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Kolmogorov complexity version of Slepian-Wolf coding

Marius Zimand ∗

Abstract

Alice and Bob are given two correlated n-bit strings x1 and, respectively, x2, which

they want to losslessly compress and send to Zack. They can either collaborate by sharing

their strings, or work separately. We show that there is no disadvantage in the second sce-

nario: Alice and Bob, without knowing the other party’s string, can compress their strings

to almost minimal description length in the sense of Kolmogorov complexity. Furthermore,

compression takes polynomial time and can be made at any combination of lengths that sat-

isfy some necessary conditions (modulo additive polylogarithmic terms). More precisely,

there exist probabilistic algorithms E1,E2, and deterministic algorithm D, with E1 and E2

running in polynomial time, having the following behavior: if n1, n2 are two integers satis-

fying n1 + n2 ≥C(x1,x2),n1 ≥C(x1 | x2),n2 ≥C(x2 | x1), then for i ∈ {1,2}, Ei on input xi

and ni outputs a string of length ni +O(log3 n) such that D on input E1(x1),E2(x2) recon-

structs (x1,x2) with high probability (where C(x) denotes the plain Kolmogorov complexity

of x, and C(x | y) is the complexity of x conditioned by y). Our main result is more general,

as it deals with the compression of any constant number of correlated strings. It is an analog

in the framework of algorithmic information theory of the classic Slepian-Wolf Theorem, a

fundamental result in network information theory, in which x1 and x2 are realizations of two

discrete random variables representing n independent draws from a joint distribution. In the

classical result, the decompressor needs to know the joint distribution of the sources. In our

result no type of independence is assumed and the decompressor does not have any prior

information about the sources that are compressed.

1 Introduction

The Slepian-Wolf Theorem [SW73] is the analog of the Shannon’s Source Coding theorem for

the case of distributed correlated sources. It characterizes the compression rates for such sources.

To illustrate the theorem, let us consider a data transmission scheme with two senders, Alice

and Bob, and one receiver, Zack (see Figure 1). Alice has as input an n-bit string x, Bob has

an n-bit string y. Alice uses the encoding function E1 : {0,1}n → {0,1}n1 to compress her n-

bit string to length n1, and sends E1(x) to Zack. Bob, separately, uses the encoding function

E2 : {0,1}n → {0,1}n2 to compress his n-bit string to length n2 and sends E2(y) to Zack. We

assume that the communication channels Alice↔ Zack and Bob↔ Zack are noise-free, and that

there is no communication between Alice and Bob. Zack is using a decoding function D and the

common goal of all parties is that D(E1(x),E2(y)) = (x,y), for all x,y in the domain of interest

(which is defined by the actual model or by the application). In a randomized setting, we allow

the previous equality to fail with some small error probability ε . Of course, Alice can send the
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entire x and Bob can send the entire y, but this seems to be wasteful if x and y are correlated. We

are interested to find what values can n1 and n2 take so that the goal is achieved, when the strings

x and y are jointly correlated.

y

x

E2

E1

D x,y

n2

n1

Figure 1: Distributed compression: The Slepian-Wolf problem

The Slepian-Wolf theorem takes the standard stance in information theory which assumes

that x and y are realizations of some random variables X and, respectively, Y. Furthermore, as

it is common in information theory, (X ,Y ) are assumed to be 2-Discrete Memoryless Sources

(2-DMS), which means that X = (X1, . . . ,Xn),Y = (Y1, . . . ,Yn), where the Xi’s are i.i.d. Bernoulli

random variables, the Yi’s are also i.i.d. Bernoulli random variables, and each (Xi,Yi) is drawn

according to a joint distribution p(b1,b2). In other words, (X ,Y ) consists of n independent

draws from a joint distributions on pair of bits. Given the joint distribution p(b1,b2) and X and

Y of the specified type, the problem amounts to finding the set of values n1 and n2 such that

there exists E1,E2 and D as above with D(E1(X),E2(Y )) = (X ,Y ) with probability converging

to 1 as n grows. In information theory parlance, we want to determine the set of achievable

transmission rates. By the Source Coding Theorem, it is not difficult to see that it is necessary

that n1 ≥ H(X | Y ),n2 ≥ H(Y | X) and n1 + n2 ≥ H(X ,Y ), where H is the Shannon entropy

function. The Slepian-Wolf theorem states that these relations are essentially sufficient, in the

sense that any (n1,n2) satisfying strictly the above three inequalities is a pair of achievable rates,

if n is sufficiently large (“strictly” means that “>” replaces “≥”; see, for example, [CT06] for

the exact statement).

What is surprising is that these optimal achievable rates can be realized with Alice and Bob

doing their encoding separately. For example if H(X) = n,H(Y ) = n, and H(X ,Y) = 1.5n, then

any pair (n1,n2), with n1 > 0.75n,n2 > 0.75n, is a pair of achievable rates, which means that

Alice can compress her n-bit realization of X to approximately 0.75n bits, without knowing

Bob’s realization of Y , and Bob can do the same. They cannot do better even if they collaborate!

The Slepian-Wolf theorem completely characterizes the set of achievable rates for distributed

lossless compression for the case of 2-DMS, and the result actually holds for an arbitrary number

of senders (Theorem 15.4.2, [CT06]). However, the type of correlations between X and Y given

by the 2-DMS model is rather simple. In many applications the (Xi,Yi)i quantify some stochastic

process at different times i and it is not realistic to assume independence between the values at

different i’s. The Slepian-Wolf theorem has been extended for sources that are stationary and

ergodic [Cov75], but these also capture relatively simple correlations.

Distributed correlated sources can be alternatively studied using algorithmic information

theory, also known as Kolmogorov complexity, which works for individual strings without any

type of independence assumption, and in fact without assuming any generative model that pro-

duces the strings. We recall that C(u | v) is the Kolmogorov complexity of u conditioned by v,

i.e., the length of a shortest program that computes u given v in a fixed universal programming

system. C(u | v) is also called the minimum description length of u given v. If v is the empty
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string, we simply write C(u) instead of C(u | v). One remarkable result in this framework is

Muchnik’s theorem [Muc02] which states that there exist algorithms E and D such that for all n

and for all n-bit strings x and y, E on input x, C(x | y) and O(logn) help bits outputs a string p

of length C(x | y), and D on input p, y, and O(logn) help bits reconstructs x. Muchnik’s theorem

relates to the asymmetric version of the above distributed transmission problem in which only

Alice compresses her x while Bob sends the entire y (or, in an equivalent scenario, Zack already

knows y). It says that, given C(x | y), Alice can compute from her string x and only O(logn)
additional help bits a string p of minimum description length such that Zack using p, y and

O(logn) help bits can reconstruct x. Muchnik’s theorem has been strengthened in several ways.

Musatov, Romashchenko and Shen [MRS11] have obtained a version of Muchnik’s theorem

for space bounded Kolmogorov complexity, in which both compression and decompression are

space-efficient. Romashchenko [Rom05] has extended Muchnik’s theorem to the general (i.e.,

non-asymmetric) case. His result is valid for any constant number of senders, but, for simplicity,

we present it for the case of two senders: For any two n-bit strings x and y and any two numbers

n1 and n2 such that n1≥C(x | y), n2≥C(y | x) and n1+n2≥C(x,y), there exist two strings p1 and

p2 such that |p1|= n1+O(logn), |p2|= n2+O(logn),C(p1 | x) = O(logn),C(p2 | y) = O(logn)
and C(x,y | p1, p2) = O(logn). In words, for any n1 and n2 satisfying the necessary conditions,

Alice can compress x to a string p1 of length just slightly larger than n1, and Bob can compress

y to a string p2 of length just slightly larger than n2 such that Zack can reconstruct (x,y) from

(p1, p2), provided all the parties use a few help bits. These results raise the following questions:

(a) can the help bits be eliminated?, 1 and (b) is it possible to implement the protocol efficiently,

i.e., in polynomial time?

Bauwens et al. [BMVZ13], Teutsch [Teu14] and Zimand [Zim14] have obtained versions

of Muchnik’s theorem with polynomial-time compression, but in which the help bits are still

present. In fact, their results are stronger in that the compression procedure on input x outputs

a polynomial-size list of strings guaranteed to contain a short program for x given y. This is

called list approximation. Note that using O(log n) help bits, the decoding procedure can pick

the right element from the list, re-obtaining Muchnik’s theorem. The gain is that this decoding

procedure halts even with incorrect help bits, even though the result may not be the desired x.

Next, Bauwens and Zimand [BZ14] have eliminated the help bits in Muchnik’s theorem, at the

cost of introducing a small error probability. Their result can be reformulated as follows.2

Theorem 1.1 ([BZ14]). There exist a probabilistic algorithm E and a deterministic algorithm

D such that E runs in polynomial-time, and for all n-bit strings x and y and for every rational

number δ > 0,

1. E on input x,1/δ , and C(x | y) outputs a string p of length C(x | y)+O(log2(n/δ )),

2. D on input p and y outputs x, with probability 1−δ ,

Thus in the asymmetric case, Alice can compress her input string in polynomial-time to

length which is close to minimum description length (closeness is within a polylog additive

1In Muchnik’s theorem, Alice computes a program p of minimum description length such that U(p,y) = x from

x, C(x | y) and O(logn) help bits, where U is the universal Turing machine underlying Kolmogorov complexity. One

can hope to eliminate the O(logn) help bits (as we ask in question (a)), but not the C(x | y) component. This is not

possible even when y is the empty string. Indeed, it is known that for some strings x, the computation of C(x) from x,

and therefore also the computation of a short program p for x, requires that some information of size log |x|−O(1)
bits is available [BS14, Gác74].

2In Theorem 3.2 in [BZ14], y is the empty string, but the proof works without modifications for any y.
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term). The decoding algorithm does not run in polynomial time and this is unavoidable if com-

pression is done at this level of optimality because there exist so called deep strings (these are

strings that have short descriptions, but their decompression from short description takes longer

than, say, polynomial time).

In this paper, we prove the analog of Theorem 1.1 for the general non-asymmetric case, i.e.,

the case in which the number of senders is an arbitrary constant and all senders can compress

their inputs. For simplicity, let us consider again the case with two senders, Alice and Bob,

and one receiver, Zack. Alice and Bob are using probabilistic encoding algorithms E1, and

respectively E2, Zack is using the decoding algorithm D, and they want that for all n, and for

all n-bit strings x and y, D(E1(x),E2(y)) = (x,y) with probability 1− ε . We denote |E1(x)|, the

length of x′s encoding, and |E2(y)|, the length of y’s encoding. How large can these lengths be?

By counting arguments, one can see that

|E1(x)| ≥C(x | y)+ log(1− ε)−O(1)

|E2(y)| ≥C(y | x)+ log(1− ε)−O(1)

|E1(x)|+ |E2(y)| ≥C(x,y)+ log(1− ε)−O(1).

Our result implies that the above requirements are also sufficient, except for a small overhead

of polylog size. Namely, for any two integers n1 and n2 such that n1 ≥ C(x | y),n2 ≥ C(y | x)
and n1 + n2 ≥ C(x,y), it is possible to achieve |E1(x)| ≤ n1 + O(log3(n/ε)), |E2(y)| ≤ n2 +
O(log3(n/ε)). Moreover E1 and E2 are polynomial-time probabilistic algorithms. If we do not

insist on E1 and E2 running in polynomial time, the overhead can be reduced to O(log(n/ε)).
For the general case, we need to introduce some notation. Let ℓ be the number of senders. For

any integers i and j, the set {1,2, . . . , i} is denoted [i], and the set {i, i+1, . . . , j} is denoted [i.. j]
(if i> j, this set is empty). If we have an i tuple of strings (x1, . . . ,xi), and V = {i1, i2, . . . , ik}⊆ [i],
then the k-tuple (xi1 ,xi2 , . . . ,xik) is denoted xV .

Theorem 1.2. (Main Result) There exist probabilistic algorithms E1, . . .Eℓ, a deterministic al-

gorithm D, and a function α(n) = logOℓ(1) n such that E1, . . . ,Eℓ run in polynomial time, and for

every n, for every ℓ-tuple of integers (n1, . . . ,nℓ), and for every ℓ-tuple of n-bit strings (x1, . . . ,xℓ)
if

C(xV | x[ℓ]−V )≤ ∑
i∈V

ni, for all V ⊆ [ℓ], (1)

then

(a) For all i ∈ [ℓ], Ei on input xi and ni outputs a string pi of length at most ni +α(n),

(b) D on input (p1, . . . , pℓ) outputs (x1, . . . ,xℓ), with probability 1−1/n.

Notes

• The constraints (1) are necessary up to negligible terms. For example, if there are ℓ =
3 senders, having, respectively, the n-bit strings x1,x2 and x3, and they compress them, re-

spectively, to lengths n1,n2 and n3 and D(E1(x1),E2(x2),E3(x3)) = (x1,x2,x3) with probability

0.99, then it is necessary that n1 ≥C(x1 | x2,x3)−O(1),n2 ≥C(x2 | x1,x3)−O(1),n3 ≥C(x3 |
x1,x2)−O(1),n1 +n2 ≥C(x1,x2 | x3)−O(1),n1 +n3 ≥C(x1,x3 | x2)−O(1),n2 +n3 ≥C(x2,x3 |
x1)−O(1) and n1 +n2 +n3 ≥C(x1,x2,x3)−O(1).

• Compared to Romashchenko’s result from [Rom05], we have eliminated the help bits, and

thus our encoding and decoding is effective. Moreover, encoding is done in polynomial time
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(however, as in Theorem 1.1 and for the same reason, decoding cannot be done in polynomial

time). The cost is that the encoding procedure is probabilistic and thus there is a small error prob-

ability. The proof of Theorem 1.2 is inspired from Romashchenko’s approach, but the technique

is quite different.

• The models in the classical Slepian-Wolf theorem and in Theorem 1.2 are different, and

therefore, strictly speaking, the results are not directly comparable. However, there is a relation

between Shannon entropy for DMS random variables and the Kolmogorov complexity of the

elements in their support. Namely, if X is a DMS, that is it consists of n independent copies of

an i.i.d {0,1}-valued random variable with distribution p, then, for every ε > 0, there exists a

constant cε such that nH(p)−cε
√

n≤C(X)≤ nH(p)+cε
√

n with probability 1−ε . Using this

relation, the classical theorem can be obtained from the Kolmogorov complexity version.

• Here are two shortcomings of the classical Slepian-Wolf Theorem: (a) it assumes strong

independence properties of the sources (i.e., the memoryless property), and (b) decompression

requires the knowledge of the distributions of sources. There are versions of this theorem which

improve either (a) or (b), but not both. For example, Csiszár [Csi82] has shown source coding

theorems with universal coding, which means that the same compression and decompression

algorithms work for a large class of sources, without “knowing” their distributions. But the

proof relies on the memoryless property. Miyake and Kanaya [MK95] have obtained a version

of the Slepian-Wolf theorem for general random variables, using information-spectrum methods

introduced by Han and Verdú [HV93]. But their proof does not seem to allow universal coding

and, moreover, it has an intrinsic asymptotical nature. Theorem 1.2 does not require any type of

independence, in fact it does not assume any generative model. Also the same compression and

decompression algorithms work for all strings satisfying the necessary bounds (1) i.e., there is

universal coding.

• In the classical Slepian-Wolf theorem, the senders and the receiver share a public string of

exponential length. In Theorem 1.2, the parties do not share any information.

Theorem 1.2 is interesting even for the case of a single source compression (i.e., ℓ= 1). Note

that, by performing an exhaustive search, we obtain a procedure that on input x and n1 = C(x)
outputs a shortest program for x. However, any such procedure runs in time larger than any

computable function [BZ14]. In contrast, Bauwens and Zimand (see Theorem 1.1) have shown

that if we use randomization, one can find a short program for x in polynomial time, starting with

input (x,n1 = C(x)). Thus, computing a short program for x from x and C(x) is an interesting

example of a task that probabilistically can be done in polynomial time, but deterministically

requires time larger than any computable function. However the requirement that C(x) is known

exactly is quite demanding. The following corollary, which is just Theorem 1.2 with ℓ = 1,

shows that in fact it is sufficient to have an upper bound n1 ≥C(x). which makes the result more

amenable to applications. This solves an open question from [TZ16].

Corollary 1.3. There exist a probabilistic algorithm E and a deterministic algorithm D such

that E runs in polynomial time, and for every n, for every n-bit string x, every positive rational

number δ > 0, and for every integer n1 ≥C(x),

(a) E on input x, 1/δ and n1 outputs a string p of length at most n1 +O(log3(n/δ )),

(b) D on input p outputs x with probability 1−δ .
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2 Proof of Theorem 1.2

2.1 Combinatorial tool: graphs with the rich owner property

The key tool in the proof is a certain type of bipartite graph, which we call graphs with the rich

owner property. Similar graphs, bearing the same name, were used in [BZ14], but the graphs in

this paper have a stronger property. We recall that in a bipartite graph, the nodes are partitioned

in two sets, L (the left nodes) and R (the right nodes), and all edges connect a left node to a

right node. We allow multiple edges between two nodes. In all the graphs in this paper, all

the left nodes have the same degree, called the left degree. Specifically, we use bipartite graphs

G with L = {0,1}n , R = {0,1}m and with left degree D = 2d . We label the edges outgoing

from x ∈ L with strings z ∈ {0,1}d . We typically work with a family of graphs indexed on n

and such a family of graphs is computable if there is an algorithm that on input (x,z), where

x ∈ L and z ∈ {0,1}d , outputs the z-th neighbor of x. Some of the graphs also depend on a

rational 0 < δ < 1. A constructible family of graphs is explicit if the above algorithm runs in

time poly(n,1/δ ).
We now introduce informally the notions of a rich owner and of a graph with the rich owner

property. Let B ⊆ L. The B-degree of a right node is the number of its neighbors that are in B.

Roughly speaking a left node is a rich owner with respect to B, if most of its right neighbors are

“well-behaved,” in the sense that their B-degree is not much larger than |B| ·D/|R|, the average

right degree when the left side is restricted to B. One particularly interesting case, which is used

many times in this paper, is when most of the neighbors of a left x have B-degree 1, i.e., when x

“owns” most of its right neighbbors. A graph has the rich owner property if, for all B⊆ L, most

of the left nodes in B are rich owners with respect to B. In the formal definition, we replace the

average right degree with an arbitrary value, but since in applications, this value is approximately

equal to the average right degree, the above intuition should be helpful.

The precise definition of a (k,δ )-rich owner with respect to B is as follows. There are two

regimes of interest depending on how large is the size of B.

Definition 2.1. Let G be a bipartite graph as above and let B be a subset of L. We say that x ∈ B

is a (k,δ )-rich owner with respect to B if the following holds:

• small regime case: If |B| ≤ 2k, then at least 1−δ fraction of x’s neighbors have B-degree

equal to 1, that is they are not shared with any other nodes in B. We also say that x ∈ B

owns y with respect to B if y is a neighbor of x and the B-degree of y is 1.

• large regime case: If |B|> 2k, then at least a 1−δ fraction of x’s neighbors have B-degree

at most (2/δ 2)|B| ·D/2k.

If x is not a (k,δ )-rich owner with respect to B, then it is said to be a (k,δ )-poor owner with

respect to B.

Definition 2.2. A bipartite graph G = (L = {0,1}n,R = {0,1}m,E ⊆ L×R) has the (k,δ )-rich

owner property if for every set B⊆ L all nodes in B, except at most δ |B| of them, are (k,δ )-rich

owners with respect to B.

There are several notions in the literature which are related to our Definition 2.2, the main

difference being that they require some non-congestion property similar to rich ownership to

hold only for some subsets B. Reingold and Raz [RR99] define extractor-condenser pairs, in

which only subsets B with size approximately 2k matter. As already mentioned, Bauwens and
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Zimand [BZ14] use a type of graph also called graphs with the rich owner property, which are

close to the extractor-codenser pairs from [RR99]. Capalbo et al. [CRVW02] construct lossless

expanders, which only consider the subsets B in the small regime case. In our application, we

need to consider subsets B ⊆ L of any size and this leads to Definition 2.2, and the distinction

between the small regime case and the large regime case.

The following theorem provides the type of graph that we use. The proof relies on the extrac-

tor from [RRV99] and uses a combination of techniques from [RR99], [CRVW02], and [BZ14].

It is presented in Section 4.

Theorem 2.3. For every natural numbers n and k and for every rational number δ ∈ (0,1], there

exists an explicit bipartite graph G = (L,R,E ⊆ L×R) that has the (k,δ )-rich property with the

following parameters:

(I) L = {0,1}n,

(II) R = {0,1}k+γ(n/δ ),

(III) left degree D = 2γ(n/δ ),

where γ(n) = O(log3(n/δ )).

2.2 Proof overview

For this proof sketch, we consider the case with ℓ = 2 senders, which have as input the n-bit

strings x1 and, respectively, x2. By hypothesis, the compression lengths n1 and n2 satisfy

n1 ≥C(x1 | x2),n2 ≥C(x2 | x1),n1 +n2 ≥C(x1,x2).

The two senders use graphs G1 and, respectively, G2, with the (n1 + 1,δ ) and, respectively,

(n2 +1,δ )-rich owner property and with δ = 1/n2, obtained from Theorem 2.3. The left nodes

in both graphs are the set of n-bit strings, the right nodes in G1 are the binary strings of length

n1 + γ(n/δ ), and the right nodes in G2 are the binary strings of length n2 + γ(n/δ ). Sender 1

picks p1, a random neighbor of x1 (viewed as a left node) in G1, and sender 2 picks p2, a random

neighbor of x2 (viewed as a left node) in G2.

We need to explain how the receiver can reconstruct x1 and x2 from p1 and p2. Most of the

statements below hold with probability 1−O(δ ). For conciseness, when this is clear, we omit

mentioning this fact. We first assume that the decompression procedure knows C(x1),C(x2) and

C(x1,x2) (this is usually called the complexity profile of x1 and x2). We will see later how to

eliminate this assumption.

The first case to analyze is when C(x2) ≤ n2. Then x2 can be constructed as follows. Let

B = {x ∈ {0,1}n |C(x)≤C(x2)}. This is a subset of the left nodes in G2, that contains x2, and is

in the small regime case (because |B|< 2C(x2)+1 ≤ 2n2+1). The set of poor owners in G2 w.r.t. B

has size at most δ · |B|= 2C(x2)−log(1/δ ). Since the set of poor owners w.r.t. B can be effectively

enumerated given C(x2), we derive that every poor owner has complexity less than C(x2). So, x2

is a rich owner, which implies that with probability 1− δ , x2 does not share p2 with any other

nodes in B. It follows that x2 can be constructed from p2 by enumerating B till we encounter

a neighbor of p2. As we have seen, with probability 1− δ , this neighbor is x2. Next, we take

B = {x′1 ∈ {0,1}n |C(x′1 | x2)≤C(x1 | x2)}, and in a similar way we show that B is in the small

regime case in G1, and x1 is a rich owner w.r.t. B. Therefore, with probability 1−δ , x1 owns p1.

Thus, if we enumerate B till we encounter a neighbor of p1, we obtain x1.
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The other case is when C(x2)> n2. We can show that with high probability,

C(p2) =
∗ n2, (2)

where =∗ means that the equality holds up to poly-logarithmic terms; we use ≤∗ and ≥∗ in a

similar way. For that, again we consider B = {x ∈ {0,1}n | C(x) ≤ C(x2)}. This is a subset

of the left nodes of G2 that is now in the large regime case. In the same way as above, x2

is a rich owner in G2 w.r.t. B, which implies that with probability 1− δ , it shares p2 with at

most (2/δ 2)|B|D/2n2 = 2C(x2)−n2+poly(logn) other nodes in B. Taking into account that B can

be enumerated given C(x2), it follows that x2 can be constructed from p2, C(x2), and x2’s rank

among p2’s neighbors in B, which implies that C(x2)≤∗C(p2)+(C(x2)−n2). So, C(p2)≥∗ n2.

Since the length of p2 is =∗ n2, we derive that C(p2) =
∗ n2.

The next observation is that, given p2,x1 and C(x2 | x1), the receiver can construct x2. At this

moment, the receiver does not have x1, so actually x2 will be constructed later, after the receiver

has x1. However, the observation is helpful even at this stage. Let us first see why the observation

is true. Consider B = {x′2 ∈ {0,1}n |C(x′2 | x1)≤C(x2 | x1)}. This is a subset of left nodes in G2

that contains x2, and is in the small regime case (because |B|< 2C(x2|x1)+1 ≤ 2n2+1). Similarly to

the argument used earlier, x2 is a rich owner w.r.t. B. So, x2 owns p2 w.r.t. B, which implies that

x2 can be obtained by enumerating the elements of B till we encounter one that is a neighbor of

p2.

The observation implies that C(x2,x1) ≤∗ C(p2,x1). Since it also holds that C(p2,x1) ≤∗
C(x2,x1) (because p2 can be obtained from x2 and its index among x2’s neighbors in G2, which

takes poly log n bits to describe), we have

C(x2,x1) =
∗ C(p2,x1). (3)

Then, by (2) and (3),

C(x1 | p2) =
∗ C(x1, p2)−C(p2) =

∗ C(x1,x2)−n2, (4)

where the first =∗ follows from the chain rule. The last estimation, allows the receiver to re-

construct x1 from p1 and p2. For that, consider B = {x′1 ∈ {0,1}n |C(x′1 | p2)≤C(x1,x2)−n2}.
Our estimation (4) of C(x1 | p2) implies that x1 is in B (in this proof sketch we ignore the * in

equation (4)). Next, by the same argument as above, the poor owners in G1 have complexity

conditioned by p2 less than C(x1,x2)− n2, and this implies that x1 is not a poor owner. Since

C(x1,x2)− n2 ≤ (n1 + n2)− n2 = n1, B is in the small regime case. This implies that with high

probability x1 owns p1 in G1 w.r.t. B. So, if we enumerate B till we encounter a neighbor of p1,

we obtain x1.

With x1 in hand, the receiver constructs x2, using the earlier observation.

Decompression without knowledge of the input’s complexity profile. As promised, we

show how to eliminate the assumption that the decompressor D knows C(x1),C(x2),C(x1,x2).
The idea is to let D run the above procedure for all possibilities of C(x1),C(x2),C(x1,x2) and use

hashing to isolate the correct run (or some run that produces the same output). Since x1 and x2

are n-bit strings, there are O(n3) possibilities for the triplet (C(x1),C(x2),C(x1,x2)) and hashing

will add only O(logn) bits. For hashing we use the following result. Alternatively, it is possible

to use the almost δ -universal function of Naor and Naor [NN93], or Krawczyk [Kra94].
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Lemma 2.4 ( [BZ14]). Let x1,x2 . . . ,xs be distinct n-bit strings, which we view in some canonical

way as integers < 2n+1.

Let qi be the i-th prime number and let L = {q1, . . . ,qt}, where t = (1/δ ) · s ·n.

For every i≤ s, for (1−δ ) fraction of q in L, the value of xi mod q is unique in the sequence

(x1 mod q,x2 mod q, . . . ,xs mod q).

For i = 1,2, Sender i who has input xi will send in addition to pi (a random neighbor of xi in

Gi, as we have seen above), also the string hash(xi), which is computed as follows. Taking into

account that for any n-bit string u, C(u)≤ |u|+O(1), we let s = O(n3) be an upper bound for the

number of all triplets (C(u),C(v),C(u,v)), where u and v are n-bit strings, and let t = (1/δ ) ·s ·n.

Now, hash(xi) = (qi,xi mod qi), where qi is a prime number chosen at random from the first

t prime numbers, The decompressor runs in parallel the procedure presented above for all s

guesses for (C(x1),C(x2),C(x1,x2)) and halts when the first of the parallel runs outputs x′1,x
′
2

with x′1 mod q1 = x1 mod q1 and x′2 mod q2 = x2 mod q2. Note that some of the parallel runs

may not halt, but the run corresponding to the correct guess of (C(x1),C(x2),C(x1,x2)) halts and

yields, as we have seen, (x1,x2) with probability 1−O(δ ). By Lemma 2.4, the probability that

a run halts with x′1 6= x1 or x′2 6= x2 but x′1 mod q1 = x1 mod q1 and x′2 mod q2 = x2 mod q2 is at

most δ . Consequently, this procedure reconstructs correcty (x1,x2) with probability 1−O(δ ).
Since the t-th prime number is bounded by t log t and can be found in time polynomial in t, the

length of each of the compressed strings increases with only O(log t) = O(log(n/δ )) bits, and

the running time of compression is still polynomial.

If the number of senders is ℓ > 2, several technical complications arise. In the case ℓ = 2,

sketched above, the decoding algorithm needs to have C(x1),C(x2) and C(x1,x2) to be able

to enumerate the various sets B. As we have seen, we can assume that the receiver knows

the complexity profile of the input strings, and therefore, the decoding algorithms has these

values. When ℓ ≥ 3, the various sets B are defined in term of complexities containing certain

combinations of the input strings x′is, and of the randomly picked right neighbors, p j’s. To

give just one example, the complexity C(x[k], p[k+1..ℓ]) is required at some point. The decoding

algorithm needs to obtain, with high probability, good approximations of such complexities from

the complexity profile of the input strings (see Lemma 2.7). Another technical aspect is that the

approximation slacks (hidden above in the notation =∗,≤∗,≥∗, and also those arising in the

estimations of the complexities of “combined” tuples of xi’s and p j’s) cannot be ignored as we

did in this proof sketch. To handle this, senders use graphs with decreasing δ ’s (i.e., δℓ > δℓ−1 >
.. . > δ1) and increasing overhead in the length of the right neighbors. More precisely, sender k

(for every k ∈ [ℓ]), uses a graph Gk with the δk-rich neighbor property, in which the right nodes

have length nk + γ(n/δk)+ηk(n), where the additional ηk(n) is needed to handle the effect of

approximations. The overhead γ(n/δk)+ηk(n) is bounded by (log n)Oℓ(1), where Oℓ(1) denotes

a constant that depends on ℓ. In spite of these technicalities, the core ideas of the proof are those

presented in the above sketch.

2.3 Parameters

We fix n, the length of the input strings x1, . . . ,xℓ.
We use a constant c that will take a large enough value so that the estimations done in

this proof are all valid. The construction uses parameters (δℓ,δℓ−1, . . . ,δ1) , (γℓ,γℓ−1, . . . ,γ1),
(ηℓ,ηℓ−1, . . . ,η1) and (δ̂ℓ, δ̂ℓ−1, . . . , δ̂1) that are all functions of n and are defined as follows.
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• For all k ∈ [ℓ], γk is defined in terms of δk, according to the relation given in Theorem 2.3:

γk = O(log3(n/δk)). We also define γℓ+1 = 0.

• The parameters δk are defined recursively in descending order as follows: 1/δℓ = c · n,

and then 1/δk = 217γk+1 , for k = ℓ− 1, . . . ,1. Note that for all k ∈ [ℓ− 1], (1/δk) = 2(log n)Oℓ(1) ,

γk = O(log3 n · γ3
k+1) and γk = (log n)Oℓ(1), where Oℓ(1) denotes a constant that depends on ℓ.

We will use the fact that for any constant a, the following inequalities hold provided n is large

enough:

γk ≥ a(γk+1 + log(1/δ 2
k )+ logn), (5)

and

log(1/δk)> 16γk+1 +a logn. (6)

•We next define for all k ∈ [ℓ],

ηk = 2γk + log(2/δ 2
k ). (7)

Note that for all k, ηk = (logn)Oℓ(1).

•We denote n̂k = nk +ηk +1.

• The sequence δ̂ℓ, δ̂ℓ−1, . . . , δ̂1 is defined recursively (in descending order) as follows: δ̂ℓ =
δℓ and

δ̂k = 2δ̂k+1 +δk.

It can be checked that (1/δ̂k) = 2(logn)Oℓ(1)

2.4 Handling the input complexity profile

As we did in Section 2.2, Proof overview, we first assume that the decompressor D knows the

complexity profile of the input strings x1, . . . ,xℓ, which is the tuple (C(xV ) |V ⊆ [ℓ],V 6= /0). This

assumption can be eliminated in the same way as we did in the proof overview.

2.5 Encoding

Each sender k, k ∈ [ℓ], has as input the n-bit string xk and uses the graph Gk promised by The-

orem 2.3, with L = {0,1}n,R = {0,1}n̂k+γk that has the (n̂k,δk)-rich owner property. Thus left

nodes are n-bit strings and in this way the input string xk is a left node in Gk. Sender k picks

pk uniformly at random among the right neighbors of xk in the graph Gk, and sends pk to the

receiver. The length of pk is n̂k + γk = nk +(logn)Oℓ(1). (If the length n of the input strings is

not known by the receiver, Sender k also sends the length of xk. Note that the algorithms work

even if the strings x1, . . .xℓ have different lengths, in which case in the proof n is the maximum

of these lengths.)

2.6 Decoding

We first state some technical lemmas that play an important role in the decoding procedure. They

are proved in Section 3. The first two lemmas estimate how the complexity of pk is related to

the complexity of xk, for k ∈ [ℓ]. There are two regimes to analyze, depending on whether the

complexity of xk is low or high. We analyze the respective complexities conditioned by some
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string b, which for now is an arbitrary string, but later when we apply these lemmas for pk and

xk, b will be instantiated with the previous inputs x[k−1] and the nodes p[k+1..ℓ].

Lemma 2.5. (low complexity case) Let b be an arbitrary string and suppose C(xk | b)≤ nk+ηk.

(I) There exists an algorithm that on input b, pk and C(xk | b) outputs xk with probability

1−δk (over the random choice of pk).

(II) With probability 1−δk,
∣

∣C(pk,b)−C(xk,b)
∣

∣ ≤ γk +O(logn) = (logn)Oℓ(1).

Lemma 2.6. (high complexity case) Let b be an arbitrary string and suppose C(xk | b)> nk.

(I) There exists an algorithm that on input b, pk, C(xk | b) and some string b′ of length |b′| ≤
max(0,C(xk | b)−(nk +ηk−γk− log(2/δ 2

k ))), outputs xk with probability 1−δk (over the

random choice of pk).

(II) With probability 1−δk,
∣

∣C(pk,b)− (C(b)+nk +ηk)
∣

∣≤ γk +ηk + log(2/δ 2
k )+O(logn) =

(logn)Oℓ(1) and C(pk | b)≥ nk +ηk− γk− log(2/δ 2
k )−O(logn) = nk− (logn)Oℓ(1).

The decoding procedure needs good estimations of the complexities of the form C(xk |
x[k−1], p[k+1..ℓ]). The following lemma shows that it is possible to effectively approximate them

with precision (logn)Oℓ(1). The inductive proof requires the approximation of more general

complexities of the form C(xV , p[k+1..ℓ]) for all V ∈P([k]) and for all k ∈ [ℓ].

Lemma 2.7. There is an algorithm with the following behaviour.

For all k≤ ℓ, the algorithm on input (pk+1, . . . , pℓ), V ∈P([k]), and C(xW ) for all non-empty

W ⊆ [ℓ], outputs an integer A(xV , pk+1, . . . , pℓ) such that with probability 1− δ̂k,

∣

∣C(xV , p[k+1..ℓ])−A(xV , p[k+1..ℓ])
∣

∣≤ 4γk+1 = (logn)Oℓ(1).

The next lemma shows that the constraints (1) remain roughly valid if we replace the left

nodes xk+1, . . . ,xℓ with the corresponding right nodes pk+1, . . . , pℓ.

Lemma 2.8. For all k ≤ ℓ, for all non-empty V ⊆ [k], the following inequality holds with prob-

ability 1− δ̂k:

C(xV | x[k]−V , p[k+1..ℓ])≤ ∑
j∈V

n j +O(ℓ− k) · logn

Decoding algorithm

Some of the estimations below hold with error probability bounded by δ̂k or δk, for various

k∈ [ℓ], and all these values are bounded by δℓ= 1/(c ·n) (the probability is on the random choices

of p1, . . . , pℓ). There are Oℓ(1) “bad” events when the estimations are violated. By taking c

sufficiently large, the union of all “bad events” has probability at most 1/n. The following

arguments are done conditioned on the event that none of the “bad” events happened.

First, using the algorithm from Lemma 2.7, the values A(xk | x[k−1], p[k+1..ℓ]) are calculated

by the formula

A(xk | x[k−1], p[k+1..ℓ]) = A(xk,x[k−1], p[k+1..ℓ])−A(x[k−1], p[k+1..ℓ]).

By the chain rule and the bounds on approximation error established in Lemma 2.7, it holds that

∣

∣C(xk | x[k−1], p[k+1..ℓ])−A(xk | x[k−1], p[k+1..ℓ])
∣

∣≤ 8γk+1 +O(logn). (8)
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The decoding algorithm reconstructs in order x1,x2, . . . ,xℓ.

Step 1 (reconstruction of x1).

By Lemma 2.8,

C(x1 | p[2..ℓ])≤ n1 +O(ℓ−2) logn. (9)

Consider the graph G1 = (L,R,E ⊆ L×R) used by sender 1. G1 has L = {0,1}n,R = {0,1}n̂1+γ1 ,

left degree D = 2γ1 , and the (n̂1,δ1)-rich owner property. Consider the set

B = {x ∈ {0,1}n |C(x | p[2..ℓ])≤ A(x1 | p[2..ℓ])+8γ2 +O(logn)},

where the constant hidden in the O() is taken so that x1 is in B (keeping in mind the estimation (8)

for k = 1).

The subset of (n̂1,δ1)-poor owners w.r.t. B in G1 has size at most δ1 · |B| ≤ δ1 ·2A(x1|p[2..ℓ])+8γ2+O(logn)).

Note that the set of poor owners can be enumerated given n, p[2..ℓ], A(x1 | p[2..ℓ]), n̂1, and δ1.

Given p[2..ℓ], A(x1 | p[2..ℓ]) can be computed from n and the complexity profile of the input strings

(by Lemma 2.7). The integers n̂1 and δ1 can be computed from n and n1 and we can assume that

n1 ≤ n (otherwise, sender 1 can simply send x1 uncompressed). It follows that if x is a poor

owner, then

C(x | p[2..ℓ])
(a)

≤ log(δ1 · |B|)+O(logn)

(b)

≤ A(x1 | p[2..ℓ])+8γ2− log(1/δ1)+O(logn)

(c)

≤ C(x1 | p[2..ℓ])+16γ2− log(1/δ1)+O(logn)

(d)
< C(x1 | p[2..ℓ]).

Transition (a) follows taking into account the above explanations and the fact that x is described

by its index in the enumeration of poor owners, transition (b) uses the above bound for the

number of poor owners, transition (c) follows from (8), and transition (d) follows from (6).

Therefore, x1 cannot be a poor owner, so it is a (n̂1,δ1)-rich owner in G1. The size of B is

bounded by 2n1+η1+1 because

A(x1 | p[2..ℓ])+8γ2 +O(logn)
(a)

≤ C(x1 | p[2..ℓ])+16γ2 +O(logn)

(b)

≤ n1 +16γ2 +O(ℓ−2) logn

(c)
< n1 +η1 +1 = n̂1.

Transition (a) follows from (8), transition (b) follows from (9), and transition (c) follows from (7)

and (5).

Hence B is in the small regime case for the graph G1. It follows that with probability 1−δ1,

x1 is the only node in B that is a neighbor of p1 in G1. Therefore, x1 can be reconstructed as

follows: Enumerate B till we encounter one element that is a left neighbor of p1 in G1 and output

this element. By the above discussion, this procedure will output x1 with high probability.

Step k (we have already obtained x1, . . . ,xk−1 and now we reconstruct xk).

The argument is similar to the one in Step 1. By Lemma 2.8, C(xk | x[k−1], p[k+1..ℓ]) ≤
nk + O(ℓ− k) logn. Consider the graph Gk = (L,R,E ⊆ L× R) used by sender k. Gk has
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L = {0,1}n,R = {0,1}n̂k+γk , left degree D = 2γk , and the (n̂k,δk)-rich owner property. Consider

the set

B = {x ∈ {0,1}n |C(x | x[k−1], p[k+1..ℓ])≤ A(xk | x[k−1], p[k+1..ℓ])+8γk+1 +O(logn)},

where the constant hidden in the O() is taken so that xk is in B (keeping in mind the estimation (8)

). Using a similar argument as in Step 1, xk is a (n̂k,δk)-rich owner w.r.t B in Gk and B is in the

small regime case, because

A(xx | x[k−1],p[k+1..ℓ])+8γk+1 +O(logn)
(a)

≤ C(xk | x[k−1], p[k+1..ℓ])+16γk+1 +O(logn)

(b)

≤ nk +16γk+1 +O(ℓ− k) logn

(c)
< nk +ηk +1 = n̂k.

Transition (a) follows from (8), transition (b) follows from Lemma 2.8, and transition (c) follows

from (7) and (5). Therefore, similarly to Step 1, xk can be obtained from x[k−1], pk, and p[k+1..ℓ],

because xk owns pk w.r.t. B in Gk, and B can be enumerated given x[k−1], and p[k+1..ℓ].

3 Proofs of the technical lemmas

This section contains the proofs of Lemma 2.5, Lemma 2.6, Lemma 2.7, and Lemma 2.8.

Proof of Lemma 2.5. (i) The graph Gk = (Lk,Rk,Ek ⊆ Lk×Rk), used by sender k for doing the

encoding is obtained by applying Theorem 2.3 with parameters n,k = nk +ηk + 1 = n̂k and δk,

and thus has Lk = {0,1}n,Rk = {0,1}n̂k+γk and the (n̂k,δk)-rich owner property. Let

B = {x ∈ {0,1}n |C(x | b)≤C(xk | b)}.

Note that B’s size is bounded by 2C(xk |b)+1 and, obviously, xk ∈ B.

The subset of poor owners w.r.t. B has size at most δ |B| ≤ δk ·2C(xk |b)+1 and can be enumer-

ated given b and C(xk | b). It follows that if x is a poor owner w.r.t. B, then

C(x | b) ≤C(xk | b)+1− log(1/δk)+O(logn)
<C(xk | b),

where the second inequality holds because 1/δk ≥ 1/δℓ = cn and c is chosen to be a large enough

constant. Consequently, xk cannot be a poor owner, and therefore it is a (n̂k,δk)-rich owner w.r.t.

B. Since |B| ≤ 2C(xk |b)+1 and C(xk | b)+1 ≤ nk +ηk +1 = n̂k, we are in the small regime case.

By the property of graphs with the rich owner property in this regime of parameters, it follows

that with probability (1−δk), xk is the only node in B that is a neighbor of pk. This leads to the

following algorithm that constructs xk, on input b, pk and C(xk | b): Enumerate B till one of the

enumerated nodes is a neighbor of pk. As we have seen, with probability 1−δk, this node is xk.

(ii) It follows from (i) that, with probability 1−δk,

C(xk,b) ≤C(pk,b)+2logC(xk | b)+O(1)
≤C(pk,b)+2log n+O(1).
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Since C(pk,b) ≤C(xk,b)+ γk +O(logn) (because pk can be obtained from xk and the index of

the edge that links xk and pk among the edges going out from xk; next, we take into account that

the left degree of G is 2γk and consequently the index requires γk bits), the conclusion follows.

Proof of Lemma 2.6. There are two cases to analyze: Case 1: C(xk | b) ∈ (nk,nk +ηk] and Case

2: C(xk | b)> nk +ηk.

In Case 1, the same estimations as in Lemma 2.5 hold, because we are still in the small

regime case. Thus, we obtain

C(xk | b)−2logn−O(1)≤C(pk | b)≤C(xk | b)+ γk +O(logn).

Using the fact that we are in Case 1, we can substitute C(xk | b) and obtain

nk +ηk− (ηk +O(logn))≤C(pk | b)< nk +ηk +(γk +O(logn)).

Using the chain rule, we obtain

C(b)+nk +ηk− (ηk +O(logn))≤C(pk,b) <C(b)+nk +ηk +(γk +O(logn)),

which implies
∣

∣C(pk,b)− (C(b)+nk +ηk)
∣

∣≤ ηk + γk +O(logn). (10)

We next analyze Case 2. For (i), as in Lemma 2.5, we note that xk is a (n̂k,δk)-rich owner

w.r.t. B = {x ∈ {0,1}n |C(x | b)≤C(xk | b)}. We are now in the large regime case and it follows

that with probability 1−δk, pk has at most (2/δ 2
k )|B|2γk/2n̂k neighbors in B, of which one is xk.

Note that

(2/δ 2
k )|B|2γk

2n̂k
≤ 2C(xk |b)+γk+log(2/δ 2

k )+1

2n̂k
= 2C(xk |b)−(nk+ηk−γk−log(2/δ 2

k )).

So, xk can be constructed from b, pk,C(xk | b) and the index of xk in an enumeration of pk’s

neighbors in B. This index is a string b′ of length at most C(xk | b)− (nk +ηk− γk− log(2/δ 2
k )).

(ii) From part (i), with probability 1−δk,

C(xk | b)≤C(pk | b)+ (C(xk | b)− (nk +ηk− γk− log(2/δ 2
k ))+O(logn).

Therefore,

C(pk | b)≥ nk +ηk− γk− log(2/δ 2
k )−O(logn), (11)

which proves the second inequality in (ii). Next,

C(pk,b)
(a)

≥ C(b)+C(pk | b)−O(logn)

(b)

≥ C(b)+nk +ηk− γk− log(2/δ 2
k )−O(logn).

Transition (a) follows by the chain rule and transition (b) uses (11). In the other direction, we

have the inequality

C(pk,b)≤C(b)+ |pk|+O(logn) =C(b)+nk +ηk + γk +O(logn).
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It follows that

∣

∣C(pk,b)− (C(b)+nk+ηk)| ≤ γk + log(2/δ 2
k )+O(logn). (12)

Combining (10) with (12), the conclusion follows.

Proof of Lemma 2.7. The computation is done iteratively in descending order for k = ℓ,ℓ−
1, . . . ,1.

At the first iteration k = ℓ, there is nothing to compute because the values C(xV ) are given,

and thus the algorithm simply takes A(xV ) =C(xV ) for all V ∈P([ℓ]). Note that γℓ+1 = 0.

Suppose we have performed the iterations ℓ,ℓ−1, . . . ,k and now we are at iteration k−1.

So we have already computed A(xV ′ , p[k+1..ℓ]) for all non-empty V ′⊆ [k] and with probability

1− δ̂k+1,
∣

∣C(xV ′ , p[k+1..ℓ])−A(xV ′ , p[k+1..ℓ])
∣

∣≤ 2γk+1.

Let us fix a non-empty V ⊆ [k− 1]. We will define A(xV , p[k+1..ℓ]) (we do this below in

equations (14) and (16) ). For this, we want to approximate C(xV , pk, . . . , pℓ) because the plan

is to use either Lemma 2.5, (ii) or Lemma 2.6,(ii), with b← (xV , p[k+1..ℓ]). Which of the two

lemmas is applicable depends on whether the complexity C(xk | b) is low or high. Note that C(xk |
b) =C(xk,b)−C(b)±c log n and at the previous iteration we have computed the approximations

A(xk,b) and A(b) for C(xk,b) and respectively C(b). Therefore we distinguish two cases.

Case 1 (low complexity case). Suppose A(xV∪{k}, p[k+1..ℓ])−A(xV , p[k+1..ℓ])≤ nk +8γk+1 +
c log n.

Note that with probability 1− δ̂k+1,

C(xk | xV ,p[k+1..ℓ])

(a)

≤ C(xV ,xk, p[k+1..ℓ])−C(xV , p[k+1..ℓ])+ c logn

(b)

≤ A(xV ,xk, p[k+1..ℓ])−A(xV , p[k+1..ℓ])+8γk+1 + c logn

(c)

≤ nk +16γk+1 +2c log n

(d)

≤ nk +ηk.

Transition (a) follows by the chain rule, transition (b) uses the induction hypothesis, transition

(c) uses the assumption that we are in Case 1, and transition (d) uses (7) and (5). By Lemma 2.5

(ii) (with b← XV , p[k+1..ℓ]), with probability 1−δk,

∣

∣C(xV , pk, p[k+1..ℓ])−C(xV ,xk, p[k+1..ℓ])
∣

∣≤ γk + c logn. (13)

So, we define

A(xV , pk, p[k+1..ℓ]) := A(xV ,xk, p[k+1..ℓ]). (14)
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Then, with probability 1−2δ̂k+1−δk = 1− δ̂k,

∣

∣C(xV , pk,p[k+1..ℓ])−A(xV , pk, p[k+1..ℓ])
∣

∣

≤
∣

∣C(xV , pk, p[k+1..ℓ])−C(xV ,xk, p[k+1..ℓ])
∣

∣+
∣

∣C(xV ,xk, p[k+1..ℓ])−A(xV , pk, p[k+1..ℓ])
∣

∣

(a)
=

∣

∣C(xV , pk, p[k+1..ℓ])−C(xV ,xk, p[k+1..ℓ])
∣

∣+
∣

∣C(xV ,xk, p[k+1..ℓ])−A(xV ,xk, p[k+1..ℓ])
∣

∣

(b)

≤ γk + c logn+4γk+1

(c)

≤ 4γk.

Transition (a) follows by (14), transition (b) uses (13) and the induction hypothesis, and transi-

tion (c) uses (5).

Case 2 (high complexity case). Suppose A(xV∪{k}, p[k+1..ℓ])−A(xV , p[k+1..ℓ])> nk+8γk+1+
c log n.

This time, with probability 1−2δ̂k+1,

C(xk | xV ,p[k+1..ℓ])

(a)

≥ C(xV∪{k}, p[k+1..ℓ])−C(xV , p[k+1..ℓ])− c logn

(b)

≥ A(xV∪{k}, p[k+1..ℓ])−A(xV , p[k+1..ℓ])−8γk+1− c logn

(c)

≥ nk.

Transition (a) follows by the chain rule, transition (b) uses the induction hypothesis, and transi-

tion (c) uses the assumption that we are in Case 2. By Lemma 2.6 (ii), with probability 1− δk,

∣

∣C(xV , pk, p[k+1..ℓ])− (C(xV , p[k+1..ℓ])+nk +ηk)
∣

∣≤ γk +ηk + log(2/δ 2
k )+ c logn. (15)

So, we define

A(xV , pk, p[k+1..ℓ]) := A(xV , p[k+1..ℓ])+nk +ηk. (16)

Then, with probability 1−2δ̂k+1−δk ≥ 1− δ̂k,

∣

∣C(xV , pk,p[k+1..ℓ]−A(xV , pk, p[k+1..ℓ])
∣

∣

≤
∣

∣C(xV , pk, p[k+1..ℓ])− (C(xV , p[k+1..ℓ])+nk +ηk)
∣

∣+

+
∣

∣(C(xV , p[k+1..ℓ])+nk +ηk)−A(xV , pk, p[k+1..ℓ])
∣

∣

(a)

≤
∣

∣C(xV , pk, p[k+1..ℓ])− (C(xV , p[k+1..ℓ])+nk +ηk)
∣

∣+

+
∣

∣(C(xV , p[k+1..ℓ])+nk +ηk)− (A(xV , p[k+1..ℓ])+nk +ηk)
∣

∣

(b)

≤ γk +ηk + log(2/δ 2
k )+ c logn+4γk+1

(c)
= γk +2γk +2log(2/δ 2

k )+ c logn+4γk+1

(d)

≤ 4γk.

Transition (a) follows by (16), transition (b) uses (15) and the induction hypothesis, transition

(c) uses (7), and transition (d) uses (5).
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Proof of Lemma 2.8. We do backward induction on k. The statement is true for k = ℓ, by

hypothesis. Suppose we have proven the statement for k+1. We prove it for k. Let V ⊆ [k].

Case 1 (low complexity case). Suppose C(xk+1 | x[k]−V , p[k+2..ℓ])≤ nk+1 +ηk+1.

We apply Lemma 2.5 for k + 1 and b := x[k]−V , p[k+2..ℓ]. We obtain that, with probability

1−δk+1, xk+1 can be constructed from pk+1,b and C(xk+1 | b).
Next,

C(xV | x[k]−V , p[k+1..ℓ])
(a)

≤ C(xV | x[k]−V ,xk+1, p[k+2..ℓ])+ c logn

=C(xV | x[k+1]−V , p[k+2..ℓ])+ c logn

(b)

≤ ∑
j∈V

n j +O(ℓ− k−1) · logn+ c log n

= ∑
j∈V

n j +O(ℓ− k) · logn.

Transition (a) holds by the above argument with probability 1− δk, transition (b) holds by the

induction hypothesis with probability 1− δ̂k+1. Thus the entire chain of inequalities holds with

probability 1− δ̂k+1−δk+1 ≥ 1− δ̂k.

Case 2 (high complexity case). Suppose C(xk+1 | x[k]−V , p[k+2..ℓ])> nk+1 +ηk+1.

Then, Lemma 2.6, used for k+ 1 and b := x[k]−V , p[k+2..ℓ], implies that with probability 1−
δk+1,

C(pk+1 | x[k]−V , p[k+2..ℓ])≥ nk+1 +ηk+1− γk+1− log(2/δ 2
k+1)− c logn. (17)

Next,

C(xV | x[k]−V , p[k+1..ℓ])

(a)

≤ C(xV , pk+1 | x[k]−V , p[k+2..ℓ])−C(pk+1 | x[k]−V , p[k+2..ℓ])+ c logn

(b)

≤ C(xV , pk+1 | x[k]−V , p[k+2..ℓ])−nk+1−ηk+1 + γk+1 + log(2/δ 2
k+1)+2c log n

(c)

≤ C(xV ,xk+1 | x[k]−V , p[k+2..ℓ])−nk+1−ηk+1 + γk+1 + log(2/δ 2
k+1)+ γk+1 +2c log n

(d)

≤ C(xV∪{k+1} | x[k+1]−V∪{k+1}, p[k+2..ℓ])−nk+1 +2c log n

(e)

≤
(

∑
j∈V∪{k+1}

n j)+O(ℓ− k−1) · logn−nk+1 +2c log n

= ∑
j∈V

n j +O(ℓ− k) · logn.

Transition (a) follows by the chain rule, transition (b) follows from inequality (17) and holds with

probability 1−δk+1, transition (c) follows from the fact that pk+1 can be obtained from xk+1 and

the index of the edge that connects xk+1 and pk+1 and this index needs γk+1 bits, transition (d)

holds due to (7). Inequality (e) holds with probability 1− δ̂k+1 by the induction hypothesis for

k + 1. Taking into account transitions (a) and (e), the entire chain of inequalities holds with

probability 1− δ̂k+1−δk+1 ≥ 1− δ̂k.
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4 Construction of graphs with the rich owner property

In this section we prove Theorem 2.3. The construction relies on the randomness extractor of

Raz, Reingold, and Vadhan [RRV99]. We recall that a (k,ε) extractor is a function E : {0,1}n×
{0,1}d → {0,1}m such that for any distribution X on {0,1}n with min-entropy H∞(X) ≥ k,

E(X ,Ud) is ε-close to Um, where Ud (Um) is the uniform distribution on {0,1}d (respectively,

{0,1}m), i.e., for every A⊆ {0,1}m,

∣

∣

∣

∣

Prob[E(X,Ud) ∈ A]− |A|
M

∣

∣

∣

∣

< ε . (18)

Theorem 4.1 (Th.1, (2) in [RRV99]). Let k(n) ≤ n and 1/ε(n) be functions mapping natu-

ral numbers to natural numbers and computable in polynomial time. There exists a family of

functions En : {0,1}n ×{0,1}d(n) → {0,1}k(n) computable uniformly in polynomial time such

that

(1) For every k′ ≤ k(n), the prefix k′ of E (i.e., the function obtained by computing E and

retaining only the first k′ bits of the output) is a (k′,ε) extractor,

(2) d(n) = O(log2(n/ε(n)) log n).

Next we convert the extractor from Theorem 4.1 into a graph with the rich owner property.

The method follows closely [BZ14]. We first establish several lemmas.

Let E : {0,1}n ×{0,1}d → {0,1}m be a (k,ε) extractor, and let GE = (L = {0,1}n,R =
{0,1}m,EG) be the corresponding bipartite graph, i.e., there is an edge (x,z) ∈ EG iff there exists

y such that E(x,y) = z. Let B⊆ L. The B-degree of a node y (denoted degB(y)) is the number of

y’s neighbors that are in B. Let D = 2d .

A vertex y ∈ R is t-heavy for B if degB(y)≥ t · |B|·D|R| (otherwise y is t-light for B).

Let A = |{y ∈ R | y is t-heavy for B}.
A vertex x ∈ B is δ -bad for B if degA(x)/deg(x) ≥ δ (i.e., more than a δ fraction of edges

outgoing from x land in nodes that are t-heavy for B).

Lemma 4.2. For every bipartite graph G, for every B⊆ L, for every t > 0, |A| ≤ 1
t

∣

∣R
∣

∣.

Proof The number of edges between B and A is at least |A| · t · |B|·D|R| . On the other hand, the

total number of edges between B and R is |B| ·D. Thus, |A| · t · |B|·D|R| ≤ |B| ·D, from which the

conclusion follows.

Let δ -BAD be the set of vertices in B which are δ -bad for B.

Lemma 4.3. If |B| ≥ 2k, then
|δ-BAD|
|B| ≤ 1

δ

(

1
t
+ ε

)

.

Proof Let X be the distribution which is flat on B (i.e., it assigns equal probability mass to

elements in B, and 0 probability mass to every element which is not in B). Then, H∞(X)≥ k. Let

µE be the distribution induced by the extractor E on R when x is chosen according to distribution

X and y is chosen uniformly at random in {0,1}d . Formally, for Z ⊆ R,

µE(Z) =
|{(x,y) | x ∈ B,y ∈ {0,1}d ,E(x,y) ∈ Z}|

|B| ·D .
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Since E is (k,ε)-extractor, µE(A)≤ |A||R| + ε ≤ (1/t)|R|
|R| + ε = 1

t
+ ε .

On the other hand, µE(A)≥ |δ-BAD|·δD

|B|·D = |δ-BAD|
|B| ·δ .

So,
|δ-BAD|
|B| ≤ 1

δ ·µE(A)≤ 1
δ

(

1
t
+ ε

)

.

Now we describe the transformation of an extractor graph into a graph with the rich owner

property. We use again the hashing technique provided by Lemma 2.4.

Let s be a positive integer and let δ > 0. The following algorithm transforms G1 = (L =
{0,1}n,R1 = {0,1}m,E1), a bipartite graph into another bipartite graph G as follows.

Let ℓ= (1/δ ) · s · n and let q1,q2, . . .qℓ be the first ℓ prime numbers. We construct the

bipartite graph

G = (L = {0,1}n,R = {q1, . . . ,qℓ}×{0,1, . . . ,qℓ−1}×R1,E),

by adding for each (x,z) in E1 the edges

(x,(q1,x mod q1,z)),(x,(q2 ,x mod q2,z)), . . . ,(x,(qℓ,x mod qℓ,z))

in E (one can think that each edge (x,z) ∈ G1 is split into ℓ edges in G).

Lemma 4.4. Let G1 = (L1 = {0,1}n,R1 = {0,1}k,E1 ⊆ L1×R1) be the bipartite graph with left

degree D1 = 2d1 corresponding to the function En from Theorem 4.1 with parameters k = k(n)
and ε = ε(n). Let δ = (2ε)1/2 and let G = (L,R,E ⊆ L×R) be constructed from G1 as above

with s = (2/δ 2) ·2d1 . Then:

(1) G has the (k,2δ )- rich owner property.

(2) L = {0,1}n.

(3) R can be taken to be {0,1}3log ℓ×{0,1}k, where ℓ= (1/δ ) · s ·n.

(4) The left degree of G is bounded by 2d · ℓ.
(5) If G1 is explicit, then G is explicit.

Proof We analyze first the small regime case. Let B⊆ L be a subset of size 2k′ ≤ 2k (to simplify

the notation we assume that the size of B is a power of two). We consider the graph G′1, the k′-
prefix of G1, which means that G′1 is obtained from G1 by reducing the labels of the right nodes

from their initial k-bit value to the prefix of length k′. By Theorem 4.1, G′1 is a (k′,ε) extractor.

By Lemma 4.3 (in which we take ε = δ 2/2 and t = 2/δ 2), there is a “bad” set δ -BAD ⊆ B of

size |δ -BAD| ≤ δ |B|, such that for all the “good” nodes x ∈ B− δ -BAD, in G′1, it holds that at

least (1−δ ) fraction of edges outgoing from x land in right nodes that are t-light for B, i.e., land

in right nodes that have B-degree in G′1 at most (2/δ 2) · |B| ·D1/|R′1|= (2/δ 2) · (2k′+d1−k′) = s.

The B-degree of a node in G1 can be at most the B-degree of its prefix in G′1, and therefore the

above holds in G1 as well.
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Let us fix a “good” node x ∈ B− δ -BAD. Suppose the multiset of x’s neighbors in G1 is

{z1,z2, . . . ,zD}. We write the neighbors of x in G in the following tabular form:

(q1,x mod q1,z1) (q2,x mod q2,z1) . . . (qℓ,x mod qℓ,z1)
(q1,x mod q1,z2) (q2,x mod q2,z2) . . . (qℓ,x mod qℓ,z2)

...

(q1,x mod q1,zD) (q2,x mod q2,zD) . . . (qℓ,x mod qℓ,zD)

In at least a fraction of (1−δ ) rows, the corresponding zi has degB(zi) ≤ s in G1, so each node

in such a row is shared by at most s elements of B, say x,x2, . . . ,xs. In each such row, if we

look at the components qi,x mod qi and take into account Lemma 2.4, we conclude that at least

a fraction (1−δ ) of the elements in the row have a unique neighbor in B (in G). Thus, overall,

at least a fraction of (1− δ )2 > (1− 2δ ) of the neighbors of x are unique. Since this holds for

every x ∈ B− δ -BAD and |B− δ -BAD| = |B| − |δ -BAD| ≥ (1− δ )|B| > (1− 2δ )|B|, we are

done.

Next, we analyze the large regime case. Let B⊆ L be a subset of size 2k′ > 2k. By Lemma 4.3

(in which again we take ε = δ 2/2 and t = 2/δ 2), there is a “bad” set δ -BAD ⊆ B of size

|δ -BAD| ≤ δ |B|, such that for all the “good” nodes x ∈ B−δ -BAD, in G1, it holds that at least

(1−δ ) fraction of edges outgoing from x land in right nodes that are t-light for B, i.e., they are

shared with at most (2/δ 2) · |B| ·D1/|R|=(2/δ 2) · |B| ·D1/2k other nodes from B. The edge split-

ting operation can only reduce congestion, and the left degree increases from D1 to D = D1 · ℓ.
So, in G it holds that all the “good” nodes x ∈ B− δ -BAD, have at least a (1− δ ) fraction of

edges outgoing from x that land in right nodes that are shared with at most (2/δ 2) · |B| ·D/2k

other nodes from B. Since |B− δ -BAD| = |B| − |δ -BAD| ≥ (1− δ )|B| > (1− 2δ )|B|, we are

done.

The parameters of G follow from its construction taking into account that qℓ ≤ ℓ logℓ and

that the ℓ’s prime number can be found in time polynomial in ℓ.

The proof of Theorem 2.3 follows immediately from Lemma 4.4.
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