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Abstract

The matroid parity (or matroid matching) problem, introduced as a common

generalization of matching and matroid intersection problems, is so general that it

requires an exponential number of oracle calls. Nevertheless, Lovász (1980) showed

that this problem admits a min-max formula and a polynomial algorithm for linearly

represented matroids. Since then efficient algorithms have been developed for the

linear matroid parity problem.

In this paper, we present a combinatorial, deterministic, polynomial-time algo-

rithm for the weighted linear matroid parity problem. The algorithm builds on a

polynomial matrix formulation using Pfaffian and adopts a primal-dual approach

based on the augmenting path algorithm of Gabow and Stallmann (1986) for the

unweighted problem.
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1 Introduction

The matroid parity problem [22] (also known as the matchoid problem [20] or the matroid

matching problem [24]) was introduced as a common generalization of matching and

matroid intersection problems. In the general case, it requires an exponential number

of independence oracle calls [19, 26], and a PTAS has been developed only recently [23].

Nevertheless, Lovász [24, 26, 27] showed that the problem admits a min-max theorem for

linear matroids and presented a polynomial algorithm that is applicable if the matroid

in question is represented by a matrix.

Since then, efficient combinatorial algorithms have been developed for this linear

matroid parity problem [12, 33, 34]. Gabow and Stallmann [12] developed an augmenting

path algorithm with the aid of a linear algebraic trick, which was later extended to

the linear delta-matroid parity problem [14]. Orlin and Vande Vate [34] provided an

algorithm that solves this problem by repeatedly solving matroid intersection problems

coming from the min-max theorem. Later, Orlin [33] improved the running time bound

of this algorithm. The current best deterministic running time bound due to [12, 33] is

O(nmω), where n is the cardinality of the ground set, m is the rank of the linear matroid,

and ω is the matrix multiplication exponent, which is at most 2.38. These combinatorial

algorithms, however, tend to be complicated.

An alternative approach that leads to simpler randomized algorithms is based on an

algebraic method. This is originated by Lovász [25], who formulated the linear matroid

parity problem as rank computation of a skew-symmetric matrix that contains indepen-

dent parameters. Substituting randomly generated numbers to these parameters enables

us to compute the optimal value with high probability. A straightforward adaptation of

this approach requires iterations to find an optimal solution. Cheung, Lau, and Leung

[3] have improved this algorithm to run in O(nmω−1) time, extending the techniques of

Harvey [16] developed for matching and matroid intersection.

While matching and matroid intersection algorithms [7, 9] have been successfully

extended to their weighted version [8, 10, 18, 21], no polynomial algorithms have been

known for the weighted linear matroid parity problem for more than three decades.

Camerini, Galbiati, and Maffioli [2] developed a random pseudopolynomial algorithm

for the weighted linear matroid parity problem by introducing a polynomial matrix for-

mulation that extends the matrix formulation of Lovász [25]. This algorithm was later

improved by Cheung, Lau, and Leung [3]. The resulting complexity, however, remained

pseudopolynomial. Tong, Lawler, and Vazirani [39] observed that the weighted ma-

troid parity problem on gammoids can be solved in polynomial time by reduction to the

weighted matching problem. As a relaxation of the matroid matching polytope, Vande

Vate [41] introduced the fractional matroid matching polytope. Gijswijt and Pap [15]

devised a polynomial algorithm for optimizing linear functions over this polytope. The
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polytope was shown to be half-integral, and the algorithm does not necessarily yield an

integral solution.

This paper presents a combinatorial, deterministic, polynomial-time algorithm for

the weighted linear matroid parity problem. To do so, we combine algebraic approach

and augmenting path technique together with the use of node potentials. The algorithm

builds on a polynomial matrix formulation, which naturally extends the one discussed in

[13] for the unweighted problem. The algorithm employs a modification of the augment-

ing path search procedure for the unweighted problem by Gabow and Stallmann [12].

It adopts a primal-dual approach without writing an explicit LP description. The cor-

rectness proof for the optimality is based on the idea of combinatorial relaxation for

polynomial matrices due to Murota [31]. The algorithm is shown to require O(n3m)

arithmetic operations. This leads to a strongly polynomial algorithm for linear matroids

represented over a finite field. For linear matroids represented over the rational field, one

can exploit our algorithm to solve the problem in polynomial time.

Independently of the present work, Gyula Pap has obtained another combinatorial,

deterministic, polynomial-time algorithm for the weighted linear matroid parity problem

based on a different approach.

The matroid matching theory of Lovász [27] in fact deals with a more general class

of matroids that enjoy the double circuit property. Dress and Lovász [6] showed that

algebraic matroids satisfy this property. Subsequently, Hochstättler and Kern [17] showed

the same phenomenon for pseudomodular matroids. The min-max theorem follows for

this class of matroids. To design a polynomial algorithm, however, one has to establish

how to represent those matroids in a compact manner. Extending this approach to the

weighted problem is left for possible future investigation.

The linear matroid parity problem finds various applications: structural solvability

analysis of passive electric networks [30], pinning down planar skeleton structures [28],

and maximum genus cellular embedding of graphs [11]. We describe below two interesting

applications of the weighted matroid parity problem in combinatorial optimization.

A T -path in a graph is a path between two distinct vertices in the terminal set

T . Mader [29] showed a min-max characterization of the maximum number of openly

disjoint T -paths. The problem can be equivalently formulated in terms of S-paths, where

S is a partition of T and an S-path is a T -path between two different components of S.

Lovász [27] formulated the problem as a matroid matching problem and showed that one

can find a maximum number of disjoint S-paths in polynomial time. Schrijver [37] has

described a more direct reduction to the linear matroid parity problem.

The disjoint S-paths problem has been extended to path packing problems in group-

labeled graphs [4, 5, 35]. Tanigawa and Yamaguchi [38] have shown that these prob-

lems also reduce to the matroid matching problem with double circuit property. Yam-

aguchi [42] clarifies a characterization of the groups for which those problems reduce to
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the linear matroid parity problem.

As a weighted version of the disjoint S-paths problem, it is quite natural to think

of finding disjoint S-paths of minimum total length. It is not immediately clear that

this problem reduces to the weighted linear matroid parity problem. A recent paper of

Yamaguchi [43] clarifies that this is indeed the case. He also shows that the reduction

results on the path packing problems on group-labeled graphs also extend to the weighted

version.

The weighted linear matroid parity is also useful in the design of approximation

algorithms. Prömel and Steger [36] provided an approximation algorithm for the Steiner

tree problem. Given an instance of the Steiner tree problem, construct a hypergraph on

the terminal set such that each hyperedge corresponds to a terminal subset of cardinality

at most three and regard the shortest length of a Steiner tree for the terminal subset as

the cost of the hyperedge. The problem of finding a minimum cost spanning hypertree in

the resulting hypergraph can be converted to the problem of finding a minimum spanning

tree in a 3-uniform hypergraph, which is a special case of the weighted parity problem

for graphic matroids. The minimum spanning hypertree thus obtained costs at most

5/3 of the optimal value of the original Steiner tree problem, and one can construct a

Steiner tree from the spanning hypertree without increasing the cost. Thus they gave

a 5/3-approximation algorithm for the Steiner tree problem via weighted linear matroid

parity. This is a very interesting approach that suggests further use of weighted linear

matroid parity in the design of approximation algorithms, even though the performance

ratio is larger than the current best one for the Steiner tree problem [1].

2 The Minimum-Weight Parity Base Problem

Let A be a matrix of row-full rank over an arbitrary field K with row set U and column

set V . Assume that both m = |U | and n = |V | are even. The column set V is partitioned

into pairs, called lines. Each v ∈ V has its mate v̄ such that {v, v̄} is a line. We denote

by L the set of lines, and suppose that each line ` ∈ L has a weight w` ∈ R.

The linear dependence of the column vectors naturally defines a matroid M(A) on V .

Let B denote its base family. A base B ∈ B is called a parity base if it consists of lines.

As a weighted version of the linear matroid parity problem, we will consider the problem

of finding a parity base of minimum weight, where the weight of a parity base is the sum

of the weights of lines in it. We denote the optimal value by ζ(A,L,w). This problem

generalizes finding a minimum-weight perfect matching in graphs and a minimum-weight

common base of a pair of linear matroids on the same ground set.

As another weighted version of the matroid parity problem, one can think of finding

a matching (independent parity set) of maximum weight. This problem can be easily

reduced to the minimum-weight parity base problem.
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Associated with the minimum-weight parity base problem, we consider a skew-symmetric

polynomial matrix ΦA(θ) in variable θ defined by

ΦA(θ) =

(
O A

−A> D(θ)

)
,

where D(θ) is a block-diagonal matrix in which each block is a 2 × 2 skew-symmetric

polynomial matrix D`(θ) =

(
0 −τ`θw`

τ`θ
w` 0

)
corresponding to a line ` ∈ L. Assume

that the coefficients τ` are independent parameters (or indeterminates).

For a skew-symmetric matrix Φ whose rows and columns are indexed by W , the

support graph of Φ is the graph Γ = (W,E) with edge set E = {(u, v) | Φuv 6= 0}. We

denote by Pf Φ the Pfaffian of Φ, which is defined as follows:

Pf Φ =
∑
M

σM
∏

(u,v)∈M

Φuv,

where the sum is taken over all perfect matchings M in Γ and σM takes ±1 in a suitable

manner, see [28]. It is well-known that det Φ = (Pf Φ)2 and Pf (SΦS>) = Pf Φ ·detS for

any square matrix S.

We have the following lemma that associates the optimal value of the minimum-weight

parity base problem with Pf ΦA(θ).

Lemma 2.1. The optimal value of the minimum-weight parity base problem is given by

ζ(A,L,w) =
∑
`∈L

w` − degθ Pf ΦA(θ).

In particular, if Pf ΦA(θ) = 0 (i.e., degθ Pf ΦA(θ) = −∞), then there is no parity base.

Proof. We split ΦA(θ) into ΨA and ∆(θ) such that

ΦA(θ) = ΨA + ∆(θ), ΨA =

(
O A

−A> O

)
, ∆(θ) =

(
O O

O D(θ)

)
.

The row and column sets of these skew-symmetric matrices are indexed by W := U ∪V .

By [32, Lemma 7.3.20], we have

Pf ΦA(θ) =
∑
X⊆W

±Pf ΨA[W \X] · Pf ∆(θ)[X],

where each sign is determined by the choice of X, ∆(θ)[X] is the principal submatrix

of ∆(θ) whose rows and columns are both indexed by X, and ΨA[W \X] is defined in

a similar way. One can see that Pf ∆(θ)[X] 6= 0 if and only if X ⊆ V (or, equivalently
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B := V \X) is a union of lines. One can also see for X ⊆ V that Pf ΨA[W \X] 6= 0 if

and only if A[U, V \X] is nonsingular, which means that B is a base of M(A). Thus, we

have

Pf ΦA(θ) =
∑
B

±Pf ΨA[U ∪B] · Pf ∆(θ)[V \B],

where the sum is taken over all parity bases B. Note that no term is canceled out in the

summation, because each term contains a distinct set of independent parameters. For a

parity base B, we have

degθ(Pf ΨA[U ∪B] · Pf ∆(θ)[V \B]) =
∑

`⊆V \B

w` =
∑
`∈L

w` −
∑
`⊆B

w`,

which implies that the minimum weight of a parity base is
∑
`∈L

w` − degθ Pf ΦA(θ).

Note that Lemma 2.1 does not immediately lead to a (randomized) polynomial-time

algorithm for the minimum weight parity base problem. This is because computing the

degree of the Pfaffian of a skew-symmetric polynomial matrix is not so easy. Indeed,

the algorithms in [2, 3] for the weighted linear matroid parity problem compute the

degree of the Pfaffian of another skew-symmetric polynomial matrix, which results in

pseudopolynomial complexity.

3 Algorithm Outline

In this section, we describe the outline of our algorithm for solving the minimum-weight

parity base problem.

We regard the column set V as a vertex set. The algorithm works on a vertex set

V ∗ ⊇ V that includes some new vertices generated during the execution. The algorithm

keeps a nested (laminar) collection Λ = {H1, . . . ,H|Λ|} of vertex subsets of V ∗ such that

Hi ∩ V is a union of lines for each i. The indices satisfy that, for any two members

Hi, Hj ∈ Λ with i < j, either Hi ∩Hj = ∅ or Hi ( Hj holds. Each member of Λ is called

a blossom. The algorithm maintains a potential p : V ∗ → R and a nonnegative variable

q : Λ→ R+, which are collectively called dual variables.

We note that although p and q are called dual variables, they do not correspond to

dual variables of an LP-relaxation of the minimum-weight parity base problem. Indeed,

this paper presents neither an LP-formulation nor a min-max formula for the minimum-

weight parity base problem, explicitly. We will show instead that one can obtain a parity

base B that admits feasible dual variables p and q, which provide a certificate for the

optimality of B.

The algorithm starts with splitting the weight w` into p(v) and p(v̄) for each line

` = {v, v̄} ∈ L, i.e., p(v) + p(v̄) = w`. Then it executes the greedy algorithm for finding
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a base B ∈ B with minimum value of p(B) =
∑

u∈B p(u). If B is a parity base, then B

is obviously a minimum-weight parity base. Otherwise, there exists a line ` = {v, v̄} in

which exactly one of its two vertices belongs to B. Such a line is called a source line and

each vertex in a source line is called a source vertex. A line that is not a source line is

called a normal line.

The algorithm initializes Λ := ∅ and proceeds iterations of primal and dual updates,

keeping dual feasibility. In each iteration, the algorithm applies the breadth-first search

to find an augmenting path. In the meantime, the algorithm sometimes detects a new

blossom and adds it to Λ. If an augmenting path P is found, the algorithm updates B

along P . This will reduce the number of source lines by two. If the search procedure

terminates without finding an augmenting path, the algorithm updates the dual variables

to create new tight edges. The algorithm repeats this process until B becomes a parity

base. Then B is a minimum-weight parity base. See Fig. 1 for a flowchart of our

algorithm.

Initial solution

Is B a parity base?  Yes

 No

Output B
(Section 6)

Search for an augmenting path
(Sections 7, 8)

 Found  Not found

Augmentation Update p and  q
(Section 9)

 No new tight edge

No feasible solution

New tight edge

  - Update  B
  - Search in blossom

(Section 10)

(BT1), (BT2), (DF1)―(DF3)

(BR1)―(BR5)

Figure 1: Flow chart of our algorithm. The conditions (BT1), (BT2), and (DF1)–(DF3)

always hold, whereas (BR1)–(BR5) do not necessarily hold during the augmentation

procedure in Section 10.

The rest of this paper is organized as follows.

In Section 4, we introduce new vertices and operations attached to blossoms. We

describe some properties of blossoms kept in the algorithm, which we denote (BT1) and
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(BT2).

The feasibility of the dual variables is defined in Section 5. The dual feasibility is

denoted by (DF1)–(DF3). We also describe several properties of feasible dual variables

that are used in other sections.

In Section 6, we show that a parity base that admits feasible dual variables attains

the minimum weight. The proof is based on the polynomial matrix formulation of the

minimum-weight parity base problem given in Section 2. Combining this with some prop-

erties of the dual variables and the duality of the maximum-weight matching problem,

we show the optimality of such a parity base.

In Section 7, we describe a search procedure for an augmenting path. We first define

an augmenting path, and then we describe our search procedure. Roughly, our procedure

finds a part of the augmenting path outside the blossoms. The routing in each blossom

is determined by a prescribed vertex set that satisfies some conditions, which we denote

(BR1)–(BR5). Note that the search procedure may create new blossoms.

The validity of the procedure is shown in Section 8. We show that the output of the

procedure is an augmenting path by using the properties (BR1)–(BR5) of the routing in

each blossom. We also show that creating a new blossom does not violate the conditions

(BT1), (BT2), (DF1)–(DF3), and (BR1)–(BR5).

In Section 9, we describe how to update the dual variables when the search procedure

terminates without finding an augmenting path. We obtain new tight edges by updating

the dual variables, and repeat the search procedure. We also show that if we cannot

obtain new tight edges, then the instance has no feasible solution, i.e., there is no parity

base.

If the search procedure succeeds in finding an augmenting path P , the algorithm

updates the base B along P . The details of this process are presented in Section 10.

Basically, we replace the base B with the symmetric difference of B and P . In addition,

since there exist new vertices corresponding to the blossoms, we update them carefully to

keep the conditions (BT1), (BT2), and (DF1)–(DF3). In order to define a new routing

in each blossom, we apply the search procedure in each blossom, which enables us to

keep the conditions (BR1)–(BR5).

Finally, in Section 11, we describe the entire algorithm and analyze its running time.

We show that our algorithm solves the minimum-weight parity base problem in O(n3m)

time when K is a finite field of fixed order. When K = Q, it is not obvious that a

direct application of our algorithm runs in polynomial time. However, we show that

the minimum-weight parity base problem over Q can be solved in polynomial time by

applying our algorithm over a sequence of finite fields.
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4 Blossoms

In this section, we introduce buds and tips attached to blossoms and construct auxiliary

matrices that will be used in the definition of dual feasibility.

Each blossom contains at most one source line. A blossom that contains a source line

is called a source blossom. A blossom with no source line is called a normal blossom. Let

Λs and Λn denote the sets of source blossoms and normal blossoms, respectively. Then,

Λ = Λs ∪ Λn. Let λ denote the number of blossoms in Λ.

Each normal blossom Hi ∈ Λn has a pair of associated vertices bi and ti outside V ,

which are called the bud and the tip of Hi, respectively. The pair {bi, ti} is called a

dummy line. To simplify the description, we denote b̄i = ti and t̄i = bi. The vertex set

V ∗ is defined by V ∗ := V ∪ T with T := {bi, ti | Hi ∈ Λn}. The tip ti is contained in

Hi, whereas the bud bi is outside Hi. For every i, j with Hj ∈ Λn, we have tj ∈ Hi if

and only if Hj ⊆ Hi. Similarly, we have bj ∈ Hi if and only if Hj ( Hi. Thus, each

normal blossom Hi is of odd cardinality. The algorithm keeps a subset B∗ ⊆ V ∗ such

that B∗ ∩V = B and |B∗ ∩{bi, ti}| = 1 for each Hi ∈ Λn. It also keeps Hi ∩V 6= Hj ∩V
for distinct Hi, Hj ∈ Λ and Hi ∩ V 6= ∅ for each Hi ∈ Λ. This implies that |Λ| = O(n),

where n = |V |, and hence |V ∗| = O(n).

Recall that U is the row set of A. The fundamental cocircuit matrix C with re-

spect to a base B is a matrix with row set B and column set V \ B obtained by

C = A[U,B]−1A[U, V \ B]. In other words, (I C) is obtained from A by identifying

B and U , applying row transformations, and changing the ordering of columns. For a

subset S ⊆ V , we have B4S ∈ B if and only if C[S] := C[S ∩ B,S \ B] is nonsingular.

Here, 4 denotes the symmetric difference. Then the following lemma characterizes the

fundamental cocircuit matrix with respect to B4S.

Lemma 4.1. Suppose that C is in the form of C =

(
α β

γ δ

)
with α = C[S] being

nonsingular. Then

C ′ :=

(
α−1 α−1β

−γα−1 δ − γα−1β

)
is the fundamental cocircuit matrix with respect to B4S.

Proof. In order to obtain the fundamental cocircuit matrix with respect to B4S, we

apply row elementary transformations to (I C) =

(
I 0 α β

0 I γ δ

)
so that the columns

corresponding to B4S form the identity matrix. Hence, the obtained matrix is(
α−1 0

−γα−1 I

)(
I 0 α β

0 I γ δ

)
=

(
α−1 0 I α−1β

−γα−1 I 0 δ − γα−1β

)
,

which shows that C ′ is the fundamental cocircuit matrix with respect to B4S.
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This operation converting C to C ′ is called pivoting around S. We have the following

property on the nonsingularity of their submatrices.

Lemma 4.2. Let C and C ′ be the fundamental cocircuit matrices with respect to B and

B4S, respectively. Then, for any X ⊆ V , C[X] is nonsingular if and only if C ′[X4S]

is nonsingular.

Proof. Consider the matrix (I C) whose column set is equal to V . Then, C[X] is non-

singular if and only if the columns of (I C) indexed by X4B form a nonsingular matrix.

This is equivalent to that the corresponding columns of (I C ′) form a nonsingular matrix,

which means that C ′[X4B4(B4S)] = C ′[X4S] is nonsingular.

The algorithm keeps a matrix C∗ whose row and column sets are B∗ and V ∗ \ B∗,
respectively. The matrix C∗ is obtained from C by attaching additional rows/columns

corresponding to T , and then pivoting around T . Thus we have B∗ ∩ V = B. In other

words, the matrix obtained from C∗ by pivoting around T contains C as a submatrix

(see (BT1) below). If the row and column sets of C∗ are clear, for a vertex set X ⊆ V ∗,
we denote C∗[X] = C∗[X ∩B∗, X \B∗].

In our algorithm, the matrix C∗ satisfies the following properties.

(BT1) Let C ′ be the matrix obtained from C∗ by pivoting around T . Then, C ′[V ] is

the fundamental cocircuit matrix with respect to B = B∗ ∩ V .

(BT2) Each normal blossom Hi ∈ Λn satisfies the following.

• If bi ∈ B∗ and ti ∈ V ∗ \B∗, then C∗biti 6= 0, C∗biv = 0 for any v ∈ Hi \B∗ with

v 6= ti, and C∗uti = 0 for any u ∈ B∗ \Hi with u 6= bi (see Fig. 2).

• If bi ∈ V ∗ \B∗ and ti ∈ B∗, then C∗tibi 6= 0, C∗ubi = 0 for any u ∈ B∗ ∩Hi with

u 6= ti, and C∗tiv = 0 for any v ∈ (V ∗ \B∗) \Hi with v 6= bi.

bi
ti

C*=

* 0

Hi

0
bi

ti
Hi

Figure 2: Illustration of (BT2). In the right figure, real lines represent nonzero entries

of C∗.
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5 Dual Feasibility

In this section, we define feasibility of the dual variables and show their properties. Our

algorithm for the minimum-weight parity base problem is designed so that it keeps the

dual feasibility.

Recall that a potential p : V ∗ → R, and a nonnegative variable q : Λ→ R+ are called

dual variables. A blossom Hi is said to be positive if q(Hi) > 0. For distinct vertices

u, v ∈ V ∗ and for Hi ∈ Λ, we say that a pair (u, v) crosses Hi if |{u, v} ∩Hi| = 1. For

distinct u, v ∈ V ∗, we denote by Iuv the set of indices i ∈ {1, . . . , |Λ|} such that (u, v)

crosses Hi. We introduce the set F ∗ of ordered vertex pairs defined by

F ∗ := {(u, v) | u ∈ B∗, v ∈ V ∗ \B∗, C∗uv 6= 0}.

For distinct u, v ∈ V ∗, we define

Quv :=
∑
i∈Iuv

q(Hi).

The dual variables are called feasible with respect to C∗ and Λ if they satisfy the following.

(DF1) p(v) + p(v̄) = w` for every line ` = {v, v̄} ∈ L.

(DF2) p(v)− p(u) ≥ Quv for every (u, v) ∈ F ∗.

(DF3) p(v)− p(u) = q(Hi) for every Hi ∈ Λn and (u, v) ∈ F ∗ with {u, v} = {bi, ti}.

If no confusion may arise, we omit C∗ and Λ when we discuss dual feasibility.

Note that if Λ = ∅, then F ∗ corresponds to the nonzero entries of C = C∗, which

shows that (B \ {u}) ∪ {v} ∈ B holds for (u, v) ∈ F ∗. This implies that (DF2) holds if

B ∈ B is a base minimizing p(B) =
∑

u∈B p(u), because Quv = 0 for any (u, v) ∈ F ∗.
We also note that (DF3) holds if Λ = ∅. Therefore, p and q are feasible if p satisfies

(DF1), Λ = ∅, and B ∈ B minimizes p(B) =
∑

u∈B p(u) in B. This ensures that the

initial setting of the algorithm satisfies the dual feasibility.

We now show some properties of feasible dual variables.

Lemma 5.1. Suppose that p and q are feasible dual variables. Let X ⊆ V ∗ be a vertex

subset such that C∗[X] is nonsingular. Then, we have

p(X \B∗)− p(X ∩B∗) ≥
∑
{q(Hi) | Hi ∈ Λ, |X ∩Hi| is odd}.

Proof. Since C∗[X] is nonsingular, there exists a perfect matching M = {(uj , vj) | j =

1, . . . , µ} between X ∩B∗ and X \B∗ such that uj ∈ X ∩B∗, vj ∈ X \B∗, and C∗ujvj 6= 0
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for j = 1, . . . , µ. The dual feasibility implies that p(vj)− p(uj) ≥ Qujvj for j = 1, . . . , µ.

Combining these inequalities, we obtain

p(X \B∗)− p(X ∩B∗) ≥
µ∑
j=1

Qujvj =

µ∑
j=1

∑
i∈Iujvj

q(Hi). (1)

If |X ∩ Hi| is odd, there exists an index j such that i ∈ Iujvj , which shows that the

coefficient of q(Hi) in the right hand side of (1) is at least 1. This completes the proof

We now consider the tightness of the inequality in Lemma 5.1. Let G∗ = (V ∗, F ∗)

be the undirected graph with vertex set V ∗ and edge set F ∗, where we regard F ∗ as a

set of unordered pairs. An edge (u, v) ∈ F ∗ with u ∈ B∗ and v ∈ V ∗ \ B∗ is said to be

tight if p(v)− p(u) = Quv. We say that a matching M ⊆ F ∗ is consistent with a blossom

Hi ∈ Λ if at most one edge in M crosses Hi. We say that a matching M ⊆ F ∗ is tight

if every edge of M is tight and M is consistent with every positive blossom Hi. As the

proof of Lemma 5.1 clarifies, if there exists a tight perfect matching M in the subgraph

G∗[X] of G∗ induced by X, then the inequality of Lemma 5.1 is tight. Furthermore, in

such a case, every perfect matching in G∗[X] must be tight, which is stated as follows.

Lemma 5.2. For a vertex set X ⊆ V ∗, if G∗[X] has a tight perfect matching, then any

perfect matching in G∗[X] is tight.

When q(Hi) = 0 for some Hi ∈ Λ, one can delete Hi from Λ without violating the dual

feasibility. In fact, removing such a source blossom does not affect the dual feasibility,

(BT1), and (BT2). If Hi is a normal blossom, then apply the pivoting operation around

{bi, ti} to C∗, remove bi and ti from V ∗, and remove Hi from Λ. This process is referred

to as Expand(Hi).

Lemma 5.3. If q(Hi) = 0 for some Hi ∈ Λn, the dual variables (p, q) remain feasible

and (BT1) and (BT2) hold after Expand(Hi) is executed.

Proof. We only consider the case when bi ∈ B∗ and ti ∈ V ∗ \B∗, since we can deal with

the case of bi ∈ V ∗ \ B∗ and ti ∈ B∗ in the same way. Let C∗ be the original matrix

and C ′ be the matrix obtained after Expand(Hi) is executed. Let F ∗ (resp. F ′) be the

ordered vertex pairs corresponding to the nonzero entries of C∗ (resp. C ′).

Suppose that p and q are feasible with respect to F ∗. In order to show that p and

q are feasible with respect to F ′, it suffices to consider (DF2), since (DF1) and (DF3)

are obvious. Suppose that (u, v) ∈ F ′. If (u, v) ∈ F ∗, then p(v) − p(u) ≥ Quv by the

dual feasibility with respect to F ∗. Otherwise, we have (u, v) ∈ F ′ and (u, v) 6∈ F ∗. By

Lemma 4.1, C ′uv = C∗uv − C∗uti(C
∗
biti

)−1C∗biv, and hence (u, v) ∈ F ′ and (u, v) 6∈ F ∗ imply
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that C∗biv 6= 0 and C∗uti 6= 0. Then, by the dual feasibility with respect to F ∗, we obtain

p(v)− p(bi) ≥ Qbiv,
p(ti)− p(u) ≥ Quti .

Furthermore, we have p(bi) = p(ti) by (DF3) and Qbiv+Quti = Qbiv+Quti +q(Hi) ≥ Quv.
By combining these inequalities, we obtain p(v) − p(u) ≥ Quv. This shows that (DF2)

holds with respect to F ′.

By the definition of Expand(Hi), it is obvious that C ′ satisfies (BT1).

To show (BT2), let Hj be a normal blossom that is different from Hi. Suppose that

bj ∈ B∗ and tj ∈ V ∗ \B∗. we consider the following cases, separately.

• If Hj ⊆ Hi, then C∗biv = 0 for any v ∈ Hj \B∗. In particular, C∗bitj = 0.

• If Hi ⊆ Hj , then C∗uti = 0 for any u ∈ B∗ \Hj . In particular, C∗bjti = 0.

• If Hi ∩Hj = ∅, then we have that C∗bitj = 0 and C∗bjti = 0.

In every case, we have that C ′bjv = C∗bjv −C
∗
bjti

(C∗biti)
−1C∗biv = C∗bjv for any v ∈ Hj \B∗,

and C ′utj = C∗utj − C
∗
uti(C

∗
biti

)−1C∗bitj = C∗utj for any u ∈ B∗ \ Hj . Therefore, C ′bjtj =

C∗bjtj 6= 0, C ′bjv = C∗bjv = 0 for any v ∈ Hj \B∗ with v 6= tj , and C ′utj = C∗utj = 0 for any

u ∈ B∗ \Hj with u 6= bj . We can deal with the case when bj ∈ V ∗ \B∗ and tj ∈ B∗ in a

similar way. This shows that C ′ satisfies (BT2).

6 Optimality

In this section, we show that if we obtain a parity base B and feasible dual variables p

and q, then B is a minimum-weight parity base.

Note again that although p and q are called dual variables, they do not correspond

to dual variables of an LP-relaxation of the minimum-weight parity base problem. Our

optimality proof is based on the algebraic formulation of the problem (Lemma 2.1) and

the duality of the maximum-weight matching problem.

Theorem 6.1. If B := B∗ ∩ V is a parity base and there exist feasible dual variables p

and q, then B is a minimum-weight parity base.

Proof. Since the optimal value of the minimum-weight parity base problem is represented

with degθ Pf ΦA(θ) as shown in Lemma 2.1, we evaluate the value of degθ Pf ΦA(θ),

assuming that we have a parity base B and feasible dual variables p and q.

Recall that A is transformed to (I C) by applying row transformations and column

permutations, where C is the fundamental cocircuit matrix with respect to the base B

obtained by C = A[U,B]−1A[U, V \B]. Note that the identity submatrix gives a one to
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one correspondence between U and B, and the row set of C can be regarded as U . We

now apply the same row transformations and column permutations to ΦA(θ), and then

apply also the corresponding column transformations and row permutations to obtain a

skew-symmetric polynomial matrix Φ′A(θ), that is,

Φ′A(θ) =

 O I C

−I
−C> D′(θ)

 ← U

← B

← V \B,

where D′(θ) is a skew-symmetric matrix obtained from D(θ) by applying row and column

permutations simultaneously. Note that Pf Φ′A(θ) = ±Pf ΦA(θ)/detA[U,B], where the

sign is determined by the ordering of V .

We now consider the following skew-symmetric matrix:

Φ∗A(θ) =


O

O
I

C∗

O −I
D′(θ) O

−C∗>
O O


← U∗ (identified with B∗)

← B

← V \B
← T \B∗.

Here, the row and column sets of Φ∗A(θ) are both indexed by W ∗ := U∗ ∪ V ∪ (T \B∗),
where U∗ is the row set of C∗, which can be identified with B∗. Then, we have the

following claim.

Claim 6.2. It holds that degθPf Φ∗A(θ) = degθPf Φ′A(θ) = degθPf ΦA(θ).

Proof. Since C∗ satisfies (BT1), we can obtain

(
O X I

I C O

)
from

(
O

I
C∗

)
by

applying elementary row transformations, where X is some matrix. Here, the row and

column sets are U∗ and B ∪ (V \ B) ∪ (T \ B∗), respectively. We apply the same row

transformations and their corresponding column transformations to Φ∗A(θ). Then, we

obtain the following matrix:

Φ̂A(θ) =


O X I

O
I C O

O −I
−X> −C> D′(θ) O

−I O O O


← U∗ (identified with B∗)

← B

← V \B
← T \B∗,

and hence degθPf Φ∗A(θ) = degθPf Φ̂A(θ). Since Pf Φ̂A(θ) = ±Pf Φ′A(θ), we have that

degθPf Φ∗A(θ) = degθPf Φ̂A(θ) = degθPf Φ′A(θ) = degθPf ΦA(θ),

which completes the proof.
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In what follows, we evaluate degθPf Φ∗A(θ). Construct a graph Γ∗ = (W ∗, E∗)

with edge set E∗ := {(u, v) | (Φ∗A(θ))uv 6= 0}. Each edge (u, v) ∈ E∗ has a weight

degθ (Φ∗A(θ))uv. Then it can be easily seen by the definition of Pfaffian that the maxi-

mum weight of a perfect matching in Γ∗ is at least degθPf Φ∗A(θ) = degθPf ΦA(θ). Let

us recall that the dual linear program of the maximum-weight perfect matching problem

on Γ∗ is formulated as follows.

Minimize
∑
v∈W ∗

π(v)−
∑
Z∈Ω

ξ(Z)

subject to π(u) + π(v)−
∑

Z∈Ωuv

ξ(Z) ≥ degθ (Φ∗A(θ))uv (∀(u, v) ∈ E∗), (2)

ξ(Z) ≥ 0 (∀Z ∈ Ω),

where Ω = {Z | Z ⊆W ∗, |Z|: odd, |Z| ≥ 3} and Ωuv = {Z | Z ∈ Ω, |Z∩{u, v}| = 1} (see,

e.g., [37, Theorem 25.1]). In what follows, we construct a feasible solution (π, ξ) of this

linear program. The objective value provides an upper bound on the maximum weight of

a perfect matching in Γ∗, and consequently serves as an upper bound on degθPf ΦA(θ).

Since U∗ can be identified with B∗, we can naturally define a bijection η : B∗ → U∗

between B∗ and U∗. We define π : W ∗ → R by

π(v) =

{
p(v) if v ∈ V ∪ (T \B∗),
−p(η−1(v)) if v ∈ U∗,

For each i ∈ {1, . . . , λ}, we introduce Zi = (Hi \ (T ∩ B∗)) ∪ η(Hi ∩ B∗) ⊆ W ∗ and set

ξ(Zi) = q(Hi) (see Fig. 3). Since Hi is of odd cardinality and there is no source line in

G, we see that

|Zi| = |Hi \ (T ∩B∗)|+ |Hi ∩B∗| = |Hi|+ |Hi ∩B|

is odd and |Zi| ≥ 3. Define ξ(Z) = 0 for any Z ∈ Ω \ {Z1, . . . , Zλ}. We now show the

following claim.

Claim 6.3. The dual variables π and ξ defined as above form a feasible solution of the

linear program (2).

Proof. Suppose that (u, v) ∈ E∗. If u, v ∈ V and u = v̄, then (DF1) shows that π(u) +

π(v) = p(v̄) + p(v) = w` = degθ (Φ∗A(θ))uv, where ` = {v, v̄}. Since |Zi ∩ {v, v̄}| is even

for any i ∈ {1, . . . , λ}, this shows (2). If u ∈ U and v ∈ B, then (u, v) ∈ E∗ implies that

u = η(v), and hence π(u) + π(v) = 0, which shows (2) as |Zi ∩ {u, v}| is even for any

i ∈ {1, . . . , λ}.
The remaining case of (u, v) ∈ E∗ is when u ∈ U∗ and v ∈ V ∗ \ B∗. That is, it

suffices to show that (u, v) satisfies (2) if C∗uv 6= 0. By the definition of π, we have
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tiu
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η(u)

T

Hi

Zi

η(u)
bi

η(ti)

Figure 3: Definition of Zi. Lines and dummy lines are represented by double bonds.

π(u) +π(v) = p(v)− p(u′), where u′ = η−1(u). By the definition of Zi, we have Zi ∈ Ωuv

if and only if i ∈ Iu′v, which shows that∑
i:Zi∈Ωuv

ξ(Zi) =
∑
i∈Iu′v

q(Hi).

Since C∗uv 6= 0, by (DF2), we have

p(v)− p(u′) ≥ Qu′v =
∑
i∈Iu′v

q(Hi).

Thus, we obtain

π(u) + π(v)−
∑

i:Zi∈Ωuv

ξ(Zi) ≥ 0,

which shows that (u, v) satisfies (2).

The objective value of this feasible solution is

∑
v∈W ∗

π(v)−
λ∑
i=1

ξ(Zi) =
∑

v∈V \B

p(v) +
∑

v∈T\B∗
p(v)−

∑
v∈T∩B∗

p(v)−
λ∑
i=1

ξ(Zi)

=
∑

v∈V \B

p(v) =
∑

`⊆V \B

w`, (3)

where the first equality follows from the definition of π, the second one follows from the

definition of ξ and (DF3), and the third one follows from (DF1). By the weak duality of

the maximum-weight matching problem, we have

∑
v∈W ∗

π(v)−
λ∑
i=1

ξ(Zi) ≥ (maximum weight of a perfect matching in Γ∗)

≥ degθPf Φ∗A(θ) = degθPf ΦA(θ). (4)
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On the other hand, Lemma 2.1 shows that any parity base B′ satisfies that∑
`⊆B′

w` ≥
∑
`∈L

w` − degθPf ΦA(θ), (5)

Combining (3)–(5), we have
∑

`⊆V \B w` = degθPf ΦA(θ), which means B is a minimum-

weight parity base by Lemma 2.1.

7 Finding an Augmenting Path

In this section, we define an augmenting path and present a procedure for finding one.

The validity of our procedure is shown in Section 8.

Suppose we are given V ∗, B∗, C∗, Λ, and feasible dual variables p and q. Let F ◦ ⊆ F ∗

be the set of tight edges, i.e., F ◦ = {(u, v) ∈ F ∗ | u ∈ B∗, v ∈ V ∗\B∗, p(v)−p(u) = Quv}.
Our procedure works primarily on the undirected graph G◦ = (V ∗, F ◦), where we ignore

the ordering of the vertices when we regard F ◦ or F ∗ as an edge set. For a vertex set

X ⊆ V ∗, G◦[X] denotes the subgraph of G◦ induced by X. For Hi ∈ Λ, define H−i as

H−i = {v ∈ Hi \ {ti} | there is an edge in F ∗ between v and V ∗ \Hi}.

Here, {ti} is regarded as ∅ if Hi ∈ Λs. This definition shows that we can ignore Hi \H−i
when we consider edges in F ∗ (or F ◦) connecting Hi and V ∗ \Hi.

Roughly, our procedure finds a part of the augmenting path outside the blossoms.

The routing in each blossom Hi is determined by a prescribed vertex set RHi(x) for

x ∈ H•i , where H•i := H−i ∪ (Hi ∩ V ). For any i ∈ {1, . . . , λ} and for any x ∈ H•i , the

prescribed vertex set RHi(x) ⊆ Hi is assumed to satisfy the following.

(BR1) x ∈ RHi(x) ⊆ Hi.

(BR2) If Hi ∈ Λn, then RHi(x) consists of lines, dummy lines, and the tip ti. If Hi ∈ Λs,

then RHi(x) consists of lines, dummy lines, and a source vertex.

(BR3) For any Hj ∈ Λn with RHi(x) ∩ Hj 6= ∅ and Hj ( Hi, it holds that {bj , tj} ⊆
RHi(x).

See Fig. 4 for an example of RHi(x). We sometimes regard RHi(x) as a sequence of

vertices, and in such a case, the last two vertices are x̄x. We also suppose that the first

vertex of RHi(x) is ti if Hi ∈ Λn and the unique source vertex in RHi(x) if Hi ∈ Λs.

Each blossom Hi ∈ Λ is assigned a total order <Hi among all the vertices in H•i . In the

procedure, RHi(x) keeps additional properties which will be described in Section 8.1.

We say that a vertex set P ⊆ V ∗ is an augmenting path if it satisfies the following

properties.

17



Hi

x

Hj

ti bj tj

Figure 4: An example of RHi(x).

(AP1) P consists of normal lines, dummy lines, and two vertices from distinct source

lines.

(AP2) For each Hi ∈ Λ, either P ∩Hi = ∅ or P ∩Hi = RHi(xi) for some xi ∈ H•i .

(AP3) G◦[P ] has a unique tight perfect matching.

By (AP1), (AP2), and (BR2), we have the following observation.

Observation 7.1. For an augmenting path P and for each Hi ∈ Λn with P ∩Hi 6= ∅, it

holds that {bi, ti} ⊆ P .

In the rest of this section, we describe how to find an augmenting path. Section 7.1

is devoted to the search procedure, which calls two procedures: Blossom and Graft.

The details of these procedures are described in Sections 7.2 and 7.3, respectively. In

Section 7.4, we show that the procedure keeps some conditions.

7.1 Search Procedure

In this subsection, we describe a procedure for searching for an augmenting path. The

procedure performs the breadth-first search using a queue to grow paths from source

vertices. A vertex v ∈ V ∗ is labeled and put into the queue when it is reached by the

search. The procedure picks the first labeled element from the queue, and examines its

neighbors. A linear order ≺ is defined on the labeled vertex set so that u ≺ v means u

is labeled prior to v.

For each x ∈ V ∗, we define K(x) = Hi ∪ {bi} if there exists a maximal blossom Hi

such that Hi is a normal blossom with x ∈ Hi∪{bi}, and define K(x) = Hi if there exists

a maximal blossom Hi such that Hi is a source blossom with x ∈ Hi. If such a blossom

does not exist, then it is called single and we denote K(x) = {x, x̄}. The procedure also

labels some blossoms with ⊕ or 	, which will be used later for modifying dual variables.

With each labeled vertex v, the procedure associates a path P (v) and its subpath J(v),

where a path is a sequence of vertices. The first vertex of P (v) is a labeled vertex in a

source line and the last one is v. The reverse path of P (v) is denoted by P (v). For a

path P (v) and a vertex r in P (v), we denote by P (v|r) the subsequence of P (v) after r
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(not including r). We sometimes identify a path with its vertex set. When an unlabeled

vertex u is examined in the procedure, we assign a vertex ρ(u) and a path I(u). Roughly,

ρ(u) is a neighbor of u such that u is examined when we pick up ρ(u) from the queue.

Paths I(u) and J(v), where u is an unlabeled vertex and v is a labeled vertex, are used

to decompose a search path as we will see in Lemma 8.1 later. Roughly, I(u) and J(v)

represent “fractions” of the search path containing u and v, respectively. The procedure

is described as follows.

Procedure Search

Step 0: Initialize the objects so that the queue is empty, every vertex is unlabeled, and

every blossom is unlabeled.

Step 1: While there exists an unlabeled single vertex x in a source line, label x with

P (x) := J(x) := x and put x into the queue. While there exists a source line {x, x̄}
such that K(x) = K(x̄) = {x, x̄} and x is adjacent to x̄ in G◦, add a new source

blossom H = {x, x̄} to Λ, label H with ⊕, and define RH(x) := x and RH(x̄) := x̄.

While there exists an unlabeled maximal source blossom Hi ∈ Λs, label Hi with

⊕ and do the following: for each vertex x ∈ H•i in the order of <Hi , label x with

P (x) := J(x) := RHi(x) and put x into the queue.

Step 2: If the queue is empty, then return ∅ and terminate the procedure (see Section 9).

Otherwise, remove the first element v from the queue.

Step 3: While there exists a labeled vertex u adjacent to v in G◦ with K(u) 6= K(v),

choose such u that is minimum with respect to ≺ and do the following (3-1) and

(3-2) (see Fig. 5).

(3-1) If the first elements in P (v) and in P (u) belong to different source lines,

then return P := P (v)P (u) as an augmenting path.

(3-2) Otherwise, apply Blossom(v, u) to add a new blossom to Λ.

Step 4: While there exists an unlabeled vertex u adjacent to v in G◦ with K(u) 6= K(v)

such that ρ(u) is not assigned, do the following (4-1)–(4-3).

(4-1) If K(u) = {u, ū}, then label ū with P (ū) := P (v)uū and J(ū) := {ū}, set

ρ(u) := v and I(u) := {u}, and put ū into the queue (see Fig. 6). Furthermore,

if (v, ū) ∈ F ◦, then apply Blossom(ū, v).

(4-2) If K(u) = Hi ∪ {bi} for some Hi ∈ Λn and (v, bi) ∈ F ◦, then apply

Graft(v,Hi) (see Fig. 7).

(4-3) If K(u) = Hi ∪ {bi} for some Hi ∈ Λn and (v, bi) 6∈ F ◦, then choose y ∈ H•i
with (v, y) ∈ F ◦ that is minimum with respect to <Hi , and do the following.1

1Such y always exists, because u satisfies the condition.
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Label Hi with 	, label bi with P (bi) := P (v)RHi(y)bi and J(bi) := {bi}, and

put bi into the queue. For each unlabeled vertex x ∈ H•i , set ρ(x) := v and

I(x) := RHi(x) (see Fig. 8).

Step 5: Go back to Step 2.

source lines

v u
P(u)P(v)

source line

v u
P(u)P(v)

source line

v

u
P(u)

P(v)

Figure 5: Illustrations of Step 3. We apply (3.1) for the leftmost case, and apply (3.2)

for the other cases.

v

P(v)

u

u I(u)

J(u)

Figure 6: Step (4-1).

v

P(v)

x
ti

Hi

bi

Figure 7: Step (4-2).

y
ti

RHi(y)=I(y)

Hi

v=ρ(x)

P(v)

bi J(bi)

(x∈Hi)

Figure 8: Step (4-3).

7.2 Creating a Blossom

In this subsection, we describe procedure Blossom that creates a new blossom, which is

called in Steps (3-2) and (4-1) of Search.

Procedure Blossom(v, u)
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Step 1: Let c be the last vertex in P (v) such that K(c) contains a vertex in P (u). Let

d be the last vertex in P (u) contained in K(c). Note that K(c) = K(d). If c = d,

then define H :=
⋃
{K(x) | x ∈ P (v|c) ∪ P (u|d)} and r := c. If c 6= d, then define

H :=
⋃
{K(x) | x ∈ P (v|c)∪P (u|d)∪ {c}} and let r be the last vertex in P (v) not

contained in H if exists. See Fig. 9 for an example.

r = c = d

v

u

H

ti Hi

r

c d

v u

H
bi

Figure 9: Definition of H.

Step 2: If H contains no source line, then define g to be the vertex subsequent to r in

P (v), introduce new vertices b and t, namely V ∗ := V ∗ ∪ {b, t}, and add t to H,

namely H := H ∪ {t}. Update B∗, C∗, and p as follows (see Fig. 10).

• If r ∈ B∗ and g ∈ V ∗ \ B∗, then B∗ := B∗ ∪ {b}, C∗bt := C∗rg, C
∗
by := C∗ry

for y ∈ H \ B∗, C∗by := 0 for y ∈ (V ∗ \ B∗) \H, C∗xt := C∗xg for x ∈ B∗ \H,

C∗xt := 0 for x ∈ B∗ ∩H, and p(b) := p(t) := p(r) +Qrb.

• If r ∈ V ∗ \ B∗ and g ∈ B∗, then B∗ := B∗ ∪ {t}, C∗tb := C∗gr, C
∗
xb := C∗xr for

x ∈ B∗ ∩ H, C∗xb := 0 for x ∈ B∗ \ H, C∗ty := C∗gy for y ∈ (V ∗ \ B∗) \ H,

C∗ty := 0 for y ∈ H \B∗, and p(b) := p(t) := p(r)−Qrb.

• Apply the pivoting operation around {b, t} to C∗, namely B∗ := B∗4{b, t},
and update F ∗ accordingly.

Step 3: If H contains no source line, then for each labeled vertex x with P (x)∩H 6= ∅,
replace P (x) by P (x) := P (r)btP (x|r). Label t with P (t) := P (r)bt and J(t) :=

{t}, and extend the ordering ≺ of the labeled vertices so that t is just after r, i.e.,

r ≺ t and no element is between r and t. For each vertex x ∈ H with ρ(x) = r,

update ρ(x) as ρ(x) := t. Set ρ(b) := r and I(b) := {b} (see Fig. 11).
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Figure 10: Definition of C∗. By the definition, C∗ry = 0 for y ∈ H \ B∗ and C∗xg = 0 for

x ∈ B∗ \H after the pivoting operation (see Lemma 7.2).
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b
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g
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x
x

Figure 11: Update of P (x).
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Step 4: For each unlabeled vertex x ∈ H•, label x as follows.

(i) If K(x) = {x, x̄} and x ∈ P (u|d), then P (x) := P (v)P (u|x)x.

(ii) If K(x) = {x, x̄} and x ∈ P (v|c), then P (x) := P (u)P (v|x)x.

(iii) If K(x) = Hi ∪ {bi} for some Hi ∈ Λn labeled with ⊕ such that x = bi and

x ∈ P (u|d), then P (x) := P (v)P (u|x)x.

(iv) If K(x) = Hi ∪ {bi} for some Hi ∈ Λn labeled with ⊕ such that x = bi and

x ∈ P (v|c), then P (x) := P (u)P (v|x)x.

(v) If K(x) = Hi ∪ {bi} for some Hi ∈ Λn labeled with 	 such that x ∈ H•i and

ti ∈ P (u|d), then P (x) := P (v)P (u|ti)RHi(x).

(vi) If K(x) = Hi ∪ {bi} for some Hi ∈ Λn labeled with 	 such that x ∈ H•i and

ti ∈ P (v|c), then P (x) := P (u)P (v|ti)RHi(x).

Define J(x) := P (x|t) and put x into the queue (see Fig. 12). Here, we choose the

vertices in the ordering such that the following conditions hold.

• For two unlabeled vertices x, y ∈ H•, if ρ(x) � ρ(y), then we choose x prior

to y.

• For two unlabeled vertices x, y ∈ H•, if ρ(x) = ρ(y), K(x) = K(y) = Hi∪{bi},
and x <Hi y, then we choose x prior to y.

• If r = c = d 6= u holds, then no element is chosen between g and h, where h

is the vertex subsequent to t in P (u). Note that this condition makes sense

only when K(g) or K(h) corresponds to a blossom labeled with 	.

Step 5: Label H with ⊕. Define RH(x) := P (x|b) for each x ∈ H• if H contains no

source line, and define RH(x) := P (x) for each x ∈ H• if H contains a source

line. Define <H by the ordering ≺ of the labeled vertices in H•. Add H to Λ with

q(H) = 0 regarding b and t, if exist, as the bud and the tip of H, respectively, and

update Λn, Λs, λ, G◦, and K(y) for y ∈ V ∗, accordingly.

We note that, for any x ∈ V ∗, if J(x) (resp. I(x)) is defined, then it is equal to either {x}
or RHi(x) (resp. either {x} or RHi(x)) for some Hi ∈ Λ. In particular, the last element

of J(x) and the first element of I(x) are x. We also note that J(x) and I(x) are not used

in the procedure explicitly, but we introduce them to show the validity of the procedure.

7.3 Grafting a Blossom

In this subsection, we describe Graft that replaces a blossom with another blossom, which

is called in Step (4-2) of Search. See Fig. 13 for an illustration.
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Figure 12: Illustration of Step 4 of Blossom(v, u). In this example, we define P (y3) =

z1z2rbty6x4y4x2y2vuy1x1y3. When x1 � x2 � · · · � x5 � t, we choose y1, y2, . . . , y5, y6, y7

(or y1, y2, . . . , y5, y7, y6) in this order.

Procedure Graft(v,Hi)

Step 1: Set H := Hi∪{bi}, where Hi is a normal blossom. Introduce new vertices b and

t in the same say as Step 2 of Blossom(v, u) with r := v and g := bi, add t to H,

and apply the pivoting operation around {b, t} to C∗. Label t with P (t) := P (v)bt

and J(t) := {t}, and extend the ordering ≺ of the labeled vertices so that t is just

after v, i.e., v ≺ t and no element is between v and t. Set ρ(b) := v and I(b) := {b}.

Step 2: For each vertex x ∈ H•i in the order of<Hi , label x with P (x) := P (v)btbiRHi(x)

and J(x) := tbiRHi(x), and put x into the queue.

Step 3: Label H with ⊕. Define RH(x) := P (x|b) for each x ∈ H•. Define <H by the

ordering ≺ of the labeled vertices in H•. Add H to Λ with q(H) = 0 regarding b

and t as the bud and the tip of H, respectively, and update Λn, λ, G◦, and K(y)

for y ∈ V ∗, accordingly.

Step 4: Set ε := q(Hi) and modify the dual variables by q(Hi) := 0, q(H) := ε,

p(bi) :=

{
p(bi)− ε if bi ∈ V ∗ \B∗,
p(bi) + ε if bi ∈ B∗,

p(t) :=

{
p(t)− ε if t ∈ B∗,
p(t) + ε if t ∈ V ∗ \B∗.
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Apply Expand(Hi) to delete Hi from Λ, and set H := H \ {bi, ti}. For each vertex

x, delete bi and ti from P (x), RH(x), and J(x).

v=r
v=r

H
t

b(=g)

ti
Hi

Hi

Steps 1-3 Step 4
bi

ti
bi

v=r
H

t
b

ti
bi

Figure 13: Illustration of Graft(v,Hi).

We note that Step 4 of Graft(v,Hi) is executed to keep the condition Hi∩V 6= Hj∩V
for distinct Hi, Hj ∈ Λ.

7.4 Basic Properties

For better understanding of the pivoting operations in Blossom(v, u) and Graft(v,Hi),

we give several lemmas in this subsection. Then, we show that the conditions (BT1),

(BT2), and (DF1)–(DF3) hold in the search procedure.

Lemma 7.2. Suppose that Blossom(v, u) or Steps 1–3 of Graft(v,Hi) have created a

new blossom H containing no source line. Then the following conditions hold after the

pivoting operation:

• b and t satisfy the conditions in (BT2),

• there is no edge in F ∗ between r and H, and

• there is no edge in F ∗ between g and V ∗ \H.

Proof. To show the properties, we use the notation V̂ ∗, B̂∗, Ĉ∗, and F̂ ∗ to represent the

objects after the pivoting operation, whereas V ∗, B∗, C∗, and F ∗ represent those before

the pivoting operation. We only consider the case when b ∈ V̂ ∗ \ B̂∗ and t ∈ B̂∗ as the

other case can be dealt with in a similar way.

In Step 2 of Blossom(v, u) (or Step 1 of Graft(v,Hi)), we have C∗bt = C∗rg 6= 0, and hence

Ĉ∗tb = 1/C∗bt 6= 0. Since C∗by = 0 for any y ∈ (V ∗ \B∗)\H, we have Ĉ∗ty = C∗by/C
∗
bt = 0 for

any y ∈ (V̂ ∗ \ B̂∗) \H with y 6= b. Similarly, since C∗xt = 0 for any x ∈ H ∩B∗, we have

Ĉ∗xb = C∗xt/C
∗
bt = 0 for any x ∈ H ∩ B̂∗ with x 6= t. Thus, b and t satisfy the conditions

in (BT2).
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Since C∗bt = C∗rt and C∗ry = C∗by for any y ∈ (H \ B∗) \ {t}, we have Ĉ∗ry = C∗ry −
C∗rt(C

∗
bt)
−1C∗by = 0 for any y ∈ (H \B∗)\{t} by Lemma 4.1. Thus, there is no edge in F̂ ∗

between r and H. Similarly, since C∗bt = C∗bg and C∗xg = C∗xt for any x ∈ (B∗ \H) \ {b},
we have Ĉ∗xg = C∗xg−C∗xt(C∗bt)−1C∗bg = 0 for any x ∈ (B∗ \H) \ {b} by Lemma 4.1. Thus,

there is no edge in F̂ ∗ between g and V ∗ \H.

The following lemma shows how creating a blossom affects the edges in F ◦.

Lemma 7.3. Suppose that Blossom(v, u) or Steps 1–3 of Graft(v,Hi) have created a

new blossom H containing no source line, and let F ◦ (resp. F̂ ◦) be the tight edge set

before (resp. after) the execution of Blossom(v, u) or Steps 1–3 of Graft(v,Hi). If (x, y) ∈
F ◦4F̂ ◦, then (i) {x, y} ∩ {b, t} 6= ∅, or (ii) exactly one of {x, y}, say x, is contained in

H, and (x, r), (g, y) ∈ F ◦.

Proof. Suppose that {x, y} ∩ {b, t} = ∅. By Lemma 4.1, we have (x, y) ∈ F ◦4F̂ ◦ only

when (x, b), (t, y) ∈ F ∗ or (y, b), (t, x) ∈ F ∗ holds before the pivoting operation in Step 2

of Blossom(v, u) (or Step 1 of Graft(v,Hi)). This shows that exactly one of {x, y}, say x,

is contained in H, and that (x, r), (g, y) ∈ F ∗ holds before Blossom(v, u) (or Graft(v,Hi)).

Suppose that x ∈ B∗. In this case, if (x, r), (g, y) ∈ F ∗ holds before Blossom(v, u) (or

Graft(v,Hi)) and (x, y) ∈ F ◦4F̂ ◦, then we have

p(y)− p(x) = Qxy,

p(r)− p(g) = Qrg,

p(r)− p(x) ≥ Qxr,
p(y)− p(g) ≥ Qgy.

Furthermore, we have Qxy+Qrg = Qxr+Qgy by a simple counting argument. Combining

these inequalities, we see that all the inequalities above must be tight. Thus, we have

(x, r), (g, y) ∈ F ◦. The same argument can be applied to the case when x ∈ V ∗ \B∗.

The proof of this lemma implies the following result.

Corollary 7.4. Suppose that Blossom(v, u) or Steps 1–3 of Graft(v,Hi) have created a

new blossom H containing no source line, and let F ∗ (resp. F̂ ∗) be the edge set before

(resp. after) the execution of Blossom(v, u) or Steps 1–3 of Graft(v,Hi). If (x, y) ∈
F ∗4F̂ ∗, then (i) {x, y} ∩ {b, t} 6= ∅, or (ii) exactly one of {x, y}, say x, is contained in

H, and (x, r), (g, y) ∈ F ∗.

The following lemma shows that Step 4 of Graft(v,Hi) roughly replaces edges incident

to ti with ones incident to t.

Lemma 7.5. Suppose that Expand(Hi) is executed for some positive blossom Hi ∈ Λn

in Graft(v,Hi). Then, we have the following.
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• Expand(Hi) does not affect the edges in F ∗ that are not incident to {t, bi, ti}.

• If (t, x) ∈ F ∗ after Expand(Hi), then (t, x) ∈ F ∗ or (ti, x) ∈ F ∗ before Expand(Hi).

• If (t, x) ∈ F ◦ after Expand(Hi), then (t, x) ∈ F ◦ or (ti, x) ∈ F ◦ before Expand(Hi).

• If (ti, x) ∈ F ◦ before Expand(Hi) with x 6= bi, then (t, x) ∈ F ◦ after Expand(Hi).

Proof. Since (bi, ti) is the only edge in F ∗ connecting bi and Hi, (bi, t) and (bi, ti) are

the only edges in F ∗ incident to bi just before Expand(Hi). Thus, the first property

holds. By Lemma 4.2, (t, x) ∈ F ∗ after Expand(Hi) if and only if C∗[{t, x, bi, ti}] is

nonsingular before Expand(Hi), which shows the second property. Then, by the dual

feasibility, we obtain the third property. If (ti, x) ∈ F ◦ before Expand(Hi), then (t, x) 6∈
F ∗ before Expand(Hi) by the dual feasibility, and hence C∗[{t, x, bi, ti}] is nonsingular.

Thus, (t, x) ∈ F ◦ after Expand(Hi).

We can also see that creating a new blossom does not violate the dual feasibility as

follows.

Lemma 7.6. Suppose that the dual variables are feasible before Blossom(v, u) or Steps

1–3 of Graft(v,Hi), which create a new blossom H. Then, the dual variables remain

feasible after Blossom(v, u) or Steps 1–3 of Graft(v,Hi).

Proof. We use V̂ ∗, B̂∗, Ĉ∗, F̂ ∗, p̂, and Λ̂ to represent the objects after Blossom(v, u) (or

Steps 1–3 of Graft(v,Hi)), whereas V ∗, B∗, C∗, F ∗, p, and Λ represent the objects before

Blossom(v, u) (or Steps 1–3 of Graft(v,Hi)). We only consider the case when b ∈ V̂ ∗ \ B̂∗

and t ∈ B̂∗, as the other case can be dealt with in a similar way.

Since there is an edge in F ◦ between r and g, we have p(g)− p(r) = Qrg, and hence

p̂(b) = p̂(t) = p(r) +Qrb = p(g) +Qrb −Qrg = p(g)−Qgb. (6)

By the definition of Ĉ∗, we have the following.

• If (x, b) ∈ F̂ ∗ for x ∈ B∗, then x ∈ V ∗ \H and (x, g) ∈ F ∗. Thus, we have

p̂(b)− p̂(x) = p(g)− p(x)−Qgb ≥ Qxg −Qgb = Qxb

by (6) and the dual feasibility before Blossom(v, u) (or Steps 1–3 of Graft(v,Hi)).

• If (t, y) ∈ F̂ ∗ for y ∈ V ∗ \B∗, then y ∈ H and (r, y) ∈ F ∗. Thus, we have

p̂(y)− p̂(t) = p(y)− p(r)−Qrb ≥ Qry −Qrb = Qby = Qty

by (6), the dual feasibility before Blossom(v, u) (or Steps 1–3 of Graft(v,Hi)), and

q(H) = 0.
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• If (x, y) ∈ F̂ ∗ \ F ∗ for x ∈ B∗ and y ∈ V ∗ \ B∗, then x ∈ V ∗ \ H, y ∈ H, and

(x, g), (r, y) ∈ F ∗ by Corollary 7.4. Thus, we have

p̂(y)− p̂(x) = p(y)− p(x) = (p(y)− p(r))− (p(g)− p(r)) + (p(g)− p(x))

≥ Qry −Qrg +Qxg = Qxy

by the dual feasibility before Blossom(v, u) (or Steps 1–3 of Graft(v,Hi)).

These facts show that p̂ and q̂ are feasible with respect to Λ̂.

It is obvious that creating a new blossom does not violate (BT1). Thus, by Lem-

mas 5.3, 7.2, and 7.6, we see that the procedure Search keeps the conditions (BT1),

(BT2), and (DF1)–(DF3).

8 Validity

This section is devoted to the validity proof of the procedures described in Section 7.

In Section 8.1, we introduce properties (BR4) and (BR5) of the routing in blossoms.

The procedures are designed so that they keep the conditions (BR1)–(BR5). Assuming

these conditions, we show in Section 8.2 that a nonempty output of Search is indeed

an augmenting path. In Section 8.3, we show that these conditions hold during the

procedure.

8.1 Properties of Routings in Blossoms

In this subsection, we introduce properties (BR4) and (BR5) of RHi(x) kept in the

procedure. Recall that, for Hi ∈ Λ,

H−i = {v ∈ Hi \ {ti} | there is an edge in F ∗ between v and V ∗ \Hi},
H•i = H−i ∪ (Hi ∩ V ).

In addition to (BR1)–(BR3), we assume that RHi(x) satisfies the following (BR4) and

(BR5) for any Hi ∈ Λ and x ∈ H•i .

(BR4) G◦[RHi(x) \ {x}] has a unique tight perfect matching.

(BR5) If x ∈ H−i , then we have the following. Suppose that Z ⊆ RHi(x)∩H−i satisfies

that z ≥Hi x for any z ∈ Z, Z 6= {x}, and |Hj ∩ Z| ≤ 1 for any positive blossom

Hj ∈ Λ. Then, G◦[RHi(x) \ Z] has no tight perfect matching.

Here, we suppose that G◦[∅] has a unique tight perfect matching M = ∅ to simplify the

description.
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We now explain roles of (BR4) and (BR5). These conditions are used to show that

the output P in Step (3-1) of Search satisfies (AP3), i.e., G◦[P ] has a unique tight

perfect matching. We will show that the obtained path P can be decomposed into

subsequences, and each subsequence consists of a singleton or a set RHi(x) for some

x ∈ H•i (see Lemma 8.1). Our aim is to show that if G◦[P ] has a tight perfect matching,

then x is the only vertex in RHi(x) that is matched with a vertex outside RHi(x). This is

guaranteed by (BR5), where Z means the set of vertices that are matched with vertices

outside RHi(x). Then, (BR4) assures that there exists a unique perfect matching covering

RHi(x) except x.

8.2 Finding an Augmenting Path

This subsection is devoted to the validity of Step (3-1) of Search. We first show the

following lemma.

Lemma 8.1. In each step of Search, for any labeled vertex x, P (x) is decomposed as

P (x) = J(xk)I(yk) · · · J(x1)I(y1)J(x0)

with xk ≺ · · · ≺ x1 ≺ x0 = x such that, for each i,

(PD0) J(xi) is equal to either {xi} or RHj (xi) for some Hj ∈ Λ, and I(yi) is equal to

either {yi} or RHj (yi) for some positive blossom Hj ∈ Λ,

(PD1) xi is adjacent to yi in G◦,

(PD2) the first element of J(xi−1) and the last element of I(yi) form a line or a dummy

line,

(PD3) any labeled vertex z with z ≺ xi is not adjacent to I(yi) ∪ J(xi−1) in G◦, and

(PD4) xi is not adjacent to J(xi−1) in G◦. Furthermore, if I(yi) = RHj (yi), then xi is

not adjacent to {z ∈ I(yi) | z <Hj yi} in G◦.

See Fig. 14 for an example of the decomposition.

Proof. The procedure Search naturally defines the decomposition

P (x) = J(xk)I(yk) · · · J(x1)I(y1)J(x0).

It suffices to show that Blossom(v, u) and Graft(v,Hi) do not violate the conditions

(PD0)–(PD4), since we can easily see that the other operations do not violate them.

We first consider the case when Blossom(v, u) is applied to obtain a new blossom H.

In Blossom(v, u), P (x) is updated or defined as P (x) := P (x), P (x) := P (r)btP (x|r), or
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J(x0)I(y1)J(x1)I(y2)J(x2)I(y3)J(x3)I(y4)J(x4)J(x5) I(y5)

source line

P(x)

x=x0y1y2y3y4=biy5 x2x3x4x5

Hi Hj

x1=bjti tj

Figure 14: An example of the decomposition.

P (x) := P (r)bRH(x). Let F ◦ (resp. F̂ ◦) be the tight edge sets before (resp. after) the

execution of Blossom(v, u) that adds H to Λ.

Suppose that P (x) is defined by P (x) := P (r)I(b)J(x), where I(b) = {b} and J(x) =

RH(x). In this case, (PD0), (PD1), and (PD2) are trivial. We now consider (PD3).

Since P (r) satisfies (PD3), in order to show that any labeled vertex z with z ≺ xi is

not adjacent to I(yi) ∪ J(xi−1) in Ĝ◦ = (V ∗, F̂ ◦), it suffices to consider the case when

xi = r, yi = b, and xi−1 = x (see Fig. 15). Assume to the contrary that z ≺ r is adjacent

to I(b) ∪ J(x) in Ĝ◦. Since z is not adjacent to I(b) ∪ J(x) in G◦ by the procedure,

Lemma 7.3 shows that (z, g) ∈ F ◦. This contradicts that z ≺ xi = r and the definition

of H. To show (PD4), it suffices to consider the case when xi = r. In this case, since r

is not adjacent to H in Ĝ◦ by Lemma 7.2, P (x) satisfies (PD4).

xi=r
Hyi=b

t

r

v

u

g g

x

v

u

x=xi-1

J(xi-1)

Figure 15: The case of P (x) := P (r)I(b)J(x).

Suppose that P (x) is updated as P (x) := P (x) or P (x) := P (r)I(b)J(t)P (x|r), where

I(b) = {b} and J(t) = {t} (see Fig. 16 for an example). In this case, (PD0), (PD1), and

(PD2) are trivial. We now consider (PD3). Since (PD3) holds before creating H, in order
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to show that any labeled vertex z with z ≺ xi is not adjacent to w ∈ I(yi) ∪ J(xi−1)

in Ĝ◦, it suffices to consider the case when (i) z = t, or (ii) w ∈ I(b) ∪ J(t), or (iii)

(z, g) ∈ F ◦ and (w, r) ∈ F ◦, or (iv) (w, g) ∈ F ◦ and (z, g) ∈ F ◦ by Lemma 7.3. In the

first case, if (t, w) ∈ F̂ ◦, then (r, w) ∈ F ◦, which contradicts that (PD3) holds before

creating H. In the second case, if w = b, then (z, w) ∈ F̂ ◦ implies that (z, g) ∈ F ◦,

which contradicts that z ≺ xi = r and the definition of H. If w = t, then (w, z) ∈ F̂ ◦

implies that (r, z) ∈ F ◦, which contradicts that r and z are labeled. In the third case,

(w, r) ∈ F ◦ implies xi � r as (PD3) holds before creating H. By the definition of H,

however, z ≺ xi � r contradicts (z, g) ∈ F ◦. In the fourth case, (z, r) ∈ F ◦ contradicts

that r and z are labeled. By these four cases, we obtain (PD3).

r
Hb

t

r

v

u

g g

x x

Figure 16: The case of P (x) := P (r)I(b)J(t)P (x|r).

We next consider (PD4). Since (PD4) holds before creating H, in order to show that

xi is not adjacent to w ∈ J(xi−1) or w ∈ {z ∈ I(yi) | z <Hj yi} in F̂ ◦ it suffices to

consider the case when (i) xi = r, or (ii) xi = t, or (iii) (xi, w) crosses H. In the first

case, the claim is obvious. In the second case, if (t, w) ∈ F̂ ◦, then (r, w) ∈ F ◦, which

contradicts that (PD4) holds before creating H. In the third case, since xi ∈ H and

w 6∈ H, Lemma 7.3 implies that it suffices to consider the case when (w, g) ∈ F ◦ and

(xi, r) ∈ F ◦, which contradicts that xi and r are labeled. By these three cases, we obtain

(PD4).

We can show that Graft(v,Hi) does not violate (PD0)–(PD4) in a similar manner

by observing that P (x) is updated or defined as P (x) := P (x) or P (x) := P (v)RH(x)

in Graft(v,Hi). We note that Expand(Hi) in Graft does not affect (PD0)–(PD4) by

Lemma 7.5.

Recall that we assume the conditions (BT1), (BT2), (DF1)–(DF3), and (BR1)–

(BR5). We are now ready to show the validity of Step (3-1) of Search.
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Lemma 8.2. If Search returns P := P (v)P (u) in Step (3-1), then P is an augmenting

path.

Proof. It suffices to show that G◦[P ] has a unique tight perfect matching. By Lemma 8.1,

P (v) and P (u) are decomposed as P (v) = J(vk)I(sk) · · · J(v1)I(s1)J(v0) and P (u) =

J(ul)I(rl) · · · J(u1)I(r1)J(u0). For each pair of i ≤ k and j ≤ l, let Xij denote the set of

vertices in the subsequence

J(vi)I(si) · · · J(v1)I(s1)J(v0)J(u0) I(r1) J(u1) · · · I(rj) J(uj)

of P . We intend to show inductively that G◦[Xij ] has a unique tight perfect matching.

We first show that G◦[X00] = G◦[J(u) ∪ J(v)] has a unique tight perfect matching.

Since u and v are adjacent in G◦, (PD0) and (BR4) guarantee that G◦[J(u)∪J(v)] has a

tight perfect matching. Let M be an arbitrary tight perfect matching in G◦[J(u)∪J(v)],

and let Z be the set of vertices in J(v) adjacent to J(u) in M . If J(v) = {v}, then

it is obvious that Z = {v}. Otherwise, J(v) = RHi(v) for some Hi ∈ Λ. For any

positive blossom Hj ∈ Λ, since M is consistent with Hj by the definition of a tight

matching, we have that |Hj ∩ Z| ≤ 1. Since there are no edges of G◦ between J(u) and

{y ∈ J(v) | y ≺ v}, we have that z ≥Hi v for any z ∈ Z. Furthermore, since there is an

edge in M connecting each z ∈ Z and J(u), we have Z ⊆ J(v) ∩ H−i . Then it follows

from (BR5) that G◦[J(v)\Z] has no tight perfect matching unless Z = {v}. This means

v is the only vertex in J(v) adjacent to J(u) in M . Note that G◦[J(v)\{v}] has a unique

tight perfect matching by (BR4), which must form a part of M . Let z be the vertex

adjacent to v in M . Since the vertices in {y ∈ J(u) | y ≺ u} are not adjacent to v in

G◦, we have z ≥Hj u if J(u) = RHj (u) for some Hj ∈ Λ (see Fig. 17). By (BR5) again,

G◦[J(u) \ {z}] has no tight perfect matching unless z = u. This means M must contain

the edge (u, v). Note that G◦[J(u) \ {u}] has a unique tight perfect matching by (BR4),

which must form a part of M . Thus M must be the unique tight perfect matching in

G◦[J(u) ∪ J(v)].

bj

tj

u

J(u)=RHj(u)   {u}

bi

ti

v

J(v)=RHi(v)   {v}
z

X00

Figure 17: An example of G◦[X00]. Real lines represent the edges in M .

We now show the statement for general i and j assuming that the same statement

holds if either i or j is smaller. Suppose that vi ≺ uj . Then there are no edges of G◦
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between Xij \ J(vi) and {y ∈ J(vi) | y ≺ vi} by (PD3) of Lemma 8.1. Let M be an

arbitrary tight perfect matching in G◦[Xij ], and let Z be the set of vertices in J(vi)

adjacent to Xij \ J(vi) in M . Then, by the same argument as above, G◦[J(vi) \ Z] has

no tight perfect matching unless Z = {vi}. Thus vi is the only vertex in J(vi) matched

to Xij \ J(vi) in M . Since vi is not adjacent to Xi−1,j in G◦ by (PD3) and (PD4) of

Lemma 8.1, an edge connecting vi and I(si) must belong to M . We note that it is the

only edge in M between I(si) and Xij \ I(si) since M is tight and I(si) is equal to either

{si} or RH(si) for some positive blossom H ∈ Λ. Let z be the vertex adjacent to vi in

M . By (BR5), G◦[I(si) \ {z}] has no tight perfect matching unless z = si (see Fig. 18).

This means that M contains the edge (vi, si). Note that each of G◦[J(vi) \ {vi}] and

G◦[I(si) \ {si}] has a unique tight perfect matching by (BR4), and so does G◦[Xi−1,j ] by

induction hypothesis. Therefore, M is the unique tight perfect matching in G◦[Xij ]. The

case of vi � uj can be dealt with similarly. Thus, we have seen that G◦[Xkl] = G◦[P ]

has a unique tight perfect matching.

J(u0) I(r1)J(v0)I(s1)J(v1)J(vi)I(si+1) I(si)

v u

part of M

J(uj)

Xij

Figure 18: An example of G◦[Xij ].

This proof implies the following corollaries.

Corollary 8.3. For any labeled vertex v ∈ V ∗, G◦[P (v) \ {v}] has a unique tight perfect

matching.

Corollary 8.4. If Search returns P , then the unique tight matching in G◦[P ] contains

exactly one edge connecting Hi and V ∗ \Hi for each Hi ∈ Λ with P ∩Hi 6= ∅.

8.3 Routing in Blossoms

First, to see that RH(x) is well-defined for each x ∈ H• when we create a new blossom

H, we observe that every vertex x ∈ H• satisfies one of the six cases in Step 4 of

Blossom(v, u). This is because, if x ∈ Hi \ H•i for some Hi ∈ Λ with Hi ( H, then

x 6∈ H•, and if c 6= d, K(c) = Hi ∪ {bi}, and x = bi = g for some Hi ∈ Λn, then x 6∈ H−

by Lemma 7.2.

When we create a new blossom H in Graft(v,Hi), for each x ∈ H•, RH(x) clearly

satisfies (BR1)–(BR5) by Lemma 7.5. Suppose that a new blossom H is created in

Blossom(v, u). For each x ∈ H•, RH(x) defined in Blossom(v, u) also satisfies (BR1)–

(BR3). We will show (BR4) and (BR5) in this subsection.
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Lemma 8.5. Suppose that Blossom(v, u) creates a new blossom H. Then, for each

x ∈ H•, RH(x) satisfies (BR4) and (BR5).

Proof. We only consider the case when H contains no source line, since the case with a

source line can be dealt with in a similar way. We note that a vertex y ∈ H is adjacent

to r in G◦ before Blossom(v, u) if and only if y is adjacent to t in G◦ after Blossom(v, u).

If x = t, the claim is obvious. We consider the other cases separately.

Case 1. Suppose that x ∈ H• was not labeled before H is created.

Among six cases in Step 4 of Blossom(v, u), we consider the cases of (i), (iii), and (v),

since the other cases can be dealt with in a similar manner.

By Lemma 8.1, P (v) can be decomposed as

P (v) = P (r)btI(sk)J(vk−1)I(sk−1) · · · J(v1)I(s1)J(v0)

with v = v0. In the cases of (i) and (iii), P (u|x) can be decomposed as J(ul)I(rl) · · · J(u1)I(r1)J(u0)

with u0 = u, where the first element of J(ul) is x̄, and hence

RH(x) = J(vk)I(sk)J(vk−1) · · · I(s1)J(v0)J(u0) I(r1) · · · I(rl) J(ul)x

with vk = t. Similarly, in the case of (v), RH(x) can be decomposed as

RH(x) = J(vk)I(sk)J(vk−1) · · · I(s1)J(v0)J(u0) I(r1) · · · I(rl) J(ul)RHi(x).

Therefore, in the cases of (i), (iii), and (v), we have

RH(x) = J(vk)I(sk)J(vk−1) · · · I(s1)J(v0)J(u0) I(r1) · · · I(rl) J(ul) I(rl+1)

with vk = t and rl+1 = x (see Fig. 19 for an example).

We now intend to show that RH(x) satisfies (BR5), that is, G◦[RH(x)\Z] has no tight

perfect matching if Z ⊆ RH(x) ∩H− satisfies that z ≥H x for any z ∈ Z, Z 6= {x}, and

|Hj∩Z| ≤ 1 for any positive blossom Hj ∈ Λ. Suppose to the contrary that G◦[RH(x)\Z]

has a tight perfect matching M . Note that Z ⊆ I(rl+1) ∪
⋃
i I(si), because z ≥H x for

any z ∈ Z. For each i, since either I(si) = {si} or I(si) = RHj (si) for some positive

blossom Hj ∈ Λ, we have |I(si) ∩ Z| ≤ 1. Similarly, |I(rl+1) ∩ Z| ≤ 1. Furthermore, if

|I(si) ∩Z| = 1 (resp. |I(rl+1) ∩Z| = 1), then |I(si) \Z| (resp. |I(rl+1) \Z|) is even, and

hence there is no edge in M between I(si) (resp. I(rl+1)) and its outside, because M is

a tight perfect matching. If Z ⊆ I(rl+1), then |I(rl+1)∩Z| = 1 and M contains no edge

between I(rl+1) and the outside of I(rl+1), which contradicts that G◦[I(rl+1) \ Z] has

no tight perfect matching by (BR5). Thus, we may assume that Z ∩
⋃
i I(si) 6= ∅. Since

I(si) ∩ Z 6= ∅ implies that there exists no edge in M between I(si) and the outside of

I(si), we can take the largest number j such that (vj , sj) /∈M . We consider the following

two cases separately.
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b
J(v4)

I(s3)

J(v2)

J(v1)

J(v0)
I(s1)

J(v3)

I(s2)

I(s4)

Hi

Hj

J(u0)

I(r1)
J(u1)
I(r2)

t

Figure 19: A decomposition of RH(x). In this example, J(v1) = {bj}, I(s2) = RHj (s2),

J(v2) = RHi(v2), I(s3) = {bi}, and J(v4) = {t}.

Case 1a. Suppose that j = k. In this case, since J(vk) = {t}, there exists an edge

in M between t and I(rl+1) ∪ (I(sk) \ {sk}). See Fig. 20 for an example. If this edge is

incident to z ∈ I(sk) \ {sk}, then I(sk) = RH′(sk) for some positive blossom H ′ ∈ Λ and

z >H′ sk by the procedure, and hence G◦[I(sk) \ {z}] has no tight perfect matching by

(BR5), which is a contradiction. Otherwise, since vk = t is matched with some vertex

y ∈ I(rl+1), we have h ∈ I(rl+1), where h is as in Step 4 of Blossom(v, u). This shows

that Z ⊆ I(rl+1) ∪ I(sk) as z ≥H x = rl+1 for any z ∈ Z. Since |Z ∩ I(rl+1)| ≤ 1,

|Z ∩ I(sk)| ≤ 1, and M is a tight perfect matching, we have I(rl+1) ∩ Z = ∅, Z = {z}
for some z ∈ I(sk), and each of G◦[I(rl+1) \ {y}] and G◦[I(sk) \ {z}] has a tight perfect

matching. This shows that y ≤H rl+1 and z ≤H sk by (BR5) and the definition of ≤H .

Then, we obtain

h ≤H y ≤H rl+1 = x ≤H z ≤H sk = g.

Since no element is chosen between g and h in Step 4 of Blossom(v, u), we have h = y =

rl+1 = x and z = sk = g, which contradicts that z ∈ H− and g 6∈ H− by Lemma 7.2.

We note that when we apply the same argument to the cases of (ii), (iv), and (vi) by

changing the roles of g and h, we obtain g = y = rl+1 = x. Then, this contradicts that

x ∈ H− and g 6∈ H−.

Case 1b. Suppose that j ≤ k − 1. In this case, since M is a tight perfect matching,

for i = j+1, . . . , k, we have Z∩I(si) = ∅ and (vi, si) is the only edge in M between I(si)

and the outside of I(si). We can also see that Z ∩J(vj) = ∅, since z ≥H x for any z ∈ Z.
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Figure 20: Example of Case 1a.
b

J(vj)

J(v0)

I(sj)

J(u0)

I(rl)

t

ul+1

x

Figure 21: Example of Case 1b.

We denote by Zj the set of vertices in J(vj) matched by M to the outside of J(vj). Since

z ≥H x for any z ∈ Z and Z∩I(si) 6= ∅ for some i ≤ j−1, we have vj ≺ ul+1, where ul+1

is the vertex naturally defined by the decomposition of P (u) (see Fig. 21). Note that the

assumption j ≤ k − 1 is used here. Then, for any vertex y ∈ J(vj) with y <H vj , there

is no edge in M connecting y and RH(x) \ J(vj) because of the following:

• By (PD3) of Lemma 8.1, y is not adjacent to I(si) ∪ J(vi−1) for i ≤ j, because

y ≺ vj � vi.

• By (PD3) of Lemma 8.1, y is not adjacent to I(ri)∪ J(ui−1) for i ≤ l+ 1, because

y ≺ vj ≺ ul+1 � ui.

• If z ∈ J(vi) with i > j, then z is not adjacent to y by (PD3) of Lemma 8.1.

• For i > j, (vi, si) is the only edge in M between I(si) and its outside, and hence

there is no edge is M between I(si) and y.

This shows that (Z ∩ J(vj)) ∪ Zj = Zj ⊆ {y ∈ J(vj) | y ≥H vj}. Therefore, by (BR5), if

G◦[J(vj) \ (Z ∪ Zj)] has a tight perfect matching, then Zj = {vj}. The vertex vj is not

adjacent to the vertices in RH(x) \ (J(vj) ∪ I(sj) ∪ · · · ∪ I(sk)) by (PD3) and (PD4) of

Lemma 8.1. Since (vi, si) is the only edge in M between I(si) and its outside for i > j, vj
has to be adjacent to I(sj). Furthermore, by (vj , sj) 6∈M and by (PD4) of Lemma 8.1,

we have that vj is incident to a vertex z ∈ I(sj) with z >H′ sj , where I(sj) = RH′(sj)

for some positive blossom H ′ ∈ Λ. Since G◦[I(sj) \ {z}] has no tight perfect matching

by (BR5), we obtain a contradiction.

36



We next show that RH(x) satisfies (BR4), that is, G◦[RH(x)\{x}] has a unique tight

perfect matching. Let M be an arbitrary tight perfect matching in G◦[RH(x) \ {x}].
Recall that rl+1 = x and either I(rl+1) = {rl+1} or I(rl+1) = RHj (rl+1) for some

positive blossom Hj ∈ Λ. Since M is a tight perfect matching and |I(rl+1) \ {x}| is even,

there is no edge in M between I(rl+1) and its outside. By (BR4), G◦[I(rl+1) \ {x}] has

a unique tight perfect matching, which must form a part of M . On the other hand,

G◦[J(vk)I(sk)J(vk−1)I(sk−1) · · · J(v1)I(s1)J(v0)J(u0) I(r1) J(u1) · · · I(rl) J(ul)]

has a unique tight perfect matching by the same argument as Lemma 8.2. By combining

them, we have that G◦[RH(x) \ {x}] has a unique tight perfect matching.

Case 2. Suppose that x ∈ H was labeled before H is created.

We consider the case of x ∈ K(y) with y ∈ P (v|c). The case of x ∈ K(y) with

y ∈ P (u|d) can be dealt with in a similar manner. By Lemma 8.1, RH(x) can be

decomposed as

RH(x) = J(vk)I(sk)J(vk−1)I(sk−1) · · · J(vl+1)I(sl+1)J(vl)

with x = vl (see Fig. 22).

b

J(vl)

I(sl+1)

t

x

Figure 22: Example of Case 2.

We first show that RH(x) satisfies (BR5), that is, G◦[RH(x) \Z] has no tight perfect

matching if Z ⊆ RH(x) ∩ H− satisfies that z ≥H x for any z ∈ Z, Z 6= {x}, and

|Hj ∩ Z| ≤ 1 for any positive blossom Hj ∈ Λ. Since z ≥H x for any z ∈ Z, we have

that Z ⊆ J(vl) ∪
⋃
i I(si), which shows that we can apply the same argument as Case 1

to obtain (BR5).
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We next show that RH(x) satisfies (BR4), that is, G◦[RH(x)\{x}] has a unique tight

perfect matching. By Corollary 8.3, G◦[P (x) \ {x}] has a unique tight perfect matching

M , and a part of M forms a tight perfect matching in G◦[RH(x) \ {x}]. Thus, this

matching is a unique tight perfect matching in G◦[RH(x) \ {x}].

We note that, for a blossom H ∈ Λ, creating/deleting another blossom H ′ does not

change H− and H• by Corollary 7.4 and Lemma 7.5. We also note that if RH(x) satisfies

(BR1)–(BR5) for x ∈ H•, then creating/deleting another blossom H ′ does not violate

these conditions by Lemmas 7.2, 7.3 and 7.5. Therefore, Lemma 8.5 shows that the

procedure Search keeps the conditions (BR1)–(BR5).

9 Dual Update

In this section, we describe how to modify the dual variables when Search returns ∅ in

Step 2. In Section 9.1, we show that the procedure keeps the dual variables finite as long

as the instance has a parity base. In Section 9.2, we bound the number of dual updates

per augmentation.

LetR ⊆ V ∗ be the set of vertices that are reached or examined by the search procedure

and not contained in any blossoms. We denote by R+ and R− the sets of labeled and

unlabeled vertices in R, respectively. In particular, the bud bi of a maximal blossom Hi

belongs to R+ if Hi is labeled with 	, and to R− if Hi is labeled with ⊕. Let Z denote

the set of vertices in V ∗ contained in labeled blossoms. The set Z is partitioned into Z+

and Z−, where

Z+ =
⋃
{Hi | Hi is a maximal blossom labeled with ⊕},

Z− =
⋃
{Hi | Hi is a maximal blossom labeled with 	}.

We denote by Y the set of vertices that do not belong to these subsets, i.e., Y = V ∗ \
(R ∪ Z).

For each vertex v ∈ R, we update p(v) as

p(v) :=


p(v) + ε (v ∈ R+ ∩B∗)
p(v)− ε (v ∈ R+ \B∗)
p(v)− ε (v ∈ R− ∩B∗)
p(v) + ε (v ∈ R− \B∗).

We also modify q(H) for each maximal blossom H by

q(H) :=


q(H) + ε (H : labeled with ⊕)

q(H)− ε (H : labeled with 	)

q(H) (otherwise).
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To keep the feasibility of the dual variables, ε is determined by ε = min{ε1, ε2, ε3, ε4},
where

ε1 =
1

2
min{p(v)− p(u)−Quv | (u, v) ∈ F ∗, u, v ∈ R+ ∪ Z+, K(u) 6= K(v)},

ε2 = min{p(v)− p(u)−Quv | (u, v) ∈ F ∗, u ∈ R+ ∪ Z+, v ∈ Y },
ε3 = min{p(v)− p(u)−Quv | (u, v) ∈ F ∗, u ∈ Y, v ∈ R+ ∪ Z+},
ε4 = min{q(H) | H: a maximal blossom labeled with 	}.

If ε = +∞, then we terminate Search and conclude that there exists no parity base.

Otherwise, while there exists a maximal blossom whose value of q is zero after the dual

update, delete such a blossom from Λ by Expand. Then, apply the procedure Search

again.

9.1 Detecting Infeasibility

By the definition of ε, we can easily see that the updated dual variables are feasible if

ε is a finite value. We now show that we can conclude that the instance has no parity

base if ε = +∞.

A skew-symmetric matrix is called an alternating matrix if all the diagonal entries

are zero. Note that any skew-symmetric matrix is alternating unless the underlying field

is of characteristic two. By a congruence transformation, an alternating matrix can be

brought into a block-diagonal form in which each nonzero block is a 2 × 2 alternating

matrix. This shows that the rank of an alternating matrix is even, which plays an

important role in the proof of the following lemma.

Lemma 9.1. Suppose that there is a source line, and suppose also that ε = +∞ when

we update the dual variables. Then, the instance has no parity base.

Proof. In order to show that there is no parity base, by Lemma 2.1, it suffices to show

that Pf ΦA(θ) = 0. We construct the matrix

Φ∗A(θ) =


O

O
I

C∗

O −I
D′(θ) O

−C∗>
O O


← T ∩B∗

← U (identified with B)

← B

← V \B
← T \B∗

in the same way as Section 6, where T := {bi, ti | Hi ∈ Λn}. Note that we regard the

row set of C∗ as (T ∩B∗) ∪ U instead of U∗, and hence the row/column set of Φ∗A(θ) is

W ∗ := V ∗ ∪ U . Then Pf ΦA(θ) = 0 is equivalent to Pf Φ∗A(θ) = 0.

Construct a graph Γ∗ = (W ∗, E∗) with edge set E∗ := {(u, v) | (Φ∗A(θ))uv 6= 0}. In

order to show that Pf Φ∗A(θ) = 0, it suffices to prove that Γ∗ does not have a perfect
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matching. Since Φ∗A(θ)[U,B] is the identity matrix, we have a natural bijection η : B → U

between B and U . We then define X ⊆W ∗ by X := (R− \B) ∪ η(R− ∩B).

Since ε4 = +∞, no maximal blossom Hi is labeled with 	. For each maximal blossom

Hi labeled with ⊕, we introduce Zi := Hi ∪ η(Hi ∩ B). If Hi is a normal blossom, then

Hi is of odd cardinality and Hi does not contain any source line, which imply that |Zi|
is odd. If Hi is a source blossom, then Hi is of even cardinality and Hi contains exactly

one source line, which again imply that Zi is of odd cardinality. Note that there exist no

edges of E∗ between Zi and W ∗ \ (X ∪ Zi).
All the source lines that are not included in any blossoms are contained in R+. For

each normal line ` ⊆ R, exactly one vertex u` in ` is unlabeled and the other vertex ū`
is labeled. For each line ` ⊆ R, we now introduce R` by

R` :=


{u`, ū`, η(ū`)} (` ⊆ B),

{v`, v̄`, η(v̄`)} (` = {v`, v̄`}, v̄` ∈ B, v` ∈ V \B),

{ū`} (` ⊆ V \B).

Note that R` is of odd cardinality and that there exist no edges of E∗ between R` and

W ∗ \ (X ∪ Zi).
Let odd(Γ∗ \X) denote the number of odd components after deleting X from Γ∗. For

each bi ∈ R−, we have a corresponding odd component Zi. For each u` ∈ R−, we have

an odd component R`. In addition, there are some other odd components coming from

source blossoms or source lines. Thus we have odd(Γ∗ \X) > |X|, which implies by the

theorem of Tutte [40] that Γ∗ does not admit a perfect matching.

9.2 Bounding Iterations

We next show that the dual variables are updated O(n) times per augmentation. To

see this, roughly, we show that this operation increases the number of labeled vertices.

Although Search contains flexibility on the ordering of vertices, it does not affect the set

of the labeled vertices when Search returns ∅. This is guaranteed by the following lemma.

Lemma 9.2. Suppose that a vertex v ∈ V ∪ {bi | Hi ∈ Λn is a maximal blossom} is not

removed in Search that returns ∅. Then, v is labeled in Search if and only if there exists

a vertex set X ⊆ V ∗ such that

• X ∪ {v} consists of normal lines, dummy lines, and a source vertex s,

• T ⊆ X ∪ {v},

• C∗[X] is nonsingular, and
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• the equality

p(X \B∗)− p(X ∩B∗) =
∑
{q(Hi) | Hi ∈ Λ, |X ∩Hi| is odd} (7)

holds.

Proof. We first observe that creating or deleting a blossom does not affect the conditions

in Lemma 9.2 unless v is removed. Indeed, when T is updated as T ′ := T ∪ {bi, ti} or

T ′ := T \ {bi, ti} by creating/deleting a blossom, X ′ := ((X \ T ) ∪ T ′) \ {v} satisfies the

conditions by Lemma 4.2. Thus, it suffices to show that v is labeled in Search if and only

if there exists a vertex set X satisfying the conditions when Search returns ∅. In what

follows in the proof, all notations (V ∗, C∗, T,Λ, etc.) represent the objects when Search

returns ∅.
If v is labeled in Search, then we obtain P (v) such that G◦[P (v) \ {v}] has a unique

tight perfect matching by Corollary 8.3. Define X := (P (v)∪ T ) \ {v}. For any minimal

Hi ∈ Λn with P (v) ∩Hi = ∅, it follows from Lemma 7.3 that (bi, ti) is a unique edge in

G◦ between ti and X \ {ti}. Thus, if G◦[X] has a perfect matching, then it must contain

(bi, ti). By applying this argument repeatedly for each Hi ∈ Λn with P (v) ∩Hi = ∅ in

the order of indices (i.e., in the order from smaller blossoms to larger ones), G◦[X] has a

unique tight perfect matching, because bi, ti ∈ P (v) for any Hi ∈ Λn with P (v)∩Hi 6= ∅
by Observation 7.1. Thus, C∗[X] is nonsingular by Lemma 5.2, and the equality (7)

holds.

We now intend to prove the converse. Suppose that X satisfies the above conditions,

and assume to the contrary that v is not labeled when Search returns ∅. Then, we can

update the dual variables keeping the dual feasibility as described at the beginning of

this section. We now see how the dual update affects (7).

• Consider the dual variables corresponding to K(s). If s is single, then the left hand

side of (7) decreases by ε by updating p(s). Otherwise, K(s) = Hi for some source

blossom Hi ∈ Λs, since s is a source vertex. Then, |X ∩Hi| is odd as v 6∈ Hi, and

hence the right hand side of (7) increases by ε by updating q(Hi).

• Consider the dual variables corresponding to K(v).

– If v is single, then the left hand side of (7) decreases by ε or does not change

by updating p(v̄), because v̄ ∈ R+ ∪ Y .

– If v ∈ Hi for some maximal blossom Hi ∈ Λn, then |X ∩ Hi| is even. Thus,

the right hand side of (7) does not change by updating q(Hi). Furthermore,

since Hi is not labeled with ⊕, we have bi ∈ R+ ∪ Y , which shows that the

left hand side of (7) decreases by ε or does not change by updating p(bi).
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– If v = bi for some maximal blossom Hi ∈ Λn, then |X ∩Hi| is odd. Since Hi

is not labeled with 	, the right hand side of (7) increases by ε or does not

change by updating q(Hi).

– If v ∈ Hi for some maximal blossom Hi ∈ Λs, then v is labeled, which contra-

dicts the assumption.

• For any u ∈ X with s, v 6∈ K(u), updating the dual variables corresponding to

K(u) does not affect the equality (7), since |X ∩Hi| is even for any Hi ∈ Λs with

s 6∈ Hi and |X ∩Hi| is odd for any Hi ∈ Λn with v 6∈ Hi ∪ {bi}.

By combining these facts, after updating the dual variables, we have that the left hand

side of (7) is strictly less than its right hand side, which contradicts Lemma 5.1.

By using this lemma, we bound the number of dual updates as follows.

Lemma 9.3. The dual variables are updated at most O(n) times before Search finds an

augmenting path or we conclude that the instance has no parity base by Lemma 9.1.

Proof. Suppose that we update the dual variables more than once, and we consider how

the value of

κ(V ∗,Λ) := |{w ∈ V | w is labeled}|+ |Λ1| − |Λ2| − 2|Λ3|

will change between two consecutive dual updates, where

Λ1 := |{Hi ∈ Λ | Hi contains a labeled vertex}|,
Λ2 := |{Hi ∈ Λn | Hi is a maximal blossom labeled with 	}|,
Λ3 := Λ \ (Λ1 ∪ Λ2).

Note that every maximal blossom labeled with 	 contains no labeled vertex, and hence

Λ1 ∩ Λ2 = ∅. We first show that κ(V ∗,Λ) does not decrease.

By Lemma 9.2, if w ∈ V is labeled at the time of the first dual update, then it

is labeled again at the time of the second dual update. This shows that |{w ∈ V |
w is labeled}| does not decrease. By Lemma 9.2 again, blossoms satisfy the following.

• If a blossom is in Λ1 at the time of the first dual update, then it is still in Λ1 at

the time of the second dual update unless it is deleted. Note that such a blossom

is deleted only when it is replaced with a new blossom in Graft.

• If a blossom is in Λ2 at the time of the first dual update, then it is in Λ1 ∪ Λ2 at

the time of the second dual update unless it is deleted.

• If a blossom is in Λ3 at the time of the first dual update, then it is in Λ = Λ1∪Λ2∪Λ3

at the time of the second dual update unless it is deleted.
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• If a new blossom is created in Blossom after the first dual update, then it is in Λ1

at the time of the second dual update.

• If Graft is applied after the first dual update, then it replaces a blossom in Λ with

a new blossom containing a labeled vertex, i.e., the new blossom is in Λ1 at the

time of the second dual update.

By the above observations, κ(V ∗,Λ) does not decrease. In what follows, we show that

κ(V ∗,Λ) increases strictly.

If we update the dual variables with ε = ε4, then there exists a maximal blossom

Hi ∈ Λn labeled with 	 such that q(Hi) = ε, which shows that Hi ∈ Λ2 is deleted before

the time of the second dual update. This shows that κ(V ∗,Λ) increases.

If ε < ε4, then there is a new tight edge between R+ ∪ Z+ and Y , or between two

vertices in R+ ∪ Z+. We note that some blossoms may be created or deleted in Graft

after the first dual update is executed. However, such a new tight edge remains to exist

by Lemmas 7.3 and 7.5.

Suppose that ε = ε2. In this case, we create a new tight edge (u, v) with u ∈ R+∪Z+

and v ∈ Y . Since u is labeled again at the time of the second dual update, some vertex

in K(v) is newly labeled. Thus, |{w ∈ V | w is labeled}| increases or a blossom in

Λ3 becomes a member of Λ2, and hence the value of κ(V ∗,Λ) will increase. The same

argument can be applied to the case of ε = ε3.

Suppose that ε = ε1. In this case, we create a new tight edge (u, v) with u, v ∈ R+∪Z+

and K(u) 6= K(v). By changing the roles of u and v if necessary, we may assume that

u ≺ v. Then, we consider each of the following cases.

• If the first elements in P (v) and P (u) belong to different source lines, then we obtain

an augmenting path, which contradicts that we apply the second dual update.

• If v ∈ Hi for some maximal normal blossom Hi ∈ Λn and u = ρ(bi), then there

exists an edge in F ∗ between u = ρ(bi) and v ∈ Hi, which contradicts Lemma 7.2.

• If neither of the above cases apply, then a new blossomH is created in Blossom(v, u),

and hence |Λ1| increases. This shows that the value of κ(V ∗,Λ) increases.

Thus, the value of κ(V ∗,Λ) increases by at least one between two consecutive dual

updates. Since the range of κ(V ∗,Λ) is at most O(n), the dual variables are updated at

most O(n) times.

10 Augmentation

The objective of this section is to describe how to update the primal solution using

an augmenting path P . The augmentation procedure that primarily replaces B∗ with
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B∗4P , where 4 denotes the symmetric difference. In addition, it updates the bud and

the tip of each normal blossom.

Suppose we are given V ∗, B∗, C∗, Λ, and feasible dual variables p and q. Let P

be an augmenting path, and ΛP denote the set of blossoms that intersect with P , i.e.,

ΛP = {Hi ∈ Λ | Hi ∩ P 6= ∅}. Let Λ+
P denote the set of positive blossoms in ΛP . In

the augmentation along P , we update V ∗, B∗, C∗, Λ, bi, ti, p, and q. The procedure for

augmentation is described as follows.

Procedure Augment(P )

Step 0: While there exists a maximal blossom Hi ∈ Λ \ ΛP with q(Hi) = 0, apply

Expand(Hi).

Step 1: Let M be the unique tight perfect matching in G◦[P ]. For each Hi ∈ Λ+
P , let

(xi, yi) be the unique edge in M with xi ∈ Hi and yi ∈ V ∗ \Hi (see Corollary 8.4),

add new vertices b̂i and t̂i to V ∗, and update B∗, C∗, and p as follows (see Fig. 23).

• Add t̂i to Hi. For each blossom Hj with Hi ( Hj , add b̂i and t̂i to Hj .

• If xi ∈ B∗ and yi ∈ V ∗ \B∗, then B∗ := B∗ ∪ {b̂i},

C∗
b̂iv

:=

{
C∗xiv (v ∈ (V ∗ \B∗) \Hi),

0 (v ∈ Hi \B∗),
C∗
ut̂i

:=

{
C∗uyi (u ∈ B∗ ∩Hi),

0 (u ∈ B∗ \Hi),

p(̂bi) := p(yi)−Qb̂iyi , and p(t̂i) := p(xi) +Qxi t̂i .

• If xi ∈ V ∗ \B∗ and yi ∈ B∗, then B∗ := B∗ ∪ {t̂i},

C∗
ub̂i

:=

{
C∗uxi (u ∈ B∗ \Hi),

0 (u ∈ B∗ ∩Hi),
C∗
t̂iv

:=

{
C∗yiv (v ∈ Hi \B∗),
0 (v ∈ (V ∗ \B∗) \Hi),

p(̂bi) := p(yi) +Q
b̂iyi

, and p(t̂i) := p(xi)−Qxi t̂i .

Step 2: Apply the pivoting operation around P ∗ := P ∪{b̂i, t̂i | Hi ∈ Λ+
P } to C∗, namely

B∗ := B∗4P ∗.

Step 3: For each (not necessarily maximal) blossom Hi ∈ ΛP \ Λ+
P , remove Hi from

Λ, and if Hi is a normal blossom, then remove also bi and ti from V ∗. For each

Hi ∈ Λ+
P , remove bi and ti from V ∗ if Hi is a normal blossom, and rename b̂i and

t̂i as the bud bi and the tip ti of Hi, respectively.

Step 4: For each Hi ∈ Λ+
P in the order of indices (i.e., in the order from smaller blossoms

to larger ones), apply the following.

44



ti

0

yi

0

Hi

B*∩Hi

Hi   B* 

same

same

C*

(added to Hi)

0

xi

bi

Figure 23: Definition of C∗ in Augment(P ).

(i) Introduce new vertices b′i and t′i and add t′i to Hi. For each blossom Hj with

Hi ( Hj , add b′i and t′i to Hj .

(ii) If bi ∈ B∗ and ti ∈ V ∗ \B∗, then B∗ := B∗ ∪ {t′i},

C∗ub′i
:=

{
C∗uti (u ∈ B∗ \Hi),

0 (u ∈ Hi ∩B∗),
C∗t′iv

:=

{
C∗biv (v ∈ Hi \B∗),
0 (v ∈ (V ∗ \B∗) \Hi),

p(b′i) := p(ti)−Qb′iti , and p(t′i) := p(bi) +Qbit′i .

(iii) If bi ∈ V ∗ \B∗ and ti ∈ B∗, then B∗ := B∗ ∪ {b′i},

C∗b′iv
:=

{
C∗tiv (v ∈ (V ∗ \B∗) \Hi),

0 (v ∈ Hi \B∗),
C∗ut′i

:=

{
C∗ubi (u ∈ Hi ∩B∗),
0 (u ∈ B∗ \Hi),

p(b′i) := p(ti) +Qb′iti , and p(t′i) := p(bi)−Qbit′i .

(iv) Apply the pivoting operation around {bi, ti, b′i, t′i} to C∗, namelyB∗ := B∗4{bi, ti, b′i, t′i}.

Then, for each Hi ∈ Λ+
P , remove bi and ti from V ∗, and rename b′i and t′i as the

bud bi and the tip ti of Hi, respectively.

Step 5: For each Hi ∈ Λ+
P in the reverse order of indices (i.e., in the order from larger

blossoms to smaller ones), apply the procedures (i)–(iv) in Step 4. Then, for each

Hi ∈ Λ+
P , remove bi and ti from V ∗, and rename b′i and t′i as the bud bi and the tip

ti of Hi, respectively.

Note that Steps 4 and 5 are executed to keep (BT2). After Step 3, (BT2) does

not necessarily hold, whereas the dual variables are feasible and (BT1) holds. Step 4 is

applied to delete all the edges in F ∗ between ti and (V ∗\Hi)\{bi} for each Hi ∈ Λ+
P , and
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Step 5 is applied to delete all the edges in F ∗ between bi and Hi \ {ti} for each Hi ∈ Λ+
P .

See Lemma 10.3 for details.

In Section 10.1, we show the validity of the augmentation procedure. After the

augmentation, the algorithm applies Search in each blossom Hi to obtain a new routing

and ordering in Hi, which will be described in Section 10.2.

10.1 Validity

In this subsection, we show the validity of Augment(P ). We first show that the dual

feasibility holds after the augmentation.

Lemma 10.1. Suppose that the dual variables (p, q) are feasible at the beginning of

Augment(P ). Then the procedure keeps the dual feasibility.

Proof. By Lemma 5.3, the dual variables (p, q) are feasible after Step 0.

We intend to show that (p, q) are feasible after Step 1. New edges that appear in F ∗

are incident to b̂i or t̂i for some Hi ∈ ΛP . For a new edge (u, t̂i) ∈ F ∗, we have u ∈ Hi,

(u, yi) ∈ F ∗, and Quyi −Qut̂i = Qxiyi −Qxi t̂i . If xi ∈ B∗, we have

p(t̂i)− p(u) = p(xi) +Qxi t̂i − p(u)

= p(yi)−Qxiyi +Qxi t̂i − p(u)

= p(yi)−Quyi +Qut̂i − p(u) ≥ Qut̂i .

If xi ∈ V ∗ \B∗, we can similarly derive p(u)− p(t̂i) ≥ Qut̂i . For a new edge (b̂i, v) ∈ F ∗,
we have v ∈ V ∗ \Hi, (xi, v) ∈ F ∗, and Qxiv −Qb̂iv = Qxiyi −Qb̂iyi . If xi ∈ B∗, we have

p(v)− p(̂bi) = p(v)− p(yi) +Q
b̂iyi

= p(v)− p(xi)−Qxiyi +Q
b̂iyi

= p(v)− p(xi)−Qxiv +Q
b̂iv
≥ Qxiv.

If xi ∈ V ∗ \ B∗, we can similarly derive p(̂bi) − p(v) ≥ Q
b̂iv

. Thus the dual variables

(p, q) remain feasible at the end of Step 1.

We next intend to show that Step 2 also keeps the dual feasibility. Suppose that

(u, v) ∈ F ∗ with u ∈ B∗ and v ∈ V ∗ \ B∗ after Step 2. Then C∗[P ∗4{u, v}] must be

nonsingular before the pivoting operation by Lemma 4.2. Since |P ∗∩Hi| is even for each

Hi ∈ Λ with q(Hi) > 0, it follows from Lemma 5.1 that

p((P ∗4{u, v}) \B∗)− p((P ∗4{u, v}) ∩B∗) ≥ Quv

before Step 2. On the other hand, since G◦[P ∗] contains a tight perfect matching, we

have

p(P \B∗)− p(P ∗ ∩B∗) = 0
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before Step 2. Combining these two inequalities with u ∈ P ∗4B∗ and v ∈ V ∗\(P ∗4B∗),
we obtain p(v)− p(u) ≥ Quv, which shows that (p, q) remain feasible after Step 2.

Removing some vertices in Step 3 does not affect the dual feasibility.

Finally, we consider each step of Steps 4 and 5. We can see that adding b′i and t′i
does not violate the dual feasibility by the same argument as Step 1. If (u, v) ∈ F ∗

after the pivoting operation in Step 4 or 5, then C∗[Xi4{u, v}] is nonsingular where

Xi := {bi, ti, b′i, t′i} before the pivoting operation by Lemma 4.2. Since G◦[Xi] contains a

tight perfect matching before the pivoting operation, we can apply the same argument

as Step 2 to show that (p, q) remain feasible after Steps 4 and 5.

Thus (p, q) is feasible throughout the procedure.

We next show the nonsingularity of C∗[P ∗] in Step 2, which guarantees that we can

apply the pivoting operation in Step 2 of Augment(P ).

Lemma 10.2. When we apply the pivoting operation in Step 2 of Augment(P ), C∗[P ∗]

is nonsingular.

Proof. We first note that Expand(Hi) in Step 0 does not affect the edges in G◦[P ].

We show that G◦[P ′] has a unique tight perfect matching for P ′ := P ∪ {b̂i, t̂i} with

Hi ∈ Λ+
P . Since G◦[P ] has a unique tight perfect matching M , which contains (xi, yi),

both G◦[(P ∩Hi)∪{yi}] and G◦[(P \Hi)∪{xi}] have a unique tight perfect matching. By

the definition of b̂i and t̂i, this shows that both G◦[P ′∩Hi] and G◦[P ′ \Hi] have a unique

tight perfect matching. Thus, we obtain a tight perfect matching in G◦[P ′]. Furthermore,

since |Hi ∩ P ′| is even and Hi is positive, any tight perfect matching in G◦[P ′] consists

of a tight perfect matching in G◦[P ′ ∩Hi] and one in G◦[P ′ \Hi]. Therefore, G◦[P ′] has

a unique tight perfect matching.

By applying the same argument to each Hi ∈ Λ+
P , repeatedly, we see that G◦[P ∗] has

a unique tight perfect matching. By Lemma 5.2, G∗[P ∗] has a unique perfect matching,

which shows that C∗[P ∗] is nonsingular.

Finally in this subsection, we show that (BT1) and (BT2) hold after Augment(P ).

Lemma 10.3. The procedure Augment(P ) keeps (BT1) and (BT2).

Proof. It is obvious from the definition that (BT1) holds.

We first show by induction on i that, for any j ≤ i with Hj ∈ Λ+
P , (b′j , t

′
j) ∈ F ∗ and

there is no edge in F ∗ between t′j and (V ∗\Hj)\{b′j} after the pivoting operation around

Xi := {bi, ti, b′i, t′i} in Step 4. We only consider the case when b′i ∈ B∗ and t′i ∈ V ∗ \ B∗

after the pivoting operation as the other case can be dealt with in a similar way. Since

C∗
[
P ∗ \ {b̂j , t̂j | Hj ∈ Λ+

P , j ≤ i}
]
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is nonsingular before the pivoting operation around P ∗ in Step 2, we have C∗[{bj , tj |
Hj ∈ Λ+

P , j ≤ i}] is nonsingular after the pivoting operation around P ∗ in Step 2 by

Lemma 4.2. By Lemma 4.2 again, this shows that C∗[{b′j , t′j | Hj ∈ Λ+
P , j ≤ i}] is

nonsingular after the pivoting operation around Xi in Step 4. Since there is no edge

between t′j and (V ∗ \Hj) \ {b′j} for j < i by induction hypothesis, the nonsingularity of

C∗[{b′j , t′j | Hj ∈ Λ+
P , j ≤ i}] shows that C∗b′it′i

6= 0. Before the pivoting operation around

Xi, for u ∈ B∗ \Hi with u 6= bi, detC∗[Xi4{t′i, u}] = detC∗[{bi, ti, b′i, u}] is zero, since

two columns in C∗[{bi, ti, b′i, v}] are the same by the definition of b′i. Thus, C∗ut′i
= 0

for u ∈ B∗ \ Hi with u 6= b′i after the pivoting operation around Xi. Furthermore, for

any j < i with Hj ∈ Λ+
P , the pivoting operation around Xi does not create a new edge

in F ∗ between t′j and v ∈ (V ∗ \ Hj) \ {b′j}, because a row/column of C∗[Xi4{t′j , v}]
corresponding to v is zero before the pivoting operation around Xi. We can also see that

the pivoting operation around Xi does not remove (b′j , t
′
j) from F ∗ for any j < i with

Hj ∈ Λ+
P . Hence, for each Hi ∈ Λ+

P , (b′i, t
′
i) ∈ F ∗ and there is no edge in F ∗ between t′i

and (V ∗ \Hi) \ {b′i} after applying (i)–(iv) for each normal blossom in Step 4.

We next show by induction on i (in the reverse order) that, for any j ≥ i with

Hj ∈ Λ+
P , Hj satisfies the condition in (BT2) after the pivoting operation around Xi :=

{bi, ti, b′i, t′i} in Step 5. Note that the pivoting operation aroundXi creates/deletes neither

an edge in F ∗ between t′j and (V ∗ \Hj)\{b′j} for j 6= i, nor an edge in F ∗ between b′j and

Hj \ {t′j} for j > i. Thus, it suffices to show that there is no edge in F ∗ between b′i and

Hi\{t′i} after the pivoting operation around Xi in Step 5. We only consider the case when

b′i ∈ B∗ and t′i ∈ V ∗ \B∗ after the pivoting operation as the other case can be dealt with

in a similar way. Before the pivoting operation around Xi, for v ∈ Hi ∩ B∗ with v 6= ti,

detC∗[Xi4{b′i, v}] = detC∗[{bi, ti, t′i, v}] is zero, since two rows in C∗[{bi, ti, t′i, v}] are

the same by the definition of t′i. Thus, C∗b′iv
= 0 for v ∈ Hi ∩ B∗ with v 6= t′i after the

pivoting operation around Xi. Hence, by applying (i)–(iv) for each normal blossom in

Step 5, there is no edge in F ∗ between b′i and Hi \ {t′i} for each Hi ∈ Λ+
P .

Since the pivoting operations do not create/delete an edge in F ∗ between t′i and

(V ∗ \Hi) \ {b′i} for each Hi ∈ Λn \ Λ+
P , (BT2) holds after Augment(P ).

10.2 Search in Each Blossom

In this subsection, we describe how to update the routing RHi(x) for each x ∈ H•i and the

ordering <Hi in H•i after the augmentation. If Hi does not intersect with the augmenting

path P , then the augmentation does not affect G◦[Hi], and the algorithm simply keeps

the same routing and ordering as before.

For each blossom Hi ∈ Λn with Hi ∩ P 6= ∅, in the order of indices, we apply Search

to Hi ∪ {bi} in which we regard the dummy line {bi, ti} as the unique source line. The

family of blossoms is restricted to the set of blossoms Hj ∈ Λn with Hj ( Hi. For each

inner blossom Hj , we have already computed <Hj and RHj (x) for x ∈ H•j . Since there
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exists no augmenting path in Hi, Search always returns ∅. Then, we can show that the

procedure labels every vertex in Hi ∩ V without updating the dual variables as we will

see in Lemma 10.4. However, this procedure may create new blossoms in Hi, and the

bud b of such a blossom H is not labeled. This means that we do not obtain RHi(b),

whereas b might be in H−i . To overcome this problem, we update the dual variables

and apply Expand(Hi). Whenever Search terminates, we update the dual variables as we

will describe later. We repeat this process until q(Hi) becomes zero. Then, we apply

Expand(Hi).

A new blossom H created in this procedure is accompanied by <H and RH(x) for

x ∈ H• satisfying (BR1)–(BR5) by the argument in Sections 7 and 8. We can also

see that p and q are feasible after creating a new blossom by the same argument as

Lemma 7.6.

This argument shows that (BT1), (BT2), and (DF1)–(DF3) hold when we restrict the

instance to Hi ∪ {bi}. We now show that we can create a new blossom H with q(H) = 0

in the procedure so that these conditions hold in the entire instance. To this end, when

we create a new blossom H, we define the row and the column of C∗ corresponding to

{b, t} as follows.

• If b ∈ B∗, then we define C∗by = 0 for any y ∈ (V ∗ \ (Hi ∪{bi})) \B∗ and C∗xt = C∗xg
for any x ∈ B∗ \ (Hi ∪ {bi}) (see Fig. 24).

• If b ∈ V ∗ \B∗, then we define C∗xb = 0 for any x ∈ B∗ \ (Hi ∪ {bi}) and C∗ty = C∗gy
for any y ∈ (V ∗ \ (Hi ∪ {bi})) \B∗

• The other entries in C∗ are determined by Search in Hi ∪ {bi}.

• Then, apply the pivoting operation to C∗ around {b, t}.

In other words, we consider all the vertices in V ∗ (instead of Hi ∪ {bi}) when we intro-

duce new vertices in Step 2 of Blossom(v, u) or Step 1 of Graft(v,Hi). Note that this

modification does not affect the entries in C∗[Hi ∪ {bi}], and hence it does not affect

Search in Hi ∪ {bi}.

Lemma 10.4. When we apply Search in Hi ∪ {bi} as above, the procedure labels every

vertex in Hi ∩ V without updating the dual variables.

Proof. By Lemma 9.2, it suffices to show that for every vertex v ∈ Hi ∩ V , there exists

a vertex set X ⊆ Hi with the conditions in Lemma 9.2.

We first show that such a vertex set exists after Step 3 of Augment(P ). For a given

vertex v ∈ Hi ∩ V , define Z ⊆ Hi by

Z :=

{
RHi(v) \ {v} if v 6∈ P ,
RHi(v̄) \ {v̄} if v ∈ P .
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Figure 24: Definition of C∗. Each element in the left figure is determined by Search in

Hi ∪ {bi} in the same way as Fig 10. We extend this definition to the entire matrix as

shown in the right figure.

Then, G◦[Z] has a unique tight perfect matching by (BR4). Set

Y := Z ∪ (P ∗ \Hi) ∪ {bj , tj | Hj ∈ Λn, Hj ( Hi, Hj ∩ Z = ∅}.

Since each of G◦[P ∗ \ Hi] and G◦[P ∗ ∩ Hi] has a unique tight perfect matching, where

P ∗ ∩ Hi might be the emptyset, G◦[Y ] also has a unique tight perfect matching. This

shows that C∗[Y ] is nonsingular before the pivoting operation around P ∗ in Step 2 of

Augment(P ) by Lemma 5.2, and hence C∗[X] with X := Y4P ∗ is nonsingular after the

pivoting operation around P ∗ by Lemma 4.2. Then, X ∪ {v} consists of lines, dummy

lines, and the tip ti, and it contains all the buds and the tips in Hi after updating bi and

ti in Step 3 of Augment(P ). Furthermore, the tightness of the perfect matching in G◦[Y ]

shows that X satisfies (7) after the augmentation. Thus, X satisfies the conditions in

Lemma 9.2 after Step 3 of Augment(P ).

We next show that such a set X exists after Steps 4 and 5 of Augment(P ). Suppose

that we apply (i)–(iv) in Step 4 or 5 of Augment(P ) for Hj ∈ Λn, that is, we apply the

pivoting operation around Xj := {bj , tj , b′j , t′j}. We consider the following three cases,

separately.

• Suppose that Hj ( Hi. In this case, since C∗[X] is nonsingular before the pivot-

ing operation around Xj , C
∗[X4Xj ] is nonsingular after the pivoting operation

by Lemma 4.2. We can also check that X4Xj satisfies the other conditions in

Lemma 9.2.

• Suppose that Hj ) Hi or Hj ∩Hi = ∅. Let X ′ := X ∪ {bj , tj}. Since X ′ satisfies

(7) and |X ′ ∩Hi| is even, the nonsingularity of C∗[X] and C∗[{bj , tj}] shows that
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C∗[X ′] is nonsingular before the pivoting operation around Xj . Hence, C∗[X ′4Xj ]

is nonsingular after the pivoting operation by Lemma 4.2. Since |X ′ ∩Hi| is even,

this implies that C∗[(X ′4Xj) \ {b′j , t′j}] = C∗[X] is nonsingular after the pivoting

operation. We can also check that X satisfies the other conditions in Lemma 9.2.

• Suppose that Hj = Hi. Let X ′ := X ∪ {bi, b′i}. Since (bi, b
′
i) ∈ F ∗ and there is

no edge in F ∗ between b′i and Hi, the nonsingularity of C∗[X] shows that C∗[X ′]

is nonsingular before the pivoting operation around Xj . Hence, C∗[X ′4Xj ] is

nonsingular after the pivoting operation by Lemma 4.2. We can also check that

X ′4Xj satisfies the other conditions in Lemma 9.2.

By these cases, there exists a set X satisfying the conditions in Lemma 9.2 after Steps 4

and 5 of Augment(P ).

Therefore, every vertex in Hi ∩ V is labeled without updating the dual variables by

Lemma 9.2, which completes the proof.

In what follows in this subsection, we describe how to update the dual variables.

Suppose that Search returns ∅ when it is applied to Hi∪{bi}. Define R+, R−, Z+, Z−,

Y , and ε = min{ε1, ε2, ε3, ε4} as in Section 9. By Lemma 10.4, we have that R+ = {bi, ti},
R− = {bj | Hj : maximal blossom with Hj ( Hi}, Z− = Y = ∅, and ε2 = ε3 = ε4 = +∞.

In particular, every maximal blossom is labeled with ⊕. Here, a blossom Hj ( Hi is

called a maximal blossom if there exists no blossom H with Hj ( H ( Hi. We now

modify the dual variables in V ∗ as follows. Set ε′ := min{ε, q(Hi)}, which is a finite

positive value. Then update p(ti) as

p(ti) :=

{
p(ti) + ε′ (ti ∈ B∗),
p(ti)− ε′ (ti ∈ V ∗ \B∗),

and update q(Hi) as q(Hi) := q(Hi) − ε′. For each maximal blossom Hj ( Hi, which

must be labeled with ⊕, update q(Hj) as q(Hj) := q(Hj) + ε′ and p(bj) as

p(bj) :=

{
p(bj)− ε′ (bj ∈ B∗),
p(bj) + ε′ (bj ∈ V ∗ \B∗).

Note that Expand(Hj) is not applied for any maximal blossom Hj ( Hi, because q(Hj) >

0 after the dual update, whereas Expand(Hi) is applied when q(Hi) becomes zero.

We now prove the following claim, which shows the validity of this procedure.

Claim 10.5. The obtained dual variables p and q are feasible in V ∗ (not only in Hi).

Proof. It suffices to show (DF2). Suppose that u ∈ B∗, v ∈ V ∗ \ B∗, and (u, v) ∈ F ∗.
Since the value of q(H) is zero for newly created blossoms H, the dual variable (p, q) are
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feasible at the end of in Search applied to Hi∪{bi}. Updating the dual variables decreases

the slack p(v)− p(u)−Quv only if u and v belong to distinct maximal blossoms included

in Hi or one of them is ti. In these cases, however, we have p(v)− p(u)−Quv ≥ ε1 ≥ ε′.
Thus the above update of the dual variables does not violate the feasibility.

11 Algorithm Description and Complexity

Our algorithm for the minimum-weight parity base problem is described as follows.

Algorithm Minimum-Weight Parity Base

Step 1: Split the weight w` into p(v) and p(v̄) for each line ` = {v, v̄} ∈ L, i.e., p(v) +

p(v̄) = w`. Execute the greedy algorithm for finding a base B ∈ B with minimum

value of p(B) =
∑

u∈B p(u). Set Λ = ∅.

Step 2: If there is no source line, then return B := B∗ ∩ V as an optimal solution.

Otherwise, apply Search. If Search returns ∅, then go to Step 3. If Search finds an

augmenting path P , then go to Step 4.

Step 3: Update the dual variables as in Section 9. If ε = +∞, then conclude that there

exists no parity base and terminate the algorithm. Otherwise, apply Expand(Hi)

for all maximal blossoms Hi with q(Hi) = 0 and go to Step 2.

Step 4: Apply Augment(P ) to obtain a new base B∗, a family Λ of blossoms, and

feasible dual variables p and q. For each normal blossom Hi with Hi ∩ P 6= ∅ in

the increasing order of i, do the following.

While q(Hi) > 0, apply Search in Hi and update the dual variables as in

Section 10.2. Apply Expand(Hi).

Go back to Step 2.

We have already seen the correctness of this algorithm, and we now analyze the

complexity. Since |V ∗| = O(n), an execution of the procedure Search as well as the dual

update requires O(n2) arithmetic operations. By Lemma 9.3, Step 3 is executed at most

O(n) times per augmentation. In Step 4, we create a new blossom or apply Expand(Hi)

when we update the dual variables, which shows that the number of dual updates as

well as executions of Search in Step 4 is also bounded by O(n). Thus, Search and dual

update are executed O(n) times per augmentation, which requires O(n3) operations. We

note that it also requires O(n3) operations to update C∗ and G∗ after augmentation.

Since each augmentation reduces the number of source lines by two, the number of

augmentations during the algorithm is O(m), where m = rankA, and hence the total

number of arithmetic operations is O(n3m).
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Theorem 11.1. Algorithm Minimum-Weight Parity Base finds a parity base of minimum

weight or detects infeasibility with O(n3m) arithmetic operations over K.

If K is a finite field of fixed order, each arithmetic operation can be executed in O(1)

time. Hence Theorem 11.1 implies the following.

Corollary 11.2. The minimum-weight parity base problem over an arbitrary fixed finite

field K can be solved in strongly polynomial time.

When K = Q, it is not obvious that a direct application of our algorithm runs

in polynomial time. This is because we do not know how to bound the number of

bits required to represent the entries of C∗. However, the minimum-weight parity base

problem over Q can be solved in polynomial time by applying our algorithm over a

sequence of finite fields.

Theorem 11.3. The minimum-weight parity base problem over Q can be solved in time

polynomial in the binary encoding length 〈A〉 of the matrix representation A.

Proof. By multiplying each entry of A by the product of the denominators of all entries,

we may assume that each entry of A is an integer. Let γ be the maximum absolute value

of the entries of A, and put N := dm log(mγ)e. Note that N is bounded by a polynomial

in 〈A〉. We compute the N smallest prime numbers p1, . . . , pN . Since it is known that

pN = O(N logN) by the prime number theorem, they can be computed in polynomial

time by the sieve of Eratosthenes.

For i = 1, . . . , N , we consider the minimum-weight parity base problem over GF(pi)

where each entry of A is regarded as an element of GF(pi). In other words, we consider the

problem in which each operation is executed modulo pi. Since each arithmetic operation

over GF(pi) can be executed in polynomial time, we can solve the minimum-weight parity

base problem over GF(pi) in polynomial time by Theorem 11.1. Among all optimal

solutions of these problems, the algorithm returns the best one B. That is, B is the

minimum weight parity set subject to |B| = m and detA[U,B] 6≡ 0 (mod pi) for some

i ∈ {1, . . . , N}.
To see the correctness of this algorithm, we evaluate the absolute value of the subde-

terminant of A. For any subset X ⊆ V with |X| = m, we have

|detA[U,X]| ≤ m!γm ≤ (mγ)m ≤ 2N <
N∏
i=1

pi.

This shows that detA[U,X] = 0 if and only if detA[U,X] ≡ 0 (mod
∏N
i=1 pi). Therefore,

detA[U,X] 6= 0 if and only if detA[U,X] 6≡ 0 (mod pi) for some i ∈ {1, . . . , N}, which

shows that the output B is an optimal solution.
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[23] J. Lee, M. Sviridenko, and J. Vondrák: Matroid matching: The power of local

search, SIAM J. Comput., 42 (2013), 357–379.

[24] L. Lovász: The matroid matching problem, Algebraic Methods in Graph Theory,

Colloq. Math. Soc. János Bolyai, 25 (1978), 495–517.

[25] L. Lovász: On determinants, matchings, and random algorithms, Fundamentals of

Computation Theory, L. Budach ed., Academie-Verlag, 1979, 565–574.

[26] L. Lovász: Matroid matching and some applications, J. Combinatorial Theory,

Ser. B, 28 (1980), 208–236.

55



[27] L. Lovász: Selecting independent lines from a family of lines in a space, Acta Sci.

Math., 42 (1980), 121–131.

[28] L. Lovász and M. D. Plummer: Matching Theory, North-Holland, Amsterdam, 1986.
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