
Set Similarity Search Beyond MinHash
∗

Tobias Christiani

IT University of Copenhagen

Copenhagen, Denmark

tobc@itu.dk

Rasmus Pagh

IT University of Copenhagen

Copenhagen, Denmark

pagh@itu.dk

ABSTRACT

We consider the problem of approximate set similarity search un-

der Braun-Blanquet similarity B(x, y) = |x ∩ y|/max(|x|, |y|). The

(b1,b2)-approximate Braun-Blanquet similarity search problem is

to preprocess a collection of sets P such that, given a query set q, if

there exists x ∈ P with B(q, x) ≥ b1, then we can e�ciently return

x′ ∈ P with B(q, x′) > b2.

We present a simple data structure that solves this problem with

space usageO(n1+ρ logn+∑
x∈P |x|) and query timeO(|q|nρ logn)

where n = |P | and ρ = log(1/b1)/log(1/b2). Making use of exist-

ing lower bounds for locality-sensitive hashing by O’Donnell et

al. (TOCT 2014) we show that this value of ρ is tight across the

parameter space, i.e., for every choice of constants 0 < b2 < b1 < 1.

In the case where all sets have the same size our solution strictly

improves upon the value of ρ that can be obtained through the use of

state-of-the-art data-independent techniques in the Indyk-Motwani

locality-sensitive hashing framework (STOC 1998) such as Broder’s

MinHash (CCS 1997) for Jaccard similarity and Andoni et al.’s cross-

polytope LSH (NIPS 2015) for cosine similarity. Surprisingly, even

though our solution is data-independent, for a large part of the

parameter space we outperform the currently best data-dependent
method by Andoni and Razenshteyn (STOC 2015).

1 INTRODUCTION

In this paper we consider the approximate set similarity problem or,

equivalently, the problem of approximate Hamming near neighbor

search in sparse vectors. Data that can be represented as sparse

vectors is ubiquitous — a typical example is the representation of

text documents as term vectors, where non-zero vector entries cor-

respond to occurrences of words (or shingles). In order to perform

identi�cation of near-identical text documents in web-scale collec-

tions, Broder et al. [11, 12] designed and implemented MinHash
(a.k.a. min-wise hashing), now understood as a locality-sensitive

hash function [21]. This allowed approximate answers to similarity

queries to be computed much faster than by other methods, and in

particular made it possible to cluster the web pages of the AltaVista

search engine (for the purpose of eliminating near-duplicate search

results). Almost two decades after it was �rst described, MinHash

remains one of the most widely used locality-sensitive hashing

methods as witnessed by thousands of citations of [11, 12].

A similarity measure maps a pair of vectors to a similarity score

in [0; 1]. It will often be convenient to interpret a vector x ∈ {0, 1}d
as the set {i | xi = 1}. With this convention the Jaccard similarity
of two vectors can be expressed as J (x, y) = |x ∩ y|/|x ∪ y|. In

approximate similarity search we are interested the problem of

∗
The research leading to these results has received funding from the European Research

Council under the European Union’s 7th Framework Programme (FP7/2007-2013) /

ERC grant agreement no. 614331.

searching a data set P ⊆ {0, 1}d for a vector of similarity at least j1
with a query vector q ∈ {0, 1}d , but allow the search algorithm

to return a vector of similarity j2 < j1. To simplify the exposition

we will assume throughout the introduction that all vectors are

t-sparse, i.e., have the same Hamming weight t .
Recent theoretical advances in data structures for approximate

near neighbor search in Hamming space [5] make it possible to beat

the asymptotic performance of MinHash-based Jaccard similarity

search (using the LSH framework of [21]) in cases where the similar-

ity threshold j2 is not too small. However, numerical computations

suggest that MinHash is always better when j2 < 1/45.

In this paper we address the problem: Can similarity search

using MinHash be improved in general? We give an a�rmative

answer in the case where all sets have the same size t by intro-

ducing Chosen Path: a simple data-independent search method

that strictly improves MinHash, and is always better than the

data-dependent method of [5] when j2 < 1/9. Similar to data-

independent locality-sensitive �ltering (LSF) methods [9, 16, 24]

our method works by mapping each data (or query) vector to a

set of keys that must be stored (or looked up). The name Chosen

Path stems from the way the mapping is constructed: As paths in a

layered random graph where the vertices at each layer is identi�ed

with the set {1, . . . ,d} of dimensions, and where a vector x is only

allowed to choose paths that stick to non-zero components xi . This

is illustrated in Figure 1.

x x'y

Figure 1: Chosen Path uses a branching process to associate

each vector x ∈ {0, 1}d with a setMk (x) ⊆ {1, . . . ,d}k of paths

of lengtk k (in the picture k = 3). The paths associated with

x are limited to indices in the set {i | xi = 1}, represented
by an ellipsoid at each level in the illustration. In the exam-

ple the set sizes are: |M3(x)| = 4 and |M3(y)| = |M3(x′)| = 3.

Parameters are chosen such that a query y that is similar to

x ∈ P is likely to have a common path in x ∩ y (shown as a

bold line), whereas it shares few paths in expectation with

vectors such as x′ that are not similar.

1

ar
X

iv
:1

61
2.

07
71

0v
2

 [
cs

.D
S]

 1
8

A
pr

 2
01

7

1.1 Related Work

High-dimensional approximate similarity search methods can be

characterized in terms of their ρ-value which is the exponent for

which queries can be answered in time O(dnρ), where n is the size

of the set P and d denotes the dimensionality of the space. Here we

focus on the “balanced” case where we aim for space O(n1+ρ + dn),
but note that there now exist techniques for obtaining other trade-

o�s between query time and space overhead [4, 16].

Locality-Sensitive Hashing Methods. We begin by describ-

ing results for Hamming space, which is a special case of simi-

larity search on the unit sphere (many of the results cited apply

to the more general case). In Hamming space the focus has tradi-

tionally been on the ρ-value that can be obtained for solutions to

the (r , cr)-approximate near neighbor problem: Preprocess a set of

points P ⊆ {0, 1}d such that, given a query point q, if there exists

x ∈ P with ‖x− q‖1 ≤ r , then return x′ ∈ P with ‖x′ − q‖1 < cr . In

the literature this problem is often presented as the c-approximate

near neighbor problem where bounds for the ρ-value are stated in

terms of c and, in the case of upper bounds, hold for every choice

of r , while lower bounds may only hold for speci�c choices of r .

O’Donnell et al. [30] have shown that the value ρ = 1/c for

c-approximate near neighbor search in Hamming space, obtained

in the seminal work of Indyk and Motwani [23], is the best possible

in terms of c for schemes based on Locality-Sensitive Hashing

(LSH). However, the lower bound only applies when the distances

of interest, r and cr , are relatively small compared to d , and better

upper bounds are known for large distances. Notably, other LSH

schemes for angular distance on the unit sphere such as cross-

polytope LSH [2] give lower ρ-values for large distances. Extensions

of the lower bound of [30] to cover more of the parameter space

were recently given in [4, 16]. Until recently the best ρ-value known

in terms of c was 1/c , but in a sequence of papers Andoni et al. [3, 5]

have shown how to use data-dependent LSH techniques to achieve

ρ = 1/(2c−1)+on (1), bypassing the lower bound framework of [30]

which assumes the LSH to be independent of data.

Set Similarity Search. There exists a large number of di�erent

measures of set similarity with various applications for which it

would be desirable to have e�cient approximate similarity search al-

gorithms [15]. Given a measure of similarity S assume that we have

access to a familyH of locality-sensitive hash functions (de�ned in

Section 2) such that forh ∼ H it holds for every pair of sets x, y that

Pr[h(x) = h(y)] = S(x, y). Then we can use the the LSH framework

to construct a solution for the (s1, s2)-approximate similarity search

problem under S with exponent ρ = log(1/s1)/log(1/s2). With re-

spect to the existence of such families Charikar [13] showed that if

the similarity measure S admits an LSH with the above properties,

then 1 − S must be a metric. Recently, Chierichetti and Kumar [14]

showed that, given a similarity S that admits an LSH with the above

properties, the transformed similarity f (S) will continue to admit

an LSH if f (·) is a probability generating function. The existence of

an LSH that admits a similarity measure S will therefore give rise to

the existence of solutions to the approximate similarity search prob-

lem for the much larger class of similarities f (S). However, this still

leaves open the problem of �nding e�cient explicit constructions,

and as it turns out, the LSH property Pr[h(x) = h(y)] = S(x, y),
while intuitively appealing and useful for similarity estimation,

does not necessarily imply that the LSH is optimal for solving the

approximate search problem for the measure S . The problem of

�nding tight upper and lower bounds on the ρ-value that can be

obtained through the LSH framework for data-independent (s1, s2)-
approximate similarity search across the entire parameter space

(s1, s2) remains open for two of the most common measures of set

similarity: Jaccard similarity J (x, y) = |x ∩ y|/|x ∪ y| and cosine

similarity C(x, y) = |x ∩ y|/
√
|x| |y|.

A random function from the MinHash familyH
minhash

hashes

a set x ⊂ {1, . . . ,d} to the �rst element of x in a random per-

mutation of the set {1, . . . ,d}. For h ∼ H
minhash

we have that

Pr[h(x) = h(y)] = J (x, y), yielding an LSH solution to the approxi-

mate Jaccard similarity search problem. For cosine similarity the

SimHash familyH
simhash

, introduced by Charikar [13], works by

sampling a random hyperplane inRd that passes through the origin

and hashing x according to what side of the hyperplane it lies on. For

h ∼ H
simhash

we have that Pr[h(x) = h(y)] = 1− arccos(C(x, y))/π ,

which can be used to derive a solution for cosine similarity, al-

though not the clean solution that we could have hoped for in the

style of MinHash for Jaccard similarity. There exists a number of

di�erent data-independent LSH approaches [2, 3, 34] that improve

upon the ρ-value of SimHash. Perhaps surprisingly, it turns out that

these approaches yield lower ρ-values for the (j1, j2)-approximate

Jaccard similarity search problem compared to MinHash for cer-

tain combinations of (j1, j2). Unfortunately, while asymptotically

superior these techniques su�er from a non-trivial on (1)-term in

the exponent that only decreases very slowly with n. In compari-

son, both MinHash and SimHash are simple to describe and have

closed expressions for their ρ-values. Furthermore, MinHash and

SimHash both have the advantage of being e�cient in the sense

that a hash function can be represented using space O(d) and the

time to compute h(x) is O(|x|).
In Table 1 we show how the upper bounds for similarity search

under di�erent measures of set similarity relate to each other in the

case where all sets are t-sparse. In addition to Hamming distance

and Jaccard similarity, we consider Braun-Blanquet similarity [10]

de�ned as

B(x, y) = |x ∩ y|/max(|x|, |y|), (1)

which for t-sparse vectors is identical to cosine similarity. When the

query and the sets in P can have di�erent sizes the picture becomes

muddled, and the question of which of the known algorithms is

best for each measure S is complicated. In Section 5 we treat the

problem of di�erent set sizes and provide a brief discussion for

Jaccard similarity, speci�cally in relation to our upper bound for

Braun-Blanquet similarity.

Similarity search under set similarity and the batched version

often referred to as set similarity join [7, 8] have also been studied

extensively in the information retrieval and database literature, but

mostly without providing theoretical guarantees on performance.

Recently the notion of containment search, where the similarity

measure is the (unnormalized) intersection size, was studied in

the LSH framework [33]. This is a special case of maximum in-
ner product search [1, 33]. However, these techniques do not give

improvements in our setting.

Similarity Estimation. Finally, we mention that another ap-

plication of MinHash [11, 12] is the (easier) problem of similarity

2

Table 1: Overview of ρ-values for similarity search with Hamming vectors of equal weight t .

Ref.

Measure Hamming

r1 < r2

Braun-Blanquet

b1 > b2

Jaccard

j1 > j2

Bit-sampling LSH [23] r1/r2 1−b1
1−b2

1−j1
1+j1 /

1−j2
1+j2

Minhash LSH [11] log
1−r1
1+r1 /log

1−r2
1+r2 log

b1
2−b1 /log

b2
2−b2 log(j1)/log(j2)

Angular LSH [2]
r1
r2

1−r2/2
1−r1/2

1−b1
1+b1
/ 1−b2
1+b2

1−j1
1+3j1 /

1−j2
1+3j2

Data-dep. LSH [5]
r1
r2

1

2−r1/r2
1−b1

1+b1−2b2
(1−j1)(1+j2)

1−j1 j2+3(j1−j2)

Theorem 1.1 log(1 − r1)/log(1 − r2) log(b1)/log(b2) log
2j1
1+j1 /log

2j2
1+j2

Notes: While most results in the literature are stated for a single measure, the �xed weight restriction gives a 1-1 correspondence

that makes it possible to express the results in terms of other similarity measures. Hamming distances are normalized by a factor

2t to lie in [0; 1]. Lower order terms of ρ-values are suppressed, and for bit-sampling LSH we assume that the Hamming distances

are small relative to the dimensionality of the space, i.e., that 2r1t/d = o(1).

estimation, where the task is to condense each vector x into a short

signature s(x) in such a way that the similarity J (x, y) can be esti-

mated from s(x) and s(y). A related similarity estimation technique

was independently discovered by Cohen [17]. Thorup [35] has

shown how to perform similarity estimation using just a small

amount of randomness in the de�nition of the function s(·). In an-

other direction, Mitzenmacher et al. [26] showed that it is possible

to improve the performance of MinHash for similarity estimation

when the Jaccard similarity is close to 1, but for smaller similarities

it is known that succinct encodings of MinHash such as the one

in [25] comes within a constant factor of the optimal space for

storing s(x) [31]. Curiously, our improvement to MinHash in the

context of similarity search comes when the similarity is neither

too large nor too small. Our techniques do not seem to yield any

improvement for the similarity estimation problem.

1.2 Contribution

We show the following upper bound for approximate similarity

search under Braun-Blanquet similarity:

Theorem 1.1. For every choice of constants 0 < b2 < b1 < 1 we
can solve the (b1,b2)-approximate similarity search problem under
Braun-Blanquet similarity with query time O(|q|nρ logn) and space
usage O(n1+ρ logn +∑

x∈P |x|) where ρ = log(1/b1)/log(1/b2).
In the case where the sets are t-sparse our Theorem 1.1 gives the

�rst strict improvement on the ρ-value for approximate Jaccard sim-

ilarity search compared to the data-independent LSH approaches

of MinHash and Angular LSH. Figure 2 shows an example of the

improvement for a slice of the parameter space. The improvement is

based on a new locality-sensitive mapping that considers a speci�c

random collection of length-k paths on the vertex set {1, . . . ,d},
and associates each vector x with the paths in the collection that

only visits vertices in {i | xi = 1}. Our data structure exploits that

similar vectors will be associated with a common path with con-

stant probability, while vectors with low similarity have a negligible

probability of sharing a path. However, the collection of paths has

size superlinear in n, so an e�cient method is required for locating

the paths associated with a particular vector. Our choice of the

collection of paths balances two opposing constraints: It is random

enough to match the �ltering performance of a truly random col-

lection of sets, and at the same time it is structured enough to allow

e�cient search for sets matching a given vector. The search proce-

dure is comparable in simplicity to the classical techniques of bit

sampling, MinHash, SimHash, and p-stable LSH, and we believe it

might be practical. This is in contrast to most theoretical advances

in similarity search in the past ten years that su�er from o(1) terms

in the exponent of complexity bounds.

Intuition. Recall that we will think of a vector x ∈ {0, 1}d also

as a set, {i | xi = 1}. MinHash can be thought of as a way of

sampling an element ix from x, namely, we let ix = argmini ∈x h(i)
where h is a random hash function. For sets x and y the probability

that ix = iy equals their Jaccard similarity J (x, y), which is much

higher than if the samples had been picked independently. Consider

the case in which |x| = |y| = t , so J (x, y) = |x∩y |
2t−|x∩y | . Another way

of sampling is to compute Ix = x ∩ b, where Pr[i ∈ b] = 1/t ,
independently for each i ∈ [d]. The expected size of Ix is 1, so this

sample has the same expected “cost” as the MinHash-based sample.

But if the Jaccard similarity is small, the latter samples are more

likely to overlap:

Pr[Ix ∩ Iy , ∅] = 1 − (1 − 1/t) |x∩y | ≈ 1 − e−|x∩y |/t ≈ |x ∩ y|/t ,
nearly a factor of 2 improvement. In fact, whenever |x∩y| < 0.6 t we

have Pr[Ix∩ Iy , ∅] > Pr[ix = iy]. So in a certain sense, MinHash is

not the best way of collecting evidence for the similarity of two sets.

(This observation is not new, and has been made before e.g. in [18].)

Locality-Sensitive Maps. The intersection of the samples Ix
does not correspond directly to hash collisions, so it is not clear how

to turn this insight into an algorithm in the LSH framework. Instead,

we will consider a generalization of both the locality sensitive

3

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
j1

ρ
−

va
lu

e

MinHash Angular LSH Data−dep. LSH New method

Figure 2: Exponent when searching for a vector with Jaccard

similarity j1 with approximation factor 2 (i.e., guaranteed

to return a vector with Jaccard similarity j1/2) for various

methods in the setting where all sets have the same size. Our

newmethod is the best data-independentmethod, and is bet-

ter than data-dependent LSH up to about j1 ≈ 0.3.

�ltering (LSF) and LSH frameworks where we de�ne a distribution

M over maps M : {0, 1}d → 2
R

. The map M performs the same

task as the LSH data structure: It takes a vector x and returns a set

of memory locations M(x) ⊆ {1, . . . ,R}. A randomly sampled map

M ∼ M has the property that if a pair of points x, y are close then

M(x) ∩M(y) , ∅ with constant probability, while if x, y are distant

then the expected size M(x) ∩M(y) is small (much smaller than 1).

It is now straightforward to see that this distribution can be used

to construct a data structure for similarity search by storing each

data point x ∈ P in the set of memory locations or buckets M(x).
A query for a point y is performed by computing the similarity

between y and every point x contained in the set buckets M(y),
reporting the �rst su�ciently similar point found.

Chosen Path. It turns out that to most e�ciently �lter out vec-

tors of low similarity in the setting where all sets have equal size,

we would like to map each data point x ∈ {0, 1}d to a collection

M(x) of random subsets of {0, 1}d that are contained in x. Further-

more, to best distuinguish similar from dissimilar vectors when

solving the approximate similarity search problem, we would like

the random subsets of {0, 1}d to have size Θ(logn). This leads to

another obstacle: The collection of subsets of {0, 1}d required to

ensure that M(x) ∩M(y) , ∅ for similar points, i.e., that M maps

to a subset contained in x ∩ y, is very large. The space usage and

evaluation time of a locality-sensitive map M to fully random sub-

sets of {0, 1}d would far exceed n, rendering the solution useless.

To overcome this we create the samples in a gradual, correlated

way using a pairwise independent branching process that turns

out to yield “su�ciently random” samples for the argument to go

through.

Lower Bound. On the lower bound side we show that our solu-

tion for Braun-Blanquet similarity is best possible in terms of param-

eters b1 and b2 within the class of solutions that can be character-

ized as data-independent locality-sensitive maps. The lower bound

works by showing that a family of locality-sensitive maps for Braun-

Blanquet similarity with a ρ-value below log(1/b1)/log(1/b2) can

be used to construct a locality-sensitive hash family for the c-

approximate near neighbor problem in Hamming space with a

ρ-value below 1/c , thereby contradicting the LSH lower bound by

O’Donnell et al. [30]. We state the lower bound here in terms of

locality-sensitive hashing, formally de�ned in Section 2.

Theorem 1.2. For every choice of constants 0 < b2 < b1 < 1 any
(b1,b2,p1,p2)-sensitive hash family HB for {0, 1}d under Braun-
Blanquet similarity must satisfy

ρ(HB) =
log(1/p1)
log(1/p2)

≥ log(1/b1)
log(1/b2)

−O
(
log(d/p2)

d

)
1/3
.

The details showing how this LSH lower bound implies a lower

bound for locality-sensitive maps are given in Section 4.

2 PRELIMINARIES

As stated above we will view x ∈ {0, 1}d both as a vector and as

a subset of [d] = {1, . . . ,d}. De�ne x to be t-sparse if |x| = t ; we

will be interested in the setting where t ≤ d/2, and typically the

sparse setting t � d . Although many of the concepts we use hold

for general spaces, for simplicity we state de�nitions in the same

setting as our results: the boolean hypercube {0, 1}d under some

measure of similarity S : {0, 1}d × {0, 1}d → [0; 1].

De�nition 2.1. (Approximate similarity search) Let P ⊂ {0, 1}d
be a set of |P | = n data vectors, let S : {0, 1}d × {0, 1}d → [0; 1]
be a similarity measure, and let s1, s2 ∈ [0; 1] such that s1 > s2. A

solution to the (s1, s2)-S-similarity search problem is a data structure

that supports the following query operation: on input q ∈ {0, 1}d
for which there exists a vector x ∈ P with S(x, q) ≥ s1, return

x′ ∈ P with S(x′, q) > s2.

Our data structures are randomized, and queries succeed with

probability at least 1/2 (the probability can be made arbitrarily

close to 1 by independent repetition). Sometimes similarity search

is formulated as searching for vectors that are near q according to

the distance measure D(x, y) = 1 − S(x, y). For our purposes it is

natural to phrase conditions in terms of similarity, but we compare

to solutions originally described as “near neighbor” methods.

Many of the best known solutions to approximate similarity

search problems are based on a technique of randomized space

partitioning. This technique has been formalized in the locality-

sensitive hashing framework [23] and the closely related locality-

sensitive �ltering framework [9, 16].

De�nition 2.2. (Locality-sensitive hashing [23]) A (s1, s2,p1,p2)-
sensitive family of hash functions for a similarity measure S on

{0, 1}d is a distribution HS over functions h : {0, 1}d → R such

4

that for all x, y ∈ {0, 1}d and random h sampled according toHS :

If S(x, y) ≥ s1 then Pr[h(x) = h(y)] ≥ p1, and if S(x, y) ≤ s2 then

Pr[h(x) = h(y)] ≤ p2.

The range R of the family will typically be fairly small such

that an element of R can be represented in a constant number of

machine words. In the following we assume for simplicity that the

family of hash functions is e�cient such that h(x) can be computed

in time O(|x|). Furthermore, we will assume that the time to com-

pute the similarity S(x, y) can be upper bounded by the time it

takes to compute the size of the intersection of preprocessed sets,

i.e., O(min(|x|, |y|)).
Given a locality-sensitive family it is quite simple to obtain a

solution to the approximate similarity search problem, essentially

by hashing points to buckets such that close points end up in the

same bucket while distant points are kept apart.

Lemma 2.3 (LSH framework [21, 23]). Given a (s1, s2,p1,p2)-
sensitive family of hash functions it is possible to solve the (s1, s2)-S-
similarity search problem with query time O(|q|nρ logn) and space
usage O(n1+ρ +∑

x∈P |x|) where ρ = log(1/p1)/log(1/p2).

The upper bound presented in this paper does not quite �t into

the existing frameworks. However, we would like to apply existing

LSH lower bound techniques to our algorithm. Therefore we de�ne

a more general framework that captures solutions constructed using

the LSH and LSF framework, as well as the upper bound presented

in this paper.

De�nition 2.4 (Locality-sensitivemap). A (s1, s2,m1,m2)-sensitive

family of maps for a similarity measure S on {0, 1}d is a distribution

MS over mappings M : {0, 1}d → 2
R

(where 2
R

denotes the power

set of R) such that for all x, y ∈ {0, 1}d and random M ∈ MS :

(1) E[|M(x)|] ≤ m1.

(2) If S(x, y) ≤ s2 then E[|M(x) ∩M(y)|] ≤ m2.

(3) If S(x, y) ≥ s1 then Pr[M(x) ∩M(y) , ∅] ≥ 1/2.

Once we have a family of locality-sensitive mapsM we can use

it to obtain a solution to the (s1, s2)-S-similarity search problem.

Lemma 2.5. Given a (s1, s2,m1,m2)-sensitive family of mapsM
we can solve the (s1, s2)-S-similarity search problem with query time
O(m1 +nm2 |q|+TM) and space usageO(nm1 +

∑
x∈P |x|) whereTM

is the time to evaluate a mapM ∈ M.

Proof. We construct the data structure by sampling a map M
fromM and use it to place points in P into buckets. To run a query

for a point q we proceed by evaluating M(q) and computing the

similarity between q and the points in the buckets associated with

M(q). If a su�ciently similar point is found we return it. We get

rid of the expectation in the guarantees by independent repetitions

and applying Markov’s inequality. �

Model of Computation. We assume the standard word RAM

model [20] with word size Θ(logn), where n = |P |. In order to

be able to draw random functions from a family of functions we

augment the model with an instruction that generates a machine

word uniformly at random in constant time.

3 UPPER BOUND

We will describe a family of locality-sensitive mapsMB for solving

the (b1,b2)-B-similarity search problem, where B is Braun-Blanquet

similarity (1). After describingMB we will give an e�cient imple-

mentation of M ∈ MB and show how to set parameters to obtain

our Theorem 1.1.

3.1 Chosen Path

TheChosen Path familyMB is de�ned byk random hash functions

h1, . . . ,hk where hi : [w] × [d]i → [0; 1] andw is a positive integer.

The evaluation of a map Mk ∈ MB proceeds in a sequence of

k + 1 steps that can be analyzed as a Galton-Watson branching

process, originally devised to investigate population growth under

the assumption of identical and independent o�spring distributions.

In the �rst step i = 0 we create a population of w starting points

M0(x) = [w]. (2)

In subsequent steps, every path that has survived so far produces

o�spring according to a random process that depends on hi and

the element x ∈ {0, 1}d being evaluated. We use p ◦ j to denote

concatenation of a path p with a vertex j.

Mi (x) =
{
p ◦ j | p ∈ Mi−1(x) ∧ hi (p ◦ j) <

xj
b1 |x|

}
. (3)

Observe that hi (p ◦ j) <
xj

b1 |x | can only hold when xj = 1, so the

paths in Mi (x) are constrained to j ∈ x. The set M(x) = Mk (x) is

given by the paths that survive to the kth step. We will proceed by

bounding the evaluation time of M ∈ MB as well as showing the

locality-sensitive properties ofMB . In particular, for similar points

x, y ∈ {0, 1}d with B(x, y) ≥ b1 we will show that with probability

at least 1/2 there will be a path that is chosen by both x and y.

Lemma 3.1 (Properties of Chosen Path). For all x, y ∈ {0, 1}d ,
integer i ≥ 0, and randomM ∈ MB :

(1) E[|Mi (x)|] ≤ (1/b1)iw .
(2) If B(x, y) < b2 then E[|Mi (x) ∩Mi (y)|] ≤ (b2/b1)iw .
(3) If B(x, y) ≥ b1 then Pr[Mi (x) ∩Mi (y) , ∅] ≥ i/(i +w).

Proof. We prove each property by induction on i . The base

cases i = 0 follow from (2). Now consider the inductive step for

property 1. Let 1{P} denote the indicator function for predicate P.

Using independence of the hash functions hi we get:

E[|Mi (x)|] = E


∑

p∈Mi−1(x)

∑
j ∈[d]

1

{
hi (p ◦ j) <

xj
b1 |x|

}
= E


∑

p∈Mi−1(x)
1

 E

∑
j ∈[d]

1

{
hi (p ◦ j) <

xj
b1 |x|

}
≤ E[|Mi−1(x)|]/b1
≤ (1/b1)iw .

5

The last inequality uses the induction hypothesis. We use the same

approach for the second property where we let Xi = Mi (x)∩Mi (y).

E[|Xi |] = E


∑

p∈Xi−1

∑
j ∈[d]

1

{
hi (p ◦ j) <

xj
b1 |x|

∧ hi (p ◦ j) <
yj

b1 |y|

}
= E


∑

p∈Xi−1

1


∑
j ∈[d]

Pr

[
hi (p ◦ j) <

min(xj , yj)
b1max(|x|, |y|)

]
≤ E[|Xi−1 |](B(x, y)/b1)
≤ (B(x, y)/b1)iw .

To prove the third property we bound the variance of |Xi | and

apply Chebyshev’s inequality to bound the probability of Xi = ∅.
First consider the case where |x| ≤ 1/b1 and |y| ≤ 1/b1. Here it

must hold that Xi > 0 as intersecting paths exist (b1 > 0) and

always activate. In all other cases we have that

E[|Xi |] = (B(x, y)/b1)iw .
Knowing the expected value we can apply Chebyshev’s inequality

once we have an upper bound for Var[|Xi |] = E[|Xi |2] − E[|Xi |]2.

Speci�cally we show that E[|Xi |2] ≤ wi(B(x, y)/b1)2i , by induction

on i . To simplify notation we de�ne the indicator variable

Yp, j = 1

{
hi (p ◦ j) <

xj
b1 |x|

∧ hi (p ◦ j) <
yj

b1 |y|

}
where we suppress the subscript i . First observe that

E[Yp, j] = 1/(b1max(|x|, |y|)) .
By (3) we see that |Xi | =

∑
p∈Xi−1

∑
j ∈[d] Yp, j , which means:

E[|Xi |2] = E

©­«
∑

p∈Xi−1

∑
j ∈[d]

Yp, j
ª®¬
2

= E


∑

p∈Xi−1

∑
j ∈[d]

Y 2

p, j


+ E


∑

p,p′∈Xi−1

∑
j, j′∈[d]

Yp, jYp′, j′1{(p, j) , (p′, j ′)}


< E[|Xi−1 |](B(x, y)/b1) + E[|Xi−1 |2](B(x, y)/b1)2

≤
i∑

s=1
E[|Xi−s |](B(x, y)/b1)2s−1 + E[|X0 |]2(B(x, y)/b1)2i

= E[|Xi |]
i−1∑
s=0
(B(x, y)/b1)s + E[|Xi |]2

≤ wi(B(x, y)/b1)2i + E[|Xi |]2 .
The third property now follows from a one-sided version of Cheby-

chev’s inequality applied to |Xi |. �

3.2 Implementation Details

Lemma 3.1 continues to hold when the hash functions h1, . . . ,hk
are individually 2-independent (and mutually independent) since

we only use bounds on the �rst and second moment of the hash

values. We can therefore use a simple and practical scheme such as

Zobrist hashing [37] that hashes strings of Θ(logn) bits to strings of

Θ(logn) bits in O(1) time using space, say, O(n1/2). It is not hard to

see that the domain and range of h1, . . . ,hk can be compressed to

O(logn) bits (causing a neglible increase in the failure probability

of the data structure). We simply hash the paths p ∈ Mi (x) to

intermediate values of O(logn) bits, avoiding collisions with high

probability, and in a similar vein, with high probability O(logn)
bits of precision su�ce to determine whether hi (p ◦ j) <

xj
b1 |x | .

We now consider how to parameterizeMB to solve the (b1,b2)-
B-similarity problem on a set P of |P | = n points for every choice of

constant parameters 0 < b2 < b1 < 1, independent of n. Note that

we exclude b1 = 1 (which would correspond to identical vectors

that can be found in time O(1) by resorting to standard hashing)

and b2 = 0 (for which every data point would be a valid answer to

a query). We set parameters

k = dlog(n)/log(1/b2)e,
w = 2k

from which it follows that MB is (b1,b2,m1,m2)-sensitive with

m1 = n
ρw/b1 and m2 = n

ρ−1w where ρ = log(1/b1)/log(1/b2). To

bound the expected evaluation time of Mk we use Zobrist hashing

as well as intermediate hashes for the paths as described above. In

the ith step in the branching process the expected number of hash

function evaluations is bounded by |q| times the number of paths

alive at step i − 1. We can therefore bound the expected time to

compute Mk (q) by

k−1∑
i=0

E[|q| |Mi (q)|] ≤
b−k
1
− 1

b−1
1
− 1
|q|w = O(|q|nρw). (4)

This completes the proof of Theorem 1.1.
1

3.3 Comparison

We will proceed by comparing our Theorem 1.1 to results that

can be achieved using existing techniques. Again we focus on the

setting where data points and query points are exactly t-sparse. An

overview of di�erent techniques for three measures of similarity is

shown in Table 1. To summarize: The Chosen Path algorithm of

Theorem 1.1 improves upon all existing data-independent results

over the entire 0 < b2 < b1 < 1 parameter space. Furthermore, we

improve upon the best known data-dependent techniques [5] for a

large part of the parameter space (see Figure 5). The details of the

comparisons are given in Appendix B.

MinHash. For t-sparse vectors there is a 1-1 mapping between

Braun-Blanquet and Jaccard similarity. In this setting J (x, y) =
B(x, y)/(2 − B(x, y)). Let b1 = 2j1/(j1 + 1) and b2 = 2j2/(j2 + 1)
be the Braun-Blanquet similarities corresponding to Jaccard simi-

larities j1 and j2. The LSH framework using MinHash achieves

ρ
minhash

= log

(
b1

2−b1

)
/log

(
b2

2−b2

)
; this should be compared to

ρ = log(b1)/log(b2) achieved in Theorem 1.1. Since the function

f (z) = log(z
2−z)/log z is monotonically increasing in [0; 1] we

have that ρ/ρ
minhash

= f (b2)/f (b1) < 1, i.e., ρ is always smaller

than ρ
minhash

. As an example, for j1 = 0.2 and j2 = 0.1 we get

1
We know of a way of replacing the multiplicative factor |q | in equation (4) by an

additive term of O (|q |k) by choosing the hash functions hi carefully, but do not

discuss this improvement here since |q | can be assumed to be polylogarithmic and

our focus is on the exponent of n.

6

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
b1

b 2

Difference
(-0.08,-0.06]

(-0.06,-0.04]

(-0.04,-0.02]

(-0.02,0]

Figure 3: The di�erence ρ − ρ
minhash

comparing Chosen

Path andMinHash in terms of Braun-Blanquet similarities

0 < b2 < b1 < 1.

ρ = 0.644... while ρ
minhash

= 0.698.... Figure 3 shows the di�er-

ence for the whole parameter space.

Angular LSH. Since our vectors are exactly t-sparse Braun-

Blanquet similarities correspond directly to dot products (which in

turn correspond to angles). Thus we can apply angular LSH such

as SimHash [13] or cross-polytope LSH [2]. As observed in [16]

one can express the ρ-value of cross-polytope LSH in terms of

dot products as ρ
angular

=
1−b1
1+b1
/ 1−b2
1+b2

. Since the function f ′(z) =
(1 + z) log(z)/(1 − z) is negative and monotonically increasing in

[0; 1] we have that ρ/ρ
angular

= f ′(b1)/f ′(b2) < 1, i.e., ρ is always

smaller than ρ
angular

. In the above example, for j1 = 0.2 and j2 = 0.1

we have ρ
angular

= 0.722... which is about 0.078 more than Chosen

Path. See Figure 4 for a visualization of the di�erence for the whole

parameter space.

Data-Dependent Hamming LSH. The Hamming distance be-

tween two t-sparse vectors with Braun-Blanquet similarity b is

2t(1−b), since the intersection of the vectors has size tb. This means

that (b1,b2)-B-similarity search can be reduced to Hamming similar-

ity search with approximation factor c = (2t(1−b1))/(2t(1−b2)) =
(1−b1)/(1−b2). As mentioned above, the data dependent LSH tech-

nique of [5] achieves ρ = 1/(2c−1) ignoring on (1) terms. In terms of

b1 and b2 this is ρ
datadep

=
1−b1

1+b1−2b2 , which in incomparable to the

ρ of Theorem 1.1. In Appendix B we show that ρ < ρ
datadep

when-

ever b2 ≤ 1/5, or equivalently, whenever j2 ≤ 1/9. Revisiting the

above example, for j1 = 0.2 and j2 = 0.1 we have ρ
datadep

= 0.6875

which is about 0.043 more than Chosen Path. Figure 5 gives a

comparison covering the whole parameter space.

4 LOWER BOUND

In this section we will show a locality-sensitive hashing lower

bound for {0, 1}d under Braun-Blanquet similarity. We will �rst

show that LSH lower bounds apply to the class of solutions to the

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
b1

b 2

Difference
(-Inf,-0.16]

(-0.16,-0.08]

(-0.08,-0.04]

(-0.04,-0.02]

(-0.02,-0.01]

(-0.01,0]

Figure 4: The di�erence ρ − ρ
angular

comparing Chosen

Path and angular LSH in terms of Braun-Blanquet similar-

ities 0 < b2 < b1 < 1.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
b1

b 2

Difference
(-Inf,-0.2]

(-0.2,-0.1]

(-0.1,-0.05]

(-0.05,0]

(0,0.05]

(0.05,0.1]

(0.1,0.2]

Figure 5: The di�erence ρ − ρ
datadep

comparing Chosen

Path and data-dependent LSH in terms of Braun-Blanquet

similarities 0 < b2 < b1 < 1. In the area of the parameter

space that is colored blue we have that ρ ≤ ρ
datadep

while

for the red area it holds that ρ > ρ
datadep

.

approximate similarity search problem that are based on locality-

sensitive maps, thereby including our own upper bound. Next we

will introduce some relevant tools from the literature, in particular

the LSH lower bounds for Hamming space by O’Donnell et al. [30]

which we use, through a reduction, to show LSH lower bounds

under Braun-Blanquet similarity.

Lower Bounds For Locality-Sensitive Maps. Because our

upper bound is based on a locality-sensitive map MB and not

7

LSH-based we �rst show that LSH lower bounds apply to LSM-

based solutions. This is not too surprising as both the LSH and LSF

frameworks produce LSM-based solutions. We note that the idea of

showing lower bounds for a more general class of algorithms that

encompasses both LSH and LSF was used by Andoni et al. [4] in

their list-of-points data structure lower bound for the space-time

tradeo� of solutions to the approximate near neighbor problem in

the random data regime. We use the approach of Christiani [16] to

convert an LSM family into an LSH family using MinHash.

Lemma 4.1. Suppose we have a (s1, s2,m1,m2)-sensitive family of
mapsM for a similarity measure S on {0, 1}d . Then we can construct
a (s1, s2,p1,p2)-sensitive family of hash functionsH for S such that
p1 = 1/8m and p2 =m2/m wherem = d8m1e.

Proof. We sample a function h from H by sampling a func-

tion M fromM, modify M to output a set of �xed size, and apply

MinHash to the resulting set. For M ∈ M we de�ne the function

M̃ where we ensure that the size of the output set is m. We note

that the purpose of this step is to be able to simultaneously lower

bound p1 and upper bound p2 forH when we apply MinHash to

the resulting sets.

M̃(x) =
{
{(x, 1), . . . , (x,m)} if |M(x)| ≥ m,
{(x, 1), . . . , (x,m − |M(x)|)} ∪M(x) otherwise.

We proceed by applying MinHash to the set M̃(x). Let π denote a

random permutation of the range of M̃ and de�ne

h(x) = argmin

z∈M̃ (x)
π (z).

We then have

Pr[h(x) = h(y)] =
∑
ξ

Pr[J (M̃(x), M̃(y)) = ξ] · ξ

summing over the �nite set of all possible Jaccard similarities ξ =
a/b with a,b ∈ {0, 1, . . . , 2m}. It is now fairly simple to lower bound

p1 and upper bound p2. Assume that x, y satisfy that S(x, y) ≥ s1.

To lower bound p1 we use a union bound together with Markov’s

inequality to bound the following probability:

Pr[M̃(x) ∩ M̃(y) = ∅]
≤ Pr[M(x) ∩M(y) = ∅ ∧ |M(x)| ≥ m ∧ |M(y)| ≥ m]
≤ Pr[M(x) ∩M(y) = ∅] + Pr[|M(x)| ≥ m] + Pr[|M(y)| ≥ m]
≤ 1/2 + 1/8 + 1/8

We therefore have that Pr[M̃(x) ∩ M̃(y) , ∅] ≥ 1/4. In the event

of a nonempty intersection the probability of collision is given by

J (M̃(x) ∩ M̃(y)) ≥ 1/2m allowing us to conclude that p1 ≥ 1/8m.

Bounding the collision probability for distant pairs of points x, y
with S(x, y) ≤ s2 we get∑
ξ

Pr[J (M̃(x), M̃(y)) = ξ]·ξ ≤ (1/m)
∞∑
i=1

Pr[|M̃(x)∩M̃(y)|]·i = m2

m
.

�

We are now ready to justify the statement that LSH lower bounds

apply to LSM, allowing us to restrict our attention to proving LSH

lower bounds for Braun-Blanquet similarity.

Corollary 4.2. Suppose that we have an LSM-based solution
to the (s1, s2)-S-similarity search problem with query time O(nρ).
Then there exists a familyH of locality-sensitive hash functions with
ρ(H) = ρ +O(1/logn).

Proof. The existence of the LSM-based solution implies that for

every n there exists a (s1, s2,m1,m2)-sensitive family of mapsM
withm1 = O(nρ) and nm2 = O(nρ). The upper bound on ρ follows

from applying Lemma 4.1. �

LSH Lower Bounds for Hamming Space. There exist a num-

ber of powerful results that lower bound the ρ-value that is at-

tainable by locality-sensitive hashing and related approaches in

various settings [4, 6, 16, 28, 30, 32]. O’Donnell et al. [30] showed

an LSH lower bound of ρ = log(1/p1)/log(1/p2) ≥ 1/c − od (1) for

d-dimensional Hamming space under the assumption that p2 is not

too small compared to d , i.e., log(1/p2) = o(d). The lower bound

by O’Donnell et al. holds for (r , cr ,p1,p2)-sensitive families for a

particular choice of r that depends on d , p2, and c , and where r is

small compared to d (for instance, we have that r = Θ̃(d2/3) when

c and p2 are constant).

We state a simpli�ed version of the lower bound due to O’Donnell

et al. where r =
√
d that we will use as a tool to prove our lower

bound for Braun-Blanquet similarity. The full proof of Lemma 4.3

is given in Appendix A.

Lemma 4.3. For every d ∈ N, 1/d ≤ p2 ≤ 1 − 1/d , and 1 ≤
c ≤ d1/8 every (

√
d, c
√
d,p1,p2)-sensitive hash familyH for {0, 1}d

under Hamming distance must have

ρ(H) = log(1/p1)
log(1/p2)

≥ 1

c
−O(d−1/4). (5)

In general, good lower bounds for the entire parameter space

(r , cr) are not known, although the techniques by O’Donnell et al.

appear to yield a bound of ρ & log(1 − 2r/d)/log(1 − 2cr/d). This

is far from tight as can be seen by comparing it to the bit-sampling

[23] upper bound of ρ = log(1 − r/d)/log(1 − cr/d). Existing lower

bounds are tight in two di�erent settings. First, in the setting where

cr ≈ d/2 (random data), lower bounds [6, 19, 28] match various

instantiations of angular LSH [2, 3, 34]. Second, in the setting where

r � d , the lower bound by O’Donnell et al. [30] becomes ρ &
log(1−2r/d)/log(1−2cr/d) ≈ 1/c , matching bit-sampling LSH [23]

as well as Angular LSH.

4.1 Braun-Blanquet LSH Lower Bound

We are now ready to prove the LSH lower bound from Theorem 1.2.

The lower bound together with Corollary 4.2 shows that the ρ-value

of Theorem 1.1 is best possible up to od (1) terms within the class

of data-independent locality-sensitive maps for Braun-Blanquet

similarity. Furthermore, the lower bound also applies to angular

distance on the unit sphere where it comes close to matching the

best known upper bounds for much of the parameter space as can

be seen from Figure 4.

Proof Sketch. The proof works by assuming the existence of a

(b1,b2,p1,p2)-sensitive familyHB for {0, 1}d under Braun-Blanquet

similarity with ρ = log(1/b1)/log(1/b2) − γ for some γ > 0. We

use a transformation T from Hamming space to Braun-Blanquet

8

similarity to show that the existence ofHB implies the existence of

a (r , cr ,p′
1
,p′

2
)-sensitive family HH for D-dimensional Hamming

space that will contradict the lower bound of O’Donnell et al. [30]

as stated in Lemma 4.3 for some appropriate choice of γ = γ (d,p2).
We proceed by giving an informal description of a simple “ten-

soring” technique for converting a similarity search problem in

Hamming space into a Braun-Blanquet set similarity problem for

target similarity thresholds b1,b2. For x ∈ {0, 1}d de�ne

x̃ = {(i, xi) | i ∈ [d]}

and for a positive integer τ de�ne x⊗τ = {(v1, . . . ,vτ) | vi ∈ x̃}.
We have that |x⊗τ | = |x̃|τ = dτ and

B(x⊗τ , y⊗τ) = |x̃ ∩ ỹ|τ /|x̃|τ = (1 − r/d)τ

where r = ‖x − y‖1. For every choice of constants 0 < b2 < b1 < 1

we can choose d , τ , r , and c ≥ 1 such that (1 − r/d)τ ≈ b1 and

(1 − cr/d)τ ≈ b2. Now, if there existed an LSH family for Braun-

Blanquet with ρ < log(1/b1)/log(1/b2) we would be able to obtain

an LSH family for Hamming space with

ρ < log(1/b1)/log(1/b2) = log(1/(1−r/d))/log(1/(1−cr/d)) ≤ 1/c .

For appropriate choices of parameters this would contradict the

O’Donnell et al. LSH lower bound of ρ ' 1/c for Hamming space.

The proof itself is mostly an exercise in setting parameters and

applying the right bounds and approximations to make everything

�t together with the intuition above. Importantly, we use sampling

in order to map to a dimension that is much lower than the dτ from

the proof sketch in order to make the proof hold for small values

of p2 in relation to d .

Hamming to Braun-Blanquet Similarity. Let d ∈ N and let

0 < b2 < b1 < 1 be constant as in Theorem 1.2. Let ε ≥ 1/d
be a parameter to be determined. We want to show how to use a

transformation T : {0, 1}D → {0, 1}d from Hamming distance to

Braun-Blanquet similarity together with our familyHB to construct

a (r , cr ,p′
1
,p′

2
)-sensitive family HH for D-dimensional Hamming

space with parameters

D = 2
d

r =
√
D

c =
ln(1/(b2 − ε))
ln(1/(b1 + ε))

where p′
1

and p′
2

remain to be determined.

The function T takes as parameters positive integers t , l , and τ .

The output of T consists of t concatenated l-bit strings, each of of

Hamming weight one. Each of the t strings is constructed inde-

pendently at random according to the following process: Sample a

vector of indices i = (i1, i2, . . . , iτ) uniformly at random from [D]τ
and de�ne xi ∈ {0, 1}τ as xi = xi1 ◦xi2 ◦· · ·◦xiτ . Let z(x) ∈ {0, 1}2τ

be indexed by j ∈ {0, 1}τ and set the bits of z(x) as follows:

z(x)j =
{
1 if xi = j,

0 otherwise.

Next we apply a random function д : {0, 1}τ → [l] in order to map

z(x) down to an l-bit string r(z(x)) of Hamming weight one while

approximately preserving Braun-Blanquet similarity. For i ∈ [l] we

set

r(z(x))i =
∨

j :д(j)=i
z(x)j .

Finally we set

T (x) = r1(z1(x)) ◦ r2(z2(x)) ◦ · · · ◦ rt (zt (x))

where each ri (zi (x)) is constructed independently at random.

We state the properties of T for the following parameter setting:

τ = b
√
D ln(1/(b1 + ε))c

l = d8/εe
t = bd/lc .

Lemma 4.4. For every d ∈ N and D = 2
d there exists a distribution

over functions of the form T : {0, 1}D → {0, 1}d such that for all
x, y ∈ {0, 1}D and random T :

(1) |T (x)| = t .
(2) If ‖x − y‖1 ≤ r then B(T (x),T (y)) ≥ b1 with probability at

least 1 − e−t ε2/2.
(3) If ‖x− y‖1 > cr then B(T (x),T (y)) < b2 with probability at

least 1 − 2et ε2/32.

Proof. The �rst property is trivial. For the second property we

consider x, y with ‖x−y‖1 ≤ r where we would like to lower bound

B(T (x),T (y)) = |T (x) ∩T (y)|
max(|T (x)|, |T (y)|) .

We know that |T (x)| = |T (y)| = t so it remains to lower bound the

size of the intersection |T (x) ∩T (y)|. Consider the expectation

E[|T (x) ∩T (y)|] = t Pr[z(x) = z(y)].

We have that z(x) = z(y) if x and y take on the same value in the τ
underlying bit-positions that are sampled to construct z. Under the

assumption that ε ≥ 1/d , then for d greater than some su�ciently

large constant we can use a standard approximation to the expo-

nential function (detailed in Lemma A.4 in Appendix A) to show

that

Pr[z(x) = z(y)] ≥ (1 − r/D)τ

≥ (1 − 1/
√
D)
√
D ln(1/(b1+ε))

≥ e ln(b1+ε)(1 − (ln(b1 + ε))2/
√
D)

≥ b1 + ε/2.

Seeing as |T (x) ∩T (y)| is the sum of t independent Bernoulli trials

we can apply Hoe�ding’s inequality to yield the following bound:

Pr[|T (x) ∩T (y)| ≤ b1t] ≤ e−t ε
2/2.

This proves the second property of T .

For the third property we consider the Braun-Blanquet similarity

of distant pairs of points x, y with ‖x − y‖1 > cr . Again, under our

assumption that ε ≥ 1/d and for d greater than some constant we

9

have

Pr[z(x) = z(y)] ≤ (1 − cr/D)τ

≤

(
1 − ln(1/(b2−ε))√

D ln(1/(b1+ε))

)√D ln(1/(b1+ε))

1 − c/
√
D

≤ (1 + 2c/
√
D)(b2 − ε)

≤ b2 − ε/2.

There are two things that can cause the event B(T (x),T (y)) < b2
to fail. First, the sum of the t independent Bernoulli trials for the

event z(x) = z(x′) can deviate too much from its expected value.

Second, the mapping down to l-bit strings that takes place from z(x)
to r(z(x)) can lead to an additional increase in the similarity due

to collisions. Let Z denote the sum of the t Bernoulli trials for the

events z(x) = z(x′) associated with T . We again apply a standard

Hoe�ding bound to show that

Pr[Z ≥ (b2 − ε/4)t] ≤ e−t ε
2/8.

LetX denote the number of collisions when performing the universe

reduction to l-bit strings. By our choice of l we have that E[X] ≤
(ε/8)t . Another application of Hoe�ding’s inequality shows that

Pr[X ≥ (ε/4)t] ≤ e−t ε
2/32.

We therefore get that

Pr[|T (x) ∩T (x′)| ≥ b2t] ≤ 2e−t ε
2/32.

This proves the third property of T . �

Contradiction. To summarize, using the random map T to-

gether with the LSH family HB we can obtain an (r , cr ,p1 ′,p2 ′)-
sensitive familyHH for D-dimensional Hamming space with p1

′ =
p1 − δ and p2

′ = p2 + δ for δ = 2e−t ε
2/32

. For our choice of

c = ln(1/(b2−ε))
ln(1/(b1+ε)) we plug the family HH into the lower bound of

Lemma 4.3 and use that O(D−1/4) = O(ε) which follows from our

constraint that ε ≥ 1/d .

ρ(HH) ≥ 1/c −O(D−1/4)

=
ln(1/(1 + ε/b1)) + ln(1/b1)
ln(1/(1 − ε/b2)) + ln(1/b2)

−O(ε)

≥ ln(1/b1) − ε/b1
ln(1/b2) + 2ε/b2

−O(ε)

=
ln(1/b1)
ln(1/b2)

−O(ε)

Under our assumed properties ofHB , we can upper bound the value

of ρ forHH . For simplicity we temporarily de�ne λ = 2δ/p2 and

assume that λ/ln(1/p2) ≤ 1/2 and ln(1/p2) ≥ 1. The latter property

holds without loss of generality through use of the standard LSH

powering technique [21, 23, 30] that allows us to transform an LSH

family with p2 < 1 to a family that has p2 ≤ 1/e without changing

its associated ρ-value.

ρ(HH) =
ln(1/p1 ′)
ln(1/p2 ′)

=
ln(1/p1) + ln(1/(1 − δ/p1))
ln(1/p2) + ln(1/(1 + δ/p2))

≤ ln(1/p1) + λ
ln(1/p2) − λ

=
ln(1/p1) + λ

(ln 1/p2)(1 − λ/(ln 1/p2))

≤ ln(1/p1) + λ
ln(1/p2)

(1 + 2λ/(ln 1/p2)) =
ln(1/p1)
ln(1/p2)

+O(δ/p2)

≤ ln(1/b1)
ln(1/b2)

− γ +O(δ/p2).

We get a contradiction between our upper bound and lower bound

for ρ(HH) whenever γ violates the following relation that summa-

rizes the bounds:

ln(1/b1)
ln(1/b2)

−O(ε) ≤ ρ(HH) ≤
ln(1/b1)
ln(1/b2)

− γ +O(δ/p2).

In order for a contradiction to occur, the value of γ has to satisfy

γ > O(ε) +O(δ/p2).

By our setting of t = bd/lc and l = d8/εe we have that δ = e−Ω(dε
3)

.

We can cause a contradiction for a setting of ε3 = K
ln(d/p2)

d where

K is some constant and where we assume that d is greater than

some constant. The value of γ for which the lower bound holds can

be upper bounded by

γ = O

(
ln(d/p2)

d

)
1/3
.

This completes the proof of Theorem 1.2.

5 EQUIVALENT SET SIMILARITY PROBLEMS

In this section we consider how to use our data structure for Braun-

Blanquet similarity search to support other similarity measures such

as Jaccard similarity. We already observed in the introduction that a

direct translation exists between several similarity measures when-

ever the size of every sets is �xed to t . Call an (s1, s2)-S-similarity

search problem (t ,t ′)-regular if P is restricted to vectors of weight

t and queries are restricted to vectors of weight t ′. Obviously, a

(t , t ′)-regular similarity search problem is no harder than the gen-

eral similarity search problem, but it also cannot be too much easier

when expressed as a function of the thresholds (s1, s2): For every

pair (t , t ′) ∈ {0, . . . ,d}2 we can construct a (t ,t ′)-regular data struc-

ture (such that each point x ∈ P is represented in the d + 1 data

structures with t = |x|), and answer a query for q ∈ {0, 1}d by

querying all data structures with t ′ = |q|. Thus, the time and space

for the general (s1, s2)-S-similarity search problem is at most d + 1
times larger than the time and space of the most expensive (t ,t ′)-
regular data structure. This does not mean that we cannot get better

bounds in terms of other parameters, and in particular we expect

that (t , t ′)-regular similarity search problems have di�culty that

depends on parameters t and t ′.

Dimension Reduction. If the dimension is large a factor of d
may be signi�cant. However, for most natural similarity measures

a (s1, s2)-S-similarity problem in d � (logn)3 dimensions can be

reduced to a logarithmic number of (s ′
1
, s ′
2
)-S-similarity problems on

P ′ ⊆ {0, 1}d ′ in d ′ = (logn)3 dimensions with s ′
1
= s1 −O(1/logn)

and s ′
2
= s2 +O(1/logn). Since the similarity gap is close to the one

10

in the original problem, s ′
1
−s ′

2
= s1−s2−O(1/logn), where s1 and s2

are assumed to be independent of n, the di�culty (ρ-value) remains

essentially the same. First, split P into logd size classes Pi such

that vectors in class i have size in [2i ; 2i+1). For each size class the

reduction is done independently and works by a standard technique:

sample a sequence of random sets Ij ⊆ {1, . . . ,d}, i = 1, . . . ,d ′,
and set x′j = ∨`∈Ij x` . The size of each set Ij is chosen such that

Pr [x′j = 1] ≈ 1/log(n) when |x| = 2
i+1

. By Cherno� bounds this

mapping preserves the relative weight of vectors up to size 2
i
logn

up to an additive O(1/logn) term with high probability. Assume

now that the similarity measure S is such that for vectors in Pi
we only need to consider |q| in the range from 2

i/logn to 2
i
logn

(since if the size di�erence is larger, the similarity is negligible).

The we can apply Cherno� bounds to the relative weights of the

dimension-reduced vectors x′, q′ and the intersection x′ ∩ q′. In

particular, we get that the Jaccard similarity of a pair of vectors is

preserved up to an additive error ofO(1/logn)with high probability.

The class of similarity measures for which dimension reduction to

(logn)O (1) dimensions is possible is large, and we do not attempt

to characterize it here. Instead, we just note that for such similarity

measures we can determine the complexity of similarity search up

to a factor (logn)O (1) by only considering regular search problems.

Equivalence of Regular Similarity Search Problems. We

call a set similarity measure on {0, 1}d symmetric if it can be writ-

ten in the form S(q, x) = fd, |q |, |x |(|q ∩ x|), where each function

fd, |q |, |x | : N → [0; 1] is nondecreasing. All 59 set similarity mea-

sures listed in the survey [15], normalized to yield similarities in

[0; 1], are symmetric. In particular this is the case for Jaccard simi-

larity (where J (q, x) = |q ∩ x|/(|q| + |x| − |q ∩ x|)) and for Braun-

Blanquet similarity. For a symmetric similarity measure S , the pred-

icate S(q, x) ≥ s1 is equivalent to the predicate |q ∩ x| ≥ i1, where

i1 = min{i | fd,t ′,t (i) ≥ s1}, and S(q, x) > s2 is equivalent to the

predicate |q ∩ x| ≥ i2, where i2 = min{i | fd,t ′,t (i) > s2}. This

means that every (t ,t ′)-regular (s1, s2)-S-similarity search problem

on P ⊆ {0, 1}d is equivalent to an (i1/d, i2/d)-I -similarity search

problem on P , where I (q, x) = |x∩q|/d . In other words, all symmet-

ric similarity search problems can be translated to each other, and

it su�ces to study a single one, such as Braun-Blanquet similarity.

Jaccard similarity. We brie�y discuss Jaccard similarity since

it is the most widely used measure of set similarity. If we consider

the problem of (j1, j2)-approximate Jaccard similarity search in the

(t , t ′)-regular case with t , t ′ then our Theorem 1.1 is no longer

guaranteed to yield the lowest value of ρ among competing data-

independent approaches such as MinHash and Angular LSH. To

simplify the comparision between di�erent measures we introduce

parameters β and b de�ned by |y| = β |x| and b = |x ∩ y|/|x| (note

that 0 ≤ b ≤ β ≤ 1). The three primary measures of set similarity

considered in this paper can then be written as follows:

B(x, y) = b

J (x, y) = b

1 + β − b

C(x, y) = b√
β

As shown in Figure 6 among angular LSH, MinHash, and Chosen

Path, the technique with the lowest ρ-value is di�erent depend-

ing on the parameters (j1, j2) and asymmetry β . We know that

Chosen Path is optimal and strictly better than the competing

data-independent techniques across the entire parameter space

(j1, j2) when β = 1, but it remains open to �nd tight upper and

lower bounds in the case where β , 1.

6 CONCLUSION AND OPEN PROBLEMS

We have seen that, perhaps surprisingly, there exists a relatively

simple way of strictly improving the ρ-value for data-independent

set similarity search in the case where all sets have the same size.

To implement the required locality-sensitive map e�ciently we

introduce a new technique based on branching processes that could

possibly lead to more e�cient solutions in other settings.

It remains an open problem to �nd tight upper and lower bounds

on the ρ-value for Jaccard and cosine similarity search that hold for

the entire parameter space in the general setting with arbitrary set

sizes. Perhaps a modi�ed version of the Chosen Path algorithm can

yield an improved solution to Jaccard similarity search in general.

One approach is to generalize the condition hi (p ◦ j) < xj/b1 |x|
to use di�erent thresholds for queries and updates. This yields

di�erent space-time tradeo�s when applying the Chosen Path

algorithm to Jaccard similarity search.

Another interesting question is if the improvement shown for

sparse vectors can be achieved in general for inner product simi-

larity. A similar, but possibly easier, direction would be to consider

weighted Jaccard similarity.

ACKNOWLEDGMENTS

We thank Thomas Dybdahl Ahle for comments on a previous ver-

sion of this manuscript.

A DETAILS BEHIND THE LOWER BOUND

A.1 Tools

For clarity we state some standard technical lemmas that we use to

derive LSH lower bounds.

Lemma A.1 (Hoeffding [22, Theorem 1]). Let X1,X2, . . . ,Xn
be independent random variables satisfying 0 ≤ Xi ≤ 1 for i ∈ [n].
De�ne X = X1 + X2 + · · · + Xn , Z = X/n, and µ = E[Z], then:

- For µ̂ ≥ µ and 0 < ε < 1 − µ̂ we have that Pr[Z − µ̂ ≥ ε] ≤
e−2nε

2

.
- For µ̂ ≤ µ and 0 < ε < µ̂ we have that Pr[Z − µ̂ ≤ −ε] ≤
e−2nε

2

.

Lemma A.2 (Chernoff [27, Thm. 4.4 and 4.5]). Let X1, . . . ,Xn
be independent Poisson trials and de�ne X =

∑n
i=1 Xi and µ = E[X].

Then, for 0 < ε < 1 we have

- Pr[X ≥ (1 + ε)µ] ≤ e−ε
2µ/3.

- Pr[X ≤ (1 − ε)µ] ≤ e−ε
2µ/2.

Lemma A.3 (Bounding the logarithm [36]). For x > −1 we
have that x

1+x ≤ ln(1 + x) ≤ x .

11

0.00

0.05

0.10

0.15

0.20

0.25

0.00 0.05 0.10 0.15 0.20 0.25
j1

j 2

(a) β = 0.25

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.1 0.2 0.3 0.4 0.5
j1

j 2

(b) β = 0.5

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6
j1

j 2

(c) β = 0.75

Figure 6: Solution with lowest ρ-value for the (j1, j2)-approximate Jaccard similarity search problem for di�erent values of β .
Blue is angular LSH. Green is MinHash. Red is Chosen Path. Note the di�erence in the axes for di�erent values of β as it

must hold that 0 ≤ j2 ≤ j1 ≤ β .

Lemma A.4 (Approximating the exponential function [29,

Prop. B.3]). For all t ,n ∈ R with |t | ≤ n we have that et (1 − t 2
n) ≤

(1 + t
n)n ≤ et .

A.2 Proof of Lemma 4.3

Preliminaries.We will reuse the notation of Section 3. from O’Donnell

et al. [30].

De�nition A.5. For 0 ≤ λ < 1 we say that (x, y) are (1 − λ)-
correlated if x is chosen uniformly at random from {0, 1}d and y
is constructed by rerandomizing each bit from x independently at

random with probability λ.

Let (x, y) be e−t -correlated and letH be a family of hash func-

tions on {0, 1}d , then we de�ne

KH(t) = Pr

h∼H
(x,y) e−t - corr’d

[h(x) = h(y)].

We have that KH(t) is a log-convex function which implies the

following property that underlies the lower bound:

Lemma A.6. For every family of hash functions H on {0, 1}d ,
every t ≥ 0, and c ≥ 1 we have

ln(1/KH(t))
ln(1/KH(ct))

≥ 1

c
. (6)

The idea behind the proof is to tie p1 to KH(t) and p2 to KH(ct)
through Cherno� bounds and then apply Lemma A.6 to show that

ρ & 1/c .

Proof. Begin by assuming that we have a familyH that satis�es

the conditions of Lemma 4.3. Note that the expected Hamming

distance betwee (1−λ)-correlated points x and y is given by (λ/2)d .

We set λp1/2 = d−1/2 −d−5/8 and λp2/2 = cd−1/2 + 2cd−5/8 and let

(x, y) denote (1− λp1)-correlated random strings and (x, x′) denote

(1 − λp2q)-correlated random strings. By standard Cherno� bounds

we get the following guarantees:

Pr[‖x − y‖1 ≥ r] ≤ e−Ω(d
1/4),

Pr[‖x − x′‖1 ≤ cr] ≤ e−Ω(d
1/4).

We will establish a relationship between KH(tp1) and p1 on the

one hand, and KH(tp2) and p2 on the other hand, for the following

choice of parameters tp1 and tp2 :

tp1 = − ln(1 − 2(d−1/2 − d−5/8))

tp2 = − ln(1 − 2c(d−1/2 + 2d−5/8)).
By the properties ofH and from the de�nition of KH we have that

KH(tp1) ≥ p1(1 − Pr[‖x − y‖1 > r]) ≥ p1 − Pr[‖x − y‖1 ≥ r]
KH(tp2) ≤ p2(1 − Pr[‖x − x′‖1 ≤ cr]) + Pr[‖x − x′‖1 ≤ cr]

≤ p2 + Pr[‖x − x′‖1 ≤ cr].

Let δ = max{Pr[‖x − y‖1 ≥ r], Pr[‖x − x′‖1 ≤ cr]} = e−Ω(d
1/4)

. By

Lemma A.6 and our setting of tp1 and tp2 we can use the bounds

on the natural logarithm from Lemma A.3 to show the following:

ln(1/KH(tp1))
ln(1/KH(tp2))

≥
tp1
tp2
=

ln(1 − 2(d−1/2 − d−5/8))
ln(1 − 2c(d−1/2 + 2d−5/8))

≥ 2(d−1/2 − d−5/8)
2c(d−1/2 + 2d−5/8)

− 2(d−1/2 − d−5/8)

≥ 1 − d−1/4

c + 2d−1/4
− 2(d−1/2 − d−5/8)

=
1

c
−O(d−1/4).

We proceed by lower bounding ρ where we make use of the in-

equalities derived above.

KH(tp2) − δ ≤ p2 < p1 ≤ KH(tp1) + δ .
By Lemma A.6 combined with the restrictions on our parame-

ters, for d greater than some constant we have that KH(tp2) ≥

12

KH(tp1)2c ≥ (p1/2)2c ≥ (2d)−2c ≥ (2d)−2d
1/8

. Furthermore, we

lower bound ln(1/KH(tp2)) by using that KH(tp2) ≤ p2 + δ to-

gether with the restriction that p2 ≥ 1− 1/d and the properties of δ .

For d greater than some constant it therefore holds that KH(tp2) ≤
1 − 1/2d from which it follows that ln(1/KH(tp2)) ≥ 1/2d .

ln(1/p1)
ln(1/p2)

≥
ln(1/(KH(tp1) + δ))
ln(1/(KH(tp2) − δ))

=
ln(1/KH(tp1)) − ln(1 + δ/KH(tp1))

ln(1/KH(tp2)) + ln(1/(1 − δ/KH(tp2)))

≥
ln(1/KH(tp1)) − δ/KH(tp1)
ln(1/KH(tp2)) + 2δ/KH(tp2)

≥
ln(1/KH(tp1))
ln(1/KH(tp2))

− 3δ

KH(tp2) ln(1/KH(tp2))
.

By the arguments above we have that

3δ

KH(tp2) ln(1/KH(tp2))
= e−Ω(d

1/4) = O(d−1/4).

Inserting the lower bound for

ln(1/KH (tp1))
ln(1/KH (tp2))

results in the lemma.

B COMPARISONS

For completeness we state the proofs behind the comparisons be-

tween the ρ-values obtained by the Chosen Path algorithm and

other LSH techniques.

B.1 MinHash

For data sets with �xed sparsity and Braun-Blanquet similarities

0 < b2 < b1 < 1 we have that ρ/ρ
minhash

= f (b2)/f (b1) where

f (x) = log(x/(2 − x))/log(x). If f (x) is monotone increasing in

(0; 1) then ρ/ρ
minhash

< 1. For x ∈ (0; 1)we have that sign(f ′(x)) =
sign(д(x)) where д(x) = ln(x) + (2 − x) ln(2 − x). The function д(x)
equals zero at x = 1 and has the derivative д′(x) = ln(x) − ln(2− x)
which is negative for values of x ∈ (0; 1). We can thefore see that

f ′(x) is positive in the interval and it follows that ρ < ρ
minhash

for

every choice of 0 < b2 < b1 < 1.

B.2 Angular LSH

We have that ρ/ρ
angular

< 1 if f (x) = ln(x) 1+x
1−x is a monotone

increasing function for x ∈ (0; 1). For x ∈ (0; 1) we have that

sign(f ′(x)) = sign(д(x)) where д(x) = (1 − x2)/2 + x lnx . We note

that д(1) = 0 and д′(x) = 1 − x + lnx . Therefore, if д′(x) < 0 for

x ∈ (0; 1) it holds that д(x) > 0 and f (x) is monotone increasing in

the same interval. We have that д′(1) = 0 and д′′(x) = −1+1/x > 0

implying that д′(x) < 0 in the interval.

B.3 Data-dependent LSH

Lemma B.1. Let 0 < b2 < b1 < 1 and �x ρ = 1/2 such that
b1 =

√
b2. Then we have that ρ < ρdatadep for every value ofb2 < 1/4.

Proof. We will compare ρ = log(b1)/log(b2) and ρ
datadep

=
1−b1

1+b1−2b2 when ρ is �xed at ρ = 1/2, or equivalently, b1 =
√
b2. We

can solve the quadratic equation 1/2 = 1−
√
b2

1+
√
b2−2b2

to see that for

0 < b2 < 1 we have that ρ = ρ
datadep

only when b2 = 1/4. The

derivative of ρ
datadep

with respect to b2 is negative when b1 =
√
b2.

Under this restriction we therefore have that ρ < ρ
datadep

for

b2 < 1/4 which is equivalent to j2 < 1/7 in the �xed-weight

setting. �

To compare ρ-values over the full parameter space we use the

following two lemmas.

Lemma B.2. For every choice of �xed 0 < ρ < 1 let b2 = b
1/ρ
1

.

Then ρdatadep =
1−b1

1+b1−2b2 is decreasing in b1 for b1 ∈ (0; 1).

Proof. The sign of the derivative of ρ
datadep

with respect to b1

is equal to the sign of the function д(x) = −ρx−1/ρ + ρ − 1+x−1 for

x ∈ (0; 1). We have that д(1) = 0 and д′(x) = x−1/p − 1 − x−2 > 0

for x ∈ (0; 1) which shows that д(x) < 0 in the interval. �

Lemma B.3. For 1/5 = b2 < b1 < 1 we have that ρ < ρdatadep.

Proof. For �xed b2 = 1/5 consider f (b1) = ρ − ρ
datadep

as a

function of b1 in the interval [1/5, 1]. We want to show that f (b1) <
0 for b1 ∈ (1/5; 1). In the endpoints the function takes the value

0. Between the endpoints we �nd that f ′(b1) = 1

ln(5)b1 +
8/5

(3/5+b1)2
and that f ′(b1) = 0 is a quadratic form with only one solution

b∗
1

in [1/5; 1]. By Lemma B.1 we know that that for b2 = 1/5 and

b1 = 1/
√
5 it holds that f (b1) < 0. Since f (1/5) = f (1) = 0,

f ′(b1) = 0 only in a single point in [1/5; 1], and f (1/
√
5) < 0 we

can conclude that the lemma holds. �

Corollary B.4. For every choice of b1,b2 satisfying 0 < b2 ≤ 1/5
and b2 < b1 < 1 we have that ρ < ρdatadep.

Proof. If b2 = 1/5 the property holds by Lemma B.3. If b2 < 1/5
we de�ne new variables

ˆb2, ˆb2, setting
ˆb1 = ˆb

ρ(b1,b2)
1

and initially

consider
ˆb2 = 1/5. In this setting we again have that ρ(ˆb1, ˆb2) <

ρ
datadep

(ˆb1, ˆb2). According to Lemma B.2 it holds that ρ
datadep

is

decreasing in b2 for �xed ρ. Therefore, as
ˆb2 decreases to

ˆb2 = b2
where

ˆb1 = b1 we have that ρ(ˆb1, ˆb2) = ρ remains constant while

ρ
datadep

increases. Since it held that ρ < ρ
datadep

at the initial values

of
ˆb1, ˆb2 it must also hold for b1,b2. �

Numerical Comparison of MinHash and Data-dep. LSH.

Comparing ρ
minhash

to ρ
datadep

we can verify numerically that

even for b2 �xed as low as b2 = 1/23 we can �nd values of b1 (for

example b1 = 0.995 such that ρ
minhash

> ρ
datadep

.

REFERENCES

[1] T. D. Ahle, R. Pagh, I. P. Razenshteyn, and F. Silvestri. 2016. On the Complexity

of Inner Product Similarity Join. In Proc. PODS’16. 151–164.

[2] A. Andoni, P. Indyk, T. Laarhoven, I. Razenshteyn, and L. Schmidt. 2015. Practical

and optimal LSH for angular distance. In Proc. NIPS ’15. 1225–1233.

[3] A. Andoni, P. Indyk, H. L. Nguyen, and I. P. Razenshteyn. 2014. Beyond Locality-

Sensitive Hashing. In Proc. SODA ’14. 1018–1028.

[4] A. Andoni, T. Laarhoven, I. P. Razenshteyn, and E. Waingarten. 2017. Optimal

Hashing-based Time-Space Trade-o�s for Approximate Near Neighbors. In Proc.
SODA ’17. 47–66.

[5] A. Andoni and I. Razenshteyn. 2015. Optimal Data-Dependent Hashing for

Approximate Near Neighbors. In Proc. STOC ’15. 793–801.

[6] A. Andoni and I. Razensteyn. 2016. Tight Lower Bounds for Data-Dependent

Locality-Sensitive Hashing. In Proc. SoCG ’16. 9:1–9:11.

[7] Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik. 2006. E�cient exact set-

similarity joins. In Proceedings of the 32nd international conference on Very large
data bases. VLDB Endowment, 918–929.

13

[8] Roberto J Bayardo, Yiming Ma, and Ramakrishnan Srikant. 2007. Scaling up

all pairs similarity search. In Proceedings of the 16th international conference on
World Wide Web. ACM, 131–140.

[9] A. Becker, L. Ducas, N. Gama, and T. Laarhoven. 2016. New directions in nearest

neighbor searching with applications to lattice sieving. In Proc. SODA ’16. 10–24.

[10] Josias Braun-Blanquet. 1932. Plant sociology. The study of plant communities.
McGraw-Hill.

[11] Andrei Z. Broder. 1997. On the resemblance and containment of documents. In

Compression and Complexity of Sequences 1997. Proceedings. IEEE, 21–29.

[12] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geo�rey Zweig.

1997. Syntactic clustering of the web. Computer Networks and ISDN Systems 29,

8 (1997), 1157–1166.

[13] M. Charikar. 2002. Similarity estimation techniques from rounding algorithms.

In Proc. STOC ’02. 380–388.

[14] F. Chierichetti and R. Kumar. 2015. LSH-Preserving Functions and Their Appli-

cations. J. ACM 62, 5 (2015), 33.

[15] S. Choi, S. Cha, and C. C. Tappert. 2010. A survey of binary similarity and

distance measures. J. Syst. Cybern. Informatics 8, 1 (2010), 43–48.

[16] T. Christiani. 2017. A Framework for Similarity Search with Space-Time Tradeo�s

using Locality-Sensitive Filtering. In Proc. SODA ’17. 31–46.

[17] E. Cohen. 1997. Size-estimation framework with applications to transitive closure

and reachability. J. Comp. Syst. Sci. 55, 3 (1997), 441–453.

[18] E. Cohen and H. Kaplan. 2009. Leveraging discarded samples for tighter esti-

mation of multiple-set aggregates. ACM SIGMETRICS Performance Evaluation
Review 37, 1 (2009), 251–262.

[19] M. Dubiner. 2010. Bucketing coding and information theory for the statistical

high-dimensional nearest-neighbor problem. IEEE Trans. Information Theory 56,

8 (2010), 4166–4179.

[20] T. Hagerup. 1998. Sorting and Searching on the Word RAM. In Proc. STACS ’98.

366–398.

[21] S. Har-Peled, P. Indyk, and R. Motwani. 2012. Approximate Nearest Neighbor:

Towards Removing the Curse of Dimensionality. Theory of computing 8, 1 (2012),

321–350.

[22] W. Hoe�ding. 1963. Probability inequalities for sums of bounded random vari-

ables. Jour. Am. Stat. Assoc. 58, 301 (1963), 13–30.

[23] P. Indyk and R. Motwani. 1998. Approximate nearest neighbors: towards remov-

ing the curse of dimensionality. In Proc. STOC ’98. 604–613.

[24] T. Laarhoven. 2015. Tradeo�s for nearest neighbors on the sphere. CoRR
abs/1511.07527 (2015). http://arxiv.org/abs/1511.07527

[25] Ping Li and Arnd Christian König. 2011. Theory and applications of b-bit minwise

hashing. Commun. ACM 54, 8 (2011), 101–109.

[26] M. Mitzenmacher, R. Pagh, and N. Pham. 2014. E�cient estimation for high

similarities using odd sketches. In Proc. WWW ’14. 109–118.

[27] M. Mitzenmacher and E. Upfal. 2005. Probability and computing. Cambridge

University Press, New York, NY.

[28] R. Motwani, A. Naor, and R. Panigrahy. 2007. Lower Bounds on Locality Sensitive

Hashing. SIAM J. Discrete Math. 21, 4 (2007), 930–935.

[29] Rajeev Motwani and Prabhakar Raghavan. 2010. Randomized algorithms. Chap-

man & Hall/CRC.

[30] R. O’Donnell, Y. Wu, and Y. Zhou. 2014. Optimal lower bounds for locality-

sensitive hashing (except when q is tiny). ACM Transactions on Computation
Theory (TOCT) 6, 1 (2014), 5.

[31] Rasmus Pagh, Morten Stöckel, and David P Woodru�. 2014. Is min-wise hash-

ing optimal for summarizing set intersection?. In Proceedings of the 33rd ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems. ACM,

109–120.

[32] R. Panigrahy, K. Talwar, and U. Wieder. 2010. Lower Bounds on Near Neighbor

Search via Metric Expansion. In Proc. FOCS ’10. 805–814.

[33] Anshumali Shrivastava and Ping Li. 2015. Asymmetric minwise hashing for

indexing binary inner products and set containment. In Proceedings of the 24th
International Conference on World Wide Web. ACM, 981–991.

[34] K. Terasawa and Y. Tanaka. 2007. Spherical LSH for Approximate Nearest

Neighbor Search on Unit Hypersphere. In Proc. WADS ’07. 27–38.

[35] Mikkel Thorup. 2013. Bottom-k and priority sampling, set similarity and subset

sums with minimal independence. In Proceedings of the forty-�fth annual ACM
symposium on Theory of computing. ACM, 371–380.

[36] F. Topsœ. 2007. Some Bounds for the Logarithmic Function. Vol. 4. Nova Science,

137–151.

[37] Albert L Zobrist. 1970. A new hashing method with application for game playing.

ICCA journal 13, 2 (1970), 69–73.

14

http://arxiv.org/abs/1511.07527

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Contribution

	2 Preliminaries
	3 Upper Bound
	3.1 Chosen Path
	3.2 Implementation Details
	3.3 Comparison

	4 Lower Bound
	4.1 Braun-Blanquet LSH Lower Bound

	5 Equivalent Set Similarity Problems
	6 Conclusion and Open Problems
	Acknowledgments
	A Details Behind the Lower Bound
	A.1 Tools
	A.2 Proof of Lemma ??

	B Comparisons
	B.1 MinHash
	B.2 Angular LSH
	B.3 Data-dependent LSH

	References

