
A Time- and Message-Optimal Distributed Algorithm for Minimum

Spanning Trees∗

Gopal Pandurangan† Peter Robinson‡ Michele Scquizzato§

January 25, 2018

Abstract

This paper presents a randomized (Las Vegas) distributed algorithm that constructs a
minimum spanning tree (MST) in weighted networks with optimal (up to polylogarithmic factors)
time and message complexity. This algorithm runs in Õ(D +

√
n) time and exchanges Õ(m)

messages (both with high probability), where n is the number of nodes of the network, D is
the diameter, and m is the number of edges. This is the first distributed MST algorithm that
matches simultaneously the time lower bound of Ω̃(D+

√
n) [Elkin, SIAM J. Comput. 2006] and

the message lower bound of Ω(m) [Kutten et al., J. ACM 2015], which both apply to randomized
Monte Carlo algorithms.

The prior time and message lower bounds are derived using two completely different graph
constructions; the existing lower bound construction that shows one lower bound does not work
for the other. To complement our algorithm, we present a new lower bound graph construction
for which any distributed MST algorithm requires both Ω̃(D +

√
n) rounds and Ω(m) messages.

1 Introduction

The minimum-weight spanning tree (MST) construction problem is one of the central and most
studied problems in distributed computing. A long line of research aimed at developing efficient
distributed algorithms for the MST problem started more than thirty years ago with the seminal
paper of Gallager, Humblet, and Spira [13], which presented a distributed algorithm that constructs
an MST in O(n log n) rounds exchanging a total of O(m+ n log n) messages1 (throughout, n and
m will denote the number of nodes and the number of edges of the network, respectively). The

∗A preliminary version of this paper [35] appeared in the Proceedings of the 49th Annual ACM Symposium on the
Theory of Computing (STOC 2017).
†Department of Computer Science, University of Houston, Houston, TX 77204, USA.

E-mail: gopalpandurangan@gmail.com. Supported, in part, by NSF grants CCF-1527867, CCF-1540512, IIS-
1633720, and CCF-1717075, and by US-Israel Binational Science Foundation (BSF) grant 2016419.
‡Department of Computer Science, Royal Holloway, University of London, London, UK.

E-mail: peter.robinson@rhul.ac.uk.
§School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden.

E-mail: mscq@kth.se. Supported, in part, by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme under grant agreement No 715672.

1The original algorithm has a message complexity of O(m logn), but it can be improved to O(m+ n logn).

1

ar
X

iv
:1

60
7.

06
88

3v
3

 [
cs

.D
C

]
 2

4
Ja

n
20

18

message complexity of this algorithm is (essentially) optimal,2 but its time complexity is not. Hence
further research concentrated on improving the time complexity. The time complexity was first
improved to O(n log logn) by Chin and Ting [5], further improved to O(n log∗ n) by Gafni [12], and
then to O(n) by Awerbuch [2] (see also [11]). The O(n) bound is existentially optimal in the sense
that there exist graphs for which this is the best possible.

This was the state of the art till the mid-nineties when Garay, Kutten, and Peleg [14] raised
the question of whether it is possible to identify graph parameters that can better capture the
complexity of distributed network computations. In fact, for many existing networks, their diameter3

D is significantly smaller than the number of vertices n, and therefore it is desirable to design
protocols whose running time is bounded in terms of D rather than in terms of n. Garay, Kutten,
and Peleg [14] gave the first such distributed algorithm for the MST problem with running time
O(D + n0.614 log∗ n), which was later improved by Kutten and Peleg [28] to O(D +

√
n log∗ n).

However, both these algorithms are not message-optimal,4 as they exchange O(m + n1.614) and
O(m + n1.5) messages, respectively. All the above results, as well as the one in this paper, hold
in the synchronous CONGEST model of distributed computing, a well-studied standard model of
distributed computing [37] (see Section 1.1).

The lack of progress in improving the result of [28], and in particular breaking the Õ(
√
n)

barrier,5 led to work on lower bounds for the distributed MST problem. Peleg and Rubinovich [38]
showed that Ω(D +

√
n/ log n) time is required by any distributed algorithm for constructing an

MST, even on networks of small diameter (D = Ω(log n)); thus, this result establishes the asymptotic
near-tight optimality of the algorithm of [28]. The lower bound of Peleg and Rubinovich applies
to exact, deterministic algorithms. Later, the same lower bound of Ω̃(D +

√
n) was shown for

randomized (Monte Carlo) and approximation algorithms as well [9, 6].
To summarize, the state of the art for distributed MST algorithms is that there exist algorithms

which are either time-optimal (i.e., they run in Õ(D +
√
n) time) or message-optimal (i.e., they

exchange Õ(m) messages), but not simultaneously both. Indeed, the time-optimal algorithms
of [28, 8] (as well as the sublinear time algorithm of [14]) are not message-optimal, i.e., they require
asymptotically much more than Θ(m) messages. In contrast, the known message-optimal algorithms
for MST (in particular, [13, 2]) are not time-optimal, i.e., they take significantly more time than
Õ(D+

√
n). In their 2000 SICOMP paper [38], Peleg and Rubinovich raised the question of whether

one can design a distributed MST algorithm that is simultaneously optimal with respect to time
and message complexity. In 2011, Kor, Korman, and Peleg [24] also raised this question and showed
that distributed verification of MST, i.e., verifying whether a given spanning tree is MST or not,
can be done in optimal messages and time, i.e., there exists a distributed verification algorithm that
uses Õ(m) messages and runs in Õ(D +

√
n) time, and that these are optimal bounds for MST

verification. However, the original question for MST construction remained open.
The above question addresses a fundamental aspect in distributed algorithms, namely the

relationship between the two basic complexity measures of time and messages. The simultaneous
optimization of both time and message complexity has been elusive for several fundamental problems

2It has been shown in [27] that the message complexity lower bound for leader election (and hence for any spanning
tree construction as well) is Ω(m), and this applies even to randomized Monte Carlo algorithms. On the other hand,
it can be shown that an MST can be constructed using O(m) messages (but time can be arbitrarily large) in any
synchronous network [27, 34].

3In this paper, by diameter we always mean unweighted diameter.
4In this paper, henceforth, when we say “optimal” we mean “optimal up to a polylog(n) factor”.
5Õ(f(n)) and Ω̃(f(n)) denote O(f(n) · polylog(f(n))) and Ω(f(n)/polylog(f(n))), respectively.

2

(including MST, shortest paths, and random walks), and consequently research in the last three
decades in distributed algorithms has focused mainly on optimizing either one of the two measures
separately. However, in various modern and emerging applications such as resource-constrained
communication networks and distributed computation of large-scale data, it is crucial to design
distributed algorithms that optimize both measures simultaneously [23, 19].

1.1 Model and Definitions

We first briefly describe the distributed computing model in which our algorithm (as well as all
the previously discussed MST algorithms [5, 13, 14, 28, 2, 12, 8]) is specified and analyzed. This is
the CONGEST model (see, e.g., the book by Peleg [37]), which is now standard in the distributed
computing literature.

A point-to-point communication network is modeled as an undirected weighted graph G =
(V,E,w), where the vertices of V represent the processors, the edges of E represent the communica-
tion links between them, and w(e) is the weight of edge e ∈ E. Without loss of generality, we assume
that G is connected. We also assume that the weights of the edges of the graph are all distinct.
This implies that the MST of the graph is unique. The definitions and the results generalize readily
to the case where the weights are not necessarily distinct. Each node hosts a processor with limited
initial knowledge. Specifically, we make the common assumption that each node has unique identity
numbers (this is not essential, but simplifies presentation), and at the beginning of computation
each vertex v accepts as input its own identity number and the weights of the edges incident to it.
Thus, a node has only local knowledge. Specifically we assume that each node has ports (each port
having a unique port number); each incident edge is connected to one distinct port. A node does
not have any initial knowledge of the other endpoint of its incident edge (which node it is connected
to or the port number that it is connected to). This model is referred to as the clean network model
in [37] and is also sometimes referred to as the KT0 model, i.e., the initial (K)nowledge of all nodes
is restricted (T)ill radius 0 (i.e., just the local knowledge) [37]. The KT0 model is a standard model
in distributed computing and typically used in the literature (see e.g., [37, 41, 30, 1]), including all
the prior results on distributed MST (e.g., [2, 5, 13, 14, 28, 12, 8]) with a notable exception ([22],
discussed in detail in Section 1.3).

The vertices are allowed to communicate through the edges of the graph G. It is assumed that
communication is synchronous and occurs in discrete rounds (time steps). In each time step, each
node v can send an arbitrary message of O(log n) bits through each edge e = (v, u) incident to v, and
each message arrives at u by the end of this time step. (If unbounded-size messages are allowed—this
is the so-called LOCAL model—the MST problem can be trivially solved in O(D) time [37].) The
weights of the edges are at most polynomial in the number of vertices n, and therefore the weight
of a single edge can be communicated in one time step. This model of distributed computation is
called the CONGEST(log n) model or simply the CONGEST model [37].

The efficiency of distributed algorithms is traditionally measured by their time and message (or,
communication) complexities. Time complexity measures the number of synchronous rounds taken
by the algorithm, whereas message complexity measures the total amount of messages sent and
received by all the processors during the execution of the algorithm. Both complexity measures
crucially influence the performance of a distributed algorithm. We say that a problem enjoys singular
optimality if it admits a distributed algorithm whose time and message complexity are both optimal.
When the problem fails to admit such a solution, namely, algorithms with better time complexity
for it necessarily incur higher message complexity and vice versa, we say that the problem exhibits

3

a time-message tradeoff.

1.2 Our Results

Distributed MST Algorithm In this paper we present a distributed MST algorithm in the
CONGEST model which is simultaneously time- and message-optimal. The algorithm is randomized
Las Vegas, and always returns the MST. The running time of the algorithm is Õ(D +

√
n) and

the message complexity is Õ(m), and both bounds hold with high probability.6 This is the first
distributed MST algorithm that matches simultaneously the time lower bound of Ω̃(D +

√
n) [9, 6]

and the message lower bound of Ω(m) [27], which both apply even to randomized Monte Carlo
algorithms, thus closing a more than thirty-year-old line of research in distributed computing. In
terms of the terminology introduced earlier, we can therefore say that the distributed MST problem
exhibits singular optimality up to polylogarithmic factors. Table 1 summarizes the known upper
bounds on the complexity of distributed MST.

Reference Time Complexity Message Complexity

Gallager et al. [13] O(n log n) O(m+ n log n)
Awerbuch [2] O(n) O(m+ n log n)
Garay et al. [14] O(D + n0.614 log∗ n) O(m+ n1.614)
Kutten and Peleg [28] O(D +

√
n log∗ n) O(m+ n1.5)

Elkin [8] Õ(µ(G,w) +
√
n) O(m+ n1.5)

This paper Õ(D +
√
n) Õ(m)

Table 1: Summary of upper bounds on the complexity of distributed MST.

Lower Bound Both the aforementioned time and message lower bounds are existential, and are
derived using two completely different graph constructions. However, the graph used to show one
lower bound does not work for the other. To complement our main result, in Section 4 we present a
new graph construction for which any distributed MST algorithm requires both Ω̃(D +

√
n) rounds

and Ω(m) messages.

1.3 Other Related Work

Given the importance of the distributed MST problem, there has been significant work over the
last 30 years on this problem and related aspects. Besides the prior work already mentioned in
Section 1, we now discuss other relevant work on distributed MST.

Other Distributed MST Algorithms Elkin [8] showed that a parameter called MST-radius
captures the complexity of distributed MST algorithms better. The MST-radius, denoted by µ(G,w),
and which is a function of the graph topology as well as the edge weights, roughly speaking is the
maximum radius each vertex has to examine to check whether any of its edges is in the MST. Elkin
devised a distributed protocol that constructs the MST in Õ(µ(G,w)+

√
n) time. The ratio between

diameter and MST-radius can be as large as Θ(n), and consequently, on some inputs, this protocol

6Throughout, with high probability (w.h.p.) means with probability ≥ 1− 1/nΩ(1), where n is the network size.

4

is faster than the protocol of [28] by a factor of Ω(
√
n). However, a drawback of this protocol

(unlike the previous MST protocols [28, 14, 5, 12, 13]) is that it cannot detect the termination of
the algorithm in that time (unless µ(G,w) is given as part of the input). On the other hand, it can
be shown that for distributed MST algorithms that correctly terminate Ω(D) is a lower bound on
the running time [38, 26]. (In fact, [26] shows that for every sufficiently large n and every function
D(n) with 2 ≤ D(n) < n/4, there exists a graph G of n′ ∈ Θ(n) nodes and diameter D′ ∈ Θ(D(n))
which requires Ω(D′) rounds to compute a spanning tree with constant probability.) We also note
that the message complexity of Elkin’s algorithm is O(m+ n3/2).

Some classes of graphs admit efficient MST algorithms that beat the general Ω̃(D +
√
n)

time lower bound. This is the case for planar graphs, graphs of bounded genus, treewidth, or
pathwidth [15, 17, 18], and graphs with small random walk mixing time [16].

Time Complexity From a practical perspective, given that MST construction can take as much
as Ω(

√
n/ log n) time even in low-diameter networks, it is worth investigating whether one can

design distributed algorithms that run faster and output an approximate minimum spanning tree.
The question of devising faster approximation algorithms for MST was raised in [38]. Elkin [9] later
established a hardness result on distributed MST approximation, showing that approximating the
MST problem on a certain family of graphs of small diameter (e.g., O(log n)) within a ratio H
requires essentially Ω(

√
n/H log n) time. Khan and Pandurangan [21] showed that there can be

an exponential time gap between exact and approximate MST construction by showing that there
exist graphs where any distributed (exact) MST algorithm takes Ω(

√
n/ log n) rounds, whereas an

O(log n)-approximate MST can be computed in O(log n) rounds. The distributed approximation
algorithm of Khan and Pandurangan is message-optimal but not time-optimal.

Das Sarma et al. [6] settled the time complexity of distributed approximate MST by showing that
this problem, as well as approximating shortest paths and about twenty other problems, satisfies a
time lower bound of Ω̃(D+

√
n). This applies to deterministic as well as randomized algorithms, and

to both exact and approximate versions. In other words, any distributed algorithm for computing a
H-approximation to MST, for any H > 0, takes Ω̃(D +

√
n) time in the worst case.

Message Complexity Kutten et al. [27] fully settled the message complexity of leader election
in general graphs, even for randomized algorithms and under very general settings. Specifically,
they showed that any randomized algorithm (including Monte Carlo algorithms with suitably large
constant success probability) requires Ω(m) messages; this lower bound holds for any n and m,
i.e., given any n and m, there exists a graph with Θ(n) nodes and Θ(m) edges for which the lower
bound applies. Since a distributed MST algorithm can also be used to elect a leader (where the
root of the tree is the leader, which can be chosen using O(n) messages once a tree is constructed),
the above lower bound applies to distributed MST construction as well, for all m ≥ cn, where c is a
sufficiently large constant.

The above bound holds even for non-comparison algorithms, that is algorithms that may also
manipulate the actual value of node’s identities, not just compare identities with each other, and
even if nodes have initial knowledge of n,m, and D. It also holds for synchronous networks, and
even if all the nodes wake up simultaneously. Finally, it holds not only for the CONGEST model [37],
where sending a message of O(log n) bits takes one unit of time, but also for the LOCAL model [37],
where the number of bits carried in a single message can be arbitrary.

5

The KT1 Variant It is important to point out that this paper and all the prior results discussed
above (including the prior MST results [2, 5, 13, 14, 28, 12, 8]) assume the so-called clean network
model, a.k.a. KT0 [37] (cf. Section 1.1), where nodes do not have initial knowledge of the identity
of their neighbors. However, one can assume a model where nodes do have such a knowledge.
This model is called the KT1 model. Although the distinction between KT0 and KT1 has clearly
no bearing on the asymptotic bounds for the time complexity, it is significant when considering
message complexity. Awerbuch et al. [3] show that Ω(m) is a message lower bound for MST in the
KT1 model, if one allows only (possibly randomized Monte Carlo) comparison-based algorithms,
i.e., algorithms that can operate on IDs only by comparing them. (We note that all prior MST
algorithms mentioned earlier are comparison-based, including ours.) Hence, the result of [3] implies
that our MST algorithm (which is comparison-based and randomized) is time- and message-optimal
in the KT1 model if one considers comparison-based algorithms only.

Awerbuch et al. [3] also show that the Ω(m) message lower bound applies even to non-comparison
based (in particular, algorithms that can perform arbitrary local computations) deterministic
algorithms in the CONGEST model that terminate in a time bound that depends only on the
graph topology (e.g., a function of n). On the other hand, for randomized non-comparison-based
algorithms, it turns out that the message lower bound of Ω(m) does not apply in the KT1 model.
Recently, King et al. [22] showed a surprising and elegant result: in the KT1 model one can give
a randomized Monte Carlo algorithm to construct an MST in Õ(n) messages (Ω(n) is a message
lower bound) and in Õ(n) time. This algorithm is randomized and not comparison-based. While
this algorithm shows that one can achieve o(m) message complexity (when m = ω(n polylog n)), it
is not time-optimal (it can take significantly more than Θ̃(D +

√
n) rounds). In subsequent work,

Mashreghi and King [31] presented another randomized, not comparison-based MST algorithm
with round complexity Õ(Diam(MST)) and with message complexity Õ(n). It is an open question
whether one can design a randomized (non-comparison based) algorithm that takes Õ(D +

√
n)

time and Õ(n) messages in the KT1 model.

Subsequent Work The preliminary version of this paper [35] raised the open problem of whether
there exists a deterministic time- and message-optimal MST algorithm. We notice that our algorithm
is randomized, due to the use of the randomized cover construction of [8], even though the rest of
the algorithm is deterministic. Elkin [10], building on our work, answered this question affirmatively
by devising a deterministic MST algorithm that achieves essentially the same bounds as in this
paper, i.e., uses Õ(m) messages and runs in Õ(D +

√
n) time.7 Elkin’s algorithm is simpler as it

bypasses Phase 2 of Part 2 of our algorithm, and thus bypasses the randomized cover construction;
the rest of the high-level structure of Elkin’s algorithm is similar to our algorithm.

2 High-Level Overview of the Algorithm

The time- and message-optimal distributed MST algorithm of this paper builds on prior distributed
MST algorithms that were either message-optimal or time-optimal but not both. We provide a
high-level overview of our algorithm and some intuition behind it; we also compare and contrast it
with previous MST algorithms. The full description of the algorithm and its analysis are given in
Section 3. The algorithm can be divided into two parts as explained next.

7Actually, the bounds are better than in this paper by logarithmic factors.

6

2.1 First Part: Controlled-GHS

We first run the so-called Controlled-GHS algorithm, which was first used in the sublinear-time
distributed MST algorithm of Garay, Kutten, and Peleg [14], as well as in the time-optimal algorithm
of Kutten and Peleg [28]. Controlled-GHS is the (synchronous version of the) classical Gallager-
Humblet-Spira (GHS) algorithm [13, 37], with some modifications. We recall that the synchronous
GHS algorithm, which is essentially a distributed implementation of Bor̊uvka’s algorithm—see, e.g.,
[37], consists of O(log n) phases. In the initial phase each node is an MST fragment, by which we
mean a connected subgraph of the MST. In each subsequent phase, every MST fragment finds
a lightest (i.e., minimum-weight) outgoing edge (LOE)—these edges are guaranteed to be in the
MST by the cut property [40]. The MST fragments are merged via the LOEs to form larger MST
fragments. The number of phases is O(log n), since the number of MST fragments gets at least
halved in each phase. The message complexity is O(m + n log n), which is essentially optimal,
and the time complexity is O(n log n). The time complexity is not optimal because much of the
communication during a phase uses only the MST fragment edges. Since the diameter of an MST
fragment can be as large as Ω(n) (and this can be significantly larger than the graph diameter D),
the time complexity of the GHS algorithm is not optimal.

The Controlled-GHS algorithm alleviates this situation by controlling the growth of the diameter
of the MST fragments during merging. At the end of Controlled-GHS, at most

√
n fragments

remain, each of which has diameter O(
√
n). These are called base fragments. Controlled-GHS can be

implemented using Õ(m) messages in Õ(
√
n) rounds. (Note that Controlled-GHS as implemented

in the time-optimal algorithm of [28] is not message-optimal—the messages exchanged can be
Õ(m+ n3/2); however, a modified version can be implemented using Õ(m) messages, as explained
in Section 3.1.)

2.2 Second Part: Merging the
√
n Remaining Fragments

The second part of our algorithm, after the Controlled-GHS part, is different from the existing
time-optimal MST algorithms. The existing time-optimal MST algorithms [28, 8], as well as the
algorithm of [14], are not message-optimal since they use the Pipeline procedure of [36, 14]. The
Pipeline procedure builds an auxiliary breadth-first search (BFS) tree of the network, collects all the
inter-fragment edges (i.e., the edges between the

√
n MST fragments) at the root of the BFS tree,

and then finds the MST locally. The Pipeline algorithm uses the cycle property of the MST [40] to
eliminate those inter-fragment edges that cannot belong to the MST en route of their journey to
the root. While the Pipeline procedure, due to the pipelining of the edges to the root, takes O(

√
n)

time (since there are at most so many MST edges left to be discovered after the end of the first
part), it is not message-optimal: it exchanges O(m+ n1.5) messages, since each node in the BFS
tree can send up to O(

√
n) edges leading to O(n1.5) messages overall (the BFS tree construction

takes O(m) messages).
Our algorithm uses a different strategy to achieve optimality in both time and messages. The

main novelty of our algorithm (Algorithm 1) is how the (at most)
√
n base fragments which remain

at the end of the Controlled-GHS procedure are merge into one resulting fragment (the MST). Unlike
previous time-optimal algorithms [28, 8, 14], we do not use the Pipeline procedure of [36, 14], since it
is not message-optimal. Instead, we continue to merge fragments, a la Bor̊uvka-style. Our algorithm
uses two main ideas to implement the Bor̊uvka-style merging efficiently. (Merging is achieved by
renaming the IDs of the merged fragments to a common ID, i.e., all nodes in the combined fragment

7

will have this common ID.) The first idea is a procedure to efficiently merge when D is small (i.e.,
D = O(

√
n)) or when the number of fragments remaining is small (i.e., O(n/D)). The second

idea is to use sparse neighborhood covers and efficient communication between fragments to merge
fragments when D is large and the number of fragments is large. Accordingly, the second part of
our algorithm can be divided into three phases, which are described next.

2.2.1 Phase 1: When D is O(
√
n)

Phase 1 can be treated as a special case of Phase 3 (as in Algorithm 1). However, we describe
Phase 1 separately as it helps in the understanding of the other phases as well.

We construct a BFS tree on the entire network, and perform the merging process as follows.
Each base fragment finds its LOE by convergecasting within each of its fragments. This takes O(

√
n)

time and O(
√
n) messages per base fragment, leading to O(n) messages overall. The O(

√
n) LOE

edges are sent by the leaders of the respective base fragments to the root by upcasting (see, e.g.,
[37]). This takes O(D +

√
n) time and O(D

√
n) messages, as each of the

√
n edges has to traverse

up to D edges on the way to the root. The root merges the fragments and sends the renamed
fragment IDs to the respective leaders of the base fragments by downcast (which has the same time
and message complexity as upcast [37]). The leaders of the base fragments broadcast the new ID to
all other nodes in their respective fragments. This takes O(

√
n) messages per fragment and hence

O(n) messages overall. Thus one iteration of the merging can be done in O(D +
√
n) time and

using O(D
√
n) messages. Since each iteration reduces the number of fragments by at least half,

the number of iterations is O(log n). At the end of this iteration, several base fragments may share
the same label. In subsequent iterations, each base fragment finds its LOE (i.e., the LOE between
itself and the other base fragments which do not have the same label) by convergecasting within
its own fragment and (the leader of the base fragment) sends the LOE to the root; thus O(

√
n)

edges are sent to the root (one per base fragment), though there is a lesser number of combined
fragments (with distinct labels). The root finds the overall LOE of the combined fragments and
does the merging. This is still fine, since the time and message complexity per merging iteration is
O(D +

√
n) and O(D

√
n) = O(n), respectively, as required.

2.2.2 Phase 2: When D and the Number of Fragments are Large

When D is large (say n1/2+ε, for some 0 < ε ≤ 1/2) and the number of fragments is large (say,
Θ(
√
n)) the previous approach of merging via the root of the global BFS tree does not work directly,

since the message complexity would be O(D
√
n). The second idea addresses this issue: we merge in a

manner that respects locality. That is, we merge fragments that are close by using a local leader, such
that the LOE edges do not have to travel too far. The high-level idea is to use a hierarchy of sparse
neighborhood covers to accomplish the merging.8 A sparse neighborhood cover is a decomposition
of a graph into a set of overlapping clusters that satisfy suitable properties (see Definition 2 in
Section 3.4). The main intuitions behind using a cover are the following: (1) the clusters of the
cover have relatively smaller diameter (compared to the strong diameter of the fragment and is
always bounded by D) and this allows efficient communication for fragments contained within a

8We use an efficient randomized cover construction algorithm due to Elkin [8]; this is the only randomization used
in our algorithm. Neighborhood covers were used by Elkin [8] to improve the running time of the Pipeline procedure
of his distributed MST algorithm; on the other hand, here we use them to replace the Pipeline part entirely in order to
achieve message optimality as well.

8

cluster (i.e., the weak diameter of the fragment is bounded by the cluster diameter); (2) the clusters
of a cover overlap only a little, i.e., each vertex belongs only to a few clusters; this allows essentially
congestion-free (overhead is at most polylog(n) per vertex) communication and hence operations
can be done efficiently in parallel across all the clusters of a cover. This phase continues till the
number of fragments reduces to O(n/D), when we switch to Phase 3. We next give more details on
the merging process in Phase 2.

Communication-Efficient Paths. An important technical aspect in the merging process is
constructing efficient communication paths between nearby fragments; the algorithm maintains
and updates these efficient paths during the algorithm. Our algorithm requires fragments to be
“communication-efficient”, in the sense that there is an additional set of short paths between the
fragment leader f and fragment members. Such a path might use “shortcuts” through vertices in
V (G) \ V (F) to reduce the distance. The following definition formalizes this idea.

Definition 1 (Communication-Efficient Fragment and Path). Let F be a fragment of G, and let
f ∈ F be a vertex designated as the fragment leader of F . We say that fragment F is communication-
efficient if, for each vertex v ∈ F , there exists a path between v and f (possibly including vertices in
V (G) \ V (F)) of length O(diamG(F) +

√
n), where diamG(F) is the weak diameter of F . Such a

path is called communication-efficient path for F .

Section 3.2 defines the routing data structures that are used to maintain communication-efficient
paths. Later, in Section 3.4, we describe the construction of the paths (and routing data structures)
inductively. We show that, in each iteration, all fragments find their respective LOEs in time
Õ(
√
n+D) and using a total of Õ(m) messages. While we cannot merge all fragments (along their

LOEs), as this will create long chains, we use a procedure called ComputeMaximalMatching (Section
3.5) to merge fragments in a controlled manner. ComputeMaximalMatching finds a maximal matching
in the fragment graph Fi induced by the LOE edges. The crucial part is using communication-
efficient paths to communicate efficiently (both time and message-wise) between the fragment leader
and the nodes in the fragment (while finding LOEs) as well as between fragment leaders of adjacent
fragments (while merging as well as implementing ComputeMaximalMatching). The procedure
FindLightest (see Section 3.3) describes the LOE finding process assuming communication-efficient
fragments. The maintenance of such efficient fragments is shown recursively: the base fragments are
efficient and after merging the resulting fragments are also efficient.

We use a hierarchy of sparse neighborhood covers to construct communication-efficient fragments
(see Section 3.4). Each cover in the hierarchy consists of a collection of clusters of a certain radius:
the lowest cover in the hierarchy has clusters of radius O(

√
n) (large enough to contain at least

one base fragment, which has radius O(
√
n)); subsequent covers in the hierarchy have clusters of

geometrically increasing radii, and the last cover in the hierarchy is simply the BFS tree of the entire
graph. Initially, it is easy to construct communication-efficient paths in base fragments, since they
have strong diameter O(

√
n) (cf. Section 3.2, Lemma 2). In subsequent iterations, when merging

two adjacent fragments, the algorithm finds a cluster that is (just) large enough to contain both the
fragments. Figure 1 gives an example of this process. The neighborhood property of the cluster
allows the algorithm to construct communication-efficient paths between merged fragments (that
might take shortcuts outside the fragments, and hence have small weak diameter) assuming that the
fragments before merging are efficient. Note that it is important to make sure that the number of
fragments in a cluster is not too large in relation to the radius of the cluster—otherwise the message
complexity would be high (as in the Pipeline scenario). Hence, a key invariant maintained through

9

all the iterations is that the cluster depth times the number of fragments that are contained in the
cluster of such depth is always bounded by Õ(n), and this helps in keeping the message complexity
low. This invariant is maintained by making sure that the number of fragments per cluster goes
down enough to compensate for the increase in cluster radius (Lemma 5 in Section 3.4). At the end
of Phase 3, the invariant guarantees that when the cluster radius is D, the number of fragments is
O(n/D).

2.2.3 Phase 3: When the Cluster Radius is D

When the cluster radius becomes D (i.e., the cover is just the BFS tree), we switch to Phase 3.
The number of remaining fragments will be O(n/D) (which is guaranteed at the end of Phase 2).
Phase 3 uses a merging procedure very similar to that of Phase 1. In Phase 1, in every merging
iteration, each base fragment finds their respective LOEs (i.e., LOEs between itself and the rest of
the fragments) by convergecasting to their respective leaders; the leaders send at most O(

√
n) edges

to the root by upcast. The root merges the fragments and sends out the merged information to
the base fragment leaders by downcast. In Phase 3, we treat the O(n/D) remaining fragments as
the “base fragments” and repeat the above process. An important difference to Phase 1 is that the
merging leaves the leaders of these base fragments intact: in the future iterations of Phase 3, each
of these base fragments again tries to find an LOE using the procedure FindLightest, whereby only
edges that have endpoints in fragments with distinct labels are considered as candidate for the LOE.

Note that the fragment leaders communicate with their respective nodes as well as the BFS root
via the hierarchy of communication-efficient routing paths constructed in Phase 2; these incur only
a polylogarithmic overhead. This takes Õ(D + n/D) time (per merging iteration) since O(n/D)
LOE edges are sent to the root of the BFS tree via communication-efficient paths (in every merging
iteration) and a message complexity of Õ(D · n/D) = Õ(n) (per merging iteration) since, in each
iteration, each of the O(n/D) edges takes Õ(D) messages to reach the root. Since there are O(log n)
iterations overall, we obtain the desired bounds.

3 Description and Analysis of the Algorithm

The algorithm operates on the MST forest, which is a partition of the vertices of a graph into a
collection of trees {T1, . . . , T`} where every tree is a subgraph of the (final) MST. A fragment Fi
is the subgraph induced by V (Ti) in G. We say that an MST forest is an (α, β)-MST forest if it
contains at most α fragments, each with a strong diameter9 of at most β. Similarly, an MST forest
is a weak (α, β)-MST forest if it contains at most α fragments each of (weak) diameter at most β.

We define the fragment graph, a structure that is used throughout the algorithm. The fragment
graph Fi consists of vertices {F1, . . . , Fk}, where each Fj (1 ≤ j ≤ k) is a fragment at the start of
iteration i ≥ 1 of the algorithm. The edges of Fi are obtained by contracting the vertices of each
Fj ∈ V (F) to a single vertex in G and removing all resulting self-loops of G. We sometimes call the
remaining edges inter-fragment edges. As our algorithm proceeds by finding lightest outgoing edges
(LOEs) from each fragment, we operate partly on the LOE graph Mi of iteration i, which shares

9 Recall that the strong diameter diamF (F) of fragment F refers to the longest shortest path (ignoring weights)
between any two vertices in F that only passes through vertices in V (F), whereas the weak diameter diamG(F) allows
the use of vertices that are in V (G) \ V (F).

10

Algorithm 1 A Time- and Message-Optimal Distributed MST Algorithm.

** Part 1:
1: Run Controlled-GHS procedure (Algorithm 2).
2: Let F1 be the base fragments obtained from Controlled-GHS.
** Part 2:
* Start of Phase 1:

3: for every fragment F ∈ F1 do
4: Construct a BFS tree T of F rooted at the fragment leader.
5: Every u ∈ F sets upu(F, 1) to its BFS parent and downu(F, 1) to its BFS children.
6: Run the leader election algorithm of [27] to find a constant approximation of diameter D.
7: if D = O(

√
n) then set F ′ = F1 and skip to Phase 3 (Line 32).

* Start of Phase 2:
8: for i = 2, . . . , dlog(D/

√
n)e do // All nodes start iteration i at the same time

9: Construct cover Ci = ComputeCover(6 · 2i+1 · c1
√
n), where c1 is a suitably chosen constant.

10: Every node locally remembers its incident edges of the directed trees in Ci.
11: for each fragment F1 ∈ V (Fi) do
12: Let (u, v) = FindLightest(F1) where u ∈ F1 and v ∈ F2. // (u, v) is the LOE of F1. See Section 3.3.
13: if v ∈ F2 has an incoming lightest edge e1 from F1 then
14: v forwards e1 to leader f2 ∈ F2 along its ((F2, 1), . . . , (F2, i))-upward-path.
15: FindPath(F1, F2). // Find a communication-efficient path that connects leaders f1 ∈ F1 and f2 ∈ F2; this is

needed for merging and also for iteration i+ 1. See Section 3.4.
// Merging of fragments:

16: for each fragment F1 ∈ V (Fi) do
17: if F1 has a weak diameter of ≤ 2ic1

√
n then F1 is marked active.

18: Let Mi ⊆ Fi be the graph induced by the LOE edges whose vertices are the active fragments.
19: Let D be the edges output by running ComputeMaximalMatching on Mi. // We simulate inter-fragment

communication using the communication-efficient paths.
20: for each edge (F, F ′) ∈ D: Mark fragment pair for merging.
21: for each active fragment F not incident to an edge in D: Mark LOE of F for merging.
22: Orient all edges marked for merging from lower to higher fragment ID. A fragment leader whose fragment does

not have an outgoing marked edge becomes dominator.
23: Every non-dominator fragment leader sends merge-request to its adjacent dominator.
24: for each dominating leader f do
25: if leader f received merge-requests from F1, . . . , F` then
26: Node f is the leader of the merged fragment F ∪ F1 ∪ · · · ∪ F`, where F is f ’s current fragment.
27: for j = 1, . . . , ` do
28: f sends µ = 〈MergeWith, F 〉 along its (Fj , i)-path to the leader fj of Fj .
29: When fj receives µ, it instructs all nodes v ∈ Fj to update their fragment ID to F and update all

entries in up and down previously indexed with Fj , to be indexed with F .
30: Let Fi+1 be the fragment graph consisting of the merged fragments of Mi and the inter-fragment edges.

end of iteration i.
31: Let F ′ = Fdlog(D/

√
n)e+1.

* Start of Phase 3: // Compute final MST given a fragment graph F ′.
32: for Θ(logn) iterations do
33: Invoke FindLightest(F ′) for each fragment F ′ ∈ F ′ in parallel and then upcast the resulting LOE in a BFS

tree of G to a root u.
34: Node u receives the LOEs from all fragments in F ′ and computes the merging locally. It then sends the merged

labels to all the fragment leaders by downcast via the BFS tree.
35: Each fragment leader relays the new label (if it was changed) to all nodes in its own fragment via broadcast

along the communication-efficient paths.
36: At the end of this iteration, several fragments in F ′ may share the same label. At the start of the next iteration,

each fragment in F ′ individually invokes FindLightest, whereby only edges that have endpoints in fragments
with distinct labels are considered as candidates for the LOE.

11

the same vertex set as Fi, i.e., Mi ⊆ Fi, but where we remove all inter-fragment edges except for
one (unique) LOE per fragment.

3.1 The Controlled-GHS Procedure

Our algorithm starts out by making an invocation to the Controlled-GHS procedure introduced
in [14] and subsequently refined in [28] and in [29].

Algorithm 2 Procedure Controlled-GHS: builds a (
√
n,O(

√
n))-MST forest in the network.

1: procedure Controlled-GHS:
2: F = V (G) // initial MST forest
3: for i = 0, . . . , dlog

√
ne do

4: C = set of connectivity components of F (i.e., maximal trees).
5: Each C ∈ C of diameter at most 2i determines the LOE of C and add it to a candidate set S.
6: Add a maximal matching SM ⊆ S in the graph (C, S) to F .
7: If C ∈ C of diameter at most 2i has no incident edge in SM , it adds the edge it selected into S to F .

Controlled-GHS (Algorithm 2) is a modified variant of the original GHS algorithm, whose purpose
is to produce a balanced outcome in terms of number and diameter of the resulting fragments
(whereas the original GHS algorithm allows an uncontrolled growth of fragments). This is achieved
by computing, in each phase, a maximal matching on the fragment forest, and merging fragments
accordingly. Here we shall resort to the newest variant presented in [29], since it incurs a lower
message complexity than the two preceding versions. Each phase essentially reduces the number of
fragments by a factor of two, while not increasing the diameter of any fragment by more than a
factor of two. Since the number of phases of Controlled-GHS is capped at dlog

√
ne,10 it produces a

(
√
n,O(

√
n))-MST forest. The fragments returned by the Controlled-GHS procedure are called base

fragments, and we denote their set by F1.
The following result about the Controlled-GHS procedure follows from [29].

Lemma 1. Algorithm 2 outputs a (
√
n,O(

√
n))-MST forest in O(

√
n log∗ n) rounds and sends

O(m log n+ n log2 n) messages.

Proof. The correctness of the algorithm is established by Lemma 6.15 and Lemma 6.17 of [29]. By
Corollary 6.16 of [29], the i-th iteration of the algorithm can be implemented in time O(2i log∗ n).
Hence the time complexity of Controlled-GHS is

O

dlog√ne∑
i=0

2i log∗ n

 = O
(√
n log∗ n

)
rounds.

We now analyze the message complexity of the algorithm. Consider any of the dlog
√
ne iterations

of the algorithm. The message complexity for finding the lightest outgoing edge for each fragment
(Line 5) is O(m). Then (Line 6) a maximal matching is built using the Cole-Vishkin symmetry-
breaking algorithm. As argued in the proof of Corollary 6.16 of [29], in every iteration of this
algorithm, only one message per fragment needs to be exchanged. Since the Cole-Vishkin algorithm
terminates in O(log∗ n) iterations, the message complexity for building the maximal matching is

10Throughout, log denotes logarithm to the base 2.

12

O(n log∗ n). Afterwards, adding selected edges into S to F (Line 7) can be done with an additional
O(n log n) message complexity. The message complexity of algorithm Controlled-GHS is therefore
O(m log n+ n log2 n).

3.2 Routing Data Structures for Communication-Efficient Paths

For achieving our complexity bounds, our algorithm maintains efficient fragments in each iteration.
To this end, nodes locally maintain routing tables. In more detail, every node u ∈ G has 2
two-dimensional arrays upu and downu (called routing arrays), which are indexed by a (fragment
ID,level)-pair, where level stands for the iteration number, i.e., the for loop variable i in Algorithm 1.
Array upu maps to one of the port numbers in {1, . . . , du}, where du is the degree of u. In contrast,
array downu maps to a set of port numbers. Intuitively speaking, upu(F, i) refers to u’s parent on a
path p towards the leader of F where i refers to the iteration in which this path was constructed.
Similarly, we can think of downu(F, i) as the set of u’s children in all communication efficient paths
originating at the leader of F and going through u and we use downu to disseminate information
from the leader to the fragment members. Oversimplifying, we can envision upu and downu as a
way to keep track of the parent-child relations in a tree that is rooted at the fragment leader. (Note
that level is an integer in the range [1, dlog(D/

√
n)e] that corresponds to the iteration number of

the main loop in which this entry was added; see Lines 8-30 of Algorithm 1.) For a fixed fragment
F and some value level = i, we will show that the up and down arrays induce directed chains of
incident edges.

Depending on whether we use array up or array down to route along a chain of edges, we call
the chain an (F, i)-upward-path or an (F, i)-downward-path. When we just want to emphasize
the existence of a path between a node v and a fragment leader f , we simply say that there is a
communication-efficient (F, i)-path between v and f and we omit “(F, i)” when it is not relevant.
We define the nodes specified by downu(F, i) to be the (F, i)-children of u and the node connected
to port upu(F, i) to be the (F, i)-parent of u. So far, we have only presented the definitions of our
routing structures. We will explain their construction in more detail in Section 3.4.

We now describe the routing of messages in more detail: Suppose that u ∈ F generates a message
µ that it wants to send to the leader of F . Then, u encapsulates µ together with F ’s ID, the value
level = 1, and an indicator “up” in a message and sends it to its neighbor on port upu(F, 1); for
simplicity, we use F to denote both, the fragment and its ID. When node v receives µ with values
F and level = 1, it looks up upv(F, 1) and, if upv(F, 1) = a for some integer a, then v forwards the
(encapsulated) message along the specified port.11 This means that µ is relayed to the root w of the
(F, 1)-upward-path. For node w, the value of upw(F, 1) is undefined and so w attempts to lookup
upw(F, 2) and then forwards µ along the (F, 2)-upward-path and so forth. In a similar manner, µ is
forwarded along the path segments p1 . . . pi (1 ≤ j ≤ i), where pj is the (F, j)-upward-path in the
i-th iteration of the algorithm’s main-loop. We will show that the root of the (F, i)-upward-path
coincides with the fragment leader at the start of the i-th iteration.

On the other hand, when the iteration leader u in the i-th iteration wants to disseminate a
message µ to the fragment members, it sends µ to every port in the set downu(F, i). Similarly to
above, this message is relayed to each leaf v of each (F, i)-downward-path, for which the entry
downv(F, i) is undefined. When i > 1, node v then forwards µ to the ports in downv(F, j), for

11Node v is free to perform additional computations on the received messages as described by our algorithms, e.g.,
v might aggregate simultaneously received messages in some form. Here we only focus on the forwarding mechanism.

13

each j < i for which v is a root of the respective (F, j)-upward-path, and µ traverses the path
segments qi . . . q1 where q` (1 ≤ ` ≤ i) is the (F, `)-downward-path. For convenience we call the
concatenation of qi . . . q1 a ((F, i), . . . , (F, 1))-downward path (or simply ((F, i), . . . , (F, 1))-path),
and define a ((F, 1), . . . , (F, i))-upward path similarly.

We are now ready to describe the individual components of our algorithm in more detail. To
simplify the presentation, we will discuss the details of Algorithm 1 inductively. We assume that
every node u ∈ F ∈ F1 knows its parent and children in a BFS tree rooted at the fragment leader
f ∈ F . (BFS trees for spanning each respective fragment can easily be constructed in O(

√
n) time

and using a total of O(m) messages—this is because the fragments in F1 are disjoint and have
strong diameter O(

√
n).) Thus, node u initializes its routing arrays by pointing upu(F, 1) to its

BFS parent and by setting downu(F, 1) to the port values connecting its BFS children.

Lemma 2. At the start of the first iteration, for any fragment F and every u ∈ F , there is an
(F, 1)-path between F ’s fragment leader and u with a path length of O(

√
n).

Proof. From the initialization of the routing tables up and down it is immediate that we reach the
leader when starting at a node u ∈ F and moving along the (F, 1)-upward-path. Similarly, starting
at the leader and moving along the (F, 1)-downward-path, allows us to reach any fragment member.
The bound on the path length follows from the strong diameter bound of the base fragments, i.e.,
O(
√
n) (see Lemma 1).

3.3 Finding the Lightest Outgoing Edges (LOEs): Procedure FindLightest

We now describe Procedure FindLightest(F), which enables the fragment leader f to obtain the
lightest outgoing edge, i.e., the lightest edge that has exactly one endpoint in F . Consider iteration
i ≥ 1. As a first step, FindLightest(F) requires all fragment nodes to exchange their fragment IDs
with their neighbors to ensure that every node v knows its set of incident outgoing edges Ev. If a
node v is a leaf in the BFS trees of its base fragment, i.e., it does not have any (F, 1)-children, it
starts by sending the lightest edge in Ev along the ((F, 1), . . . , (F, i))-upward-path. In general, a
node u on an (F, j)-upward-path (j ≥ 1) waits to receive the lightest-edge messages from all its
(F, j)-children (or its (F, j − 1)-children if any), and then forwards the lightest outgoing edge that it
has seen to its parent in the ((F, j), . . . , (F, i))-upward-path.

The following lemma proves some useful properties of FindLightest. Note that we do not yet
claim any bound on the message complexity at this point, as this requires us to inductively argue
on the structure of the fragments, which relies on properties that we introduce in the subsequent
sections. Hence we postpone the message complexity analysis to Lemma 10.

Lemma 3 (Efficient LOE Computation). Suppose that every fragment in F ∈ Fi is communication-
efficient at the start of iteration i + 1 ≥ 2. Then, the fragment leader of F obtains the lightest
outgoing edge by executing Procedure FindLightest(F) in O(

√
n+ diamG(F)) rounds.

Proof. To accurately bound the congestion, we must consider the simultaneous invocations of
FindLightest for each fragment in Fi. Since, by assumption, every fragment is communication-
efficient, every fragment node u can relay its lightest outgoing edge information to the fragment
leader along a path p of length O(diamG(F) +

√
n). Note that p is precisely the ((F, 1), . . . , (F, i))-

upward path to the leader starting at u. To bound the congestion, we observe that the (F, 1)-upward
subpath of p is confined to nodes in Fu where Fu is the base fragment that u was part of after executing

14

Controlled-GHS. As all base fragments are disjoint and lightest edge messages are aggregated within
the same base fragment, the base fragment leader (who might not be the leader of the current
fragment F) accumulates this information from nodes in Fu within O(

√
n) rounds (cf. Lemma 2).

After having traversed the (F, 1)-upward path (i.e., the first segment of p) of each base fragment,
the number of distinct messages carrying lightest edge information is reduced to O(

√
n) in total.

Hence, when forwarding any such message along a subsequent segment of p, i.e., an (Fj)-upward
path for j > 1, the maximum congestion at any node can be O(

√
n). Using a standard upcast (see,

e.g., [37]) and the fact that the length of path p is O(diamG(F) +
√
n), it follows that the fragment

leader receives all messages in O(diamG(F) +
√
n) rounds, as required.

3.4 Finding Communication-Efficient Paths: Procedure FindPath

After executing FindLightest(F0), the leader f0 of F0 has obtained the identity of the lightest outgoing
edge e = (u, v) where v is in some distinct fragment F1. Before invoking our next building block,
Procedure FindPath(F0, F1), we need to ensure that both leaders are aware of e and hence we
instruct the node v to forward e along its ((F1, 1), . . . , (F1, i))-upward-path to its leader f1 (see
Lines 13-14 of Algorithm 1).

We now describe FindPath(F0, F1) in detail. The goal is to compute a communication-efficient
path between leaders f0 and f1 that can be used to route messages between nodes in this fragment.
In Section 3.5, we will see how to leverage these communication-efficient paths to efficiently merge
fragments.

A crucial building block for finding an efficient path are the sparse neighborhood covers that we
precompute at the start of each iteration (see Line 9 of Algorithm 1), and the properties of which
we recall here. (Note that the cover definition assumes the underlying unweighted graph, i.e., all
distances are just the hop distances.)

Definition 2. A sparse (κ,W)-neighborhood cover of a graph is a collection C of trees, each called
a cluster, with the following properties.

1. (Depth property) For each tree τ ∈ C, depth(τ) = O(W · κ).
2. (Sparsity property) Each vertex v of the graph appears in Õ(κ · n1/κ) different trees τ ∈ C.
3. (Neighborhood property) For each vertex v of the graph there exists a tree τ ∈ C that contains

the entire W -neighborhood of vertex v.

Sparse neighborhood covers were introduced in [4], and were found useful in several applications.
We will use an efficient distributed (randomized) cover construction due to Elkin [8], which we recall
here.12

Theorem 1 ([8, Theorem A.8]). There exists a distributed randomized Las Vegas algorithm, which
here we call ComputeCover, that constructs a (κ,W)-neighborhood cover in time O(κ2 ·n1/κ · log n ·W)
and using O(m · κ · n1/κ · log n) messages (both bounds hold with high probability) in the CONGEST
model.

In our MST algorithm, we shall invoke Elkin’s ComputeCover procedure with κ = log n, and
write ComputeCover(W), where W is the neighborhood parameter.

We are now ready to describe the communication-efficient paths construction. As we want to
keep the overall message complexity low, we start at the smallest cover construction C1 and carefully

12Although the algorithm as described in [8] is Monte Carlo, it can be easily converted to Las Vegas.

15

f1

f2

f3

f4

F1

F2 F3

F4

C1 ∈ C`

C2 ∈ Ck

C ′
1 ∈ Cj

x1

x2

x3

Figure 1: Fragments F1, . . . , F4. In the first iteration, F1, F4 and F2, F3 form adjacent fragment pairs
that communicate along communication-efficient paths. F1 and F4 execute FindPath and send probe
messages along clusters of covers C1, . . . , C` and finally succeed to find a communication-efficient
path in a cluster C1 ∈ C`, which goes through the cluster leader x1 ∈ C1. Similarly F2 and F3

obtain a communication-efficient path in cluster C2 ∈ Ck, after sending probe messages in clusters of
covers C1, . . . , Ck. In the next iteration, the merged fragments F1 ∪F4 and F2 ∪F3 are (respectively)
adjacent and proceed to construct a communication-efficient path in cluster C ′1 ∈ Cj , after probing
covers C1, . . . , Cj .

probe for a cluster (tree) in C1 that induces a communication-efficient path between f0 and f1.
Recall that every node locally keeps track of its incident cluster edges for each of the precomputed
covers but we need to keep in mind that these structures are independent of the up and down
arrays. We instruct both leaders f0 and f1 to send a copy of their probe message to each of their
C1-parents. The parent nodes forward u’s probe message along their cluster tree to the root of their
respective cluster tree. Depending on whether a root receives the probe message in a timely fashion,
we consider two cases:
Case 1: If there exists Cw ∈ C1 such that f0, f1 ∈ Cw, then the probe message of both leaders
reaches, through some path p0 and p1, the root w ∈ Cw within 6 · 22c1

√
n log n + O(

√
n log2 n)

rounds, where the first term is depth(C1) and the second term is to account for the congestion caused
by simultaneous probe messages from the other fragment leaders (cf. Lemma 6). Then, w replies by
sending a “success” message back to f0 and f1 by reversing paths p0 and p1 to inform the leaders

16

that they have found a communication-efficient path.
Note that it is possible for f0 to receive multiple “success” reply messages. However, since a

cluster root only sends a success message if it receives probe messages from both leaders, f0 and f1
receive exactly the same set M of success messages. Thus they both pick the same success message
sent by the cluster root node with the largest ID in M (without loss of generality, assume that it is
w) to identify the communication-efficient path and discard the other messages in M .

Suppose that f0 received the message from w along a path p0 in cluster tree Cw. Then, f0 sends
a message along p0 and instructs every node v in p0 to set upv(F1, i+ 1) to the port of its successor
(towards the root w) in p0 and points upv(F0, i+ 1) to its predecessor in p0. When a node v updates
its upv(F1, i+ 1) array to some port a, it contacts the adjacent node v′ connected at this port who
in turn updates downv′(F1, i+ 1) to point to v. Similarly, leader f1 and all nodes on the path p1
proceeds updating their respective up and down entries with the information provided by p1 towards
w. Then, f0 contacts its successor in p0 to update its routing information whereas f1 sends a similar
request to its successor in p1. After these requests reach the cluster root w, the concatenated path
p0 p1 is a communication-efficient path between leaders f0 and f1.
Case 2: On the other hand, if there is no appropriate cluster in C1 that covers both leader nodes,
then at least one of the two probe messages will arrive untimely at every cluster root and the
leaders do not receive any success messages. Then, f0 and f1 rerun the probing process by sending
a probe message along their incident C2 cluster edges and so forth. Note that all fragment leaders
synchronize before executing the probing process. We show in Lemma 5 that all fragments have
weak diameter at most 6 · 2ic1

√
n in iteration i. Notice the radius of Ci (see Line 9) ensures that f0

and f1 will arrive at a value k ≤ i, where Ck is the cover having the smallest depth such that f0 and
f1 are covered by some cluster in Ck (but not by any cluster in Ck−1). Thus we can apply Case 1 for
Ck.

Figure 1 gives an example for the construction of communication-efficient paths.

Lemma 4. The number of probe messages that are generated by distinct fragment leaders and that
are in transit simultaneously during an iteration of FindPath is O(

√
n log2 n) w.h.p.

Proof. Since, by Lemma 1, there are O(
√
n) base fragments, the total number of leaders at any

point that are sending probe messages simultaneously is O(
√
n). Note that, when exploring the

communication efficient paths of a cover Cj , a leader needs to send a copy of its probe message to
its parent in each of its O(log2 n) clusters of Cj that it is contained in.

Lemma 5. At the start of each iteration i+ 1, the fragment graph Fi induces a weak (
√
n/2i, 6 ·

2ic1
√
n))-MST forest in G.

Proof. We adapt the proof of Lemmas 6.15 and 6.17 of [29] to show that the fragment graph is a
weak (

√
n/2i, 6 · 2ic1

√
n)-MST forest. For the case i = 1, the claim follows directly from Lemma 1.

We now focus on the inductive step i > 1.
Suppose that Fi is a weak (

√
n/2i, 6 · 2ic1

√
n)-MST forest. We first argue that every new

fragment in Fi+1 must have a weak diameter of at most 6 · 2i+1c1
√
n.

Consider the subgraph M of Fi induced by the edges marked for merging. By Lines 20-21 of
Algorithm 1, each component of M can contain at most one marked edge that was in the output of
ComputeMaximalMatching. Thus, analogously to Lemma 6.15 in [29], it follows that each component
in M contains at most one fragment of weak diameter > 2ic1

√
n, since only fragments of weak

diameter at most 2ic1
√
n become active and participate in the matching. Note that the maximality

17

of the matching implies that each component of M has diameter (in the fragment subgraph M) at
most 3. Moreover, all except at most 1 fragment of such a component must have a weak diameter
of at most 2ic1

√
n since a fragment of a larger weak diameter does not select any edges for merging

in this iteration. It follows by the inductive hypothesis that the merged component has a weak
diameter of at most 6 · 2ic1

√
n+ 3 · 2ic1

√
n ≤ 6 · 2i+1c1

√
n.

We now argue that each fragment contains at least 2ic2
√
n nodes at the start of iteration i > 1,

assuming that it is true for all j = 1, . . . , i− 1. To this end, consider the merging of fragments in
iteration i− 1. If a fragment F ∈ Fi contains less than 2ic2

√
n nodes it must have a weak diameter

of at most 2ic2
√
n and hence marks itself as active in Line 17. By the description of the merging

process, F is guaranteed to merge with at least one other fragment F ′. By the inductive hypothesis,
both F and F ′ consist of at least 2i−1c2

√
n nodes and hence the merged fragment must have at

least 2ic2
√
n nodes, as required.

Lemma 6. Consider any iteration i ≥ 1. After the execution of FindPath(F0, F1), there exists a
communication-efficient path between leader f0 and leader f1 of length at most O(2k

√
n), where

k ≤ i is the smallest integer such that there exists a cluster tree C ∈ Ck such that f0, f1 ∈ C.
FindPath(F0, F1) requires O(2k

√
n log2 n) messages and terminates in

O
(√

n log2 n+ min{2k√n, diam(G)}
)

rounds with high probability.

Proof. By description of FindPath, leaders f0 and f1 both start sending a probe message along their
incident Cj-edges towards the respective cluster roots, for j = 1, . . . , dlog

√
ne. First, note that f0

and f1 will not establish an efficient communication path for a cluster C ′ in some Cj (j < k), since,
by definition, f0 and f1 are not both in C ′ and hence one of the probe messages will not reach the
root of C ′. To see that k ≤ i, note that Lemma 5 tells us that in iteration i every fragment has
weak diameter at most O(2i

√
n), whereas Ci has a cluster radius of Θ(2i+1√n log n).

We now argue the message complexity bound. Apart from the probe messages sent to discover
the communication-efficient path in a cluster of cover Ck, we also need to account for the probe
messages sent along cluster edges of covers C1, . . . , Ck−1, thus generating at most

k∑
j=1

O(depth(Cj) log2 n) =
k∑
j=1

O(2j
√
n log2 n)

≤ 2k+1O(
√
n log2 n)

= O(depth(Ck) log2 n)

messages, as required.
Since f0 and f1 can communicate efficiently via a path p leading through a cluster of cover Ck,

then the length of p is at most 2 depth(Ck). Applying Lemma 4 to take into account the additional
congestion caused by simultaneous probe messages, yields a time complexity of O(depth(Ck) +√
n log2 n).

Lemma 7. Consider an iteration i and suppose that FindPath is invoked simultaneously for each
lightest outgoing edge. Then, the total message complexity of all invocations is O(n log3 n) and the
time complexity is Õ(diam(G) +

√
n) with high probability.

18

Proof. From Lemma 5, we know that every fragment in Fi has weak diameter of O(2i
√
n). Thus,

every pair of adjacent fragments F0, F1 ∈ Fi is covered by some cluster in cover Ci+1. In this case,
Lemma 6 tells us that a single invocation of FindPath requires O(2i+1√n log2 n) messages. Lemma 5
tells us that there are O(

√
n/2i) fragments in Fi (and thus also O(

√
n/2i) LOEs). Hence the total

number of messages incurred by all pairs of fragments connected by an LOE is

O(2i+1√n log2 n) ·O(
√
n/2i) = O(n log2 n).

Summing up over all i, we obtain the claimed bound on the message complexity.
Finally we observe that Lemma 6 already takes into account the congestion caused by simulta-

neous invocations, which yields the bound on the time complexity.

To summarize, Procedure FindPath enables leaders of adjacent fragments to communicate with
each other by sending messages along the communication-efficient paths given by the routing tables
up and down.

3.5 Merging Fragments

We will avoid long chains of merged fragments by using procedure ComputeMaximalMatching [29].
ComputeMaximalMatching outputs a maximal matching on a fragment forest, where fragments
in Fi are treated as super-vertices of a graph connected by inter-fragment edges. Procedure
ComputeMaximalMatching simulates the Cole-Vishkin symmetry-breaking distributed algorithm,
which terminates in O(log∗ n) iterations [29, Theorem 1.7]. We next show how to do the simulation
efficiently in the fragment graph.

Procedure FindPath enables communication via communication-efficient paths between any two
adjacent fragment leaders inMi. In turn, this enables the simulation of procedure ComputeMaximalMatching
on the network induced by Mi, where the leaders in Mi perform the computation required by
ComputeMaximalMatching. The following lemma follows directly from Lemma 7.

Lemma 8. Suppose that every fragment in Fi is efficient and let Mi ⊂ Fi be the lightest outgoing
edge graph obtained by running FindPath. Then, ComputeMaximalMatching can be simulated on the
network defined by Mi, requiring Õ(diam(G) +

√
n) rounds and Õ(n) messages.

Every non-dominator fragment F ′1 sends a 〈MergeReq〉 message to the leader f ′1 of an arbitrarily
chosen adjacent dominator fragment F . The dominator fragment processes all merge-requests in
parallel and replies by sending a 〈MergeWith, F 〉 message to the leader f ′ of each fragment F ′

from which it received 〈MergeReq〉; in turn, f ′ forwards this request along the ((F ′, i), . . . , (F ′, 1))-
downward path to every node in F ′. Upon receiving a 〈MergeWith, F 〉 message, node u′ ∈ F ′

updates its fragment ID to F , and also updates its routing table by setting upu′(F, `) = upu′(F
′, `)

and downu′(F, `) = downu′(F
′, `), for every value of `. Note that the leader of the dominator

fragment becomes the new leader of the merged fragment.

Lemma 9. Consider iteration i. If, for each j ≤ i, every fragment in Fj is communication-efficient,
then the following hold.

1. With high probability, the message complexity for merging fragments in iteration i is Õ(m)
and the process completes within Õ(diam(G) +

√
n) rounds.

2. Every fragment in Fi+1 is communication-efficient.

19

Proof. To show (1), we argue recursively starting at iteration i, as follows: note that forwarding the
〈MergeWith〉 and 〈MergeReq〉 messages requires communicating between neighboring fragments
and thus by Lemma 8 we require O(diam(G) +

√
n) rounds and O(n log2 n) messages. Consider an

adjacent pair of fragments F0 and F1 and suppose that F0 merges with the dominator fragment
F1. Since we eventually need to broadcast the new fragment ID to every node u ∈ F0 we need to
ensure that the routing tables upu(F1, ·) and downu(F1, ·) are updated correctly to route messages
towards the new leader f1 ∈ F1 (and vice versa from f1 to all nodes in F1), when we compute the
lightest outgoing edge of the merged fragment F0 ∪ F1 in subsequent iterations. If i > 1, then F0

might be composed of merged fragments F ′0 ∪ · · · ∪ F ′` that merged in previous iterations; without
loss of generality, suppose that this iteration is i − 1. By assumption, Fi−1 consisted of efficient
fragments. As nodes do not remove routing information from up and down, the leader f0 can use the
communication-efficient paths obtained by invoking FindPath in iteration i− 1 to forward the new
fragment ID to the leaders of the F ′0, . . . , F

′
`, which we call the (i− 1)-iteration fragments. Applying

Lemma 8 toMi−1 reveals that we can use the paths obtained by invoking FindPath in iteration i− 1
to relay the new fragment ID to (i− 1)-iteration fragments while incurring only O(diam(G) +

√
n)

rounds and O(n log2 n) messages in total. Recursively applying this argument until iteration 1,
allows us to reason that O((diam(G) +

√
n) log n) rounds and O(n log3 n) messages are sufficient to

relay all new fragment IDs to the base fragment leaders. At this point, every base fragment leader
uses the BFS tree of the base fragments to broadcast this information to the base fragment nodes,
requiring O(

√
n) rounds and O(m) messages.

To show (2), we observe that Fi consists of communication-efficient fragments, and hence every
fragment node u ∈ Fj of a newly merged fragment F = F1∪· · ·∪F` (` ≥ j) can already communicate
efficiently with the leader fj in its subfragment Fj , which has now become part of F . Moreover,
the paths obtained by FindPath ensure that fj can communicate efficiently with leader f ∈ F and
hence it follows transitively that u has a communication-efficient path to f , as required.

The analysis of the message complexity of merging fragments allows us to obtain a bound on
the number of messages required for computing a lightest outgoing edge in each fragment.

Lemma 10. The message complexity of all parallel invocations of FindLightest is Õ(m) in total
w.h.p.

Proof. In the first step of FindLightest, each node exchanges messages with its neighbors requiring
Θ(m) messages. Let F = F1∪· · ·∪F`, where F1, . . . , F` are base fragments, and consider some vertex
u ∈ F1. As previously argued, u relays its LOE information along the ((F, 1), . . . , (F, i))-upward-path
to the fragment leader and the segment formed by the (F, 1)-upward path ends at the base fragment
leader of F1, which are exactly the BFS trees yielded by Controlled-GHS. A crucial observation is
that u only sends its LOE information to its parent in the path, after receiving the LOE messages
from all its children (see Section 3.3). This ensures that each node sends exactly one message and
hence we obtain a bound of

∑`
j=1O(|V (Fj)|) = O(|V (F)|) on the number of messages sent in the

(F, 1)-upward-path of the nodes in F . This is subsumed in the message complexity of exchanging
messages with neighbors in the first step, which is O(m).

At this point, each base fragment leader fj of Fj (j = 1, . . . , `) holds exactly one (aggregated)
lightest outgoing edge information message µj , which needs to be relayed to the fragment leader f
of F along the respective ((F, 2), . . . , (F, i))-upward-path of O(diamG(F)) hops (see Definition 1).

By reversing the argument used for proving part (2) of Lemma 9, we can inductively apply
Lemma 8 to obtain a bound of O(n log3 n) messages per iteration, and thus the total message

20

complexity is O(m+ n log3 n) = Õ(m).

Lemma 11. Phase 3 of the algorithm requires Õ(m) messages and Õ(D +
√
n) time and ensures

that all fragments have the same label (i.e., are merged).

Proof. Note that our algorithm either executes Phase 3 directly after Phase 1 (thus skipping Phase 2)
or after executing Phase 2. First we argue (for both cases) that all fragments have the same fragment
ID after the Θ(log n) iterations in Phase 3. To see that the number of fragment labels is at least
halved in each iteration, note that, when executing FindLightest, all nodes exchange their fragment
IDs with their neighbors (requiring O(m) messages) and then only choose candidate LOE edges
that have their endpoint in fragments with distinct IDs. This ensures that every fragment pairs
up with another fragment and hence one of the two distinct IDs will be removed; note that long
“chains” of fragments connected by LOE edges are possible and result in an even faster reduction of
distinct labels—all fragments in the chain adapt the root fragment ID (cf. Phase 3 in the pseudo
code). Thus, after the last iteration of Phase 3, all fragments carry the same fragment ID and no
more LOE edges are required as all fragments are considered to be merged.

Now we consider the message and time complexity of Phase 3. According to Lemma 3, the time
complexity of finding the LOEs is O(D +

√
n), and according to Lemma 10 Õ(m) messages are

required to find the LOEs. This is true independently of whether we called Phase 3 directly after
Phase 1 or after Phase 2.

Now, consider the case where we execute Phase 3 directly after Phase 1 (thus skipping Phase 2),
i.e., D = O(

√
n). Here, FindLightest results in each node locally determining the incident LOE

and then aggregating the LOE to the base fragment leader. In addition to the base fragment BFS
trees, we also construct a global BFS tree T , which, has O(

√
n) diameter by assumption. The

base fragment leaders then forward their respective LOE along towards the root u of T . Since we
have O(

√
n) distinct base fragments, there are at most O(

√
n) LOE edges sent upward in T , thus

resulting in an additional message complexity of O(D
√
n) = O(n). Taking into account that it

takes O(
√
n) rounds for the base fragment leaders to determine the LOE of their fragment, the time

complexity amounts to O(D +
√
n).

We now argue the message and time complexity for the case where we execute Phase 3 after
Phase 2. Here, we start out with O(n/D) distinct fragments each having their own fragment ID and
a global BFS tree T of depth O(D). Since each fragment finds 1 LOE which is first aggregated at the
fragment leader and then forwarded along T to the global BFS root, this requires O(D ·n/D) = O(n)
messages in total and O(D + n/D) = O(D) rounds, since D = Ω(

√
n) by assumption, completing

the proof.

Combining the complexity bounds from the previous lemmas we obtain the following theorem.

Theorem 2. Consider a synchronous network (in the KT0 model) of n nodes, m edges, and
diameter D, and suppose that at most O(log n) bits can be transmitted over each link in every round.
Algorithm 1 computes an MST and, with high probability, runs in Õ(D+

√
n) rounds and exchanges

Õ(m) messages.

4 A Simultaneously Tight Lower Bound

As mentioned in Section 1.2, the existing graph construction of [9, 6] used to establish the lower
bound of Ω̃(D +

√
n) rounds does not simultaneously yield the message lower bound of Ω(m);

21

similarly, the existing lower bound graph construction of [27] that shows the message lower bound of
Ω(m) does not simultaneously yield the time lower bound of Ω̃(D+

√
n). Previously, [6] presented a

sparse graph of O(n) edges to obtain the Ω̃(D +
√
n) time bound for almost all choices of D, while

[27] showed that Ω(m) messages are required to solve broadcast and hence also for constructing a
(minimum) spanning tree.13

The following result presents a “universal lower bound” for MST in the sense that it shows that
for essentially any n, m, and D, there exists a class of graphs of n nodes, m edges, and with diameter
D, for which every randomized MST algorithm takes Ω̃(D +

√
n) rounds and Ω(m) messages to

succeed with constant probability. Our proof combines two lower bound techniques: hardness of
distributed symmetry breaking, used to show the lower bound on message complexity [27], and
communication complexity, used to show the lower bound on time complexity [6].

Theorem 3. There is a class of graphs of n nodes, m edges (for n ≤ m ≤
(
n
2

)
), and diameter

D = Ω(log n) for which every ε-error distributed MST algorithm requires Ω(m) messages and
Ω̃(D +

√
n) time in expectation in the KT0 model, for any sufficiently small constant ε > 0. This

holds even if nodes have unique IDs and have knowledge of the network size n.

4.1 Proof of Theorem 3

The Lower Bound Graph Our lower bound graph G consists of the graph construction H of
[38] (and its subsequent refinement in [6]), combined with the dumbbell graph construction of [27].
We first outline the main features of H, and refer the reader to [6] for the details. The graph H
consists of two designated nodes s and t that are connected by Θ(

√
n) vertex-disjoint slow paths,

each having length Θ(
√
n) and one highway path of length D, which determines the diameter of H

by adding spokes (i.e., shortcuts) at appropriate points to the slow paths.
We adapt this graph by removing the edge between the two vertices u1 and u2 on the highway

path at distance bD/2c and dD/2e+ 1 from s and connecting them to one vertex each of a dc1m/ne-
regular graph C consisting of c2n nodes, where c1 and c2 are two positive constants. We assume
that C has a strong diameter of O(log n), where m ≥ cn, for a sufficiently large positive constant
c.14 We call the edges of C switch edges. Note that the two vertices of C that are connected to u1
and u2 have degree dc1m/ne+ 1.

To obtain a concrete graph from the lower bound construction, we assign unique IDs (chosen
from a range of size poly(n)), and specify a port mapping for each node u that maps [1,deg(u)] to
one of u’s neighbors. We point out that this port mapping function is not known in advance to u.
For a concrete graph G, we define the open graph G[e] as the graph where we have removed edge e,
and we define Gopen to be the set of open graphs obtained by all possible ways of removing any of
the switch edges in C. Note that this is different from the construction in [27], where Gopen consists
of all open graphs considering all possible edge removals. Let G′[e′], G′′[e′′] ∈ Gopen be two open
graphs with disjoint node IDs. By connecting the two open ports (due to removing edge e′) of G′ to
the two open ports in G′′ we obtain the graph Dumbbell(G′[e′], G′′[e′′]). These two new edges are
called bridge edges. See Figure 2.

13Any algorithm that constructs an spanning tree using O(f(n)) messages can be used to elect a leader using
O(f(n) + n) messages in total, by first constructing a spanning tree and then executing any broadcast algorithm
restricting its communication to the O(n) spanning tree edges.

14Such graphs exist since any random d-regular graph is known to be an expander (and hence its diameter is
O(logn)) with high probability when d is sufficiently large (at least some constant).

22

4.1.1 Part 1: Symmetry Breaking

The Complexity of Bridge Crossing and Broadcast We define the input graph collection I
to be the set of all dumbbell graphs obtained by bridging ID-disjoint open graphs from Gopen, which
contains all possible 1-edge removals of all possible concrete graphs taking into account all possible
port numberings and ID assignments.

To solve the bridge crossing problem on a graph in I (we refer to [27] for its definition), an
algorithm is required to send a message across one of the two bridge edges. By [27, Lemma 3.11],
any deterministic algorithm that solves broadcast on a constant fraction of the inputs (assuming
a uniform distribution) must also solve the bridge crossing problem with an expected message
complexity of Ω(m), assuming that inputs are sampled uniformly from I. The result is extended to
randomized Monte Carlo algorithms with constant error probability by Yao’s Minimax Lemma [42].
We cannot apply this result directly to our setting, as our set I is restricted to all possible dumbbell
graph combinations for the switch edges in C rather than considering all edges of the graph.
Nevertheless, the number of switch edges in C is |E(C)| = Θ(m2n |C|) = Θ(m) = Θ(|E(G)|) and
hence the counting argument of Lemmas 3.5 and 3.6 in [27] can be adapted to show an average
message complexity of Ω(m) for solving bridge crossing with a deterministic algorithm when choosing
input graphs uniformly from I. We sketch the argument and refer the reader to [27] for the details:
The main idea of the proof is to consider Dumbbell(G′[e′], G′′[e′′]), where each of G′ and G′′ is a
copy of G with a concrete port numbering and ID assignment. Let P be a bridge crossing algorithm
and consider the execution of P on the (disconnected) graph consisting of G′ and G′′ of 2n nodes.
Comparing this with the execution of P on Dumbbell(G′[e′], G′′[e′′]), an easy indistinguishability
argument shows that P behaves exactly the same in both executions up until the point where bridge
crossing happens. In the execution on the disconnected graph let t(e) be the first time that P sends
a message across e, for any e ∈ E(C), and let L = (e1, . . . , e`) be a list containing the edges of G′ in
increasing order of t(e), breaking ties in a predetermined way. It follows that, when P sends the
first message across ej on Dumbbell(G′[e′], G′′[e′′]), which occurs at the j-th position in L, it must
have sent at least j − 1 messages for e1, . . . , ej−1. We obtain the average message complexity for
deterministic algorithms by counting the total number of messages in all graphs in I divided by
the number of graphs in the input collection (see Lemma 3.5 in [27]). This extends to randomized
Monte Carlo algorithms via Yao’s Lemma [42]; thus, we have the following result.

Lemma 12. Let P be an ε-error randomized broadcast algorithm. Then, there is a graph G ∈ I
such that the expected message complexity of P on G is Ω(m), where the expectation is taken over
the random bits of P.

4.1.2 Part 2: Communication Complexity

Reduction from Set Disjointness The lower bound for MST of [6] is shown by a reduction
from the spanning connected subgraph problem, which itself is used in a reduction from the set
disjointness problem in 2-party communication complexity [25]. In the two party model, Alice
receives X and Bob receives Y , for some b-bit vectors X and Y , and the players communicate along
a communication channel to decide if there is an index i such that X[i] = Y [i] = 1. Razborov [39]
showed that any ε-error randomized error communication protocol requires Ω(b) bits to solve set
disjointness. [6] showed how Alice and Bob can jointly simulate the execution of a distributed MST
algorithm A in the graph G with a weight assignment depending on the inputs X and Y to obtain
a protocol for set disjointness as follows: All slow path edges and all highway edges obtain weight 1

23

in G, whereas the spoke edges that are not incident to s or t obtain weight ∞. We assign weight 1
to all edges in E(C). For every i ∈ [1, b], the i-th spoke edge incident to s is assigned weight 1 if
X[i] = 0, and weight n otherwise. Similarly, the i-th spoke edge incident to t is assigned weight 1 if
Y [i] = 0, and weight n otherwise. Consider the MST M of G the j-th slow path ρj connecting s and
t. A crucial property is that ρj must contain exactly one spoke incident to either s or t as otherwise
ρj is either disconnected from the rest of the graph or, if both spokes are part of M , the highway
path forms a cycle with ρj . If X and Y are disjoint, then either the j-th spoke incident to Alice has
weight 1 or the j-th spoke incident to Bob; in this case, the spoke that has weight 1 is part of M .
As a consequence, the MST contains one edge of weight n if and only if X and Y are not disjoint.

Simulating the MST algorithm Alice and Bob create G, assign weights appropriately to the
edges incident to s and t, and then simulate the execution of A on G; essentially, Alice simulates all
nodes except t and its neighbors and, similarly, Bob simulates all nodes except s and its neighbors.
To keep the simulation of s and t afloat, Alice and Bob exchange at most 2 bits per simulated round;
we refer the reader to [6] for the details. Once A terminates, Alice knows which edges incident to s
are in the MST and Bob knows the same about t. Moreover, since the weight of the MST depends
only on these incident edges, Alice can compute the total weight incident to s and then send it to
Bob, requiring O(log n) bits. From this, Bob can reconstruct the total weight of the MST (since all
other edges have weight 1). If the MST does not contain any edge of weight n, then the total weight
is n− 1 and, by the above correspondence, Bob can conclude that X and Y are disjoint. On the
other hand, if the MST does contain an edge of weight n (which must be a spoke incident to either
s or t) then there is some index where X and Y intersect. It follows that the solution for MST
solves set disjointness and it follows that the simulation cannot terminate in o(b) rounds as this will
result in o(b) bits being communicated between Alice and Bob, contradicting the Ω(b) lower bound
for set disjointness [39]. Since this holds for a constant probability of error, an easy application of
Markov’s inequality shows that the expected time complexity must also be Ω(D +

√
n):

Lemma 13. There exists a weight function w such that, for any graph G ∈ I, executing algorithm
A on the weighted graph Gw, where every edge e has weight w(e), takes Ω(D +

√
n) rounds in

expectation.

4.1.3 Putting Everything Together

We are now ready to combine the results of Lemma 12, which we only argued for unweighted graphs
so far, with Lemma 13. The next lemma directly implies Theorem 3.

Lemma 14. There exists a weighted graph G such that any MST algorithm requires Ω̃(
√
n+D)

rounds in expectation and has an expected message complexity of Ω(m).

Proof. Consider an MST algorithm A and the worst case weight assignment w provided by Lemma 13.
Apply w to every graph in the collection I yielding the collection of weighted graphs Ī. Note that,
for any G ∈ I, the edges of the corresponding weighted graph Ḡ ∈ Ī have weight 1. Thus we
can apply the arguments preceding Lemma 12 to the weighted graph collection Ī to obtain the
result.

24

5 Conclusions

We have presented a new distributed algorithm for the fundamental minimum spanning tree problem
which is simultaneously time- and message-optimal (to within polylog(n) factors).

An interesting open question is whether there exists a distributed MST algorithm with near-
optimal time and message complexities in the KT1 variant of the model.

Currently, it is not known whether other important problems such as shortest paths, minimum
cut, and random walks, enjoy singular optimality. These problems admit distributed algorithms
which are (essentially) time-optimal but not message-optimal [32, 20, 7, 33]. Further work is needed
to address these questions.

References

[1] H. Attiya and J. Welch, Distributed Computing: Fundamentals, Simulations and Advanced
Topics, McGraw-Hill, Inc., 1998.

[2] B. Awerbuch, Optimal distributed algorithms for minimum weight spanning tree, counting,
leader election, and related problems, in Proceedings of the 19th ACM Symposium on Theory
of Computing (STOC), 1987, pp. 230–240.

[3] B. Awerbuch, O. Goldreich, D. Peleg, and R. Vainish, A trade-off between information
and communication in broadcast protocols, J. ACM, 37 (1990), pp. 238–256.

[4] B. Awerbuch and D. Peleg, Sparse partitions, in Proceedings of the 31st Annual Symposium
on Foundations of Computer Science (FOCS), 1990, pp. 503–513.

[5] F. Chin and H. Ting, An almost linear time and O(n log n+e) messages distributed algorithm
for minimum-weight spanning trees, in Proceedings of the 26th IEEE Symposium on Foundations
of Computer Science (FOCS), 1985, pp. 257–266.

[6] A. Das Sarma, S. Holzer, L. Kor, A. Korman, D. Nanongkai, G. Pandurangan,
D. Peleg, and R. Wattenhofer, Distributed verification and hardness of distributed
approximation, SIAM J. Comput., 41 (2012), pp. 1235–1265.

[7] A. Das Sarma, D. Nanongkai, G. Pandurangan, and P. Tetali, Distributed random
walks, J. ACM, 60 (2013), pp. 2:1–2:31.

[8] M. Elkin, A faster distributed protocol for constructing a minimum spanning tree, J. Comput.
Syst. Sci., 72 (2006), pp. 1282–1308.

[9] M. Elkin, An unconditional lower bound on the time-approximation trade-off for the distributed
minimum spanning tree problem, SIAM J. Comput., 36 (2006), pp. 433–456.

[10] M. Elkin, A simple deterministic distributed MST algorithm, with near-optimal time and
message complexities, in Proceedings of the 2017 ACM Symposium on Principles of Distributed
Computing (PODC), 2017, pp. 157–163.

[11] M. Faloutsos and M. Molle, A linear-time optimal-message distributed algorithm for
minimum spanning trees, Distributed Computing, 17 (2004), pp. 151–170.

25

[12] E. Gafni, Improvements in the time complexity of two message-optimal election algorithms,
in Proceedings of the 4th Symposium on Principles of Distributed Computing (PODC), 1985,
pp. 175–185.

[13] R. G. Gallager, P. A. Humblet, and P. M. Spira, A distributed algorithm for minimum-
weight spanning trees, ACM Trans. Program. Lang. Syst., 5 (1983), pp. 66–77.

[14] J. A. Garay, S. Kutten, and D. Peleg, A sublinear time distributed algorithm for
minimum-weight spanning trees, SIAM J. Comput., 27 (1998), pp. 302–316.

[15] M. Ghaffari and B. Haeupler, Distributed algorithms for planar networks II: low-congestion
shortcuts, MST, and min-cut, in Proceedings of the 27th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2016, pp. 202–219.

[16] M. Ghaffari, F. Kuhn, and H.-H. Su, Distributed MST and routing in almost mixing time,
in Proceedings of the 2017 ACM Symposium on Principles of Distributed Computing (PODC),
2017, pp. 131–140.

[17] B. Haeupler, T. Izumi, and G. Zuzic, Low-congestion shortcuts without embedding, in
Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing (PODC),
2016, pp. 451–460.

[18] B. Haeupler, T. Izumi, and G. Zuzic, Near-optimal low-congestion shortcuts on bounded pa-
rameter graphs, in Proceedings of the 30th International Symposium on Distributed Computing
(DISC), 2016, pp. 158–172.

[19] J. W. Hegeman, G. Pandurangan, S. V. Pemmaraju, V. B. Sardeshmukh, and
M. Scquizzato, Toward optimal bounds in the congested clique: Graph connectivity and MST,
in Proceedings of the 34th ACM Symposium on Principles of Distributed Computing (PODC),
2015, pp. 91–100.

[20] M. Henzinger, S. Krinninger, and D. Nanongkai, A deterministic almost-tight distributed
algorithm for approximating single-source shortest paths, in Proceedings of the 48th ACM
Symposium on Theory of Computing (STOC), 2016, pp. 489–498.

[21] M. Khan and G. Pandurangan, A fast distributed approximation algorithm for minimum
spanning trees, Distributed Computing, 20 (2008), pp. 391–402.

[22] V. King, S. Kutten, and M. Thorup, Construction and impromptu repair of an MST in a
distributed network with o(m) communication, in Proceedings of the 2015 ACM Symposium on
Principles of Distributed Computing (PODC), 2015, pp. 71–80.

[23] H. Klauck, D. Nanongkai, G. Pandurangan, and P. Robinson, Distributed computation
of large-scale graph problems, in Proceedings of the 26th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2015, pp. 391–410.

[24] L. Kor, A. Korman, and D. Peleg, Tight bounds for distributed minimum-weight spanning
tree verification, Theory Comput. Syst., 53 (2013), pp. 318–340.

[25] E. Kushilevitz and N. Nisan, Communication Complexity, Cambridge University Press,
1997.

26

[26] S. Kutten, D. Nanongkai, G. Pandurangan, and P. Robinson, Distributed symmetry
breaking in hypergraphs, in Proceedings of the 28th International Symposium on Distributed
Computing (DISC), 2014, pp. 469–483.

[27] S. Kutten, G. Pandurangan, D. Peleg, P. Robinson, and A. Trehan, On the complexity
of universal leader election, J. ACM, 62 (2015), pp. 7:1–7:27.

[28] S. Kutten and D. Peleg, Fast distributed construction of small k-dominating sets and
applications, J. Algorithms, 28 (1998), pp. 40–66.

[29] C. Lenzen, Lecture notes on Theory of Distributed Systems, 2016. https://www.mpi-
inf.mpg.de/fileadmin/inf/d1/teaching/winter15/tods/ToDS.pdf.

[30] N. Lynch, Distributed Algorithms, Morgan Kaufmann Publishers, 1996.

[31] A. Mashreghi and V. King, Time-communication trade-offs for minimum spanning tree
construction, in Proceedings of the 18th International Conference on Distributed Computing
and Networking (ICDCN), 2017.

[32] D. Nanongkai, Distributed approximation algorithms for weighted shortest paths, in Proceed-
ings of the 46th ACM Symposium on Theory of Computing (STOC), 2014, pp. 565–573.

[33] D. Nanongkai, A. D. Sarma, and G. Pandurangan, A tight unconditional lower bound
on distributed randomwalk computation, in Proceedings of the 30th Annual ACM Symposium
on Principles of Distributed Computing (PODC), 2011, pp. 257–266.

[34] G. Pandurangan, D. Peleg, and M. Scquizzato, Message lower bounds via efficient
network synchronization, in Proceedings of the 23rd International Colloquium on Structural
Information and Communication Complexity (SIROCCO), 2016, pp. 75–91.

[35] G. Pandurangan, P. Robinson, and M. Scquizzato, A time- and message-optimal
distributed algorithm for minimum spanning trees, in Proceedings of the 49th Annual ACM
Symposium on the Theory of Computing (STOC), 2017, pp. 743–756.

[36] D. Peleg, Distributed matroid basis completion via elimination upcast and distributed correction
of minimum-weight spanning trees, in Proceedings of the 25th International Colloquium on
Automata, Languages and Programming (ICALP), 1998, pp. 164–175.

[37] D. Peleg, Distributed Computing: A Locality-Sensitive Approach, Society for Industrial and
Applied Mathematics, 2000.

[38] D. Peleg and V. Rubinovich, A near-tight lower bound on the time complexity of distributed
minimum-weight spanning tree construction, SIAM J. Comput., 30 (2000), pp. 1427–1442.

[39] A. A. Razborov, On the distributional complexity of disjointness, Theor. Comput. Sci., 106
(1992), pp. 385–390.

[40] R. E. Tarjan, Data Structures and Network Algorithms, Society for Industrial and Applied
Mathematics, 1983.

[41] G. Tel, Introduction to Distributed Algorithms, Cambridge University Press, 1994.

27

[42] A. C. Yao, Probabilistic computations: Toward a unified measure of complexity, in Proceedings
of the 18th Annual Symposium on Foundations of Computer Science (FOCS), 1977, pp. 222–227.

28

...

s

. . .

. . .

. . .

...

. . .

. . .

. . .

. . .

...

. . .

. . .

. . .

...

. . .

. . .

. . .

. . .

...

. . .

. . .

. . .

... H

G′

t

C

e′

C ′

e′′

...

. . .

. . .

. . .

...

. . .

. . .

. . .

. . .

...

. . .

. . .

. . .

...

. . .

. . .

. . .

. . .

. . .

...

. . .

. . .

. . .

... H ′

G′′

Figure 2: The graph Dumbbell(G′[e′], G′′[e′′]) for the proof of Theorem 3.

29

	1 Introduction
	1.1 Model and Definitions
	1.2 Our Results
	1.3 Other Related Work

	2 High-Level Overview of the Algorithm
	2.1 First Part: Controlled-GHS
	2.2 Second Part: Merging the n Remaining Fragments
	2.2.1 Phase 1: When D is O(n)
	2.2.2 Phase 2: When D and the Number of Fragments are Large
	2.2.3 Phase 3: When the Cluster Radius is D

	3 Description and Analysis of the Algorithm
	3.1 The Controlled-GHS Procedure
	3.2 Routing Data Structures for Communication-Efficient Paths
	3.3 Finding the Lightest Outgoing Edges (LOEs): Procedure FindLightest
	3.4 Finding Communication-Efficient Paths: Procedure FindPath
	3.5 Merging Fragments

	4 A Simultaneously Tight Lower Bound
	4.1 Proof of thm:lb
	4.1.1 Part 1: Symmetry Breaking
	4.1.2 Part 2: Communication Complexity
	4.1.3 Putting Everything Together

	5 Conclusions

