures that 〈x⊗k,A〉 = 〈x⊗k,A′〉. The proof then follows from the
calculations above, beginning at (3.5) and ending at (3.7), and then using that the symmetrization step
fixes vectors of the form x⊗2dκ.

We prove that when A has subgaussian, centered, independent entries, Algorithm 3.9 improves over
the basic spectral algorithm.

Theorem 3.11. For any symmetric tensor A with independent subgaussian centered entries, with high
probability over the choice of A, Algorithm 3.9 certifies that

‖A‖inj ≤ Õ

(
nk/4

k(k−2)/4
· d

k2 log d
2 logn

)
.

so long as d log n� n1/120.

First, the very straightforward observation that subtracting the maximum element cannot have too
strong of a negative effect:

Lemma 3.12. If A is an order-D tensor with i.i.d. symmetric subgaussian entries, then

max
a,b∈[n]d

∑
i∈[n]

A(i, a, b)2 ≤ O(n log n),

with high probability.

Proof. The lemma follows from the fact that the variables are subgaussian, and by applying first a Chernoff
bound and then a union bound over the indices.

Now, we bound the norm of the matrix ‖Cd‖.

Theorem 3.13. So long as kd` < 4nβ/4, there exists some absolute constant cβ depending on β such that
with high probability over the choice of A,

‖Cd‖ ≤

(
cdβ log n · nk/4

d(k−2)/4−6kβ
· n1/2`

)d
.

18

Figure 2: Hypergraphs corresponding to odd certificate entries.

Proof. Because the entries of A are subgaussian, with high probability all entries of the tensor are bounded
in magnitude by γ = O(

√
κ log n). We will assume this to be the case in the remainder of the proof.

We bound the expected trace E[Tr
(
(CC>)`

)
] over the choice of A, in order to apply the tensor power

method. Let M := (
∑

iAi⊗Ai)⊗d for convenience. The (A,B), (C,D)th entry of M (for A,B,C,D ∈ [n]dκ

with A = a1, . . . , ad with ai ∈ [n]κ, and with similar decompositions defined for B,C,D) has value

M(A,B),(C,D) =
∏
i∈[d]

∑
u∈[n]

Aai,ci,u ·Abi,di,u

 =
∑
U∈[n]d

∏
i∈[d]

(Aai,ci,ui ·Abi,di,ui) .

Interpreting the variables Aai,ci,ui as k = (2κ+ 1)-uniform hyperedges, we have that each entry is a sum
over hypergraphs indexed by U ∈ [n]d. For each U ∈ [n]d, we have a hypergraph on the following vertex
configuration: on the left, we have the vertices from the multiset A,B. On the right, we have the vertices
from the multiset C,D. In the center, we have the vertices from U . On this vertex set, we have 2d
hyperedges. Of these hyperedges, d form a tripartite matching on the vertices in A,C,U , with κ vertices
from each of A,C and one vertex in U . The other d form a similar tripartite matching on the vertices in
B,D,U . Every hyperedge on A,C,U shares exactly one vertex in U with exactly one hyperedge from
B,D,U . See Figure 2 for an illustration.

The subtraction of the square terms squares(Au ⊗Au) forces us to never have two hyperedges sharing
a vertex in U if they contain vertices of the same type in [n]: that is, we can never have (ai, ci) = (bi, di)
as ordered multisets. Then, the averaging operation EΠ,Σ∈Ŝ2dκ

takes each such entry to an average over
all allowed hyperedge configurations on the vertex set (A,B), (C,D), U .

When we take Tr(C(d)C
>
(d))

`, we are taking a sum over all “cycles” of length 2` in such hypergraphs,

where the vertices in the cycle are given by the (A,B) multisets, and the edges are given by the average
hyperedge configuration between (A,B) and the next (C,D), with the U vertices in between.

To this end, we describe an equivalent definition of the matrix C(d). Specifically, given a, b ∈ [n]2κd

the entry C(d)(a, b) can be evaluated as follows:

1. Sample a random matching E = {e1, . . . , e2κd} between the multisets a and b.

2. Group the edges of E in to 2d groups of size κ, to obtain 2d blocks F = {f1, . . . , f2d}.
3. Pick a random matching M between the blocks in F . Let M be given by d pairs {(hi, h′i)}i∈[d].

4. For each choice of “pivot vertices” σ ∈ [n]d, we get a (2κ + 1)-uniform hypergraph Hσ with 2d
hyperedges given by

{(σi, hi), (σi, h′i)|i ∈ [d]} .

5. Output the value
∑

σ∈[n]d
∏
i∈[d]A(σi,hi) ·A(σi,h′i)

· I[hi 6= h′i].

The entries of the matrix C are given by,

C(a, b) = E
E
E
F
E
M

∑
σ∈[n]d

∏
i∈[d]

T(σi,fi) · T(σi,gi) · I[hi 6= h′i]

19

Returning to the quantity Tr((CC>)`), we can understand this as a sum over cycles in the entries of C,
which gives us a sum over products of random variables corresponding to the edges in cyclic hypergraphs.
Since we have assumed the entries of A are distributed symmetrically about 0, each term in the sum
ETr((CC>)`) is non-zero only if every hyperedge appears with even multiplicity.

We can organize the terms in Tr
(
(CC>)`

)
as follows:

• For each vertex configuration V = {a1, b1, a2, . . . , b`, a1} ∈ V ⊂ [n]2κd

1. Sample matchings E = {E1, . . . , E2`}
2. Group the edges in to blocks F = {F1, . . . ,F2`}
3. Pick random matchings M = {M1, . . . ,M2`} between the blocks.

4. For each choice of “pivots” σ = {σ1, . . . , σ2`} ⊂ [n]d we get a (2κ+ 1)-uniform hypergraph Hσ
with 2d` hyperedges.

We will call the hypergraph Hσ diagonal-free (or d-free) if there are no pairs of identical blocks matched
with each other inM. We will use the notation ‖ · ‖⊕ to denote the number of elements of odd multiplicity
in a multiset, and similarly the notation ‖ · ‖0 to denote the number of distinct elements in a multiset. We
will say Hσ is even if the number of occurrences of each hyperedge is even. Now, dividing by our upper
bound on the absolute value of the maximum entry,

γ−2κd` E
T

[
Tr
(

(CC>)`
)]

≤
∑
V ∈V

E
E
E
F
E
M

[∑
σ

I[Hσ even & d-free]

]

≤ (κ!)4d` ·
∑
V ∈V

E
E
E
F
E
M

[∑
σ

I[Hσ even & d-free] · I[‖E‖⊕ = 0]

]
(by Lemma 2.7)

= (κ!)4d` ·
∑
V ∈V

E
E
I [‖E‖⊕ = 0]E

F
E
M

[∑
σ

I [Hσ even & d-free]

]

≤ (κ!)4d` ·
∑
V ∈V

E
E
I
[
‖E‖⊕ = 0 ∧ ‖E‖0 ≥ 2dκ`(1− β)

]
E
F
E
M

[∑
σ

I[Hσ even & d-free]

]
(3.8)

+ (κ!)4d` ·
∑
V ∈V

E
E
I
[
‖E‖⊕ = 0 ∧ ‖E‖0 ≤ 2dκ`(1− β)

]
E
F
E
M

[∑
σ

I[Hσ even & d-free]

]
(3.9)

First we will bound the value of term in (3.9). Recall that by Lemma 3.7, if E is even then the number
of distinct labels in V ∈ V is less than ‖E‖0. Therefore,

|{E | ‖E‖⊕ = 0 ∧ ‖E‖0 ≤ 2dκ`(1− β)}| < n2dκ`(1−β)(4dκ`)!

Now, we will use the following claim:

Claim 3.14. For every choice of V ∈ V, E ,F ,M,∑
σ

I[‖Hσ‖⊕ = 0 ∧Hσ is diagonal-free] ≤ (2d`)! · nd`

Proof. If Hσ is diagonal-free and even, then we claim that each pivot value appears twice. Suppose not, if
σi is such that σi 6= σj for all j 6= i. Since Hσ is diagonal free, the two hyperedges involving σi are distinct.
Since this is the unique occurrence of these two hyperedges in Hσ, Hσ cannot be even–a contradiction.
With each pivot appearing at least twice, the number of distinct choices of σ is at most (2d`)!nd`.

20

By Claim 3.14, for each E the corresponding term is at most (2d`)!nd`. In all, this shows that (3.9)
can be bounded as

(3.9) ≤ (κ!)4d` · n2dκ`(1−β)(4dκ`)! ·
(

(2d`)! · nd`
)
≤
(

(d`κ)5κ · n2κ+1

n2κβ

)d`
≤
(
n2κ+1

d2κ−1

)d`
(3.10)

where the final simplification uses dκ` < nβ4.
Now we bound (3.8). Using Proposition 3.6 and reasoning similar to that in the proof of Theorem 3.3,

by making an analogy between the set of configurations with even E and the norm of a random matrix
under our tensoring and averaging operations, we know that∑

V ∈V
E
E
I[‖E‖⊕ = 0] ≤ c2κd`n2κd`+κd

for an absolute constant c > 0. Moreover, conditioned on ‖E‖0 ≥ 2dκ`(1− β), we will show the following
bound

E
F
E
M

∑
σ∈[n]d`

I[‖Hσ‖⊕ = 0] ≤
(
`cκβ ·

n

d(2κ−1)−8κ2β

)d`
for a constant cκβ depending only on κ, β in Lemma 3.15. By the preceding pair of inequalities, we get
that

(3.8) ≤
(
`c′κβ ·

n2κ+1

d2κ−1−8κ2β
· nκ/`

)d`
(3.11)

From (3.10) & (3.11), we conclude that

(
E
T

[
Tr
(

(CCT)`
)])1/2`

≤

(
`cκβ ·

nκ+1/2

dκ−1/2−4κ2β
· nκ/2`

)d
By Proposition 2.4, taking ` = O(log n), we conclude that

P

‖C‖ ≤ (c′κβ log n · nκ+1/2

dκ−1/2−4κ2β

)d ≥ 1− n−100 ,

We can now put together the easy bound on the maximum diagonal entry with the bound on ‖C‖ to
prove Theorem 3.11.

Proof of Theorem 3.11. Algorithm 3.9 returns the upper bound(
‖C‖1/d + max

I,J

(∑
i

A2
i,I,J

))1/2

.

We combine Lemma 3.12 with Theorem 3.13, and we have that with high probability, for constants cβ
and c2, (

‖C‖1/d + max
I,J

(∑
i

A2
i,I,J

))1/2

≤

(
log n · cκβ ·

nκ+1/2

dκ−1/2−4κ2β
+ c2n log n

)1/2

(3.12)

21

By picking the best possible β under the constraint β < 1/30 and dκ` < nβ/4, we have that the former
term always dominates, and we get the bound:

‖A‖inj ≤ Õ

(
n(2κ+1)/4

d(2κ−1)/4
· d2κ2 log d

logn

)
.

This concludes the proof.

Now, we prove some of the lemmas we have relied upon in the proof of Theorem 3.13. We begin with
a lemma bounding the probability that the hyperedges we sample all have even multiplicity.

Lemma 3.15. Suppose k < nβ/4 and β < 1/30. Then conditioned on an E such that ‖E‖0 ≥ 2kd`(1− β),

E
F
E
M

∑
σ∈[n]k`

I[‖Hσ‖⊕ = 0] ≤
(
`cdβ ·

n

k(2d−1)−8d2β

)k`
where cdβ is a constant depending on β and d.

Proof. Note that ‖Hσ‖⊕ = 0 implies that ‖F‖⊕ = 0. By applying Lemma 3.8 with r ← d, c ← 2k,
M ← 2`, and Ei ← Ei, we obtain the following bound over the choice of F .

P
F

[‖F‖⊕ = 0|‖E‖0 ≥ 2kd`(1− β)] ≤
(

112

2βk

)2(d−1)k`(1−(4d+1)β)

(3.13)

Furthermore, if ‖E‖0 ≥ 2kd`(1− β) then clearly ‖F‖0 ≥ 2k`(1− β). By Lemma 3.16, for every F with
‖F‖0 ≥ 2k`(1− β) we have,

E
M

∑
σ∈[n]k`

I[‖Hσ‖⊕ = 0] ≤ (4βk`)! · nk` ·

((
112

βk

)k`(1−10β)

+ n−βk`/3

)

≤

(
k4β`4β · n ·

((
112

βk

)(1−10β)

+ n−β/3

))k`
(3.14)

Using (3.13) and (3.14) we conclude that,

E
F
E
M

∑
σ∈[n]k`

I[‖Hσ‖⊕ = 0] ≤

((
112

2βk

)2(d−1)(1−(4d+1)β)

· k4β`4β · n ·

((
112

βk

)(1−10β)

+ n−β/3

))k`

Since k < nβ/4 and β < 1/30, we have that k1−14β << nβ/3, and so the first term in the latter parenthesis
dominates. This implies that,

E
F
E
M

∑
σ∈[n]k`

I[‖Hσ‖⊕ = 0] ≤
(
cdβ` ·

n

k(2d−1)−8d2β

)k`
where cdβ is a constant depending on d and β, and where we have used the fact that 8d2 ≥ 8d2 − 6d+ 4
for all d ≥ 1.

The following lemma we employ in bounding the probability that our blocks from F are matched in a
way that gives hyperedges with even multiplicity. We do this via reducing the problem to counting the
number of multigraphs with labeled edges in which every subgraph induced by a given label is Eulerian.

22

Lemma 3.16. For every F with ‖F‖0 ≥ 2k`(1− β),

E
M

∑
σ∈[n]k`

I[‖Hσ‖⊕ = 0] ≤ (4βk`)! · nk` ·

((
112

βk

)k`(1−10β)

+ n−βk`/3

)

Proof. Define a multigraph G as follows. In the multigraph G, there is a vertex vf for each distinct block
f ∈ F . There is an edge in G for each edge in the matchings M between the blocks. Every choice of
pivot vertices σ ∈ [n]k corresponds to a labeling of the edges σ : E(G) → [n]. For each edge e ∈ E(G)
incident at a vertex vf ∈ V (G), there is a hyperedge in Hσ corresponding to (σ(e), vf). The hypergraph
Hσ is even if and only if for each pivot vertex i ∈ [n], and each vertex vf ∈ V (G), the number of edges
labeled i incident at vf is even. This implies that σ−1(i) form an Eulerian subgraph for each i ∈ [n]. By
Lemma 3.17, the number of such labelings σ : E(G)→ [n] is at most (2|E(G)| − 2|V (G)|)! · nE(G)/2−E⊕(G)/6.

By definition of the graph G, |V (G)| = ‖F‖0 ≥ 2k`(1− β) and E(G) = 2k`. Moreover, by applying
Lemma 3.8 with r ← 2, c← k, M ← 2`, δ ← 1, and Ei ← Fi, we conclude that the graph G has many
odd multiedges with high probability over the choice of M. Formally,

P[|E⊕(G)| ≤ 2βk`] ≤
(

112

βc

)k`(1−10β)

Now we are ready to wrap up the proof of the lemma.

E
M

∑
σ∈[n]k`

I[‖Hσ‖⊕ = 0] ≤ E
M

(2E(G)− 2V (G))! · nE(G)/2−E⊕(G)/6

≤ E
M

(4βk`)! · nk` · n−|E⊕(G)|/6

= (4βk`)! · nk` · E
M
n−|E⊕(G)|/6

≤ (4βk`)! · nk` ·
(
P[|E⊕(G)| ≤ 2βk`] + n−2βk`/6

)
≤ (4βk`)! · nk` ·

((
112

βk

)k`(1−10β)

+ n−2βk`/6

)

≤

(
k4β`4β · n ·

((
112

βk

)(1−10β)

+ n−β/3

))k`

Our final lemma of this section is a bound on the number of labelings of a multigraph such that the
subgraphs induced by all edge labels are Eulerian, given a bound on the number of multi-edges appearing
with odd multiplicity.

Lemma 3.17. Given a multigraph G, a labeling of its edges σ : E(G) → [n] is said to be even, if the
preimage of every label i forms an Eulerian subgraph (not necessarily connected) of G. Specifically, the set
of edges σ−1(i) ⊆ E(G) induce a subgraph where the degree of every vertex is even.

|{σ : E(G)→ [n]|σ is even }| ≤ (2|E(G)| − 2|V (G|))! · n|E(G)|/2−|E⊕(G)|/6

where |E⊕(G)| is the number of multi-edges with odd multiplicity within G.

Proof. We will count the number of even labelings σ as follows:

• Pick a unordered partition of the edges of the graph in to Eulerian subgraphs. By Claim 3.18, there
are at most (2|E(G)| − 2|V (G)|)! of them.

23

• Assign a label from [n] to each Eulerian subgraph in the partition. The number of labelings is clearly
at most nt where t is the number of subgraphs in the partition. By Claim 3.19, there are at most
|E(G)|

2 − |E⊕(G)|
6 subgraphs in any partition. Hence, there are at most n

|E(G)|
2
− |E⊕(G)|

6 labelings for
each partition of G in to Eulerian subgraphs.

The lemma follows immediately from the Claim 3.18 and Claim 3.19 which we will show now.

Claim 3.18. The number of unordered partitions of the edges of the graph in to Eulerian subgraphs is at
most (2|E(G)| − 2|V (G)|)!.

Proof. Let dv denote the degree of vertex v ∈ V (G). We can specify a partition of the edges of G in to
Eulerian subgraphs, by specifying a sequence of Eulerian traversals whose union covers all the edges in
the graph exactly once.

Consider a vertex v. Any sequence of traversals induces a matching Mv between the edges incident at
v – where e, e′ are matched if one of the traversals goes along e→ v → e′. Furthermore, given a set of
matchings {Mv|v ∈ V (G)}, it uniquely identifies a set of traversals.

Therefore the number of partitions of E(G) in to Eulerian subgraphs is at most

∏
v∈V (G)

|# matchings of edges incident atv| ≤
∏

v∈V (G)

(
dv!

(dv/2)!
· 1

2dv

)
≤

∏
v∈V (G)

(dv − 2)!

≤ (
∑

v∈V (G)

(dv − 2))! ≤ (2E(G)− 2V (G))!

Claim 3.19. In any partition of G in to Eulerian subgraphs, the number of partitions is at most |E(G)|
2 − |E⊕(G)|

6

Proof. Suppose E(G) = ∪ti=1Ei(G) denote a partition of E(G) into Eulerian subgraphs. For each edge
e ∈ Ei(G) assign a weight we = 1

|Ei(G)| . By definition of the weights, we have∑
e∈E(G)

we = t .

Note that we ≤ 1
2 for all e ∈ E(G), since each subset Ei(G) contain at least two edges by virtue of being

Eulerian. Moreover, we = 1
2 if the edge e belongs to an Eulerian subgraph Ei(G) with exactly two edges. In

particular, Ei(G) = {e, e′} where e and e′ form a 2-cycle. For every multiedge (a, b) with odd multiplicity,
at least one of its edges has we ≤ 1

3 = 1
2 −

1
6 .

Therefore we conclude that

t =
∑

e∈E(G)

we ≤
∑

e∈E(G)

1

2
−

∑
(a,b)∈E⊕(G)

1

6
=
|E(G)|

2
− |E⊕(G)|

6
.

These claims together finish the proof.

24

3.3 Useful combinatorial lemmas

Define an r-grouping to be a partition of a set of size c · r into c subsets of size r. The following lemma
bounds the probability that, given a multiset with many distinct elements, an r-grouping of the elements
results in few r-sets with odd multiplicity. We rely on this lemma in our injective tensor norm upper
bounds, to bound the probability that a hypergraph sampled from a simple graph has the evenness
property.

Lemma (Restatement of Lemma 3.8). Fix M, r, `,N ∈ N and β ∈ (0, 1). Let E1, . . . , EM ∈ [N]r·c

be multisets of elements such that the number of distinct elements in the union ∪i∈[M]Ei is at least
(1−β)M ·r·c/2. Let Gi denote a uniformly random r-grouping of elements within Ei, sampled independently
for each i ∈ [M]. Let

⊕
iGi denote the set of r-groups (a1, . . . , ar) ∈ [N]r that appear an odd number of

times within ∪iGi. Then for any 0 < δ < 3.5β,

P[| ⊕i Gi| ≤ δMc] ≤
(

112

βc

)(1−(4r+1)β−2δ)(r−1)Mc/2

Proof. We will refer to each s ∈ [N] as a “type”. Call a type s ∈ [N] infrequent if the number of
occurrences of s within ∪iEi is nonzero but at most 8.

Suppose a type s ∈ [N] appears exactly once in the sets E1, . . . , EM ,then irrespective of the choice of
the grouping, the group involving s appears exactly once. If there are more than rδMc types that appear
exactly once then,

P[| ⊕i Gi| ≤ δMc] = 0,

and the lemma holds. Henceforth, we assume that all but rδMc types appear at least twice.
Call a type to be frequent if it occurs more than 8 times within ∪iEi. Out of the rMc elements, at

most an 8β fraction are occurrences of frequent types. Otherwise, the number of distinct types would be
less than rMc ((1− 8β)/2 + 8β/8 + δ) < rMc

2 (1− β).
Moreover, this implies that the number of distinct frequent types is at most 8βrMc/8 ≤ βrMc. Finally,

the number of distinct infrequent types is at least rcM
2 (1− β)− βrMc ≥ rMc

2 · (1− 3β).
Let us sample uniform random r-groupings {Gi}i∈[M] one group at a time. Specifically, we will sample

groups g1, . . . , gcM where Gi = {g(i−1)c+1, . . . , gic}, one group at a time. We sample the ith grouping Gi
as follows:

• For j = 1 to c

• Pick the element s with the smallest number of ungrouped occurrences left within ∪Mj=iEj (breaking
ties lexicographically).

• Sample the group g(i−1)c+j by picking the remaining r − 1 elements uniformly at random from
ungrouped elements in Ei

It is clear that the above sampling procedure picks a uniformly random grouping {Gi}i∈[M].
We will refer to the groups picked at any stage to be configuration. So, the configuration at the end of

ith stage is Ei
def
= {g1, . . . , gi}. Given a current configuration Ei, there is a unique element s(Ei) that will

be grouped in the next step. A configuration Ei is said to be critical if

1. s(Ei) is its final ungrouped occurrence of an infrequent type.

2. All previous occurrences of s(Ei) has been grouped with infrequent types.

3. There are at least βrc ungrouped elements within the current multiset Ej that is being grouped.

Claim 3.20. For every sequence of random choices, the sampling procedure encounters at least cM
2 · (1−

(4r + 1)β) critical configurations.

25

Proof. There are at most 8βrcM occurrences of frequent types. This implies that among the rMc
2 (1− 3β)

infrequent labels, at least rMc
2 (1 − 3β) − (8βrMc)(r − 1) ≥ rMc

2 (1 − (4r − 1)β) are grouped only with
infrequent types.

For each of these rMc
2 (1− (4r − 1)β) types there is one final ungrouped occurrence. Even assuming

we match all these final occurrences among themselves, both conditions (1) & (2) are met at least
Mc
2 (1− (4r − 1)β) times during the sampling procedure.

Finally, there are at most βc groups that are picked among the final βrc elements within the sets Ei.
Therefore, for at least Mc

2 (1−(4r−1)β)−βMc ≥ Mc
2 (1−(4r+1)β) steps, Ei is a critical configuration.

Define random variables {Zi}i∈[m] as follows:

Zi
def
= I[gi is final occurrence of an odd group in ∪j Gj] .

By definition, we have

|⊕jGj | =
∑
i∈[cM]

Zi

Set α =
(

56
βc

)r−1
. In order to obtain concentration bounds on

∑
i∈[cM] Zi we will bound E[α

∑
i Zi].

Claim 3.21. For all α ≤
(

56
βc

)c−1
, for all t ∈ [cM] and all critical configurations Et,

E[α
∑cM
i=t Zi+1 |Et] ≤ 2α · max

Et+1|Et
E[α

∑cM
i=t+1 Zi+1 |Et+1]

where the maximum is taken over all feasible configurations Et+1 from Et.

Proof. At a critical configuration Et, the next group is the last occurrence of s(Et). Recall that s(Et) is
infrequent in that it has at most 7 previous occurrences. Moreover, each of its previous occurrences is
grouped to an infrequent type (appearing less than 8 times).

There are at least βrc ungrouped elements from which the remaining r − 1 elements of the group are
chosen. For all but at most (56)r−1 group choices, the group contains a type s′ such that this is the first
occurrence of s with s′ in a group.

Therefore, for all but at most (56)r−1 choices, the group sampled is its first and only occurrence. In
particular, this implies that for a critical configuration Et,

P[Zt+1 = 0|Et] ≤
(56)r−1(
βrc
r−1

) ≤ (56

βc

)r−1

Finally, we have

E[α
∑cM
i=t+1] = P[Zt+1 = 1|Et] · α · E[α

∑cM
i=t+2 Zi |Et, Zt+1 = 1] + P[Zt+1 = 0|Et] · E[α

∑cM
i=t+2 Zi |Et, Zt+1 = 0]

≤ α · E[α
∑cM
i=t+2 Zi |Et, Zt+1 = 1] + α · E[α

∑cM
i=t+2 Zi |Et, Zt+1 = 0]

≤ 2α · max
Et+1|Et

E[α
∑cM
i=t+1 Zi+1 |Et+1]

Combining Claim 3.21 and Claim 3.20, we have that

E[α
∑
i∈[cM] zi] ≤ (2α)Mc(1−(4r+1)β)/2 ,

which yields the following concentration bound for all δ > 0,

26

P[|⊕iGi| ≤ δcM] < (2α)(1−(4r+1)β−2δ)cM/2 ≤
(

112

βk

)(1−(4r+1)β−2δ)(r−1)Mc/2

The lemma below shows that in a simple graph formed by matchings with the evenness property, there
cannot be too many more distinct vertices than distinct edges.

Lemma (Restatement of Lemma 3.7). Let m,n, c ∈ N, and let G be a graph which is a union of at most
c disjoint cycles. Suppose furthermore that each vertex receives labels from the set [n], that every labeled
edge appears with even multiplicity, and that there are exactly m distinct labeled edges. Then letting L be
the number of distinct vertex labels, we have

L ≤ m+ c.

Proof. We first prove the following claim:

Claim. If each labeled edge appears with multiplicity exactly 2, then L ≤ m+ c.

Proof. In this case, there are exactly 2m edges and exactly 2m vertices. We proceed by induction on
c and m. In the base case, we have c = 1 component with 2 vertices, in which case we have at most 2
distinct labels on the vertices, confirming the claim.

Assuming the claim for c ≥ 1 components and 2m ≥ 2 vertices, consider an instance on 2m+ 2 vertices.
If all labels appear ≥ 2 times, we are done, since there are 2m+ 2 vertices and thus at most L ≤ m+ 1
labels. Otherwise, locate a vertex v whose label has multiplicity 1.

If v is in a cycle of length 2, remove v and its neighbor from the graph, obtaining a smaller instance
with L′ labels, c′ components, and m′ distinct edge types, with L′ + 2 ≥ L, c′ = c− 1, and m′ = m. By
the induction hypothesis, L′ ≤ m′ + c′ = m+ c− 1, and therefore L ≤ m+ 1 + c, as desired.

If v’s cycle has length > 2, both v’s vertex neighbors must have the same label in order for the
edges incident on v to appear twice. We remove v and identify its neighbors, obtaining an instance with
L′ + 1 = L, m′ = m, c′ = c. Appealing to the induction hypothesis, we have L′ ≤ m′ + c, from which we
conclude that L ≤ m+ 1 + c, as desired.

Now, we reduce our lemma to the above case. Say an edge appears with even multiplicity µ > 2, and
that the labels of the edge are (a, b) ∈ [n]2. We will remove the occurrences of this edge, and put the
graph segments back together. When we remove all occurrences of the edge (a, b), we get 3 kinds of graph
segments: paths from a–b, paths from a–a, and paths from b–b. Since a, b each have to appear µ times,
we can form a matching between segments of type a–b, gluing them together at the a endpoint to get a
b–b segment. Now, we make one cycle by gluing together a–a segments, and a separate cycle by gluing
together b–b segments. Our number of distinct edges has decreased by 1, and our number of cycles has
increased by at most 1, since we broke up at least one cycle to remove the edge (a, b). We recursively
apply this process to our instance, until we reach an instance in which there are only edges of multiplicity
2, never increasing the quantity m+ c. In conjunction with our above claim, the conclusion follows.

4 Refuting Random k-XOR Instances

In this section, we give our algorithm for refuting random k-XOR instances. In Section 4.1, we describe
the algorithm for even k; in Section 4.2, we describe the algorithm for odd k. We first recall the problem:

Definition 4.1 (Random k-XOR with density α = pn(k−1)/2). A random instance of k-XOR with density
α = pn(k−1)/2 is a formula Φ on n variables x ∈ {±1}n, sampled so that for each S ∈ [n]k:

27

• Independently with probability p, add constraint CS :
∏
i∈S xi = ηS , for ηS a uniformly random

Rademacher variable.

• Otherwise, with probability 1− p, add no constraint.

We let m ≈ pnk be the number of constraints, and for any assignment x ∈ {±1}n, PΦ(x) is the fraction of
constraints satisfied by x.

Problem 4.2 (Strongly refuting random k-XOR). Given a random k-XOR instance Φ, certify with high
probability over the choice of Φ that for all assignments x ∈ {±1}n,

PΦ(x) ≤ 1

2
+ δ + o(1),

for some constant δ ∈ [0, 1/2), where PΦ(x) is the fraction of Φ’s constraints satisfied by x.

As described in Section 2, there is a natural random order-k tensor that we can identify with any
k-XOR instance Φ. Given a k-XOR instance Φ with constraints C1, . . . , Cm, form the tensor TΦ as follows:
for each constraint Ci :

∏
j∈Si xi = ηSi , set the entry TSi = ηSi ; in all other entries place a 0. We then

have that for any assignment x ∈ {±1}n,

〈TΦ, x
⊗k〉 =

∑
i∈[m]

ηSi ·
∏
j∈Si

xj = m ·
(
PΦ(x)− 1

2

)
That is, the inner product 〈TΦ, x

⊗k〉 gives the difference between the number of constraints x satisfies
and the number of constraints x violates. Our strong refutation algorithm will be based on showing that∣∣∣〈TΦ, x

⊗k
〉∣∣∣ ≤ (δ + o(1)) ·m ∀x ∈ {±1}n, (4.1)

for a constant δ arbitrarily close to 0.
From (4.1), it is clear that a good bound on ‖TΦ‖inj would give a refutation algorithm, and so we

could hope that our algorithms for bounding tensor norms would suffice. However, when the probability
of sampling a constraint p ≤ n−k/2, the tensor TΦ becomes sparse enough that its norm is maximized by
sparse vectors, so that ‖TΦ‖inj ≈ 1. We are only interested in balanced vector x ∈ {±1}n, and so this is

a poor upper bound–it will only let us certify that PΦ(x) ≤ 1
2 + nk/2

m ≥ 1.
So our algorithm for the case of k-XOR is almost identical to our algorithm for bounding tensor norms,

but with an additional twist to get rid of the sparse vectors. We form our certificate as we did in the
tensor norm algorithm: we flatten TΦ to a matrix T , then take the dth Kronecker power of T , and we
average over rows and columns corresponding to permutations of the same index set. But now, there
is one additional step: we delete any row or column indexed by a multiset S ∈ [n]kd/2 which
contains an element i with multiplicity greater than O(log n).

It is not difficult to see why this should help: supposing we started with a sparse vector, say the

standard basis vector e1 ∈ Rn, this will ensure that e
⊗kd/2
1 has 0 projection onto our matrix. On the other

hand, the choice of O(log n) as our upper bound on the multiplicity makes sense, since we are eliminating
an o(1)-fraction of the Frobenius norm of the certificate in this way, even when d ≥ n1/2–if we were to
delete all rows and columns in which an element appears with multiplicity ≥ 2, then once d = n1/2 we
would be deleting a constant fraction of the rows and columns, by the birthday paradox.

This introduces some technicalities in the analysis–in particular, once we delete these rows and columns,
it is no longer obvious that we are working with a valid relaxation of 〈TΦ, x

⊗k〉 over x ∈ {±1}n. But
as before, the main theorems of this section will have to do with bounding the norm of our matrix
certificate–arguing that the matrix certificate is valid will be straightforward.

We begin by detailing our algorithm for even k, then give the somewhat more involved analysis for
odd k (the additional complication introduced by the lack of a natural matrix flattening for odd-order
tensors).

28

4.1 Even k-XOR

We begin by describing our matrix certificate for this case, and establishing an upper bound on its norm–as
mentioned above, this is the main result of this section. Later, in Section 4.1.1, we will show how to use
the matrix to get a valid certificate.

Algorithm 4.3 (Even k-XOR Certificate at level d).
Input: A k-XOR instance Φ for even k on n variables and m clauses. Parameters d ∈ N.

1. Form the tensor TΦ from Φ as described above (see (4.1)).

2. Take the natural nk/2 × nk/2 matrix flattening T of Tinj , and take the Kronecker power T⊗d

3. Letting Ŝdk/2 be the set of all permutation matrices that perform the permutations corresponding
to Sdk/2 on the rows and columns of T , form

C(d)
def
= E

Π,Σ∈Ŝdk/2

[
ΠT⊗dΣ

]
.

4. Zero out any row or column of C(d) indexed by a multiset in [n]kd/2 containing more than 10 log n
copies of any i ∈ [n].

Output: The value ‖C(d)‖.

The following theorem gives a bound on the value output by Algorithm 4.3.

Theorem 4.4. Let k, n, d, k ∈ N, so that d log n� n, k is even. Let Φ be a random instance of k-XOR
on n variables with Θ(pnk) clauses (so each constraint is sampled uniformly and independently with
probability p). Let C(d) be the matrix formed from the instance Φ as described in Algorithm 4.3. Then if

p · d(k/2−1)nk/2 > 1, there is a constant ck depending on k such that with high probability,

‖C(d)‖1/d ≤

(
ck log2k n · p

1/2nk/4

d(k−2)/4

)
.

We will prove the theorem below, in Section 4.1.2. First, we will see how to use this certificate, with
the deleted high-multiplicity rows and columns, to strongly refute k-XOR instances.

4.1.1 Validity of certificate with deleted rows and columns

When we zero out the high-multiplicity rows and columns in Algorithm 4.3,〈
TΦ, x

⊗k
〉d

= (x⊗dk/2)>
(
C(d) + C≥

)
x⊗dk/2,

where C≥ is a matrix containing only the zeroed out rows and columns. So our upper bound on ‖C(d)‖
from Theorem 4.4 is not enough. It is not hard to bound the `1-norm of C≥. However, because for our
values of p, ‖C(d)‖ is close to 0, the `1-norm bound is too costly when we try to bound 〈TΦ, x

⊗k〉. For
this reason, we will work with PΦ(x), the fraction of satisfied constraints, which is bounded away from 0.
We will relate (PΦ(x))d to the matrix norms of C1, . . . Cd.

Lets write

PΦ(x) = E
i∼[m]

[Pi(x)] = E
i∼[m]

[
1

2
(1 + Ci(x))

]
,

where P1(x), . . . , Pm(x) are the 0− 1 valued predicates of the instance Φ, and C1(x), . . . , Cm(x) are the
±1-valued predicates of the instance Φ. We have that

(PΦ(x))d = E
i1,...,id∼[m]d

[
d∏
`=1

Pi`(x)

]
.

29

We will prove that the quantity above is not changed very much if we remove sets i1, . . . , id corresponding
to high-multiplicity rows and columns.

Proposition 4.5. Let Φ be a random k-XOR formula in which each clause is sampled independently with
probability p.

Let Cdlow ⊂ [m]d be the set of all ordered multisets of clauses Ci1 , . . . , Cid from Φ with the property that
if we form two multisets of variables I, J ∈ [n]dk/2 with I containing the first k/2 variables of each Ci`
and J containing the last k/2 variables of each Ci`, then I, J are both low-multiplicity multisets, in that
both have no element of [n] with multiplicity ≥ 100 log n.

Suppose that no variable appears in more than mmax clauses. Then if d� n and dkmmax < 200εm log n,

PΦ(x) ≤

(
E

i1,...,id∼Cdlow

[
d∏
`=1

Pi`(x)

])1/d

+ ε

for all x ∈ {±1}n with high probability. Furthermore when p ≥ 200 logn
nk−1 , we have that ε = o(1) with high

probability.

Proof. Let mmax be an upper bound on the number of clauses any variable xi appears in the instance Φ.
We sample a uniform element C ∼ Cdlow, C = C1, . . . , Cd in the following way:

• For t = 1, . . . , d: Let At ⊂ Φ be the set of clauses such that for any C ′ ∈ A, the multiset
C1, . . . , Ct−1, C

′ is not excluded from Ctlow. Choose a uniformly random C ∼ At and set Ct := C,
adding C to C.

This sampling process clearly gives a uniformly random element of Cdlow.

Claim 4.6. At step t+ 1 there are at least m− t k·mmax
200 logn clauses that can be added.

Proof. In order to exclude any variable i ∈ [n], we must add at least 200 log n copies of i. Further, to
exclude ` distinct variables in [n], at least 200 log n copies of each variable, for a total of 200` log n variables,
which requires adding at least 200` log n/k clauses. If ` distinct variables are excluded, then at most
` ·mmax clauses are excluded. The claim now follows.

Now, define the random variable Xt =
∏t
j=1 Pj(x) to be the value of x on Ct. We apply Claim 4.6,

along with the observation that the total number of satisfied clauses can only drop by 1 for each clause
removed regardless of the assignment x, to conclude that

E[Xt+1|C1, . . . , Ct] ≥
(
PΦ(x)− t k ·mmax

m · 200 log n

)
·Xt

From this we have that E[Xt] ≥
(
PΦ(x)− t kmmax

200m logn

)
· E[Xt−1] from which we have that as long as

dkmmax ≤ ε200m log n,

E[Xd] ≥
d∏
t=1

(
PΦ(x)− t kmmax

200m log n

)
≥ (PΦ(x)− ε)d .

Which by definition of Xd gives us our first result.
Now, we can establish that dkmmax ≤ ε · 200m log n with high probability. A Chernoff bound implies

that when p ≥ 200 log n/nk−1, 2pnk ≥ m ≥ pnk/2 with probability at least 1− 2 exp(−pnk/8), and that
mmax ≤ 2pnk−1 with probability at least 1 − exp(−pnk−1/2), and so by a union bound and using the
assumption that pnk−1 ≥ 200 log n, we have our result by taking ε = Θ(1/ log n).

30

Now, we will relate the right-hand-side of Proposition 4.5 to the matrices from Algorithm 4.3. We recall
that given a k-XOR instance Φ, Cdlow ⊂ [m]d is the set of all ordered multisets of clauses Ci1 , . . . , Cid from
Φ with the property that if we form two multisets of variables I, J ∈ [n]dk/2 with I containing the first k/2
variables of each Ci` and J containing the last k/2 variables of each Ci` , then I, J are both low-multiplicity
multisets, in that both have no element of [n] with multiplicity ≥ 100 log n. By Proposition 4.5,

(PΦ(x)− o(1))d ≤ E
i1,...,id∼Cdlow

[
d∏
`=1

Pi`(x)

]
= E

i1,...,id∼Cdlow

[
d∏
`=1

1

2
(1 + Ci`(x))

]

and expanding the product on the right and applying the symmetry of the uniform distribution on Cdlow,

=

(
1

2

)d d∑
j=0

(
d

j

)
E

i1,...,ij∼Cjlow

[
d∏
`=1

Ci`(x)

]

and by definition, for any assignment x ∈ {±1}n,

=

(
1

2

)d d∑
j=0

(
d

j

)
1

|Cjlow|
· (x⊗jk/2)>C(j)(x

⊗jk/2),

where C(j) is the matrix output by Algorithm 4.3 when d← j. We won’t get a good bound on ‖C(j)‖
when j is too small, but we can take

=

(
1

2

)d t∑
j=0

(
d

j

)
+

(
1

2

)d d∑
j=t+1

(
d

j

)
1

|Cjlow|
· (x⊗jk/2)>C(j)(x

⊗jk/2) . (4.2)

We’ll take t = α · d for some small constant α, so that the sum on the left is small, and the sum on the
right we will bound by applying Theorem 4.4, our upper bound on ‖C(j)‖. We will also need a bound on

|Cjlow|, which we can easily get by modifying our proof of Proposition 4.5:

Lemma 4.7. If Φ is a random k-XOR instance on n variables with m clauses such that no variable
participates in more than mmax clauses, then so long as d� n and dkmmax ≤ 200εm log n,

|Cdlow| ≥ (1− ε)dmd .

Furthermore, when p ≥ 200 logn
nk−1 , we can take ε = o(1) with high probability.

The proof proceeds exactly as the proof of Proposition 4.5, but instead of bounding the decrease in
the value as each clause is added, one bounds the probability that a clause is chosen which will make the
multiplicity of some index too high.

We are now ready to prove that computing the norm of O(d) matrices C(αd), . . . , C(d) will give us
a strong refutation algorithm for random k-XOR. This concludes the proof of the refutation theorem,
modulo the proof of the C(d) matrix norm bound from Theorem 4.4, which we give in the next subsection.

Theorem 4.8. Let k be even, and let d� n. Then there is an algorithm that certifies with high probability
that a random k-XOR instance has value at most 1

2 + γ + o(1) for any constant γ > 0 at clause density

m/n = Õ
(
nk/2−1

d(k/2−1)

)
(where the Õ hides a dependence on γ and k) in time nO(d).

31

Proof. Define β := dkmmax
200m logn , where mmax is the maximum number of clauses any variable participates in.

By Proposition 4.5 and the proceeding calculations culminating in (4.2), with high probability over the
choice of the instance Φ, for any x ∈ {±1}n,

(PΦ(x)− β)d ≤ 1

2d

t∑
j=0

(
d

j

)
+

1

2d

d∑
j=t+1

(
d

j

)
1

|Cjlow|
· (x⊗jk/2)>C(j)(x

⊗jk/2) .

Setting t = δd for some δ < 1,

≤ 1

2d
·

 δd∑
j=1

(
d

j

)+
d∑

j=δd+1

(
d
j

)
2d
· 1

|Cjlow|
· (x⊗jk/2)>C(j)(x

⊗jk/2)

For the terms in the right-hand sum, we can apply our bound on |Cjlow| from Lemma 4.7 and the fact that
‖x‖ = n1/2, to conclude that

1

|Cjlow|
· (x⊗jk/2)>C(j)(x

⊗jk/2) ≤ ‖x‖
jk

|Cjlow|
· ‖C(j)‖ =

njk/2

|Cjlow|
· ‖C(j)‖

≤ njk/2

(1− β)jmj
·

(
nk/2p · ck log2k n

j(k/2−1)

)j/2
(by Lemma 4.7 and Theorem 4.4)

≤ njk/2

(1− β)j(0.1pnk)j
·

(
nk/2p · ck log2k n

j(k/2−1)

)j/2
(since m = Θ(pnk) w.h.p.)

≤

(
c′k log2k n

(1− β)2pnk/2 · jk/2−1

)j/2
.

for some constant c′d, where the second inequality holds with high probability from the conditions of
Theorem 4.4, and so also holds with high probability simultaneously for all j ∈ [δd, d] by a union bound.

The term comprised of the sum of binomial coefficients is at most

1

2d

δd∑
j=0

(
d

j

)
≤ 2(H(δ)−1)d,

where H(·) is the binary entropy function, H(δ) = −δ log2 δ − (1− δ) log2(1− δ).
Since the coefficients of the C(j) terms sum to < 1, we have that for some α ∈ [δ, 1],

PΦ(x)− β ≤

2(H(δ)−1)d +

(
c′k

log2k n

(1− β)2pnk/2(αd)k/2−1

)αd/21/d

Now, for p� Õ(n−k/2d−(k/2−1)), where the Õ hides a dependence on k and α > δ, β = o(1) and the latter
quantity is o(1). Thus, for sufficiently large n the term in the parenthesis is at most (1 + o(1))2H(δ)−1,
which we can take to be a constant arbitrarily close to 1

2 by choosing sufficiently small constant δ. We can

certify this bound in time nO(d) · d, by running Algorithm 4.3 to compute ‖C(j)‖ for each j ∈ [δd, d].

32

4.1.2 Bounding the even certificate spectral norm

Here, we prove the norm bound on the matrix ‖C(d)‖ given in Theorem 4.4, the main theorem of this
section.

Theorem (Restatement of Theorem 4.4). Let k, n, d, k ∈ N, so that d log n� n, k is even. Let Φ be a
random instance of k-XOR on n variables with Θ(pnk) clauses (so each constraint is sampled uniformly
and independently with probability p). Let C(d) be the matrix formed from the instance Φ as described

in Algorithm 4.3. Then if p · d(k/2−1)nk/2 > 1, there is a constant ck depending on k such that with high
probability,

‖C(d)‖1/d ≤

(
ck log2k n · p

1/2nk/4

d(k−2)/4

)
.

The proof is similar to that of Theorem 3.3, except that, because the moments of the entries of TΦ

depend on p, and because we rely on getting an accurate bound in terms of p, our counting arguments
have to be much more precise. So we require stricter, specialized analogues of our even simple graphs
count (Proposition 3.6) and our even hypergraph sampling probability (Lemma 2.8).

Proof. We will apply the trace power method (Proposition 2.4) to C(d), for which it suffices to obtain an

upper bound on E[Tr((C(d)C
>
(d))

`)]. We recall from Section 2 our interpretation of the (S, T)th entry of

C(d) as the average over all k-hypergraph matchings between two multisets S, T ∈ [n]dk/2; additionally,

now by construction we can restrict our attention to S, T which do not have more than R
def
= 100 log n

copies of any one vertex (since those rows/columns are zeroed out). For convenience, we say such sets are
R-multilinear.

We also recall that the trace gives us a sum over all R-multilinear vertex configurations consisting
of sets S1, . . . , S2` ∈ [n]dk/2, and for each vertex configuration an average over all choices of sequences of
hypergraph matchings. Let the set of all valid R-multilinear vertex configurations be denoted VR, and let
the set of all hyperedge matching sequences be denoted H. For H ∈ H and V ∈ VR, denote by (V,H) the
hypergraph given by the hyperedges H on the vertex configuration V . Applying the above observations,
and recalling that we have assembled C(d) from the random tensor T := TΦ, we have that

E[Tr(C(d)C
>
(d))

`] =
∑
V ∈VR

E
H∈H

 ∏
(i1,...,id)∈(V,H)

Ti1,...,id

 ,
The expectation of each product is 0 if any hyperedge in (V,H) appears with odd multiplicity, and is pM

if exactly M distinct hyperedges appear in (V,H). Thus,

E[Tr(C(d)C
>
(d))

`] ≤
∑
V ∈VR

d∑̀
M=1

pM · E
H∈H

[I((V,H) even) · I((V,H) has M hyperedges)]

=
∑
V ∈VR

d∑̀
M=1

pM · P
H∈H

[(V,H) even with M hyperedges)] . (4.3)

To bound this probability, we will again sample uniformly H ∼ H in a two step process.

1. Sample a uniformly random perfect matching (with 2-edges rather than hyperedges) between each
set Si, Si+1 ∈ VR–call the edge set sampled in this manner E, so that we now have the graph (V,E).

2. Sample hyperedge matching configuration from E by choosing a uniform random grouping of the
edges between Si, Si+1 into groups of k/2 = κ edges.

33

We invoke the following lemma, which is a very slight embellishment upon Lemma 2.7:

Lemma 4.9. Let h,w, κ, t, τ ∈ N. Let V ∈ VR be a vertex configuration with R-multilinear vertex sets
S1, . . . , Sw ∈ [n]κh. Let H ∈ H be a hypergraph configuration with w 2κ-uniform hypergraph matchings
between the sets Si, Si+1∀i ∈ [w], with κ vertices from Si and κ vertices from Si+1 in each hypergraph
matching.

Suppose that (V,H) has τ distinct labeled hyperedges and the evenness property, where hyperedges on
the same vertex set but with a different partition into Si, Si+1 count as distinct. Suppose that we sampled
H by first choosing a set of simple-edge perfect matchings E on V , then grouping them into hyperedges.
Then

P((V,E) even with t ≤ κτ edges | (V,H) even with τ edges) ≥
(

1

κ!

)wh
.

Proof. The proof is almost identical to that of Lemma 2.7–choosing a random matching within each
hyperedge gives a uniformly random E from which H is sampled, and that with probability at least
(κ!)−wh we choose the same matching in every copy of every hyperedge. We need only add that if a
hyperedge hi ∈ (V,H) has multiplicity a, then if we chose the same matching in every copy of hi, all κ of
the simple edges making up hi will have multiplicity at least a, so if t is the total number of distinct edges
in (V,E), we have t ≤ κτ and also the evenness property.

Letting EMH be the event that (V,H) is even with M distinct hyperedges and letting EkM/2
E be the

event that (V,E) is even with at most kM/2 distinct hyperedges, Lemma 4.9 (and the asymmetry of TΦ)
with w ← 2`, h← d, τ ←M , κ← k/2 implies that

P
H∈H

((V,H) even with M edges) =
P(EMH , EkM/2

E)

P(EkM/2
E | EMH)

≤
(
k

2
!

)2d`

P(EMH , EkM/2
E) (by Lemma 4.9)

≤
(
k

2

)dk`
P(EME) · P(EMH | E

kM/2
E) .

Therefore, from (4.3) we have

E[Tr(C(d)C
>
(d))

`] ≤
(
k

2

)dk` ∑
V ∈VR

d∑̀
M=1

P(EkM/2
E) · P(EMH |E

kM/2
E) · pM ,

Now, we use a lemma to bound the conditional probability of sampling an even hyperedge matching with
M hyperedges, given that we sampled an even matching with at most kM/2 edges:

Lemma 4.10. Suppose h,w, κ, n, τ ∈ N. Let G = (V,E) be a graph consisting of w sets of κh vertices
each with R-multilinear labels from [n], where E is a set of w perfect matchings M1, . . . ,Mw, so that Mi

is a perfect matching between Si and Si+1, and α = a1, . . . , at is a list of even edge multiplicities of E on
the labeled vertex set V , so that

∑
ai = κwh.

Suppose we sample a hyperedge matching configuration H from E by uniformly grouping the edges in
each matching from Si to Si+1 into hyperedges of order 2κ, and let τ be a number of distinct hyperedges
that is possible to sample from (V,E) in this way. Then,

P((V,H) even with τ edges | (V,E) even) ≤ (2eκκκRκ+1w)wh

(κh)(κ−1)(wh−τ)
.

34

We’ll prove Lemma 4.10 below in Section 4.3. For now, we apply Lemma 4.10 with w ← 2`, h← d,
κ← k/2 and τ ←M , which for R-multilinear V ∈ VR implies that

P(EMH |E
kM/2
E) ≤ (4ek/2Rk/2+1(k/2)k/2`)2d`

(dk/2)(k/2−1)(2d`−M)
.

Combining this with the above and letting c1 := 4ek/2(k/2)k/2 for convenience,

E[Tr(CC>)`] ≤
(
k

2

)dk` ∑
V ∈VR

d∑̀
M=1

P(EkM/2
E) · (c1R

k/2+1`)2d`

(dk/2)(k/2−1)(2d`−M)
· pM . (4.4)

It remains for us to bound P((V,E) even with ≤ kM/2 edges). We now interchange the order of the
summation, and bound the sum over V for a fixed value of M . Letting M be the set of all possible edge
configurations E, we have∑

V ∈VR

P
E

(EkM/2
E) =

∑
V ∈VR

|{E | (V,E) even with ≤ kM/2 edges}|
|M|

=
|{E, V | (V,E) even with ≤ kM/2 edges }|

|M|
. (4.5)

We will bound this quantity with the following proposition, which counts the number of V ∈ VR that yield
and even graph with at most t edges on a fixed E ∈M.

Proposition 4.11. Let w, h, n ∈ N. Let α = α1, . . . , αt be a sequence of t even numbers so that∑t
i=1 αi = w · h. Let E = M1, . . . ,Mw be a sequence of perfect matchings between two sets of size h.

Let Gα,Ew×h be the set of all graphs which have a vertex set comprised of w R-multilinear multisets

S1, . . . , Sw ∈ [n]h, and have edges forming the perfect matching Mi between Si, Si+1 (where the indexing is
modulo w), so that the labels in [n] assigned to the vertices induce exactly t distinct labelings for the edges,
and the labeled edges have multiplicities α1, . . . , αt. In words, Gα,Ew×h is the set of w × h matching cycles
with matchings specified by E that have edge multiplicities α when labeled with R-multilinear labels from
[n].

If w · h ≤ n,
|Gα,Ew,h | ≤ (5Rw)wh(wh)3 · nt+h .

We will prove this proposition below, in Section 4.3. Applying Proposition 4.11 with h ← kd/2,
w ← 2`, and t← m, we have that for a fixed E ∈M and for a fixed list of edge multiplicities a1, . . . , am,

|{V | (V,E) has m edges with multiplicities a1, . . . , am}| ≤ (10R`)dk` · (dk`)2 · nm+dk/2.

where we have used the assumption that dk` � n to meet the requirements of Proposition 4.11. The
number of possible edge multiplicity lists a1, . . . , am for a given value of m is at most

(
m+dk`−1
m−1

)
≤ 22dk`.

Thus, applying (4.15) and noting that there are |M| choices for E for each V ,

∑
V ∈VR

P
E

(EkM/2
E) ≤ 1

|M|
·
kM/2∑
m=1

|M| ·
∑

a1,...,am

|{V | (V,E) has m edges with even mult.s a1, . . . , am}|

≤
kM/2∑
m=1

22dk` · (10R`)dk` · (dk`)2 · nm+dk/2 ≤ (40R`)dk` · (dk`)2 · nkM/2+dk/2+1 .

35

Combining (4.4) and the above, there is a constant c2 depending on k so that

E[Tr(C(d)C
>
(d))

`] ≤
(
k

2

)dk` d∑̀
M=1

pM · (c1R
k/2+1`)2d`

(dk/2)(k/2−1)(2d`−M)

∑
V ∈VR

P(EkM/2
E)

≤
(
c2R

2k+2`k+2

d2(k/2−1)

)d`
· (dk`)2ndk/2+1 ·

d∑̀
M=1

(
pd(k/2−1)nk/2

)M
By assumption, p · (dk/2−1nk/2) ≥ 1, so the term M = d` dominates:

≤
(
c2R

2k+2`k+2

d2(k/2−1)

)d`
· (d`)2ndk/2+1 · d`

(
d(k/2−1)pnk/2

)d`
=

(
c2R

2k+2`k+2 · pnk/2

dk/2−1

)d`
· (d`)3ndk/2+1 .

Choosing ` = O(d log n), recalling that R = 100 log n, and invoking Proposition 2.4, we have that with
probability 1− n−100, for some constant ck := c(k),

‖C(d)‖1/d ≤ ck log2k n ·

(
p1/2nk/4

d(k−2)/4

)
.

The conclusion follows.

4.2 Odd k-XOR

In this section, we modify our algorithm for refuting random even k-XOR instances to handle odd k-XOR
instances. The odd k-XOR algorithm is extremely similar to the algorithm for even k-XOR, save for
complications introduced by the fact that an odd-order tensor has no natural matrix flattening.

The solution is to apply the Cauchy-Schwarz inequality to the objective value. Let k = 2κ + 1 for
some integer κ. For the tensor TΦ formed by the constraints of Φ and for its nκ× nκ slices Ti ∀i ∈ [n], we
have that

〈
x⊗k,TΦ

〉2
≤

∑
i∈[n]

x2
i

∑
i∈[n]

(
(x⊗κ)>Tix

⊗κ
)2

 = n · (x⊗2κ)>

∑
i∈[n]

Ti ⊗ Ti

x⊗2κ .

Now, the first technicality arises–since the entries (Ti ⊗ Ti)(ab),(cd) = Ta,c,i ·Tb,d,i are always squares when
a = b and c = d, we must subtract them from the matrix

∑
i Ti ⊗ Ti, as otherwise they contribute too

much to the norm. Thus, using squares(·) to refer to the part of the matrix for which a = b and c = d, we

instead will use that the number of constraints m = (x⊗2κ)> squares
(∑

i∈[n] Ti ⊗ Ti
)
x⊗2κ, and that

〈
x⊗k,TΦ

〉2
−mn ≤ n · (x⊗2d)>

∑
i∈[n]

Ti ⊗ Ti − squares(Ti ⊗ Ti)

x⊗2d . (4.6)

We can also view this as doing one step of resolution, so that we have gotten a 4κ-XOR instance starting
from a (2κ+ 1)-XOR instance. That is how we will treat our new instance from now on.

Suppose Φ has ±1-constraint predicates C1, . . . , Cm, so that Ca(x) = ηa ·
∏
j∈Sa xj . We create a new

2(k− 1)-XOR instance Ψ as follows. For each a, b ∈ [n], a 6= b: if Ca and Cb both contain the variable i in

36

the kth position, add the ±1 constraint predicate C ′ab(x) = ηa · ηb ·
(∏

j∈Sa xj

)(∏
j∈Sa xj

)
to Ψ. Let m′

be the number of clauses in Ψ.
The right-hand side of (4.6) is n ·

∑
abC

′
ab(x) = n · 2m′ · (PΨ(x)− 1

2), where PΨ(x) is the fraction of
clauses of Ψ satisfied by x. Combining this with the above calculations,(

2m

(
PΦ(x)− 1

2

))2

≤ nm+ n · 2m′ ·
(
PΨ(x)− 1

2

)
,

PΦ(x) ≤ 1

2
+

1

2m

√
nm+ 2nm′ ·

(
PΨ(x)− 1

2

)
. (4.7)

Now, we will essentially apply our even-k-XOR strategy to Ψ. The only issue is that the clauses of Ψ
are not independent, so we will need to zero out not only rows and columns indexed by high-multiplicity
subsets of [n]2κ, but also get rid of terms that contain the same slice with too high a multiplicity. So, instead
of taking the dth tensor power of the matrix

∑
i Ti ⊗ Ti − squares(Ti ⊗ Ti), we omit the cross-products in

which Ti ⊗ Ti appears more than 100 log n times for any i ∈ [n].
Formalizing this, we introduce our matrix certificate for the odd case:

Algorithm 4.12 (Odd k-XOR certificate at level d).
Input: A k-XOR instance for odd k = 2κ + 1 on n variables with m clauses C1, . . . , Cm, where
Ca(x) = ηa ·

∏
j∈Sa xj for Sj ∈ [n]k and ηa ∈ {±1}.

1. Form the tensor T := TΦ by setting TSa = ba for all a ∈ [m], and setting all other entries to 0.

2. Initialize an empty n2dκ × n2dκ matrix Γ.

3. For each ordered multiset U ∈ [n]d in which no entry appears with multiplicity > 100 log n:

(a) Add the squared tensor of the slices of TΦ corresponding to the indices in U :

Γ := Γ +
⊗
i∈U

(Ti ⊗ Ti − squares(Ti ⊗ Ti))

where squares(·) is the restriction to entries (I, J), (K,L) such that (I,K) = (J, L) as ordered
multisets.

4. Letting Ŝ2dκ be the set of all permutation matrices that perform the index permutations corresponding
to S2dκ on the rows and columns of Γ, form

Γ(d) := E
Π,Σ∈Ŝ2dκ

[ΠΓΣ] .

5. Set to zero all rows and columns of Γ(d) indexed by multisets S ∈ [n]2dκ which contain some element
of [n] with multiplicity > 100 log n.

Output: The value ‖Γ(d)‖.
The following theorem, which is the main theorem of this section, gives a bound on the value output

by Algorithm 4.3.

Theorem 4.13. Let k, n, d ∈ N, so that d log n� n, and furthermore let k be odd so that k = 2κ+ 1. Let
Φ be a random instance of k-XOR on n variables x1, . . . , xn, with Θ(pnk) clauses (so each constraint is
sampled uniformly and independently with probability p). Let Γ(d) be the matrix formed from the instance

Φ as described in Algorithm 4.12. Then if d(k−2)/2nk/2p > 1, there exists a constant ck depending on k
such that with high probability over the choice of Φ,

‖Γ(d)‖1/d ≤ Õ

(
pnk/2

d(k−2)/2

)
.

We will prove the theorem below, in Section 4.2.2, and we will now show how to take this matrix and
acquire a certificate from it.

37

4.2.1 Validity of the odd certificate

Again, our strategy will be to work with the polynomial (PΨ(x))d, which is not much altered by removing
terms corresponding to the high-multiplicity rows, columns, or slice cross-products.

Proposition 4.14. Let Φ be a random k-XOR formula in which each clause is sampled independently
with probability p, and let Ψ be the 2(k − 1)-XOR instance obtained from Φ as described above, where Ψ
has m′ clauses {Cab}ab corresponding to pairs of clauses from Φ sharing the same final variable.

Let Ĉdlow ⊂ [m′]d be the set of all ordered multisets of clauses Ca1b1 , . . . , Cadbd from Ψ with the property
that if we form three multisets of variables, I, J ∈ [n]d(k−1) and S ∈ [n]d, with I containing the first
(k − 1)/2 variables of each Ca` , Cb`, J containing the next (k − 1)/2 variables of each Ca` , Cb`, and S
containing the last (shared) variable of Ca` and Cb`, then I, J are both low-multiplicity multisets, in that
both have no element of [n] with multiplicity > 100 log n.

Let omax be the maximum number of clauses of Ψ any variable appears in. Then if d � n and
d(2k − 1)omax < 200εm′ log n,

PΨ(x) ≤

(
E

a1b1,...,adbd∼Ĉdlow

[
d∏
`=1

1

2
(1− Ca`(x)Cb`(x))

])1/d

+ ε

for all x ∈ {±1}n with high probability. When p ≥ 200 logn
nk−1 , we have that ε = o(1) with high probability.

Proof. The proof is very similar to that of Proposition 4.14. First, let m′ be the number of clauses in Ψ,
and let omax be the maximum number of clauses of Ψ that any variable i ∈ [n] appears in (even if it the
shared variable and is included with multiplicity 2).

By definition, we have that PΨ(x) gives the proportion of satisfied clauses, so

(PΨ(x))d = E
a1b1,...,adbd∼[m′]d

[
d∏
`=1

1

2
(1− Ca`(x)Cb`(x))

]
. (4.8)

Since only a o(1) fraction of the multisets of indices, [n]dk, will not contain any item with multiplicity
more than 100 log n, we will be able to prove that those terms contribute negligibly.

We sample a uniform element C ∼ Ĉdlow, C = (Ca1 , Cb2), . . . , (Cad , Cbd) in the following way. For
t = 1, . . . , d:

• Let At ⊂ I be the set of pairs of clauses such that for any (C ′, C ′′) ∈ A,
(Ca1 , Cb1), . . . , (Cbt−1 , Cbt−1), (C ′, C ′′) ∈ Ĉtlow, that is, the set of clauses from Ψ that maintain the
low-multiplicity conditions.

• Choose a uniformly random (C ′, C ′′) ∼ At and set Cat , Cbt := (C ′, C ′′), adding (C ′, C ′′) to C.
This sampling process clearly gives a uniformly random element of Ĉtlow.

Claim 4.15. At step t+ 1 there are at least m′ − t (2k−1)·omax

R clauses that can be added.

Proof. In order to exclude any variable i ∈ [n], we must add at least 100 log n copies of i.. Further, to
exclude ` distinct variables in [n], we must add at least 100 log n copies of each variable, for a total of
100` log n variables, which requires adding at least 100` log n/(2k−1) pairs (since each pair contains 2k−1
variables). If ` distinct variables are excluded, then at most ` · omax pairs of clauses are excluded. The
claim now follows.

Now, define the random variable Xt =
∏t
j=1

1
2(1− Caj (x)Cbj (x))–this is the 0-1 value of x on Ct. We

apply Claim 4.15, along with the observation that PΨ(x) can only drop by 1/m′ for each clause pair
removed, to conclude that

E[Xt+1|Ca1b1 , . . . , Catbt] ≥
(
PΨ(x)− t(2k − 1) · omax

100m′ log n

)
·Xt .

38

From this we have that E[Xt] ≥
(
PΨ(x)− t (2k−1)omax

100m′ logn

)
· E[Xt−1] from which we have that as long as

d(2k − 1)omax ≤ ε100m′ log n,

E[Xk] ≥
d∏
t=1

(
PΨ(x)− t(2k − 1)omax

100m′ log n

)
≥ (PΨ(x)− ε)d .

So taking ε = 1/ log n, if we can establish that the inequality d(2k− 1)omax ≤ 100m′ with high probability
when p ≥ Ω(log n/nk−1), then we are done.

A Chernoff bound implies that pnk/2 ≤ m ≤ 2pnk with probability at least 1−exp(−Ω(pnk)), and that
each variable’s degree mi is pnk−1/2 ≤ mi ≤ 2pnk−1 with probability at least 1− exp(−Ω(pnk−1)). We
have that m′ = (

∑
im

2
i)−m, and so by a union bound and using the assumption that pnk−1 ≥ Ω(log n),

we have that
m′ ≥ p2n2k−1/4.

Let oi be the degree of variable i in Ψ. To bound omax, we observe that oi is made up of occurrences of
pairs in which i is the shared variable, and of pairs in which i is not the shared variable. The contribution
of the first category is m2

i , and with high probability by our union bound m2
i ≤ (2pnk−1)2. In the second

category, we have
∑

jmj ·mij , where mij is the number of clauses containing i and j. By our previous

assumption regarding the concentration of the mi, we have that
∑

jmj · mij ≤ 2pnk−1
∑

jmij . The

quantity
∑

jmij = mi, and so we can conclude that omax ≤ 4p2n2k−2, so that omax/m
′ ≤ 16/n, yielding

our result.

The proof above can be modified to give the following lemma, which gives a lower bound on the
number of low-multiplicity terms.

Lemma 4.16. If Φ is a random k-XOR instance, then so long as d� n and d(2k−1)omax < 200εm′ log n,

|Ĉdlow| ≥ ((1− ε)m′)d · .

Furthermore, ε = o(1) with high probability when p ≥ Ω(n−k+1 log n).

The proof proceeds exactly as the proof of Proposition 4.14, but instead of bounding the decrease in
the value as each clause is added, one bounds the probability that a clause the multiplicity restriction is
chosen.

Now, we have that

E
a1b1,...,adbd∈Ĉdlow

[
d∏
`=1

1

2
(1 + Ca`(x)Cb`(x))

]
=

1

2d

∑
S⊆[d]

E
a1b1,...,adbd∈Ĉdlow

[∏
`∈S

Ca`(x)Cb`(x)

]

and by the symmetry of the uniform distribution over Ĉdlow,

=
1

2d

d∑
j=0

(
d

j

)
· E
a1b1,...,ajbj∈Ĉjlow

[
j∏
`=1

Ca`(x)Cb`(x)

]

≤ 1

2d

t∑
j=0

(
d

j

)
+

1

2d

d∑
j=t+1

E
a1b1,...,ajbj∈Ĉjlow

[
j∏
`=1

Ca`(x)Cb`(x)

]

=
1

2d

t∑
j=0

(
d

j

)
+

1

2d

d∑
j=t+1

(
d

j

)
· 1

|Ĉjlow|
(x⊗2jκ)>Γ(j)x

⊗2jκ .

(4.9)

39

Now, we can use the spectral norm of Γ(j) as a certificate, for values of j ∈ [δd, d]–we stitch together
the details below. The following concludes the proof of the refutation theorem, modulo the proof of the
Γ(d) matrix norm bound from Theorem 4.13, which we give in the next subsection.

Theorem 4.17. Let k = 2κ+ 1 be odd, and let d� n. Then for sufficiently large n there is an algorithm
that with high probability certifies that a random k-XOR instance has value at most 1

2 + γ + o(1) for any

constant γ > 0 at clause density m/n = Õ
(
n(k−2)/2

d(k−2)/2

)
(where the Õ hides a dependence on γ and k) in

time nO(d).

Proof. As argued in the proof of Proposition 4.14, we have that m′ = Θ(p2n2k−1) and m = Θ(pnk) with
high probability, as long as p ≥ Ω(logn

nk−1). Suppose that no variable appears in more than omax clauses in

Ψ. Then for β = d(2k−1)omax

200m′ logn , from Proposition 4.14 and (4.9),

(PΨ(x)− β)d ≤ 1

2d

t∑
j=0

(
d

j

)
+

d∑
j=t+1

(
d
j

)
2d
· 1

|Ĉjlow|
(x⊗2jκ)>Γ(j)x

⊗2jκ .

If we choose t = δd for some constant δ > 0, then we can bound the jth term in the second summation by

1

|Ĉjlow|
(x⊗2jκ)>Γ(d)x

⊗2jκ =
‖x‖2j(k−1)

|Ĉjlow|
· ‖Γ(j)‖ =

nj(k−1)

|Ĉjlow|
· ‖Γ(j)‖

≤ nj(k−1)

(1− β))j(m′)j
· Õ

(
pnk/2

j(k−2)/2

)j
, (by Lemma 4.16 and Theorem 4.13)

≤ Õ
(

1

(1− β)pnk/2j(k−2)/2

)j
, (using that m′ = Θ(p2n2k−1) w.h.p.)

where the inequality holds with high probability from the conditions of Theorem 4.13, and therefore also
holds with high probability simultaneously for all j ∈ [δk, k] by a union bound.

The term comprised of the sum of binomial coefficients is at most

1

2d

δd∑
j=0

(
d

j

)
≤ 2(H(δ)−1)d,

Where H(·) is the binary entropy function, H(δ) = −δ log δ − (1− δ) log(1− δ). Also, β = o(1) with high
probability. Therefore, for some α ∈ [δ, 1],

PΨ(x) ≤

(
2(H(δ)−1)d + Õ

(
1

pnk/2(αd)(k−2)/2

)αd)1/d

+ o(1).

Now, for p ≥ Õ(n−(k/2)d−((k−2)/2)), the latter quantity is o(1), where the Õ hides a polylog n and a
dependence on δ and k. Thus, for n sufficiently large the full term is at most (1 + o(1))2H(δ)−1. We can
choose δ sufficiently small so as to bound PΨ(x) ≤ 1

2 + ε for any constant ε > 0.

Using the fact that c, m′ ≤ 4p2n2k−1 with high probability for sufficiently large p ≥ Õ(n−k+1) (see the
proof of Proposition 4.14), and that m ≥ pnk/2 with high probability, combining with (4.7) we have that

PΦ(x) ≤ 1

2
+

1

2m

√
nm+ 2nm′ ·

(
PΨ(x)− 1

2

)

40

≤ 1

2
+

√
Θ

(
1

pnk−1

)
+
εnm′

2m2

≤ 1

2
+

√
o(1) +

ε4p2n2k

2(1
2)2p2n2k

=
1

2
+

√
Θ

(
1

pnk−1

)
+ 8ε

and we can take the quantity within the square root to be an arbitrarily small constant by choosing a
constant ε sufficiently small.

We can certify this bound in time nO(d) · d, by running Algorithm 4.12 to compute the top eigenvalue
of Γ(j) for each j ∈ [δd, d].

4.2.2 Bounding the odd certificate spectral norm

Now, we bound ‖Γ(d)‖ for the matrices Γ(d) defined above in Algorithm 4.12. Before stating our theorem,

we describe the hypergraphs corresponding to entries of Γ(d), and to ((Γ(d))(Γ(d))
>)`.

We obtain Γ(d) by averaging over row and column symmetries of the matrix∑
i∈[n]

∑
U∈[n]d

U low-mult

⊕
u∈U

Tu ⊗ Tu − squares(Tu ⊗ Tu) ,

then setting rows and columns indexed by high-multiplicity multisets to 0. Ignoring the subtracted squares
for now, this can in turn be understood as the low-multiplicity restriction of the matrix(∑

u

Tu ⊗ Tu

)⊗d
,

where the low-multiplicity restriction is occurring on the Cauchy-Schwarz’d mode u, as well as on the rows
and columns. We begin with the hypergraph interpretation of the matrix (

∑
u Tu⊗ Tu)⊗k, from which the

interpretation for Γ(d) will follow by our understanding of symmetrization over S2dκ and of low-multiplicity

restrictions. Let M := (
∑

u Tu ⊗ Tu)⊗d for convenience. We have that the (A,B), (C,D)th entry of M
(for A,B,C,D ∈ [n]dκ with A = a1, . . . , ad with ai ∈ [n]κ, and with similar decompositions defined for
B,C,D) has value

M(A,B),(C,D) =
∏
i∈[d]

∑
u∈[n]

Tai,ci,u ·Tbi,di,u

 =
∑
U∈[n]d

∏
i∈[d]

(Tai,ci,ui ·Tbi,di,ui) .

Interpreting the variables Tai,ci,ui as k = (2κ+ 1)-uniform hyperedges, we have that each entry is a sum
over hypergraphs indexed by U ∈ [n]d. For each U ∈ [n]d, we have a hypergraph on the following vertex
configuration: on the left, we have the vertices from the multiset A,B. On the right, we have the vertices
from the multiset C,D. In the center, we have the vertices from U . On this vertex set, we have 2d
hyperedges. Of these hyperedges, d form a tripartite matching on the vertices in A,C,U , with κ vertices
from each of A,C and one vertex in U . The other d form a similar tripartite matching on the vertices in
B,D,U . Every hyperedge on A,C,U shares exactly one vertex in U with exactly one hyperedge from
B,D,U . See Figure 2 for an illustration.

Now, we detail the impact of subtracting the squares, and of removing high-multiplicity rows, columns,
and Kronecker powers.

• The subtraction of the square terms squares(Tu ⊗ Tu) forces us to never have two hyperedges
sharing a vertex in U if they contain vertices of the same type in [n]: that is, we can never have
(ai, ci) = (bi, di) as ordered multisets.

41

• The deletion of high-multiplicity indices, both in the Cauchy-Schwarz’d mode and in the rows and
columns, forces us to exclude hypergraphs with (A,B), (C,D), or U containing more than 100 log n
repetitions of any one vertex type.

• The averaging operation EΠ,Σ∈Ŝ2dκ
takes each such entry to an average over all allowed hyperedge

configurations on the vertex set (A,B), (C,D), U .

When we take Tr(Γ(d)Γ
>
(d))

`, we are taking a sum over all “cycles” of length 2` in such hypergraphs,

where the vertices in the cycle are given by the (A,B) multisets, and the edges are given by the average
hyperedge configuration between (A,B) and the next (C,D), with the U vertices in between.

We are now ready to prove our upper bound on Γ(d).

Theorem (Restatement of Theorem 4.13). Let k, n, d ∈ N, so that d log n� n, and furthermore let k be
odd so that k = 2κ + 1. Let Φ be a random instance of k-XOR on n variables x1, . . . , xn, with Θ(pnk)
clauses (so each constraint is sampled uniformly and independently with probability p). Let Γ(d) be the

matrix formed from the instance Φ as described in Algorithm 4.12. Then if d(k−2)/2nk/2p > 1, there exists
a constant ck depending on k such that with high probability over the choice of Φ,

‖Γ(d)‖1/d ≤ Õ

(
pnk/2

d(k−2)/2

)
.

Proof. We fix d and take Γ := Γ(d) for convenience. Also, fix R := 100 log n, and call a multiset S ∈ [n]m

R-multilinear if no element of [n] appears with multiplicity more than R in S. We will apply the trace
power method (Proposition 2.4) to Γ, for which it suffices to obtain an upper bound on

E
[
Tr
(

Γ(d)Γ
>
(d))

`
)]

.

As described above, this amounts to bounding the number of hypergraph cycles of length 2`, where each
“vertex” of the cycle is comprised of an R-multilinear multiset (A,B) ∈ [n]2dκ, and the “edges” in the cycle
between (A,B) and (C,D) are the sum over all R-multilinear U ∈ [n]d of the average over all possible
hypergraphs (because of the symmetries) that contain a tripartite hypergraph matching with 2d edges
between (A,B), U, (C,D) in which every hyperedge contains d vertices from (A,B), d vertices from (C,D),
and one vertex from U . Hypergraphs that contain two identical hyperedges sharing a vertex from U have
contribution 0 to the sum (due to the subtraction of the “squares”).

Let the set of all valid R-multilinear vertex configurations V comprising V = S1, . . . , S2` ∈ [n]2dκ be
denoted VR. Let the set of all R-multilinear center vertex configurations U = U1, . . . , U2` ∈ [n]d be denoted
UR. Let the set of all hyperedge matching sequences H = H1, . . . ,H2` with Hi a matching between
Si, Ui, Si+1 be denoted H. For H ∈ H, V ∈ VR, U ∈ UR, denote by (V,U,H) the hypergraph given by the
hyperedges H on the vertex configuration V . We think of the elements in the sum Tr(ΓΓ>)` as being
indexed by EH [(V,U,H)], where the expectation over H is a result of our symmetrization/averaging
operation.

Applying the above observations, and recalling that we have assembled Γ from the random tensor T,
we have that

E
T

[Tr(ΓΓ>)`] =
∑
U∈UR

∑
V ∈VR

E
H∈H

E
T

 ∏
(i1,...,id)∈(V,U,H)

Ti1,...,id

 ,
Because TS 6= Tπ(S), our hyperedges are ordered, and so two hyperedge variables are not identical unless
the vertices appear in the same order (in particular, the partition into ai, bi, ui and the order within each
should be the same). The expectation over T of a term is 0 if any ordered hyperedge in (V,U,H) appears

42

with odd multiplicity or if two identical ordered hyperedges share the same vertex in some Ui, and is pM

if exactly M distinct hyperedges appear in (V,U,H). Thus,

E
T

[Tr(ΓΓ>)`] ≤
∑
U∈UR

∑
V ∈VR

d∑̀
M=1

pM · E
H∈H

[I((V,U,H) even, nonsharing) · I((V,U,H) has M hyperedges)]

=
∑
U∈UR

∑
V ∈VR

d∑̀
M=1

pM · P
H∈H

[(V,U,H) even, nonsharing with M hyperedges)] . (4.10)

To bound this probability, we will sample uniformly U ∈ UR and H ∼ H in a three-step process.

1. Fix V ∈ VR.

2. Sample a uniformly random perfect matching (with 2-edges rather than hyperedges) between each
set Si, Si+1 ∈ VR–call the edge set sampled in this manner E, so that we now have the graph (V,E).

3. Sample a hyperedge matching configuration G from E by choosing a uniform random grouping
of the edges between Si, Si+1 into groups of d edges, to obtain the hypergraph (V,G) (when
k = 3 =⇒ κ = 1, this step is skipped).

4. Sample a pairing H of the hyperedges in G, a center vertex for each pair in H and an order on the
center vertices to form U , to obtain the hypergraph (V,U,H).

For step 2 and 3, we will employ the same Proposition 4.11 and Lemma 4.10 that we used in the proof of
the even case (Theorem 4.4) to bound the probability that we sample a (V,E) and (V,G) with a certain
edge multiplicity and the evenness property. For step 4, we will need another lemma along the same lines.

We note that if (V,U,H) has every hyperedge appearing an even number of times and there are M
distinct edges, then even if all center vertices are removed to obtain a 2κ-hypergraph (V,G), every ordered
hyperedge must still appear with even multiplicity, and there can only be at most M distinct hyperedges.
Therefore, letting EMH be the event that (V,U,H) is even with M edges and no square/sharing hyperedges,
letting EmG be the event that (V,G) is even with at most m edges, we have that

P[EMH] =
∑
m≤M

P[EMH , EmG] =
∑
m≤M

P[EMH |EmG] · P[EmG] . (4.11)

Now, let E≤m
′

E be the event that (V,E) is a simple graph with the evenness property and at most m′

distinct edges. We use the asymmetry of T to invoke Lemma 4.9 with h ← 2d, w ← 2`, τ ← M and
κ← κ which gives us that P(EmG | E

≤dm
E) ≥ (κ!)−4d`. From this, we have

P[EMH] =
∑
m≤M

P[EMH |EmG] · P[EmG] (by (4.11))

=
∑
m≤M

P[EMH |EmG] ·
P[EmG , E

≤κm
E]

P[E≤κmE | EmG]

≤ (κ!)4d`
∑
m≤M

P[EMH |EmG] · P[EmG , E
≤κm
E] (by Lemma 4.9)

≤ κ4d`κ
∑
m≤M

P[EMH |EmG] · P[EmG | E
≤κm
E] · P[E≤κmE] . (4.12)

We will bound P(EmG |E
≤κm
E), using Lemma 4.10 with h← 2d,w ← 2`, τ ← m, which gives us that

P(EmG |E
≤dm
E) ≤ P((V,G) even with m edges | (V,E) even) ≤ (4eκκκRκ+1`)4d`

(2dκ)(κ−1)(4d`−m)
.

43

And so now, combining with (4.12), we have that for some constant c1 depending on κ,

P[EMH] ≤ κ4d`κ
∑
m≤M

P[EMH |EmG] ·
(

(4eκκκRκ+1`)4d`

(2dκ)(κ−1)(4d`−m)

)
· P[E≤κmE]

≤ (c1R
d+1`)4d`

d(κ−1)4d`

∑
m≤M

d(κ−1)m · P[EMH |EmG] · P[E≤κmE] (4.13)

And therefore, with (4.10),

E[Tr(ΓΓ>)`] =
(c1R

κ+1`)4d`

d(κ−1)4d`
·

d∑̀
M=1

pM ·
∑
m≤M

∑
U∈[n]d

R−multi

d(κ−1)m · P[EMH |EmG]
∑
V ∈VR

·P[E≤κmE] (4.14)

We now bound P(E≤κmE). If we interchange the order of summation, sum over these probabilities for a
fixed value of m, letting M be the set of all possible edge configurations E, we have∑

V ∈VR

P
E

(EκmE) =
∑
V ∈VR

|{E | (V,E) even with ≤ κm edges}|
|M|

=
|{E, V | (V,E) even with ≤ κm edges }|

|M|
. (4.15)

We will bound this quantity with Proposition 4.11, which counts the number of V ∈ VR that yield and
even graph with at most m edges on a fixed E ∈M. From Proposition 4.11 with w ← 2`, h← 2d, t← m′,
we have that for a fixed E ∈M and for a fixed list of edge multiplicities a1, . . . , am′ ,∣∣{V | (V,E) has m′ edges with multiplicities a1, . . . , am′}

∣∣ ≤ (c2R`)
4dκ` · (d`)2 · nm′+2dκ

for some constant c2 depending on k, where we have used the assumption that d � n to meet the
requirements of Proposition 4.11. The number of possible edge multiplicity lists a1, . . . , am′ for a given
value of m′ is at most

(
m′+4dκ`−1

m′−1

)
≤ 24dk`. Thus,

|{E, V | (V,E) even with ≤ κm edges }|
|M|

≤ 1

|M|
·
κm∑
m′=1

∑
a1,...,am′

|M| ·
∣∣{V | (V,E) has m′ edges with even mult.s a1, . . . , am′}

∣∣
≤

κm∑
m′=1

24dk` · (c2R`)
4dκ` · (d`)2 · nm′+2dκ ≤ (c3R`)

4dk` · (d`)2 · nκm+2dκ+1 ,

for some constant c3 depending on k. So there is a constant c4 depending on k so that,

E[Tr(ΓΓ>)`] ≤ (c2R
κ+1`)4d`

d(κ−1)4d`
·

d∑̀
M=1

pM ·
∑
m≤M

∑
U∈[n]k

R−multi

d(κ−1)m · P[EMH |EmG]
(

(c3R`)
4dκ`(d`)2nκm+2dκ+1

)

=
(c4R`)

4d`(κ+1)

d(κ−1)4d`
(d`)2n2dκ+1 ·

k∑̀
M=1

pM ·
∑
m≤M

d(κ−1)m · nκm
∑
U∈[n]k

R−multi

P[EMH |EmG] .

44

For a given hypergraph (V,G) and a fixed U , there are
(
d! ·
(

(2d)!
d!2d

))2`
hyperedge groupings from

which we can sample (V,U,H)–first we choose a matching of the 2d hyperedges in each column, and then
we choose an ordering on the d vertices of U to determine which belong to each hyperedge pair. We now
appeal to the following lemma, which bounds the number of pairings and choices of U that can result in
the evenness property for a given (V,G):

Lemma 4.18. Suppose R,w, h ∈ N such that h ≤ n and h is even. Let G be an even R-multilinear
hypergraph with h hyperedges per column and w columns, and hyperedge multiplicity profile α = a1, . . . , at.
Let H be a hypgergraph we sample from G by matching edges in a column to each other, then adding a
vertex in between with a label from the set [n], with the additional constraint that the columns of center
labels be R-multilinear, and that no two identical ordered hyperedges from G are matched to the same
center vertex. Let τ be a valid number of distinct hyperedges sampleable from G. Then

(# H even with ≤ τ edges | G) ≤ (
h

2
!)w · (2hw)2(4hR2)hw · (hn)τ/2 .

Applying Lemma 4.18 with w ← 2`, h← 2d,τ ←M , we have that since all of our U -configurations
are R-multilinear, and since we forbid two identical ordered edges to share a center vertex, we sum over
all possible hyperedge multiplicity profiles (at most 24d`) we divide by the number of possible hyperedge
groupings and get that for some constant c5 depending on k,∑

U∈UR

∑
α

P[EMH | E
≤m
G] ≤ 28d` · (d!)2`(8d`)2(4`R2)4d` · (2dn)M/2(

d! · (2d)!
2dd!

)2`
≤ (c5R

2`)4d` (d`)
2 · (dn)M/2

d2d`

And combining this with the above, there exists a constant c6 depending on k so that

E[Tr(ΓΓ>)`] ≤ (c4R`)
4d`(κ+1)

d(κ−1)4d`
(d`)2n2dκ+1 ·

2d∑̀
M=1

pM ·
∑
m≤M

d(κ−1)m · nκm
(

(d`)2(c5`R
2)4d`(dn)M/2

d2d`

)

≤ (c6R`)
4d`(κ+8)

d(κ−1)4d`
· 1

d2d`
(d`)4 · n2dκ+1

2d∑̀
M=1

pM (dn)M/2 ·
∑
m≤M

d(κ−1)m · nκm

≤ (c6R`)
4d`(κ+8)

d(κ−1/2)4d`
· (d`)4n2dκ+1(2d`)

2d∑̀
M=1

pM · d(κ−1/2)M · n(κ+1/2)M

And so long as pk(κ−1/2)n(κ+1/2) ≥ 1,

≤ (c6R`)
4d`(κ+8)

d(κ−1/2)4d`
· n2dκ+1(d`)6 · p2d` · d(κ−1/2)2d` · n(κ+1/2)2d`

≤ n2dκ+1(d`)6 ·

(
c6(R`)2(κ+8) · pn

κ+1/2

dκ−1/2

)2d`

,

and now taking ` = O(log n) and recalling that R = 100 log n, with high probability by Proposition 2.4
we have that

‖Γ‖1/d ≤ Õ

(
pnk/2

d(k−2)/2

)
.

This concludes our bound on ‖Γ‖–in the next subsection, we prove the bounds on the sampling
probabilities that we relied upon in the proofs of Theorem 4.4 and Theorem 4.13.

45

4.3 Bounding probabilities of sampling even hypergraphs

Our first proposition counts the number of vertex configurations with the evenness property and a given
set of edge multiplicities for a fixed edge set E.

Proposition (Restatement of Proposition 4.11). Let w, h, n ∈ N. Let α = α1, . . . , αt be a sequence of t
even numbers so that

∑t
i=1 αi = w · h. Let E = M1, . . . ,Mw be a sequence of perfect matchings between

two sets of size h.
Let Gα,Ew×h be the set of all graphs which have a vertex set comprised of w R-multilinear multisets

S1, . . . , Sw ∈ [n]h, and have edges forming the perfect matching Mi between Si, Si+1 (where the indexing is
modulo w), so that the labels in [n] assigned to the vertices induce exactly t distinct labelings for the edges,
and the labeled edges have multiplicities α1, . . . , αt. In words, Gα,Ew×h is the set of w × h matching cycles
with matchings specified by E that have edge multiplicities α when labeled with R-multilinear labels from
[n].

If w · h ≤ n,
|Gα,Ew,h | ≤ (5Rw)wh(wh)3 · nt+h .

We remark that this proposition resembles a lemma used in establishing exact bounds on the order of
the deviation of the second eigenvalue of a Wigner matrix, in the work of [FK81]. Unfortunately, their
statement does not directly imply the bounds we require, as they work in a slightly different setting and
wished to precisely bound the constant. Our proof is similar to the exposition of [FK81] in [Tao].

Proof. We bound the number of such graphs by encoding each graph as a unique string. Since E is known,
it suffices to encode enough information to recover the labels of the vertices.

We will call Mi (the matching in E between Si and Si+1) the ith column of edges. We choose an
ordering on the edges of E: we order them first by column, and within each column arbitrarily. Given a
G ∈ Gα,Ew×h, we will process the edges one at a time in this pre-specified order, and for each edge we will
record either the labels of its incident vertices, or enough information to recover the labels from what
we have previously recorded. To reduce the amount of recorded information, it will be helpful to specify
several edge types:

• Edges we see for the first time:

– new-endpoint edges: never-before seen edges ei with ai = 2 which take us to a vertex with a
label we have not seen before. Let there be #new such edges.

– reused-endpoint edges: never-before seen edges ei with ai = 2 which take us to a vertex with a
label we have already seen.

• Edges we see for the second (and last) time:

– return edges: edges ei with ai = 2 which we see for the second (and last) time.

– unforced edges : return edges ei with ai = 2 which are not the only possible labeled edge we can
use from the endpoint vertex of the previous edge.

• Edges we see more than twice:

– high-multiplicity edges: edges ei with ai > 2.

Suppose there are #new new-endpoint edges, #reused reused-endpoint edges, #unforced forced edges,
and #high high-multiplicity edges. As we process the edges in our pre-specified order, we record:

• The labels of each vertex belonging to the first column set S1 (at most n|S1| = nh choices).

• The edge type of every edge in the graph: whether it is a new-endpoint edge, a reused-endpoint
edge, a high-multiplicity edge, or a forced or unforced return edge (at most 5|E| = 5wh choices).

• For each new-endpoint edge, we record the label of its second endpoint (at most n#new choices).

46

• For each reused-endpoint edge, we record the location of the first appearance of its second endpoint
(at most |V |#reused = (wh)#reused choices).

• For each unforced return edge, we record the column index of the first appearance of that edge, and
the index within that column of the label involved in the edge (at most (Rw)#unforced choices).

• For each high multiplicity edge ei we record the second endpoint of its first appearance (at most
n#high choices). For each consequent appearance of ei, we record the column index of the first
appearance of ei, and the index within that column of the label involved in the high multiplicity

edge (in total, at most (Rw)
∑
ai>2 ai choices).

Claim. The recorded information, along with E and α, suffices to reconstruct G.

Proof. We will prove this by induction. Our inductive claim is that in the ith step, we can reconstruct
the labels of the ith column of vertices, Si.

For the first column, we have recorded all of the labels, so we have S1.
In any subsequent column, assuming we know Si, we will process the edges in order, and determine

their endpoint in Si+1. For each edge, we can the determine from our edge information whether it is a
new-endpoint, reused-endpoint, high-multiplicity, unforced return, or forced return edge. Depending on
the type of edge we use different information to discern the label of its endpoint in Si+1:

• If we traversed a new-endpoint edge: we have recorded the label of the endpoint in Si+1.

• If we traversed a reused-endpoint edge: we have recorded the position of the first appearance of the
vertex’s label, and we can look it up.

• If we traversed an unforced return edge: we have recorded the column index of the first appearance
of the edge, as well as the index I within that column of the label corresponding to this edge’s
endpoint in Si. We go to the column, and then choose the label in Si+1 by finding the Ith edge in
that column with a label matching our edge’s known label from Si.

• If we traversed a forced return edge: there is only one choice for the second endpoint.

• If we traversed a high-multiplicity edge: we have recorded the column index of the other appearances
of this edge. If this is the first appearance of the edge, we have recorded the label of the second
endpoint. Otherwise, we have recorded the column in which this edge first appeared, as well as the
index I within that column of the label corresponding to this edge. We go to the column, and then
choose the label in Si+1 by finding the Ith edge in that column with a label matching our edge’s
known label from Si.

This proves the inductive claim.

Thus,

|Gα,Ew×h| ≤
∑

#reused
#new

#unforced

5wh · (wh)#reused · (Rw)
∑
ai>2 ai+#unforced · n#new+#high+h. (4.16)

All that remains is for us to translate between the above quantity, which is in terms of edge types, to our
desired quantity in terms of the parameters t, w, h. We do this by observing that

#new = t−#high−#reused .

This is because there are a total of t distinct labeled edges, and of those, #high are high-multiplicity, and
#reused do not introduce new labels.

47

We use this observation to simplify n’s exponent, and we use the fact that
∑

αi>2 ai + #unforced +
#reused ≤

∑
i αi = wh to simplify w and R’s exponents, giving us that

|Ĝtα| ≤ (5Rw)wh · nh
∑

#reused
#new

#unforced

(
wh

n

)#reused

· nt. (4.17)

The number of possible combinations of values for #new, #unforced, and #reused is at most (wh)3.
Furthermore, because wh ≤ n, from (4.17) we may conclude,

|Gα,Ew×h| ≤ (5Rw)wh(wh)3 · nt+h

as desired.

We now prove Lemma 4.10, which gives us a bound on the probability that we sample an even
hypergraph cycle with the correct edge multiplicity from a simple edge cycle. Again, the proof of
Lemma 4.10 is different from the proof of Lemma 2.8, and is more similar to the proof of Proposition 4.11
(although it is already quite different from the proof of [FK81]).

Lemma (Restatement of Lemma 4.10). Suppose h,w, κ, n, τ ∈ N. Let G = (V,E) be a graph consisting
of w sets of κh vertices each with R-multilinear labels from [n], where E is a set of w perfect matchings
M1, . . . ,Mw, so that Mi is a perfect matching between Si and Si+1, and α = a1, . . . , at is a list of even
edge multiplicities of E on the labeled vertex set V , so that

∑
ai = κwh.

Suppose we sample a hyperedge matching configuration H from E by uniformly grouping the edges in
each matching from Si to Si+1 into hyperedges of order 2κ, and let τ be a number of distinct hyperedges
that is possible to sample from (V,E) in this way. Then,

P((V,H) even with τ edges | (V,E) even) ≤ (2eκκκRκ+1w)wh

(κh)(κ−1)(wh−τ)
.

Proof. We will count the number of possible even H one can sample from E with at most τ unique
hyperedges by encoding each such H uniquely as a string, then counting the number of strings.

First, we fix an ordering on the edges of E, ordering them first by column, then arbitrarily within each
column. Now, define a new hyperedge to be a labeled hyperedge which we have never seen before, and
define an old hyperedge to be a hyperedge which has already been seen. Let H be some even hypergraph
sampled from G with at most M unique labeled hyperedges. We encode H in a string as follows. We will
process the hyperedges of H one at a time, ordering hyperedges by the first simple edge they contain.

• For every hyperedge encountered in H, record whether it is new or old (2|H| = 2wh options).

• For every new hyperedge encountered: record the indices of the 2, ..., d simple edges that it contains
(
(
(dh)(d−1)

)τ
options). The identity of the first edge will be obvious from the edge ordering.

• For every old hyperedge encountered, record the column index j of its first appearance (wwh−τ

choices). If any of the simple edges ei1 , . . . , eid appear with multiplicity > 1 in the old (jth) column,
record the indices of those edge within the identical edges in that column (at most (Rd)wh−τ choices,
since no simple edge can appear more than R times in a column).

We claim that given V,E, and this encoding, we can uniquely recover H. We process the simple edges in
our specified order. If the edge is contained in a new hyperedge, we can deduce the other simple edges
belonging with it from what we recorded. If the edge is contained in an old hyperedge, we know the
column in which the hyperedge first appears, and we can determine the other edges in the group by
looking up the edge in the previous column–if there are multiple copies of the edge in the old column, we

48

have recorded which copy to look up. Furthermore, if the grouping is insufficient due to multiplicities
within this column, we have recorded the relative indices of the relevant edges.

The number of such strings is at most

(# encodings) ≤ 2wh · (dh)(d−1)τ · (Rdw)wh−τ (4.18)

giving an upper bound on the number of H we can sample from (V,E) with at most τ distinct edges.
There are a total of

(# sampleable graphs) =

 1

h!

h−1∏
j=0

(
d(h− j)

d

)w

=

(
(dh)!

(d!)hh!

)w
(4.19)

possible hyperedge graphs sampleable from (V,E), and from this we have that

P(H has τ edges |(V,E) even) ≤ (# encodings)

(# sampleable graphs)
≤ (2ddedwRd)hw

(dh)(d−1)(hw−τ)

where we have combined (4.18) with (4.19) and applied Stirling’s inequality. Our conclusion follows.

Now we prove a lemma that bounds the number of even k-hyperedge configurations with τ hyperedges,
each paired and sharing a center vertex, sampleable from an even 2d-hyperedge configuration by pairing
and labeling.

Lemma (Restatement of Lemma 4.18). Suppose R,w, h ∈ N such that h ≤ n and h is even. Let G be an
even R-multilinear hypergraph with h hyperedges per column and w columns, and hyperedge multiplicity
profile α = a1, . . . , at. Let H be a hypgergraph we sample from G by matching edges in a column to each
other, then adding a vertex in between with a label from the set [n], with the additional constraint that the
columns of center labels be R-multilinear, and that no two identical ordered hyperedges from G are matched
to the same center vertex. Let τ be a valid number of distinct hyperedges sampleable from G. Then

(# H even with ≤ τ edges | G) ≤ (
h

2
!)w · (2hw)2(4hR2)hw · (hn)τ/2 .

Proof. We will count the number of such H by encoding each instance uniquely as a string. Fix an order
on the hyperedges, first in column order.

• A new hyperedge is a hyperedge which introduces a new center vertex.

• A reuse hyperedge is a hyperedge which we see for the first time, and whose center vertex is the
first of its type in its column, but which reuses a center vertex from a previous column.

• A sharing hyperedge is a hyperedge which we see for the first time, but which shares a center vertex
with another hyperedge in its own column.

• A return hyperedge is a hyperedge which we see for the second or later time.

Our encoding is as follows:

• In the first hw positions, we record the type of every hyperedge we see (4hw choices).

• In the next #new positions, we record the labels of new hyperedges (n#new choices).

• In the next #reused positions, we record the position of the first appearance of the reused label
((hw/2)#reused choices)

• In the next #share positions, we record the partner of the sharing edge within the column ((h/2)#share

choices, since there cannot be more than h new labels in a column).

49

• In the next #return positions, we record the column of the first appearance of the hyperedge (a
total of w#return choices), the index of the previous occurrence of the hyperedge among hyperedges
with the same labels in the previous column (a total of R#return choices), and the index of the
hyperedge’s center vertex among center vertices of the same label within the current column (a total
of R#return choices).

• We record the permutation of the middle labels in each column ((h2 !)w choices).

Given this information, we can uniquely reconstruct an H from G. For every surprise hyperedge we
encounter, we have recorded the center label. For every recycle hyperedge we encounter, we can determine
the center label by looking at the previous occurrence. For every sharing hyperedge, we can determine
its partner. For every return hyperedge, we can determine the label of the center vertex by looking at
the previous occurrence, and we can determine partnership by knowing the index of the center label’s
occurrence within the column.

We thus have

(#H) ≤
∑

#new
#reused

(
h

2
!

)w
(4w)wh ·R2#return · n#new · h#reused+#share .

We use some observations about these quantities to simplify the above expression. We have that

τ = #new + #share + #reused ,

since every hyperedge must appear for the first time. Furthermore, we have that #new ≤ #share, since
every surprising hyperedge must be paired with a sharing hyperedge, since it introduces a new vertex
label which hasn’t been seen before, so it’s partner must be a sharing edge since we forbid two hyperedges
with the same labels to share a center vertex. It follows that

#new ≤ τ/2 .

Putting these together,

(#H) ≤
(
h

2
!

)w
(4wR2)hw

∑
#new

#reused

n#new · hτ−#new

=

(
h

2
!

)w
(4wR2)hwhτ ·

∑
#new

#reused

(n
h

)#new

≤
(
h

2
!

)w
(2hw)2(4hR2)hw · (hn)τ/2 ,

where in the last line we have assumed that h < n, and have used that #new and #reused take on at
most τ < wh/2 values. The conclusion follows.

5 Strong Refutation for All CSPs

In this section, we consider the problem of refuting Boolean CSP’s with arbitrary predicates.

Problem 5.1 (Refuting CSP’s with predicate P). Let P : {±1}k → {0, 1} be a predicate on k variables.
Then we sample a random instance of CSP-P , Φ, with clauses C1, . . . , Cm, as follows: for each I ∈ [n]k:

50

• With probability p, sample a uniformly random σ ∈ {±1}k and add the constraint P (xI ⊕ σ) = 1
to Φ as clause CI , where ⊕ denotes the entry-wise product and xI denotes the ordered subset of
variables xi for each i ∈ I.

The problem of strongly refuting CSP-P is to devise an algorithm that given an instance Φ sampled as
above, with high probability over Φ, outputs a certificate that

opt(Φ) ≤ 1− γ

for an absolute constant γ > 0.

Our result is the following:

Theorem 5.2. Let Φ be a random instance of a k-CSP with predicate P , with clause density m/n ≥
Õ(n(k/2−1)(1−δ)). Then with high probability over the choice of Φ, there is a spectral algorithm which
strongly refutes Φ in time exp(Õ(nδ)), certifying that

opt(Φ) ≤ E
x∼{±1}k

[P (x)] + ε

for any constant ε > 0. Furthermore, the degree-O(nδ) SoS relaxation also certifies this bound.

We will employ the framework of Allen et al. [AOW15] to prove that we can strongly refute any k-CSP
with predicate P at densities as low as Õ(1), given sufficient time. The strategy is as follows: given some
random k-CSP on x ∈ {±1}n with clauses C1, . . . , Cm, Ci : {±1}k → {±1}:
• Expand C1(x), . . . , Cm(x) using the Fourier expansion.

• Split the Fourier expansions of C1, . . . , Cm into XOR instances.

• Refute each XOR instance.

Because a k-CSP predicate has a Fourier expansion of degree at most k, the above strategy in
combination with our k-XOR refutation results will allow us to tightly strongly refute any k-CSP in time
exp(nδ) at densities ≥ Õ(n(k/2−1)(1−δ)). However, as a result of the work of [AOW15], we are able to show
that for predicates satisfying some additional properties, it is possible to strongly refute more quickly at
lower densities. We elaborate further:

Definition 5.3. Let 1 ≤ t ≤ k. A predicate P : {±1}k → {0, 1} is δ-far from t-wise supporting if every
distribution D on {±1}k which has uniform marginals on all subsets of t variables only satisfies P with
probability at most 1− δ, i.e.

E
x∼D

[P (x)] ≤ 1− δ.

Allen et al. give the following characterization of δ-far from t-wise supporting predicates:

Theorem 5.4 (Lemma 3.16 and Theorems 4.9 and 6.6 of [AOW15]). Let the predicate P : {±1}k → {0, 1}
be δ-far from t-wise supporting, for 0 ≤ t ≤ k. Then there exists a multilinear polynomial Q : {±1}t → R
such that Ex∼{±}t [Q(x)] = 0 and P (x) ≤ (1 − δ) + Q(x) for any x ∈ {±1}k. Furthermore, Q can be

obtained by solving a linear program of constant size, and there is a degree-k SoS proof that Ẽ[P (x)] �
(1− δ) + Ẽ[Q(x)].

We will use this theorem to extend the results of [AOW15] for δ-far from t-wise independent predicates
below the spectral threshold.

Theorem 5.5. Let the predicate P : {±1}k → {0, 1} be δ-far from t-wise supporting, for 0 ≤ t ≤ k
and a constant δ > 0. Let Φ be a random instance of a k-CSP with predicate P , with clause density

51

m/n ≥ Õ(n(t/2−1)(1−δ)). Then with high probability over the choice of Φ, there is a spectral algorithm
which strongly refutes Φ in time exp(Õ(nδ)), certifying that

opt(Φ) ≤ 1− δ + ε

for any constant ε > 0. Furthermore, the degree-O(nδ) SoS relaxation also certifies this bound.

We now prove Theorem 5.2, and then below we will describe the mild changes needed to prove
Theorem 5.5. We will utilize our own Theorem 1.3, as well as the following theorem which has appeared
in [AOW15] (and also partially in [BM15]). We cite the exact form of the theorem given in [AOW15].

Theorem 5.6 ([AOW15], Theorem 4.1). For k ≥ 2, q ≥ n−k/2, let {wS}S∈[n]k be independent random

variables such that for each S ∈ [n]k,

E[wS] = 0, P[wS 6= 0] ≤ q, and |wS | ≤ 1.

Then there is an efficient algorithm certifying that∣∣∣∣∣∣
∑
S∈[n]k

wS
∏
i∈S

xi

∣∣∣∣∣∣ ≤ 2O(k)√qn3k/4 log3/2 n

for all x with ‖x‖∞ ≤ 1 with high probability.

Remark 5.7. In [AOW15], the theorem appears without the absolute value–however the statement for the
absolute value is implied by the fact that the negated variables −wS also satisfy all of the constraints.

Given the above theorem and our results for refuting XOR instances (Theorem 1.3), the result for
arbitrary binary CSPs follows easily.

Proof of Theorem 5.2. Let the Fourier expansion of P on y ∈ {±1}k be P (y) =
∑

S⊆[k] P̂ (S) · χS(y). Let

Φ have constraints C1, . . . , Cm, chosen independently on each I ∈ [n]k with probability p, so that the
constraint CI asserts that P (xI ⊕ σI) = 1 for a uniformly chosen signing σI ∈ {±1}k. We have that

PΦ(x) =
∑
I∈[n]k

I(CI ∈ Φ) · P (xI ⊕ σI) =
∑
I∈[n]k

I(CI ∈ Φ) ·
∑
S⊆[k]

P̂ (S) ·
∏
i∈I

xi ·
∏
i∈S(I)

σIi ,

where we have used ⊕ to denote the entry-wise product and S(I) to denote the entries of I corresponding
to the subset S of [k]. We will move the sum over ordered subsets S ⊆ k outwards, then simplify further

=
∑
S⊆k

∑
I∈[n]k

I(CI ∈ Φ) · P̂ (S) ·
∏
i∈S(I)

xi ·
∏
i∈S(I)

σIi

= P̂ (∅) +
∑
S⊆k
|S|≥1

P̂ (S)
∑
I∈[n]k

I(CI ∈ Φ) ·
∏
i∈S(I)

xi ·
∏
i∈S(I)

σIi .

Now, we will see that for each S ⊆ [k], |S| ≥ 1, we have a random weighted XOR instance ΨS on |S|
variables. Letting bIL

def
=
∏
`∈L σ

I
` , we define

ΨS(x)
def
=

∑
I∈[n]k

I(CI ∈ Φ) ·
∏
i∈S(I)

xi ·
∏
i∈S(I)

σIi

52

=
∑
L∈[n]S

∏
i∈L

xi ·

 ∑
J∈[n]k\S

I(CJ∪L ∈ Φ) · bIL

 ,

where we have abused notation by allowing J ∪ L to denote the ordered multiset with L in the exact
positions corresponding to S and J in the positions corresponding to k \ S. Furthermore, by definition,

PΦ(x)

m
= P̂ (∅) +

∑
S⊆k
|S|≥1

P̂ (S) · ΨS(x)

m
≤ P̂ (∅) +

∑
S⊆k
|S|≥1

P̂ (S) · |ΨS(x)|
m

and so bounding the values of the ΨS suffices to get a bound on the value of Φ.

We list some properties of ΨS . For convenience, we now use the notation χL(x)
def
=
∏
`∈L x` and the

notation xL to denote a string of elements of x indexed by L. For each S ⊆ k, S 6= ∅, ΨS is an instance
of |S|-XOR with independent constraints on each χL(x) for L ∈ [n]|S|–the independence is because the
constraints for χL(x) depend only on the presence of clauses in CI ∈ Φ for I ∈ [n]k including xL in the
positions corresponding to S. The weight on each χL(x) is distributed according to a sum of nk−|S|

independent random variables, each of which is 0 with probability 1−p, and uniformly ±1 with probability
p. For convenience, call the distribution over such sums k̂(nk−|S|, p), so that the coefficient cL of χL(x) is
distributed according to cL ∼ k̂(nk−|S|, p).

We now perform a case analysis on p and |S|, which allows us to bound the contributions of each
ΨS(x) individually.

Case 1: pnk−|S| ≥ 1. If pnk−|S| ≥ 1 then with high probability, every constraint cL has |cL| ≤
O(
√
pnk−|S| log n) (where we have combined Lemma 5.8 with a union bound). Furthermore the cL are

distributed symmetrically about 0, and they are nonzero with probability at most 1 ≤ pnk−|S|.
• If |S| = 1, we have that with high probability,

|Φ(x)|
m

≤
n ·max`∈[n] |c`|

m
≤ n ·O(

√
pnk−1 log n)

Θ(pnk)
≤ O

(√
log n

pnk−1

)
,

where we have applied a Chernoff bound to use that m = Θ(pnk). By our assumption on the clause
density, p ≥ n−(k−1) · polylog n, and therefore it follows that |ΨS(x)|/m = o(1).

• Otherwise, if |S| ≥ 2, we can divide each cL by β = O(
√
pnk−|S| log n) to obtain a polynomial with

coefficients bounded in absolute value by 1, with independent symmetrically distributed coefficients and
probability at most 1 ≤ pnk−|S| of being nonzero. We can thus apply Theorem 5.6 to get that with
high probability we can certify in polynomial time that,

|ΨS(x)|
β

≤ O(n3|S|/4 log3/2 n),

Implying that with high probability,

|ΨS(x)|
m

≤ β ·O(n3|S|/4 log3/2 n)

Θ(pnk)
≤ O(

√
pnk−|S| log n) ·O(n3|S|/4 log3/2 n)

Θ(pnk)

≤ O
(

log2 n

p1/2nk/2−|S|/4

)
≤ O

(
log2 n

n|S|/4

)
.

where the last inequality follows by the assumption that pnk−|S| ≥ 1.

53

Case 2: pnk−|S| < 1. If pnk−|S| < 1, then with high probability all |cL| ≤ O(log n) (where we have
combined Lemma 5.8 with a union bound). We now split into cases in which we can apply Theorem 5.6
and cases in which we must apply Theorem 1.3.

• If |S| < k and p ≥ n−|S|/2, then again letting β = O(log n), we can divide ΨS by β to obtain a
polynomial with coefficients that are symmetrically distributed about 0, bounded by 1 in absolute value,
and are nonzero with probability at most pnk−|S|. By Theorem 5.6 and by a Chernoff bound on m, it
follows that we can certify in polynomial time that

|ΨS(x)|
m

≤ β ·O(
√
pnk−|S| · n3|S|/4 log3/2 n)

m
≤ O(log n) ·O(

√
pnk−|S| · n3|S|/4 log3/2 n)

Θ(pnk)

≤ O

(
log3/2 n

p1/2nk/2−|S|/4

)
≤ O

(
log3/2 n

n(k−|S|)/2

)
= o(1),

where the second-to-last inequality follows by our assumption that pn|S|/2 ≥ 1.

• If |S| = k, then ΨS is a k-XOR instance with each constraint present with probability p. By Theorem 1.3,

we can certify in time exp(Õ(nδ)) that |ΨS |m ≤ γ for any constant γ > 0.

• If |S| < k and p < n−|S|/2, we must apply Theorem 1.3. We must modify the instances slightly first,
since Theorem 1.3 applies to unweighted instances.

To obtain an unweighted instance, we split ΨS further into r = log2 n instances, Ψ
(1)
S , . . . ,Ψ

(r)
S . We

split as follows: let c
(i)
L denote the coefficient of χL(x) in Ψ

(i)
S . For each nonzero cL, we choose |cL|

uniformly random indices i1, . . . , i|cL| ∈ [r], and assign c
(ij)
L = cL

|cL| for each j = 1, . . . , |cL| (recall that

with high probability |cL| ≤ O(log n) < r). Let mi be the number of constraints in Φ
(i)
S , so that we have

m ≥
∑

imi (since cL may be a sum of negative and positive constraints from the full instance Φ).

First, note that

|ΨS(x)|
m

≤

∣∣∣∑r
i=1 Ψ

(i)
S (x)

∣∣∣∑
imi

≤ max
i∈[r]

|Ψ(i)
S (x)|
mi

.

It remains to argue that each instance Ψ
(i)
S has bounded value with high probability. Towards this,

consider the properties of Ψ
(i)
S . First, we note that the constraints of Ψ

(i)
S are independent of one another

and are distributed symmetrically about zero–this is because the cL are independent of one another and

symmetrically distributed about zero. Furthermore, we have that each c
(i)
L is nonzero with probability q̂:

q̂
def
= P[c

(i)
L 6= 0] =

r∑
j=1

P[|cL| = j, i chosen]

=

r∑
j=1

P[i chosen | |cL| = j] · P[|cL| = j]

=

r∑
j=1

j

r
· P[|cL| = j] ,

where we have taken the sum up to r because we implicitly condition on |cL| ≤ O(log n) (which occurs
with high probability). We thus have that

q̂ =

r∑
j=1

j

r
· P[|cL| = j] ≤ P[|cL| > 0] ≤ pnk−|S|,

54

and also that

q̂ =

r∑
j=1

j

r
· P[|cL| = j] ≥ 1

r
· P[|cL| > 0] ≥ 1

log2 n
· pn

k−|S|

2
.

The last inequality follows by observing that with probability at least pnk−|S|, at least one of the chosen
constraints in Φ contributes to cL, and conditioned on this event, the contributions to cL sum to zero
with probability at most 1/2. Therefore, q̂ = δ · pnk−|S| for some δ ∈ [1

2 log2 n
, 1].

Thus, each Φ
(i)
S

′
is a random |S|-XOR instance in which each clause is revealed with probability q̂.

From Theorem 1.3, with high probability we can refute a random |S|-XOR instance in which each clause
is present with probability q̂ in time exp(Õ(nδ)) so long as q̂n|S|−1 ≥ Õ(n(|S|/2−1)(1−δ)), certifying that
the instance satisfies at most 1

2 + γ + o(1) clauses for any constant γ > 0. This condition on q̂n|S|−1

holds by our assumption that p ≥ Õ(n−k(1+δ)/2+δ) (as long as we make the correct adjustments of
logarithmic factors on p to account for the value of q̂). We can also certify with high probability that
the fraction of satisfied constraints is at least 1

2 − γ for any constant γ, by applying the same argument

with the negations of the c
(i)
L .

Thus, in time exp(Õ(nδ)), with high probability we can certify that
|Φ(i)
S (x)|
mj

≤ γ, implying by a union

bound over i ∈ [r] that |ΨS(x)|
m ≤ γ.

Using this case analysis, we have that

PΦ(x)

m
≤ P̂ (∅) + γ ·

∑
S⊆k
|S|≥1

P̂ (S)

and since P̂ (S) can depend only on k, for large enough n, with high probability over Φ we can certify

that PΦ(x)
m ≤ P̂ (∅) + γ′ for any constant γ′ in time exp(Õ(nδ)) when m/n ≥ Õ(n(k/2−1)(1−δ)).

The same conclusion holds in the degree-O(nδ) SoS relaxation, as every step of this proof holds within
the SoS proof system (because Theorem 5.6 and Theorem 1.3 hold within the SoS proof system).

The proof of Theorem 5.5 proceeds almost identically, except that instead of using the Fourier expansion
of the predicate P , we use the degree-t polynomial Q(x) given by the work of Allen et al. [AOW15]
(Theorem 5.4). Because P (x) ≤ (1− δ) +Q(x), and since Q(x) has no constant term, the proof we applied
to the degree ≥ 1 terms of the Fourier expansion of P applies to Q(x), and this completes the proof.

Lemma 5.8. For any 0 ≤ q ≤ 1, define k̂(N, q) to be the distribution over scalars such that X ∼ k̂(N, q)
is a sum of N independent variables, each 0 with probability 1− q, −1 with probability q/2, and 1 with
probability q/2. Then if Nq ≥ 1, for any constant c, there exists a constant c′ such that

P
X∼k̂(N,q)

[|X| ≤
√
c′Nq logN] ≥ 1−N−c ,

and if Nq < 1, for any constant c there exists a constant c′ such that

P
X∼k̂(N,q)

[|X| ≤ c′ logN] ≥ 1−N−c .

Proof. By definition, for X ∼ k̂(N, q), X =
∑N

i=1 xi for xi distributed according to k̂(1, q).
It is easy to see that E[X] = 0, and to calculate that V(X) = qN , and we note also that |xi| ≤ 1.

Therefore when Nq ≥ 1, from a Bernstein inequality we have that

P[|X| ≥ t] ≤ exp

(
−t2/2

t/3 + qN

)
,

55

and taking t =
√

4cqN logN , and using that qN ≥ 1, we have the desired result.
When qN < 1, we apply the same bound with t = 4c logN to obtain our second result.

6 Sum-of-Squares Algorithms

In this section, we use our spectral algorithms to certify SoS upper bounds.

6.1 Background

Suppose we wish to maximize an n-variate polynomial fobj(x) over x ∈ C ⊂ Rn, where C is some subset
of Rn defined by polynomial constraints. This problem is clearly NP-hard in general. The sum-of-
squares hierarchy is a hierarchy of semidefinite programming relaxations for such polynomial optimization
problems. The d-round SoS relaxation is a program with variables XS for each S ∈ {∅ ∪ [n]}2d. For each
S ∈ {∅ ∪ [n]}2k, the variable XS is a relaxation for the monomial

∏
i∈S xi.

Definition 6.1 (standard degree-d SoS constraints). The basic constraints for the d-round sum-of-squares
relaxation are:

X∅ = 1 representing the constant term (6.1)

XA,B = XC,D ∀A,B,C,D ∈ {∅ ∪ [n]}k if (A,B) = (C,D) as unordered multisets (6.2)

X � 0 (6.3)

where X is a {∅ ∪ [n]}d × {∅ ∪ [n]}d matrix whose (A,B)th entry contains XA,B. We refer to this set of
constraints as SoSd. If there are additional polynomial constraints g1(x) = 0, . . . , gm(x) = 0, then we also
add the constraints

XS ◦ gj(X) = 0 ∀j, S : deg(gj) + |S| ≤ 2d,

where the notation ◦ is used to mean replacing each variable XT appearing in gj with the variable XS,T .

A useful alternate characterization of (6.3) is that for any polynomial f of degree at most d, we have
that f2(X) ≥ 0, where f2(X) is the function given by evaluating the coefficients of f2 at the stand-in
monomials given by the variables of the program. These are all constraints that any true polynomial
solution satisfies.

We define the linear operator Ẽ : R[x]≤2d → R, which maps any monomial of degree at most 2d to the
SoS variable identified with it. It is sometimes instructive to think of the variable XS as a pseudoexpectation
or a pseudomoment of the monomial

∏
i∈S xi over feasible solutions which maximize the objective function:

XS = Ẽ
x maximizing fobj

[∏
i∈S

xi

]
.

Intuitively, the constraints of the SDP force the solution to behave somewhat like the moments of a
probability distribution over feasible maximizing solutions, although they needn’t correspond to the
moments of a true distribution, hence the term pseudomoment. See e.g. [Bar14] for more background.

6.2 Relaxations for tensor norm and k-XOR

The natural SoS relaxations for computing the tensor norm and for maximizing k-CSPs are very similar
to each other. Both correspond to polynomial maximization problems, where the constraint is that
the maximizing solution x ∈ Rn lie on the unit sphere or on the Boolean hypercube. Save for these
“normalization” constraints and the natural SDP constrains SoSd, there are no other constraints.

56

Definition 6.2 (d-round SoS relaxation for tensor norm). Given an order-k tensor T, for any d ≥ dk/2e,
the d-round SoS relaxation for the injective tensor norm is

max Ẽ
[
〈T, x⊗k〉

]
s.t. Ẽ

∑
i∈[n]

x2
i

 =
∑
i∈[n]

Xi,i = 1 , (6.4)

With the addition of the standard d-round SoS constraints.

Definition 6.3 (d-round SoS relaxation for k-XOR). Given an instance Φ of d-XOR with constraint
tensor TΦ defined as described in Section 4, for any d ≥ dk/2e, the d-round SoS relaxation is given by

max Ẽ
[
〈TΦ, x

⊗k〉
]

s.t. Ẽ
[
x2
i

]
= 1 ∀i ∈ [n] , (6.5)

With the addition of the standard d-round SoS constraints.

6.3 Bounds for tensor norm

In this subsection, we show how bound the objective value of the d-round SoS relaxation for a polynomial
optimization problem when Ẽ(

∑
i x

2
i) is known, in terms of the operator norm of a specific matrix. We

will use � and � to denote inequalities that are sum-of-squares identities.
We will require the use of the following lemma, which is standard in SoS-proofs.

Lemma 6.4 (SoS matrix inner product). Let M be an [n]d × [n]d matrix, and let Ẽ be a degree-2d
pseudoexpectation. Then

Ẽ〈x⊗2d,M〉 � Ẽ[‖x‖2d] · ‖M‖.

Proof. By assumption, λ·I−M � 0, and therefore the expression I−M can be written as a sum-of-squares
of degree at most 2d. We thus have that

0 � Ẽ
[
〈x⊗2d, λ · I −M〉

]
Ẽ
[
〈x⊗2d,M〉

]
� λ · Ẽ

[
〈x⊗2d, I〉

]
= λ · Ẽ[‖x‖2d] ,

as desired.

We will also make use of standard SoS versions of the Cauchy-Schwarz Inequality, and Hölder’s
Inequality, proofs of which can be found in [BBH+12], for example. Additionally we will use the following
fact, which can be proven by induction:

Fact 6.5 (SoS-Convexity). For any d ∈ N, if Ẽ is a degree-2dk pseudodistribution and f(x) is a polynomial
of degree at most k, then

Ẽ[f(x)]2d � Ẽ[f(x)2d] .

Proposition 6.6. Let T be an order-k tensor for even k = 2κ. Let R, d ∈ N such that R ≤ dk and k is
even. Consider the dk-round SoS relaxation for the problem P,

max Ẽ
[
〈T, x⊗k〉

]
s.t. Ẽ

[
‖x‖22

]
= α , (6.6)

57

Furthermore, let T be the natural flattening of T to an nk/2 × nk/2 tensor, let Ŝdk/2 be the set of matrices

that permute rows and columns of matrices in [n]dk/2×[n]dk/2 according to actions of Sdk on the coordinates
in [n] Then in the dk-round SoS relaxation,

Ẽ
[〈

T, x⊗k
〉]
≤ αk/2 ·

∥∥∥∥∥ E
Π,Σ∈Ŝdk/2

[
ΠT⊗dΣ

]∥∥∥∥∥
1/d

.

Proof. We have that(
Ẽ
[
〈T, x⊗k〉

])d
� Ẽ

[(
〈T, x⊗k〉

)d]
(by SoS-convexity)

= Ẽ
[
〈T⊗d, x⊗dk〉

]
(by the symmetry constraints (6.2))

= Ẽ

[〈(
E

Π,Σ∈Ŝdk

[
Π(T⊗k)Σ

])
, x⊗dk

〉]
(by (6.2))

�

∥∥∥∥∥ E
Π,Σ∈Ŝdk/2

[
Π(T⊗k)Σ

]∥∥∥∥∥ · Ẽ [‖x‖dk] (by Lemma 6.4)

The conclusion follows from (6.6).

As an immediate corollary of the above and of Theorem 3.3, we have Theorem 1.7 for even k. To
get Theorem 1.7 for odd k, we can apply Cauchy-Schwarz before applying SoS-convexity, so that we are
working with

〈T, x⊗k〉2 �

∑
i∈[n]

x2
i

 ·〈∑
i∈[n]

Ti ⊗ Ti, x⊗2(k−1)

〉

=

∑
i∈[n]

x2
i

 ·
〈∑

i∈[n]

Ti ⊗ Ti − squares(Ti ⊗ Ti), x⊗2(k−1)

〉
+
∑
i∈[n]

∑
A[n]k−1

T 2
A,i

∏
j∈A

x2
j

 ,

where Ti is the ith slice of T, and squares(Ti ⊗ Ti) corresponds to the entries of Ti ⊗ Ti which are squares
of the base variables T. The right-hand term is bounded by obtaining a high-probability bound of O(log n)
on the maximum coefficient T 2

iA, and the left-hand term is bounded by following the same steps as in the
proof of Proposition 6.6, then applying Theorem 3.11.

6.4 Bounds for k-XOR

For the case of k-XOR, the proof is a bit more complicated than for the case of tensor norms, because the
matrix certificates we used have certain rows and columns deleted. Still, the arguments are similar to
our proof from Section 4. All steps in the proofs from Section 4.1.2 and Section 4.2.2 we can make into
SoS proofs in an analogous way to the tensor norm SoS proofs above, except for the steps in which the
high-multiplicity rows and columns are deleted. This too is not difficult to see, and we will prove it for
the even case. We will require the following SoS fact:

Claim 6.7. Suppose Ẽ is a degree 2d pseudoexpectation functional with Boolean constraints, i.e., Ẽ[x2
i ·

r(x)] = Ẽ[r(x)] for all r(x) with deg(r) ≤ 2d− 2.
Let q =

∑
σ q̂σxσ and r be polynomials such that deg(qr2) ≤ 2d. Then,

Ẽ[q(x)r2(x)] ≤ Ẽ[‖q̂‖1 · r2] .

58

Proof. Note that for each monomial xσ, Ẽ[(1− xσ)] = Ẽ[(1− xσ)2] ≥ 0. Using this inequality for each of
the monomials in q, the claim follows immediately.

Now, we prove an SoS analogue of Proposition 4.5, which allows us to use the low-multiplicity
restrictions of our certificate matrices to get our upper bounds.

Proposition 6.8. Let Φ be a random k-XOR formula in which each clause is sampled independently with
probability p. Let Cdlow ⊂ [m]d be the set of all ordered multisets of clauses Ci1 , . . . , Cid from Φ with the
property that if we form two multisets of variables I, J ∈ [n]dk/2 with I containing the first k/2 variables of
each Ci` and J containing the last k/2 variables of each Ci`, then I, J are both low-multipicity multisets,
in that both have no element of [n] with multiplicity ≥ 100 log n.

Then if p ≥ 200 logn
nk−1 and d� n, and if Ẽ is a pseudoexpectation of degree at least 2dk, then

Ẽ[PΦ(x)] ≤

(
E

i1,...,id∼Cdlow

[
d∏
`=1

Pi`(x)

])1/d

+ o (1)

for all x ∈ {±1}n with high probability.

Proof. We sample a uniform element C ∼ Cdlow, C = C1, . . . , Cd in the following way:

• For t = 1, . . . , d: Let At ⊂ I be the set of clauses such that for any C ′ ∈ A, C1, . . . , Ct−1, C
′ ∈ Ctlow.

Choose a uniformly random C ∼ At and set Ct := C, adding C to C.
This sampling process clearly gives a uniformly random element of Cdlow.

Let Pi(x) be the 0 − 1 predicate corresponding to whether x satisfies the clause Ci. Let mmax be
the maximum number of clauses any variable in Φ participates in. Because Ẽ

[
(P 2

i (x)− Pi(x))r(x)
]

=
0 ∀r(x), deg(r) ≤ 2d we can write,

E
C1,...,Cd∼Cdlow

Ẽ

∏
i∈[d]

Pi(x)

 = E
C1,...,Cd∼Cdlow

Ẽ

∏
i∈[d]

P 2
i (x)

= E

C1,...,Cd−1

Ẽ

 ∏
i∈[d−1]

P 2
i (x)

 · (PΦ(x) + ∆C1....,Cd−1
(x)
)

where ∆C1,...,Cd−1
(x)

def
= E

[
P 2
d (x)|C1, . . . , Cd−1

]
− E[P 2

d (x)] = E
[
P 2
d (x)|C1, . . . , Cd−1

]
− PΦ(x). By defini-

tion, the `1-norm of the coefficients of the polynomial ∆C1,...,Ck−1
is at most dmmax/100m log n < o(1)

with high probability, by concentration argument for m and mmax (see the proof of Proposition 4.5) and
by our requirement that d� n. Using Claim 6.7, this implies that

E
C1,...,Cd−1

Ẽ

 ∏
i∈[d−1]

P 2
i (x) ·∆C1....,Cd−1

(x)

 � E
C1,...,Cd−1

Ẽ

 ∏
i∈[d−1]

P 2
i (x) · ‖∆C1....,Cd−1

(x)‖1

� o(1) · E

C1,...,Cd−1

Ẽ

 ∏
i∈[d−1]

P 2
i (x)

Therefore,

E
C1,...,Cd∼Cdlow

Ẽ

∏
i∈[d]

P 2
i (x)

 � E
C1,...,Cd−1

Ẽ

(PΦ(x)− o(1))
∏

i∈[d−1]

·P 2
i (x)

59

Repeating the argument d times, we can conclude that for even d,

E
C1,...,Cd∼Cdlow

Ẽ

∏
i∈[d]

P 2
i (x)

 � Ẽ
[
(PΦ(x)− o(1))d

]
≥
(
Ẽ [PΦ(x)− o(1)]

)d
Where the last inequality follows from SoS convexity. This concludes the argument.

This proposition, plugged into the argument from Section 4.1.2 along with the SoS-ifying steps used
for the tensor norm upper bound, gives Theorem 1.3 for the even k case. The odd k case can be obtained
in a similar way.

Acknowledgements

T.S. thanks Sam Hopkins for helpful conversations, and Jonah Brown-Cohen for helpful comments in the
preparation of this manuscript.

References

[AAM+11] Noga Alon, Sanjeev Arora, Rajsekar Manokaran, Dana Moshkovitz, and Omri Weinstein,
Inapproximability of densest κ-subgraph from average case hardness, Unpublished manuscript
(2011). 1

[ABW10] Benny Applebaum, Boaz Barak, and Avi Wigderson, Public-key cryptography from different
assumptions, Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC
2010, Cambridge, Massachusetts, USA, 5-8 June 2010 (Leonard J. Schulman, ed.), ACM, 2010,
pp. 171–180. 1, 2

[Ach09] Dimitris Achlioptas, Random satisfiability, Handbook of Satisfiability (Armin Biere, Marijn
Heule, Hans van Maaren, and Toby Walsh, eds.), Frontiers in Artificial Intelligence and
Applications, vol. 185, IOS Press, 2009, pp. 245–270. 1

[AKV02] Noga Alon, Michael Krivelevich, and Van H. Vu, On the concentration of eigenvalues of
random symmetric matrices, Israel Journal of Mathematics 131 (2002). 63

[AOW15] Sarah R. Allen, Ryan O’Donnell, and David Witmer, How to refute a random CSP, IEEE 56th
Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA,
17-20 October, 2015 (Venkatesan Guruswami, ed.), IEEE Computer Society, 2015, pp. 689–708.
2, 3, 5, 51, 52, 55

[Bar14] Boaz Barak, Sum of squares: upper bounds, lower bounds, and open questions (lecture notes,
fall 2014), 2014. 56

[BB02] Eli Ben-Sasson and Yonatan Bilu, A gap in average proof complexity, Electronic Colloquium
on Computational Complexity (ECCC) (2002), no. 003. 1

[BBH+12] Boaz Barak, Fernando G.S.L. Brandao, Aram W. Harrow, Jonathan Kelner, David Steurer,
and Yuan Zhou, Hypercontractivity, sum-of-squares proofs, and their applications, Proceedings
of the Forty-fourth Annual ACM Symposium on Theory of Computing (New York, NY, USA),
STOC ’12, ACM, 2012, pp. 307–326. 2, 4, 57

[BGL16] Vijay Bhattiprolu, Venkatesan Guruswami, and Euiwoong Lee, Certifying random polynomials
over the unit sphere via sum-of-s uares hierarchy, preprint, 2016. 4, 5

60

[BKPS98] Paul Beame, Richard M. Karp, Toniann Pitassi, and Michael E. Saks, On the complexity of
unsatisfiability proofs for random k-cnf formulas, Proceedings of the Thirtieth Annual ACM
Symposium on the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998 (Jeffrey Scott
Vitter, ed.), ACM, 1998, pp. 561–571. 5

[BKS13] Boaz Barak, Guy Kindler, and David Steurer, On the optimality of semidefinite relaxations
for average-case and generalized constraint satisfaction, Innovations in Theoretical Computer
Science, ITCS ’13, Berkeley, CA, USA, January 9-12, 2013 (Robert D. Kleinberg, ed.), ACM,
2013, pp. 197–214. 1

[BM15] Boaz Barak and Ankur Moitra, Tensor prediction, rademacher complexity and random 3-xor,
CoRR abs/1501.06521 (2015). 2, 3, 5, 52

[BV09] S. Charles Brubaker and Santosh Vempala, Random tensors and planted cliques, Approxi-
mation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 12th
International Workshop, APPROX 2009, and 13th International Workshop, RANDOM 2009,
Berkeley, CA, USA, August 21-23, 2009. Proceedings (Irit Dinur, Klaus Jansen, Joseph Naor,
and José D. P. Rolim, eds.), Lecture Notes in Computer Science, vol. 5687, Springer, 2009,
pp. 406–419. 4

[CCF10] Amin Coja-Oghlan, Colin Cooper, and Alan M. Frieze, An efficient sparse regularity concept,
SIAM J. Discrete Math. 23 (2010), no. 4, 2000–2034. 5

[CGL04] Amin Coja-Oghlan, Andreas Goerdt, and André Lanka, Strong refutation heuristics for
random k-sat, Approximation, Randomization, and Combinatorial Optimization, Algorithms
and Techniques, 7th International Workshop on Approximation Algorithms for Combinatorial
Optimization Problems, APPROX 2004, and 8th International Workshop on Randomization
and Computation, RANDOM 2004, Cambridge, MA, USA, August 22-24, 2004, Proceedings
(Klaus Jansen, Sanjeev Khanna, José D. P. Rolim, and Dana Ron, eds.), Lecture Notes in
Computer Science, vol. 3122, Springer, 2004, pp. 310–321. 2, 5

[CGL07] , Strong refutation heuristics for random k-sat, Combinatorics, Probability & Computing
16 (2007), no. 1, 5–28. 2

[CLP02] Andrea Crisanti, Luca Leuzzi, and Giorgio Parisi, The 3-sat problem with large number of
clauses in the ∞-replica symmetry breaking scheme, Journal of Physics A: Mathematical and
General 35 (2002), 481. 1

[CS88] Vašek Chvátal and Endre Szemerédi, Many hard examples for resolution, J. ACM 35 (1988),
no. 4, 759–768. 5

[Dan15] Amit Daniely, Complexity theoretic limitations on learning halfspaces, CoRR abs/1505.05800
(2015). 2

[DLS13] Amit Daniely, Nati Linial, and Shai Shalev-Shwartz, More data speeds up training time in
learning halfspaces over sparse vectors, Advances in Neural Information Processing Systems
26: 27th Annual Conference on Neural Information Processing Systems 2013. Proceedings of
a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States. (Christopher J. C.
Burges, Léon Bottou, Zoubin Ghahramani, and Kilian Q. Weinberger, eds.), 2013, pp. 145–153.
1

[DLS14] , From average case complexity to improper learning complexity, Symposium on Theory
of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014 (David B. Shmoys,
ed.), ACM, 2014, pp. 441–448. 1, 2

61

[DSS15] Jian Ding, Allan Sly, and Nike Sun, Proof of the satisfiability conjecture for large k, Proceedings
of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015,
Portland, OR, USA, June 14-17, 2015 (Rocco A. Servedio and Ronitt Rubinfeld, eds.), ACM,
2015, pp. 59–68. 1

[Fei02] Uriel Feige, Relations between average case complexity and approximation complexity, Proceed-
ings of the 17th Annual IEEE Conference on Computational Complexity, Montréal, Québec,
Canada, May 21-24, 2002, IEEE Computer Society, 2002, p. 5. 1, 3

[FG01] Joel Friedman and Andreas Goerdt, Recognizing more unsatisfiable random 3-sat instances
efficiently, Automata, Languages and Programming, 28th International Colloquium, ICALP
2001, Crete, Greece, July 8-12, 2001, Proceedings (Fernando Orejas, Paul G. Spirakis, and Jan
van Leeuwen, eds.), Lecture Notes in Computer Science, vol. 2076, Springer, 2001, pp. 310–321.
5

[FGK05] Joel Friedman, Andreas Goerdt, and Michael Krivelevich, Recognizing more unsatisfiable
random k-sat instances efficiently, SIAM J. Comput. 35 (2005), no. 2, 408–430. 5

[FK81] Z. Füredi and J. Komlós, The eigenvalues of random symmetric matrices, Combinatorica 1
(1981), no. 3, 233–241. 12, 46, 48

[FKO06] Uriel Feige, Jeong Han Kim, and Eran Ofek, Witnesses for non-satisfiability of dense random
3cnf formulas, 47th Annual IEEE Symposium on Foundations of Computer Science FOCS
2006), 21-24 October 2006, Berkeley, California, USA, Proceedings, IEEE Computer Society,
2006, pp. 497–508. 3, 5

[Fu98] Xudong Fu, On the complexity of proof systems, Ph.D. thesis, University of Toronto, 1998. 5

[GK01] Andreas Goerdt and Michael Krivelevich, Efficient recognition of random unsatisfiable k-sat
instances by spectral methods, STACS 2001, 18th Annual Symposium on Theoretical Aspects of
Computer Science, Dresden, Germany, February 15-17, 2001, Proceedings (Afonso Ferreira and
Horst Reichel, eds.), Lecture Notes in Computer Science, vol. 2010, Springer, 2001, pp. 294–304.
5

[Gri01] Dima Grigoriev, Linear lower bound on degrees of positivstellensatz calculus proofs for the
parity, Theor. Comput. Sci. 259 (2001), no. 1-2, 613–622. 2, 3

[HSS15] Samuel B. Hopkins, Jonathan Shi, and David Steurer, Tensor principal component analysis
via sum-of-square proofs, Proceedings of The 28th Conference on Learning Theory, COLT
2015, Paris, France, July 3-6, 2015 (Peter Grünwald, Elad Hazan, and Satyen Kale, eds.),
JMLR Proceedings, vol. 40, JMLR.org, 2015, pp. 956–1006. 4

[HSSS15] Samuel B. Hopkins, Tselil Schramm, Jonathan Shi, and David Steurer, Fast spectral algo-
rithms from sum-of-squares proofs: tensor decomposition and planted sparse vectors, CoRR
abs/1512.02337 (2015). 4

[Las00] Jean B. Lasserre, Global optimization with polynomials and the problem of moments, SIAM J.
on Optimization 11 (2000), no. 3, 796–817. 2

[Par00] Pablo A Parrilo, Structured semidefinite programs and semialgebraic geometry methods in
robustness and optimization, Ph.D. thesis, California Institute of Technology, 2000. 2

62

[RM14] Emile Richard and Andrea Montanari, A statistical model for tensor PCA, Advances in Neural
Information Processing Systems 27: Annual Conference on Neural Information Processing
Systems 2014, December 8-13 2014, Montreal, Quebec, Canada (Zoubin Ghahramani, Max
Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q. Weinberger, eds.), 2014, pp. 2897–
2905. 4

[Sch08] Grant Schoenebeck, Linear level lasserre lower bounds for certain k-csps, 49th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2008, October 25-28, 2008, Philadel-
phia, PA, USA, IEEE Computer Society, 2008, pp. 593–602. 2, 3

[Tao] Terence Tao, Topics in random matrix theory, Graduate studies in mathematics, American
Mathematical Soc. 46

[TS14] Ryota Tomioka and Taiji Suzuki, Spectral norm of random tensors, arXiv preprint
arXiv:1407.1870 (2014). 4

[Ver12] Roman Vershynin, Introduction to the non-asymptotic analysis of random matrices, Compressed
Sensing (Yonina C. Eldar and Gitta Kutyniok, eds.), Cambridge University Press, 2012,
Cambridge Books Online, pp. 210–268. 63

A Useful matrix concentration facts

Proposition (Restatement of Proposition 2.4). Let n, ` ∈ N, let c ∈ R, and let M be an n× n random
matrix. Then

E
M

[Tr((MM>)`)] ≤ β =⇒ P
(
‖M‖ ≥ c · β1/2`

)
≥ 1− c−2` .

Proof. For a positive semidefinite matrix P , ‖P‖ ≤ Tr(P). We apply this along with Markov’s inequality:

P[‖M‖ ≥ t] = P[‖(MM>)`‖ ≥ t2`] ≤ P[Tr((MM>)`) ≥ t2`] ≤ 1

t2`
E[Tr((MM>)`)] ≤ β

t2`
,

and the conclusion follows from taking t = cβ1/2`

A.1 Bound on the norm of a Rademacher matrix

Here, we prove an upper bound on the norm of a Rademacher matrix. Although tighter bounds are known
(see e.g. [AKV02], we are off by a constant factor), we include this simpler, looser proof here in an effort
to be self-contained.

The following lemma gives a bound on the size of an epsilon net needed to cover the unit sphere.

Lemma A.1 (see Lemma 5.2 in [Ver12]). For every ε > 0, the unit Euclidean sphere Sn−1 equipped with
the Euclidean metric has an ε-net with volume at most

(
1 + 2

ε

)n
.

We are ready to prove our bound.

Theorem A.2. Let A be an n× n symmetric matrix with i.i.d. Rademacher entries. Then for all s ≥ 0,

P
(
|‖A‖ − 12

√
n| ≥ s

)
≤ exp(−t2/16).

Proof. Let Λ be an ε-net over Sn−1, with ε to be chosen later. By Lemma A.1, we can choose |Λ| ≤ (1+ 2
ε)n.

For any fixed x ∈ Λ,

x>Ax =
∑
i<j

2xixjAij +
∑
i

x2
iAii .

63

Each xixjAij is an independent random variable. We have absolute bounds on the values of each variable,
so we can apply a Hoeffding bound to this sum,

P
(
x>Ax ≥ t

)
≤ exp

(
−2t2∑

i<j(4xixj)
2 +

∑
i(2x

2
i)

2

)
= exp

(
−2t2

8‖x‖42 − 4‖x‖44

)
≤ exp

(
−t2

4

)
.

Taking a union bound over Λ, we have

P
(

max
x∈Λ

x>Ax ≥ t
)
≤ (1 +

2

ε
)n · exp

(
−t2

4

)
.

To extend the bound to any point y ∈ Sn−1, let y be the maximizer of y>Ay. We note that there must
exist some x ∈ Λ so that ‖x− y‖ ≤ ε by assumption. We have∣∣∣y>Ay − x>Ax∣∣∣ =

∣∣∣y>A(y − x)− x>A(x− y)
∣∣∣ ≤ 2ε‖A‖ ,

which by the triangle inequality implies

‖A‖ = y>Ay ≤ max
x∈Λ
{x>Ax}+ 2ε‖A‖ =⇒ ‖A‖ ≤ 1

1− 2ε
max
x∈Λ
{x>Ax}.

Taking ε = 1/4 and t = 2
√
n log(1 + 2

ε) + s concludes the proof.

64

	1 Introduction
	1.1 Related work
	1.2 Organization
	1.3 Preliminaries

	2 Main Ideas: Proof for Random 4-Tensors
	2.1 Improving on the natural spectral algorithm with higher-order symmetries
	2.2 Matrix concentration for the certificate
	2.3 From k-XOR to tensor norms, and odd-order tensors

	3 Injective Tensor Norm for Subgaussian Random Tensors
	3.1 Even-order tensors
	3.2 Odd-order tensors
	3.3 Useful combinatorial lemmas

	4 Refuting Random k-XOR Instances
	4.1 Even k-XOR
	4.2 Odd k-XOR
	4.3 Bounding probabilities of sampling even hypergraphs

	5 Strong Refutation for All CSPs
	6 Sum-of-Squares Algorithms
	6.1 Background
	6.2 Relaxations for tensor norm and k-XOR
	6.3 Bounds for tensor norm
	6.4 Bounds for k-XOR

	References
	A Useful matrix concentration facts
	A.1 Bound on the norm of a Rademacher matrix

