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ABSTRACT
In this paper we propose a new framework for analyzing the performance of pre-processing algorithms. Our framework builds on the

notion of kernelization from parameterized complexity. However, as opposed to the original notion of kernelization, our de�nitions combine

well with approximation algorithms and heuristics. �e key new de�nition is that of a polynomial size α-approximate kernel. Loosely

speaking, a polynomial size α-approximate kernel is a polynomial time pre-processing algorithm that takes as input an instance (I ,k) to a

parameterized problem, and outputs another instance (I ′,k ′) to the same problem, such that |I ′ | + k ′ ≤ kO(1). Additionally, for every c ≥ 1,

a c-approximate solution s ′ to the pre-processed instance (I ′,k ′) can be turned in polynomial time into a (c · α)-approximate solution s to

the original instance (I ,k).
Amongst our main technical contributions are α-approximate kernels of polynomial size for three problems, namely Connected Vertex

Cover, Disjoint Cycle Packing and Disjoint Factors. �ese problems are known not to admit any polynomial size kernels unless

NP ⊆ coNP/Poly Our approximate kernels simultaneously beat both the lower bounds on the (normal) kernel size, and the hardness of

approximation lower bounds for all three problems. On the negative side we prove that Longest Path parameterized by the length of the

path and Set Cover parameterized by the universe size do not admit even an α-approximate kernel of polynomial size, for any α ≥ 1, unless

NP ⊆ coNP/Poly.

1 INTRODUCTION
Polynomial time pre-processing is one of the widely used methods to tackle NP-hardness in practice. However, for decades there was no

mathematical framework to analyze the performance of pre-processing heuristics. �e advent of parameterized complexity made such an

analysis possible. In parameterized complexity every instance I comes with an integer parameter k , and the goal is to e�ciently solve the

instances whose parameter k is small. Formally a parameterized decision problem Π is a subset of Σ∗ × N, where Σ is a �nite alphabet. �e

goal of parameterized algorithms is to determine whether an instance (I ,k) given as input belongs to Π or not.

On an intuitive level, a low value of the parameter k should re�ect that the instance (I ,k) has some additional structure that can be

exploited algorithmically. Consider an instance (I ,k) such that k is very small and I is very large. Since k is small, the instance is supposed

to be easy. If I is large and easy, this means that large parts of I do not contribute to the computational hardness of the instance (I ,k). �e

hope is that these parts can be identi�ed and reduced in polynomial time. �is intuition is formalized as the notion of kernelization. Let

д : N→ N be a function. A kernel of size д(k) for a parameterized problem Π is a polynomial time algorithm that takes as input an instance

(I ,k) and outputs another instance (I ′,k ′) such that (I ,k) ∈ Π if and only if (I ′,k ′) ∈ Π and |I ′ | + k ′ ≤ д(k). If д(k) is a linear, quadratic or

polynomial function of k , we say that this is a linear, quadratic or polynomial kernel, respectively.

�e study of kernelization has turned into an active and vibrant sub�eld of parameterized complexity, especially since the development of

complexity-theoretic tools to show that a problem does not admit a polynomial kernel [4, 5, 16, 19, 21], or a kernel of a speci�c size [10, 11, 22].

Over the last decade many new results and several new techniques have been discovered, see the survey articles by Kratsch [27] or Lokshtanov

et al. [28] for recent developments, or the textbooks [9, 14] for an introduction to the �eld.

Despite the success of kernelization, the basic de�nition has an important drawback: it does not combine well with approximation algorithms
or with heuristics. �is is a serious problem since a�er all the ultimate goal of parameterized algorithms, or for that ma�er of any algorithmic

paradigm, is to eventually solve the given input instance. �us, the application of a pre-processing algorithm is always followed by an

algorithm that �nds a solution to the reduced instance. In practice, even a�er applying a pre-processing procedure, the reduced instance

may not be small enough to be solved to optimality within a reasonable time bound. In these cases one gives up on optimality and resorts to

approximation algorithms or heuristics instead. �us it is crucial that the solution obtained by an approximation algorithm or heuristic when

run on the reduced instance provides a good solution to the original instance, or at least some meaningful information about the original

instance. �e current de�nition of kernels allows for kernelization algorithms with the unsavory property that running an approximation

algorithm or heuristic on the reduced instance provides no insight whatsoever about the original instance. In particular, the only thing

guaranteed by the de�nition of a kernel is that the reduced instance (I ′,k ′) is a yes instance if and only if the original instance (I ,k) is. If we

have an α-approximate solution to (I ′,k ′) there is no guarantee that we will be able to get an α-approximate solution to (I ,k), or even able

to get any feasible solution to (I ,k).
�ere is a lack of, and a real need for, a mathematical framework for analysing the performance of pre-processing algorithms, such that

the framework not only combines well with parameterized and exact exponential time algorithms, but also with approximation algorithms

and heuristics. Our main conceptual contribution is an a�empt at building such a framework.
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�e main reason that the existing notion of kernelization does not combine well with approximation algorithms is that the de�nition of a

kernel is deeply rooted in decision problems. �e starting point of our new framework is an extension of kernelization to optimization

problems. �is allows us to de�ne α-approximate kernels. Loosely speaking an (α)-approximate kernel of size д(k) is a polynomial time

algorithm that given an instance (I ,k) outputs an instance (I ′,k ′) such that |I ′ | +k ′ ≤ д(k) and any c-approximate solution s ′ to the instance

(I ′,k ′) can be turned in polynomial time into a (c · α)-approximate solution s to the original instance (I ,k). In addition to se�ing up the core

de�nitions of the framework we demonstrate that our formalization of lossy pre-processing is robust, versatile and natural.
Robust. We show that the key notions behave consistently with related notions from parameterized complexity, kernelization, approx-

imation and FPT-approximation algorithms. For instance, we show that a problem admits an α-approximate kernel if and only if it is

FPT-α-approximable, mirroring the equivalence between FPT and kernelization [9].

Versatile. We show that our framework can be deployed to measure the e�ciency of pre-processing heuristics both in terms of the value

of the optimum solution, and in terms of structural properties of the input instance that do not necessarily have any relation to the value of

the optimum.

Natural. We point to several examples in the literature where approximate kernelization has already been used implicitly to design

approximation algorithms and FPT-approximation algorithms. In particular, we show that the best known approximation algorithm for

Steiner Tree [8], and FPT-approximation for Partial Vertex Cover [30] and for Minimal Linear Arrangement parameterized by the

vertex cover number [17] can be re-interpreted as running an approximate kernelization �rst and then running an FPT-approximation

algorithm on the preprocessed instance.

A common feature of the above examples of α-approximate kernels is that they beat both the known lower bounds on kernel size of

traditional kernels and the lower bounds on approximation ratios of approximation algorithms. �us, it is quite possible that many of

the problems for which we have strong inapproximability results and lower bounds on kernel size admit small approximate kernels with

approximation factors as low as 1.1 or 1.001. If this is the case, it would o�er up at least a partial explanation of why pre-processing heuristics

combined with brute force search perform so much be�er than what is predicted by hardness of approximation results and kernelization

lower bounds. �is gives another compelling reason for a systematic investigation of lossy kernelization of parameterized optimization

problems.

�e observation that a lossy pre-processing can simultaneously achieve a be�er size bound than normal kernelization algorithms as well

as a be�er approximation factor than the ratio of the best approximation algorithms is not new. In particular, motivated by this observation

Fellows et al. [18] initiated the study of lossy kernelization. �ey proposed a de�nition of lossy kernelization called α-�delity kernels.
Essentially, an α-�delity kernel is a polynomial time pre-processing procedure such that an optimal solution to the reduced instance translates

to an α-approximate solution to the original. Unfortunately this de�nition su�ers from the same serious drawback as the original de�nition

of kernels - it does not combine well with approximation algorithms or with heuristics. Indeed, in the context of lossy pre-processing this

drawback is even more damning, as there is no reason why one should allow a loss of precision in the pre-processing step, but demand that

the reduced instance has to be solved to optimality. Furthermore the de�nition of α-�delity kernels is usable only for problems parameterized

by the value of the optimum, and falls short for structural parameterizations. For these reasons we strongly believe that the notion of

α-approximate kernels introduced in this work is a be�er model of lossy kernelization than α-�delity kernels are.

It is important to note that even though the de�nition of α-approximate kernels crucially di�ers from the de�nition of α-�delity kernels [18],

it seems that most of the pre-processing algorithms that establish the existence of α-approximate kernels can be used to establish the

existence of α-�delity kernels and vice versa. In particular, all of the α-�delity kernel results of Fellows et al. [18] can be translated to

α-approximate kernels.

Our Results. Our main technical contribution is an investigation of the lossy kernelization complexity of several parameterized optimization

problems, namely Connected Vertex Cover, Disjoint Cycle Packing, Disjoint Factors, Longest Path, Set Cover and Hitting Set.

For all of these problems there are known lower bounds [4, 6, 13] precluding them from admi�ing polynomial kernels under widely believed

complexity theoretic assumptions. Indeed, all of these six problems have played a central role in the development of the tools and techniques

for showing kernelization lower bounds.

For Connected Vertex Cover, Disjoint Cycle Packing and Disjoint Factors we give approximate kernels that beat both the known

lower bounds on kernel size and the lower bounds on approximation ratios of approximation algorithms. On the other hand, for Longest

Path and Set Cover we show that even a constant factor approximate kernel of polynomial size would imply NP ⊆ coNP/Poly, collapsing

the polynomial hierarchy. For Hitting Set we show that a constant factor approximate kernel of polynomial size would violate the

Exponential Time Hypothesis (ETH) of Impagliazzo, Paturi and Zane [23]. Next we discuss our results for each of the six problems in more

detail. Due to space constraints, we include only a subset of our results in the extended abstract and refer the reader to the full version [29]

for the complete set of results and proofs.

Approximate Kernels. In the Connected Vertex Cover problem we are given as input a graph G, and the task is to �nd a smallest

possible connected vertex cover S ⊆ V (G). A vertex set S is a connected vertex cover if G[S] is connected and every edge has at least one

endpoint in S . �is problem is NP-complete [2], admits a factor 2 approximation algorithm [2, 34], and is known not to admit a factor (2 − ϵ)
approximation algorithm assuming the Unique Games conjecture [26]. Further, an approximation algorithm with ratio below 1.36 would

imply that P = NP [12]. From the perspective of kernelization, it is easy to show that Connected Vertex Cover admits a kernel with at

most 2
k

vertices [9], where k is the solution size. On the other hand, Dom et al. [13] showed that Connected Vertex Cover does not
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admit a kernel of polynomial size, unless NP ⊆ coNP/Poly. In this work we show that Connected Vertex Cover admits a Polynomial Size
Approximate Kernelization Scheme, or PSAKS, the approximate kernelization analogue of a polynomial time approximation scheme (PTAS).

In particular, for every ϵ > 0, Connected Vertex Cover admits a simple (1 + ϵ)-approximate kernel of polynomial size. �e size of the

kernel is upper bounded by kO(1/ϵ ). Our results for Connected Vertex Cover show that allowing an arbitrarily small multiplicative loss in

precision drastically improves the worst-case behaviour of pre-processing algorithms for this problem.

In the Disjoint Cycle Packing problem we are given as input a graph G , and the task is to �nd a largest possible collection C of pairwise

disjoint vertex sets of G , such that every setC ∈ C induces a cycle in G . �is problem admits a factor O(logn) approximation algorithm [33],

and is known not to admit an approximation algorithm [20] with factor O((logn)
1

2
−ϵ ) for any ϵ > 0, unless all problems in NP can be solved

in randomized quasi-polynomial time. With respect to kernelization, Disjoint Cycle Packing is known not to admit a polynomial kernel [6]

unless NP ⊆ coNP/Poly. We prove that Disjoint Cycle Packing admits a PSAKS. More concretely we show that for every ϵ > 0, Disjoint

Cycle Packing admits a (1 + ϵ)-approximate kernel of size k
O( 1

ϵ log ϵ )
. Again, relaxing the requirements of a kernel to allow an arbitrarily

small multiplicative loss in precision yields a qualitative leap in the upper bound on kernel size from exponential to polynomial. Contrasting

the simple approximate kernel for Connected Vertex Cover, the approximate kernel for Disjoint Cycle Packing is quite complex.

On the way to obtaining a PSAKS for Disjoint Cycle Packing we consider the Disjoint Factors problem. In Disjoint Factors, input is

an alphabet Σ and a string s in Σ∗. For a le�er a ∈ Σ, an a-factor in s is a substring of s that starts and ends with the le�er a, and a factor in s
is an a-factor for some a ∈ Σ. Two factors x and y are disjoint if they do not overlap in s . In Disjoint Factors the goal is to �nd a largest

possible subset S of Σ such that there exists a collection C of pairwise disjoint factors in s , such that for every a ∈ S there is an a-factor in

C. �is stringology problem shows up in the proof of the kernelization lower bound of Bodlaender et al. [6] for Disjoint Cycle Packing.

Indeed, Bodlaenderr et al. �rst show that Disjoint Factors parameterized by alphabet size |Σ| does not admit a polynomial kernel, and then

reduce Disjoint Factors to Disjoint Cycle Packing in the sense that a polynomial kernel for Disjoint Cycle Packing would yield a

polynomial kernel for Disjoint Factors. Here we go in the other direction - �rst we obtain a PSAKS for Disjoint Factors parameterized

by |Σ|, and then li� this result to Disjoint Cycle Packing parameterized by solution size.

Lower Bounds for Approximate Kernels. A path P in a graph G is a sequence v1v2, . . .vt of distinct vertices, such that each pair of

consecutive vertices in P are adjacent in G. �e length of the path P is t − 1, the number of vertices in P minus one. In Longest Path,

the input is a graph G and the objective is to �nd a path of maximum length. �e best approximation algorithm for Longest Path [1]

has factor O( n
logn ), and the problem cannot be approximated [24] within a factor 2

(logn)1−ϵ
for any ϵ > 0, unless NP= DTIME(2lognO (1)

).

Further, Longest Path is not expected to admit a polynomial kernel. In fact it was one of the �rst FPT problems for which the existence of a

polynomial kernel was ruled out [4]. We show that even within the realm of approximate kernelization, Longest Path remains hard. In

particular we show that for any α ≥ 1, Longest Path does not admit an α-approximate kernel of polynomial size unless NP ⊆ coNP/Poly.

In order to show the approximate kernelization lower bound for Longest Path, we extend the complexity-theoretic machinery for showing

kernelization lower bounds [4, 5, 16, 19, 21] to our framework of parameterized optimization problems. In particular we amalgamate the

notion of cross-compositions, used to show kernelization lower bounds, with gap-creating reductions, used to show hardness of approximation

bounds, and de�ne gap creating cross-compositions. �en, adapting the proofs of Fortnow and Santhanam [19] and Bodlaender et al. [5] to

our se�ing, we show that this notion can be used to prove lower bounds on the size of approximate kernels. Once the framework of gap

creating cross-compositions is set up, it trivially applies to Longest Path.

A�er se�ing up the framework for showing lower bounds for approximate kernelization, we consider the approximate kernelization

complexity of two more problems, namely Set Cover and Hitting Set, both parameterized by universe size. In both problems input is a

family S of subsets of a universe U . We use n for the size of the universe U and m for the number of sets in S. A set cover is a subfamily F

of S such that

⋃
S ∈F S = U . In the Set Cover problem the objective is to �nd a set cover F of minimum size. A hi�ing set is a subset X ofU

such that every S ∈ S has non-empty intersection with X , and in the Hitting Set problem the goal is to �nd a hi�ing set of minimum size.

�e two problems are dual to each other in the following sense: given (S,U ) we can de�ne the dual family (S∗,U ∗) as follows. U ∗ has

one element uX for every set X ∈ S, and S∗ has one set Sv for every element v ∈ U . For every X ∈ S and v ∈ U the set Sv ∈ S
∗

contains

the element uX in U ∗ if and only if v ∈ X . It is well known and easy to see that the dual of the dual of (S,U ) is (S,U ) itself, and that hi�ing

sets of (S,U ) correspond to set covers in (S∗,U ∗) and vice versa. �is duality allows us to translate algorithms and lower bounds between

Set Cover to Hitting Set. However, this translation switches the roles of n (the universe size) and m (the number of sets). For example,

Set Cover is known to admit a factor (lnn)-approximation algorithm [36], and known not to admit a (c lnn)-approximation algorithm

for any c < 1 unless P = NP [31]. �e duality translates these results to a (lnm)-approximation algorithm, and a lower bound ruling out

(c lnm)-approximation algorithms for any c < 1 for Hitting Set. Nelson [32] gave a O(
√
m)-approximation algorithm, as well as a lower

bound ruling out a polynomial time O(2(logm)c )-approximation for any c < 1 for Set Cover, assuming the ETH. �e duality translates these

results to a O(
√
n)-approximation algorithm, as well as a lower bound under ETH ruling out a polynomial time O(2(logn)c )-approximation

for any c < 1 for Hitting Set. Observe that even though Set Cover and Hitting Set are dual to each other they behave very di�erently

with respect to approximation algorithms that measure the quality of the approximation in terms of the universe size n.

For kernelization parameterized by universe size n, the two problems behave in a more similar fashion. Both problems admit kernels of

size O(2n ), and both problems have been shown not to admit kernels of size nO (1) [13] unless NP ⊆ coNP/Poly. However, the two lower

bound proofs are quite di�erent, and the two lower bounds do not follow from one another using the duality.
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For Set Cover parameterized by n, we deploy the framework of gap creating cross-compositions to show that the problem does not

admit an α-approximate kernel of size nO (1) for any constant α . �is can be seen as a signi�cant strengthening of the lower bound of Dom

et al. [13]. While the gap creating cross-composition for Longest Path is very simple, the gap creating cross-composition for Set Cover is

quite delicate, and relies both on a probabilistic construction and a de-randomization of this construction using co-non-determinism.

Our lower bound for Set Cover parameterized by universe size n translates to a lower bound for Hitting Set parameterized by the

numberm of sets, but says nothing about Hitting Set parameterized by n. We prove that for every c < 1, even a O(2(logn)c )-approximate

kernel of size nO (1) for Hitting Set would imply a O(2(logn)c
′

)-approximation algorithm for Hitting Set for some c ′ < 1. By the result of

Nelson [32] this would in turn imply that the ETH is false. Hence, Hitting Set does not admit a O(2(logn)c )-approximate kernel of size

nO (1) assuming the ETH.

We remark that the lower bounds proved using the framework of gap creating cross compositions, and in particular the lower bounds for

Longest Path and Set Cover, also rule out approximate compressions to any other parameterized optimization problems. On the other

hand, our lower bound for Hitting Set only rules out approximate kernels. As a consequence the lower bounds for Longest Path and Set

Cover have more potential as starting points for reductions showing that even further problems do not admit approximate kernels.

2 SETTING UP THE FRAMEWORK
We begin by giving a “de�nition” of α-approximate kernelization that ought to be su�cient for reading the rest of the paper and understanding

most of the arguments. �is will be followed by the formal de�nitions upon which the framework is built.

Recall that we work with parameterized problems. �at is, every instance comes with a parameter k . O�en k is “the quality of the solution

we are looking for”. For example, does G have a connected vertex cover of size at most k? Does G have at least k pairwise vertex disjoint

cycles? When we move to optimization problems, we change the above two questions to: Can you �nd a connected vertex cover of size at

most k in G? If yes, what is the smallest one you can �nd? Or, can you �nd at least k pairwise vertex disjoint cycles? If no, what is the

largest collection of pairwise vertex disjoint cycles you can �nd? Note here the di�erence in how minimization and maximization problems

are handled. For minimization problems, a bigger objective function value is undesirable, and k is an “upper bound on the ‘badness’ of

the solution”. �at is, solutions worse than k are so bad we do not care precisely how bad they are. For maximization problems, a bigger

objective function value is desirable, and k is an “upper bound on how good the solution has to be before one is fully satis�ed”. �at is,

solutions be�er than k are so good that we do not care precisely how good they are.

In many cases the parameter k does not directly relate to the quality of the solution we are looking for. Consider for example, the following

problem. Given a graph G and a set Q of k terminals, �nd a smallest possible Steiner treeT in G that contains all the terminals. In such cases,

k is called a structural parameter, because k being small restricts the structure of the input instance. In this example, the structure happens to

be the fact that the number of terminals is ‘small’.

Let α ≥ 1 be a real number. We now give an informal de�nition of α-approximate kernels. �e kernelization algorithm should take an

instance I with parameter k , run in polynomial time, and produce a new instance I ′ with parameter k ′. Both k ′ and the size of I ′ should be

bounded in terms of just the parameter k . �at is, there should exist a function д(k) such that |I ′ | ≤ д(k) and k ′ ≤ д(k). �is function д(k) is

the size of the kernel. Now, a solution s ′ to the instance I ′ should be useful for �nding a good solution s to the instance I . What precisely

this means depends on whether k is a structural parameter or the “quality of the solution we are looking for”, and whether we are working

with a maximization problem or a minimization problem.

• If we are working with a structural parameterk then we require the following from α-approximate kernels: For every c ≥ 1, a c-approximate

solution s ′ to I ′ can be transformed in polynomial time into a (c · α)-approximate solution to I .
• If we are working with a minimization problem, and k is the quality of the solution we are looking for, then k is an “upper bound on the

badness of the solution”. In this case we require the following from α-approximate kernels: For every c ≥ 1, a c-approximate solution s ′ to

I ′ can be transformed in polynomial time into a (c · α)-approximate solution s to I . However, if the quality of s ′ is “worse than” k ′, or

(c · α) ·OPT (I ) > k , the algorithm that transforms S ′ into S is allowed to fail. Here OPT (I ) is the value of the optimum solution of the

instance I .
�e solution li�ing algorithm is allowed to fail precisely if the solution S ′ given to it is “too bad” for the instance I ′, or if the approximation

guarantee of being a factor of c · α away from the optimum for I allows it to output a solution that is “too bad” for I anyway.
• If we are working with a maximization problem, and k is the quality of the solution we are looking for, then k is an “upper bound on how

good the solution has to be before one is fully satis�ed”. In this case we require the following from α-approximate kernels: For every

c ≥ 1, if s ′ is a c-approximate solution s ′ to I ′ or the quality of s ′ is at least k ′/c , then s ′ can be transformed in polynomial time into a

(c · α)-approximate solution s to I . However, if OPT (I ) > k then instead of being a (c · α)-approximate solution s to I , the output solution s
can be any solution of quality at least k/(c · α).

In particular, if OPT (I ′) > k ′ then the optimal solution to I ′ is considered “good enough”, and the approximation ratio c of the solution s ′

to I ′ is computed as “distance from being good enough”, i.e as k ′/s ′. Further, if OPT (I ) > k then we think of the optimal solution to I as “good
enough”, and measure the approximation ratio of s in terms of “distance from being good enough”, i.e as k/s .
Typically we are interested in α-approximate kernels of polynomial size, that is kernels where the size function д(k) is upper bounded by

kO (1). Of course the goal is to design α-approximate kernels of smallest possible size, with smallest possible α . Sometimes we are able to

obtain a (1 + ϵ)-approximate kernel of polynomial size for every ϵ > 0. Here the exponent and the constants of the polynomial may depend
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on ϵ . We call such a kernel a Polynomial Size Approximate Kernelization Scheme, and abbreviate it as PSAKS. If only the constants of the

polynomial д(k) and not the exponent depend on ϵ , we say that the PSAKS is e�cient. All of the positive results achieved in this paper are

PSAKSes, but not all are e�cient.

2.1 Approximate Kernelization
We will be dealing with approximation algorithms and solutions that are not necessarily optimal, but at the same time relatively “close” to

being optimal. To properly discuss these concepts they have to be formally de�ned. Our starting point is a parameterized analogue of the

notion of an optimization problem from the theory of approximation algorithms.

De�nition 2.1. A parameterized optimization (minimization or maximization) problem Π is a computable function

Π : Σ∗ × N × Σ∗ → R ∪ {±∞}.

�e instances of a parameterized optimization problem Π are pairs (I ,k) ∈ Σ∗ × N, and a solution to (I ,k) is simply a string s ∈ Σ∗, such

that |s | ≤ |I | + k . �e value of the solution s is Π(I ,k, s). Just as for “classical” optimization problems the instances of Π are given as input,

and the algorithmic task is to �nd a solution with the best possible value, where best means minimum for minimization problems and

maximum for maximization problems.

De�nition 2.2. For a parameterized minimization problem Π, the optimum value of an instance (I ,k) ∈ Σ∗ × N is

OPTΠ(I ,k) = min

s ∈Σ∗
|s | ≤ |I |+k

Π(I ,k, s).

�e de�nition for a parameterized maximization problem is analogous. For an instance (I ,k) of a parameterized optimization problem Π,

an optimal solution is a solution s such that Π(I ,k, s) = OPTΠ(I ,k).

When the problem Π is clear from context we will o�en drop the subscript and refer to OPTΠ(I ,k) as OPT (I ,k). Observe that in the

de�nition of OPTΠ(I ,k) the set of solutions over which we are minimizing/maximizing Π is �nite, therefore the minimum or maximum

is well de�ned. We remark that the function Π in De�nition 2.1 depends both on I and on k . �us it is possible to de�ne parameterized

problems such that an optimal solution s for (I ,k) is not necessarily optimal for (I ,k ′).
For an instance (I ,k) the size of the instance is |I | + k while the integer k is referred to as the parameter of the instance. Parameterized

Complexity deals with measuring the running time of algorithms in terms of both the input size and the parameter. In Parameterized

Complexity a problem is �xed parameter tractable if input instances of size n with parameter k can be “solved” in time f (k)nO(1) for a

computable function f . For decision problems “solving” an instance means to determine whether the input instance is a “yes” or a “no”

instance to the problem. Next we de�ne what it means to “solve” an instance of a parameterized optimization problem, and de�ne �xed

parameter tractability for parameterized optimization problems.

De�nition 2.3. Let Π be a parameterized optimization problem. An algorithm for Π is an algorithm that given as input an instance (I ,k),
outputs a solution s and halts. �e algorithm solves Π if, for every instance (I ,k) the solution s output by the algorithm is optimal for (I ,k).
We say that a parameterized optimization problem Π is decidable if there exists an algorithm that solves Π.

De�nition 2.4. A parameterized optimization problem Π is �xed parameter tractable (FPT) if there is an algorithm that solves Π, such that

the running time of the algorithm on instances of size n with parameter k is upper bounded by f (k)nO(1) for a computable function f .

We remark that De�nition 2.3 di�ers from the usual formalization of what it means to “solve” a decision problem. Solving a decision

problem amounts to always returning “yes” on “yes”-instances and “no” on “no”-instances. For parameterized optimization problems

the algorithm has to produce an optimal solution. �is is analogous to the de�nition of optimization problems most commonly used in

approximation algorithms.

We remark that we could have built the framework of approximate kernelization on the existing de�nitions of parameterized optimization

problems used in parameterized approximation algorithms [30], indeed the di�erence between our de�nitions of parameterized optimization

problems and those currently used in parameterized approximation algorithms are mostly notational.

Parameterizations by the Value of the Solution. At this point it is useful to consider a few concrete examples, and to discuss the relationship

between parameterized optimization problems and decision variants of the same problem. For a concrete example, consider the Vertex

Cover problem. Here the input is a graph G , and the task is to �nd a smallest possible vertex cover of G: a subset S ⊆ V (G) is a vertex cover if

every edge of G has at least one endpoint in S . �is is quite clearly an optimization problem, the feasible solutions are the vertex covers of G
and the objective function is the size of S .

In the most common formalization of the Vertex Cover problem as a decision problem parameterized by the solution size, the input

instanceG comes with a parameter k and the instance (G,k) is a “yes” instance ifG has a vertex cover of size at most k . �us, the parameterized

decision problem “does not care” whether G has a vertex cover of size even smaller than k , the only thing that ma�ers is whether a solution

of size at most k is present.

To formalize Vertex Cover as a parameterized optimization problem, we need to determine for every instance (G,k) which value to

assign to potential solutions S ⊆ V (G). We can encode the set of feasible solutions by giving �nite values for vertex covers of G and∞ for all
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other sets. We want to distinguish between graphs that do have vertex covers of size at most k and the ones that do not. At the same time,

we want the computational problem of solving the instance (G,k) to become easier as k decreases. A way to achieve this is to assign |S | to
all vertex covers S of G of size at most k , and k + 1 for all other vertex covers. �us, one can formalize the Vertex Cover problem as a

parameterized optimization problem as follows: VC(G,k, S) = ∞ if S is not a vertex cover of G and VC(G,k, S) = min(|S |,k + 1) otherwise.

Note that this formulation of Vertex Cover “cares” about solutions of size less than k . One can think of k as a threshold; for solutions of size

at most k we care about what their size is, while all solutions of size larger than k are equally bad in our eyes, and are assigned value k + 1.

Clearly any FPT algorithm that solves the parameterized optimization version of Vertex Cover also solves the (parameterized) decision

variant. Using standard self-reducibility techniques [35] one can make an FPT algorithm for the decision variant solve the optimization

variant as well.

We have seen how a minimization problem can be formalized as a parameterized optimization problem parameterized by the value of the

optimum. Next we give an example for how to do this for maximization problems. In the Cycle Packing problem we are given as input a

graph G, and the task is to �nd a largest possible collection C of pairwise vertex disjoint cycles. Here a collection of vertex disjoint cycles is a

collection C of vertex subsets of G such that for every C ∈ C, G[C] contains a cycle and for every C,C ′ ∈ C we have V (C) ∩V (C ′) = ∅. We

will o�en refer to a collection of vertex disjoint cycles as a cycle packing.

We can formalize the Cycle Packing problem as a parameterized optimization problem parameterized by the value of the optimum in a

manner similar to what we did for Vertex Cover. In particular, if C is a cycle packing, then we assign it value |C| if |C| ≤ k and value k + 1

otherwise. If |C| is not a cycle packing, we give it value −∞.

CP(G,k,C) =

{
−∞ if C is not a cycle packing,

min(|C|,k + 1) otherwise.

�us, the only (formal) di�erence between the formalization of parameterized minimization and maximization problems parameterized by

the value of the optimum is how infeasible solutions are treated. For minimization problems infeasible solutions get value ∞, while for

maximization problems they get value −∞. However, there is also a “philosophical” di�erence between the formalization of minimization

and maximization problems. For minimization problems we do not distinguish between feasible solutions that are “too bad”; solutions of size

more than k are all given the same value. On the other hand, for maximization problems all solutions that are “good enough”, i.e. of size at

least k + 1, are considered equal.

Observe that the “capping” of the objective function at k + 1 does not make sense for approximation algorithms if one insists on k being

the (un-parameterized) optimum of the instance I . �e parameterization discussed above is by the value of the solution that we want our
algorithms to output, not by the unknown optimum.

Structrural Parameterizations. We now present an example that demonstrates that the notion of parameterized optimization problems is

robust enough to capture not only parameterizations by the value of the optimum, but also parameterizations by structural properties of the

instance that may or may not be connected to the value of the best solution. In the Optimal Linear Arrangement problem we are given

as input a graph G, and the task is to �nd a bijection σ : V (G) → {1, . . . ,n} such that

∑
uv ∈E(G) |σ (u) − σ (v)| is minimized. A bijection

σ : V (G) → {1, . . . ,n} is called a linear layout, and

∑
uv ∈E(G) |σ (u) − σ (v)| is denoted by val(σ ,G) and is called the value of the layout σ .

We will consider the Optimal Linear Arrangement problem for graphs that have a relatively small vertex cover. �is can be formalized as

a parameterized optimization problem as follows: OLA((G, S),k,σ ) = −∞ if S is not a vertex cover ofG of size at most k ,OLA((G, S),k,σ ) = ∞
if σ is not a linear layout and OLA((G, S),k,σ ) = val(σ ,G) otherwise. In the de�nition above the �rst case takes precendence over the

second: if S is not vertex cover of G of size at most k and σ is not a linear layout, OLA((G, S),k,σ ) returns −∞. �is ensures that malformed

input instances do not need to be handled.

Note that the input instances to the parameterized optimization problem described above are pairs ((G, S),k) where G is a graph, S
is a vertex cover of G of size at most k and k is the parameter. �is de�nition allows algorithms for Optimal Linear Arrangement

parameterized by vertex cover to assume that the vertex cover S is given as input.

Kernelization of Parameterized Optimization Problems. �e notion of a kernel (or kernelization algorithm) is a mathematical model for

polynomial time pre-processing for decision problems. We will now de�ne the corresponding notion for parameterized optimization

problems. To that end we �rst need to de�ne a polynomial time pre-processing algorithm.

De�nition 2.5. A polynomial time pre-processing algorithm A for a parameterized optimization problem Π is a pair of polynomial

time algorithms. �e �rst one is called the reduction algorithm, and computes a map RA : Σ∗ × N→ Σ∗ × N. Given as input an instance

(I ,k) of Π the reduction algorithm outputs another instance (I ′,k ′) = RA (I ,k).
�e second algorithm is called the solution li�ing algorithm. �is algorithm takes as input an instance (I ,k) ∈ Σ∗ ×N of Π, the output

instance (I ′,k ′) of the reduction algorithm, and a solution s ′ to the instance (I ′,k ′). �e solution li�ing algorithm works in time polynomial

in |I |,k ,|I ′ |,k ′ and s ′, and outputs a solution s to (I ,k). Finally, if s ′ is an optimal solution to (I ′,k ′) then s is an optimal solution to (I ,k).

Observe that the solution li�ing algorithm could contain the reduction algorithm as a subroutine. �us, on input (I ,k, I ′,k ′, s ′) the solution

li�ing algorithm could start by running the reduction algorithm (I ,k) and produce a transcript of how the reduction algorithm obtains

(I ′,k ′) from (I ,k). Hence, when designing the solution li�ing algorithm we may assume without loss of generality that such a transcript

is given as input. For the same reason, it is not really necessary to include (I ′,k ′) as input to the solution li�ing algorithm. However, to
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avoid starting every description of a solution li�ing algorithm with “we compute the instance (I ′,k ′) from (I ,k)”, we include (I ′,k ′) as input.

�e notion of polynomial time pre-processing algorithms could be extended to randomized polynomial time pre-processing algorithms, by

allowing both the reduction algorithm and the solution li�ing algorithm to draw random bits, and fail with a small probability. With such an

extension it ma�ers whether the solution li�ing algorithm has access to the random bits drawn by the reduction algorithm, because these

bits might be required to re-construct the transcript of how the reduction algorithm obtained (I ′,k ′) from (I ,k). If the random bits of the

reduction algorithm are provided to the solution li�ing algorithm, the discussion above applies.

A kernelization algorithm is a polynomial time pre-processing algorithm for which we can prove an upper bound on the size of the output

instances in terms of the parameter of the instance to be pre-processed. �us, the size of a polynomial time pre-processing algorithm A is a

function sizeA : N→ N de�ned as follows.

sizeA (k) = sup{|I ′ | + k ′ : (I ′,k ′) = RA (I ,k), I ∈ Σ
∗}.

In other words, we look at all possible instances of Π with a �xed parameter k , and measure the supremum of the sizes of the output of

RA on these instances. At this point, recall that the size of an instance (I ,k) is de�ned as |I | + k . Note that this supremum may be in�nite;

this happens when we do not have any bound on the size of RA (I ,k) in terms of the input parameter k only. Kernelization algorithms are

exactly these polynomial time pre-processing algorithms whose output size is �nite and bounded by a computable function of the parameter.

De�nition 2.6. A kernelization (or kernel) for a parameterized optimization problem Π is a polynomial time pre-processing algorithm A

such that sizeA is upper bounded by a computable function д : N→ N.

If the function д in De�nition 2.6 is a polynomial, we say that Π admits a polynomial kernel. Similarly, if д is a linear, quadratic or cubic

function of k we say that Π admits a linear, quadratic, or cubic kernel, respectively.

One of the basic theorems in Parameterized Complexity is that a decidable parameterized decision problem admits a kernel if and only if it

is �xed parameter tractable. We now show that this result also holds for parameterized optimization problems. We say that a parameterized

optimization problem Π is decidable if there exists an algorithm that solves Π, where the de�nition of “solves” is given in De�nition 2.3.

Proposition 2.7. A decidable parameterized optimization problem Π is FPT if and only if it admits a kernel.

Parameterized Approximation and Approximate Kernelization. For some parameterized optimization problems we are unable to obtain

FPT algorithms, and we are also unable to �nd satisfactory polynomial time approximation algorithms. In this case one might aim for

FPT-approximation algorithms, algorithms that run in time f (k)nc and provide good approximate solutions to the instance.

De�nition 2.8. Let α ≥ 1 be constant. A �xed parameter tractable α-approximation algorithm for a parameterized optimization problem Π

is an algorithm that takes as input an instance (I ,k), runs in time f (k)|I |O(1), and outputs a solution s such that Π(I ,k, s) ≤ α ·OPT (I ,k) if Π
is a minimization problem, and α · Π(I ,k, s) ≥ OPT (I ,k) if Π is a maximization problem.

Note that although De�nition 2.8 only de�nes constant factor FPT-approximation algorithms, the de�nition can in a natural way be

extended to approximation algorithms whose approximation ratio depends on the parameter k , on the instance I , or on both.

We are now ready to de�ne one of the key new concepts of the paper - the concept of an α-approximate kernel. We de�ned kernels by

�rst de�ning polynomial time pre-processing algorithms (De�nition 2.5) and then adding size constraints on the output (De�nition 2.6).

Similarly, we will �rst de�ne the notion of α-approximate polynomial time pre-processing algorithms, and then de�ne α-approximate

kernels by adding size constraints on the output of the pre-processing algorithm.

De�nition 2.9. Let α ≥ 1 be a real number and Π be a parameterized optimization problem. An α-approximate polynomial time
pre-processing algorithmA for Π is a pair of polynomial time algorithms. �e �rst one is called the reduction algorithm, and computes

a map RA : Σ∗ × N→ Σ∗ × N. Given as input an instance (I ,k) of Π the reduction algorithm outputs another instance (I ′,k ′) = RA (I ,k).
�e second algorithm is called the solution li�ing algorithm. �is algorithm takes as input an instance (I ,k) ∈ Σ∗ ×N of Π, the output

instance (I ′,k ′) of the reduction algorithm, and a solution s ′ to the instance (I ′,k ′). �e solution li�ing algorithm works in time polynomial

in |I |,k ,|I ′ |,k ′ and s ′, and outputs a solution s to (I ,k). If Π is a minimization problem then

Π(I ,k, s)

OPT (I ,k)
≤ α ·

Π(I ′,k ′, s ′)

OPT (I ′,k ′)
.

�e de�nition for maximization problems is analogous. De�nition 2.9 only de�nes constant factor approximate polynomial time pre-

processing algorithms. �e de�nition can in a natural way be extended approximation ratios that depend on the parameter k , on the

instance I , or on both. Additionally, the discussion following De�nition 2.5 also applies here. In particular we may assume that the solution

li�ing algorithm also gets as input a transcript of how the reduction algorithm obtains (I ′,k ′) from (I ,k). �e size of an α-approximate

polynomial time pre-processing algorithm is de�ned in exactly the same way as the size of a polynomial time pre-processing algorithm

(from De�nition 2.5).

De�nition 2.10. An α-approximate kernelization (or an α-approximate kernel) for a parameterized optimization problem Π, and real

α ≥ 1, is an α-approximate polynomial time pre-processing algorithm A such that sizeA is upper bounded by a computable function

д : N→ N.
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Just as for regular kernels, if the function д in De�nition 2.10 is a polynomial, we say that Π admits an α-approximate polynomial kernel.

If д is a linear, quadratic or cubic function, then Π admits a linear, quadratic or cubic α-approximate kernel, respectively.

Proposition 2.7 establishes that a parameterized optimization problem Π admits a kernel if and only if it is FPT. Next we establish a similar

equivalence between FPT-approximation algorithms and approximate kernelization.

Proposition 2.11. For every α ≥ 1 and decidable parameterized optimization problem Π, Π admits a �xed parameter tractable α-
approximation algorithm if and only if Π has an α-approximate kernel.

�e proof of Proposition 2.11 is identical to the proof of Proposition 2.7, but with the FPT algorithm replaced by the �xed parameter

tractable α-approximation algorithm, and the kernel replaced with the α-approximate kernel. On an intuitive level, it should be easier to

compress an instance than it is to solve it. For α-approximate kernelization this intuition can be formalized.

Theorem 2.12. For every α ≥ 1 and decidable parameterized optimization problem Π, Π admits a polynomial time α -approximation algorithm
if and only if Π has an α-approximate kernel of constant size.

�e proof of �eorem 2.12 is simple; if there is an α-approximate kernel of constant size one can brute force the reduced instance and

li� the optimal solution of the reduced instance to an α-approximate solution to the original. On the other hand, if there is a factor α
approximation algorithm, the reduction algorithm can just output any instance of constant size. �en, the solution li�ing algorithm can just

directly compute an α-approximate solution to the original instance using the approximation algorithm.

We remark that Proposition 2.11 and �eorem 2.12 also applies to approximation algorithms and approximate kernels with super-constant

approximation ratio. We also remark that with our de�nition of α-approximate kernelization, by se�ing α = 1 we get essentially get back

the notion of kernel for the same problem. �e di�erence arises naturally from the di�erent goals of decision and optimization problems. In

decision problems we aim to correctly classify the instance as a “yes” or a “no” instance. In an optimization problem we just want as good a

solution as possible for the instance at hand. In traditional kernelization, a yes/no answer to the reduced instance translates without change

to the original instance. With our de�nition of approximate kernels, a su�ciently good solution (that is, a witness of a yes answer) will

always yield a witness of a yes answer to the original instance. However, the failure to produce a su�ciently good solution to the reduced

instance does not stop us from succeeding at producing a su�ciently good solution for the original one which is a win from the perspective

of optimization problems.

Reduction Rules and Strict α-Approximate Kernels. Kernelization algorithms in the literature [9, 14] are commonly described as a set

of reduction rules. Here we discuss reduction rules in the context of parameterized optimization problems. A reduction rule is simply a

polynomial time pre-processing algorithm, see De�nition 2.5. �e reduction rule applies if the output instance of the reduction algorithm is

not the same as the input instance. Most kernelization algorithms consist of a set of reduction rules. In every step the algorithm checks

whether any of the reduction rules apply. If a reduction rule applies, the kernelization algorithm runs the reduction algorithm on the instance

and proceeds by working with the new instance. �is process is repeated until the instance is reduced, i.e. none of the reduction rules apply.

To prove that this is a kernel (as de�ned in De�nition 2.6) we prove an upper bound on the size of a reduced instance.

In order to be able to make kernelization algorithms as described above, it is important that reduction rules can be chained. �at is,

suppose that we have an instance (I ,k) and run a pre-processing algorithm on it to produce another instance (I ′,k ′). �en we run another

pre-processing algorithm on (I ′,k ′) to get a third instance (I?,k?). Given an optimal solution s? to the last instance, we can use the solution

li�ing algorithm of the second pre-processing algorithm to get an optimal solution s ′ to the instance (I ′,k ′). �en we can use the solution

li�ing algorithm of the �rst pre-processing algorithm to get an optimal solution s to the original instance.

Unfortunately, one cannot chain α-approximate polynomial time pre-processing algorithms, as de�ned in De�nition 2.9, in this way. In

particular, each successive application of an α-approximate pre-processing algorithm increases the gap between the approximation ratio

of the solution to the reduced instance and the approximation ratio of the solution to the original instance output by the solution li�ing

algorithm. For this reason we need to de�ne strict approximate polynomial time pre-processing algorithms.

De�nition 2.13. Let α ≥ 1 be a real number, and Π be a parameterized optimization problem. An α-approximate polynomial time

pre-processing algorithm is said to be strict if, for every instance (I ,k), reduced instance (I ′,k ′) = RA (I ,k) and solution s ′ to (I ′,k ′), the

solution s to (I ,k) output by the solution li�ing algorithm when given s ′ as input satis�es the following.

• If Π is a minimization problem then

Π(I,k,s)
OPT (I,k ) ≤ max

{
Π(I ′,k ′,s ′)
OPT (I ′,k ′) ,α

}
.

• If Π is a maximization problem then

Π(I,k,s)
OPT (I,k ) ≥ min

{
Π(I ′,k ′,s ′)
OPT (I ′,k ′) ,

1

α

}
.

�e intuition behind De�nition 2.13 is that an α-strict approximate pre-processing algorithm may incur error on near-optimal solutions,

but that they have to preserve factor α-approximation. If s ′ is an α-approximate solution to (I ′,k ′) then s must be an α-approximate solution

to (I ,k) as well. Furthermore, if the ratio of Π(I ′,k ′, s ′) to OPT (I ′,k ′) is worse than α , then the ratio of Π(I ,k, s) to OPT (I ,k) should not be

worse than the ratio of Π(I ′,k ′, s ′) to OPT (I ′,k ′).
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We remark that a reduction algorithm RA and a solution li�ing algorithm that together satisfy the conditions of De�nition 2.13, also

automatically satisfy the conditions of De�nition 2.9. �erefore, to prove that RA and solution li�ing algorithm constitute a strict α-

approximate polynomial time pre-processing algorithm it is not necessary to prove that they constitute a α-approximate polynomial time

pre-processing algorithm �rst. �e advantage of De�nition 2.13 is that strict α-approximate polynomial time pre-processing algorithms do

chain - the composition of two strict α-approximate polynomial time pre-processing algorithms is again a strict α-approximate polynomial

time pre-processing algorithm.

We can now formally de�ne what a reduction rule is. A reduction rule for a parameterized optimization problem Π is simply a polynomial

time algorithm computing a map RA : Σ∗ × N→ Σ∗ × N. In other words, a reduction rule is “half” of a polynomial time pre-processing

algorithm. A reduction rule is only useful if the other half is there to complete the pre-processing algorithm.

De�nition 2.14. A reduction rule is said to be α-safe for Π if there exists a solution li�ing algorithm, such that the rule together with the

solution li�ing algorithm constitute a strict α-approximate polynomial time pre-processing algorithm for Π. A reduction rule is safe if it is

1-safe.

De�nition 2.15. An α-approximate kernel A is called strict if A is a strict α-approximate polynomial time pre-processing algorithm.

Polynomial Size Approximate Kernelization Schemes. In approximation algorithms, the best one can hope for is usually an approximation
scheme, that is an approximation algorithm that can produce a (1+ϵ)-approximate solution for every ϵ > 0. �e algorithm runs in polynomial

time for every �xed value of ϵ . However, as ϵ tends to 0 the algorithm becomes progressively slower in such a way that the algorithm cannot

be used to obtain optimal solutions in polynomial time.

In the se�ing of approximate kernelization, we could end up in a situation where it is possible to produce a polynomial (1+ϵ)-approximate

kernel for every �xed value of ϵ , but that the size of the kernel grows so fast when ϵ tends to 0 that this algorithm cannot be used to give a

polynomial size kernel (without any loss in solution quality). �is can be formalized as a polynomial size approximate kernelization scheme.

De�nition 2.16. A polynomial size approximate kernelization scheme (PSAKS) for a parameterized optimization problem Π is a

family of α-approximate polynomial kernelization algorithms, with one such algorithm for every α > 1.

De�nition 2.16 states that a PSAKS is a family of algorithms, one for every α > 1. However, many PSAKSes are uniform, in the sense that

there exists an algorithm that given α outputs the source code of an α-approximate polynomial kernelization algorithm for Π. In other

words, one could think of a uniform PSAKS as a single α-approximate polynomial kernelization algorithm where α is part of the input, and

the size of the output depends on α . From the de�nition of a PSAKS it follows that the size of the output instances of a PSAKS when run on

an instance (I ,k) with approximation parameter α can be upper bounded by f (α) · kд(α ) for some functions f and д independent of |I | and k .

De�nition 2.17. A size e�cient PSAKS, or simply an e�cient PSAKS (EPSAKS) is a PSAKS such that the size of the instances output

when the reduction algorithm is run on an instance (I ,k) with approximation parameter α can be upper bounded by f (α) · kc for a function

f of α and constant c independent of I , k and α . On the other hand, a PSAKS is said to be time e�cient if (a) the running time of the

reduction algorithm when run on an instance (I ,k) with approximation parameter α can be upper bounded by f (α) · |I |c for a function f of

α and constant c independent of I , k , α , and (b) the running time of the solution li�ing algorithm when run on an instance (I ,k), reduced

instance (I ′,k ′) and solution s ′ with approximation parameter α can be upper bounded by f ′(α) · |I |c for a function f ′ of α and constant c
independent of I , k and α . As earlier, we say that a PSAKS is strict if it is a strict α-approximate kernel for every α > 1.

3 APPROXIMATE KERNEL FOR CONNECTED VERTEX COVER
In this section we design a PSAKS for the Connected Vertex Cover problem. �e parameterized optimization problem Connected

Vertex Cover (CVC) is de�ned as follows:

CVC(G,k, S) =


∞ if S is not a connected

vertex cover of G
min {|S |,k + 1} otherwise

We show that for every α > 1, CVC has a polynomial size strict α-approximate kernel. Let (G,k) be the input instance. Without loss of

generality assume that the input graph G is connected. Let d be the least positive integer such that
d

d−1
≤ α . In particular, d = d α

α−1
e. For a

graph G and an integer k , de�ne H to be the set of vertices of degree at least k + 1. We de�ne I to be the set of vertices which are not in H
and whose neighborhood is a subset of H . �at is I = {v ∈ V (G) \ H | NG (v) ⊆ H }. �e kernelization algorithm works by applying two

reduction rules exhaustively. �e �rst of the two rules is the following.

Reduction Rule 3.1. Let v ∈ I be a vertex of degree D ≥ d . Delete NG [v] from G and add a vertex w such that the neighborhood of w
is NG (NG (v)) \ {v}. �en add k degree 1 vertices v1, . . . ,vk whose neighbor is w . Output this graph G ′, together with the new parameter
k ′ = k − (D − 1).

Lemma 3.1. Reduction Rule 3.1 is α-safe.
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Proof. To show that Rule 3.1 is α-safe we need to give a solution li�ing algorithm to go with the reduction. Given a solution S ′ to the

instance (G ′,k ′), if S ′ is a connected vertex cover of G ′ of size at most k ′ the algorithm returns the set S = (S ′ \ {w,v1, . . . ,vk }) ∪ NG [v].
Otherwise the solution li�ing algorithm returns V (G). We now need to show that the reduction rule together with the above solution li�ing

algorithm constitutes a strict α-approximate polynomial time pre-processing algorithm.

First we show that OPT (G ′,k ′) ≤ OPT (G,k) − (D − 1). Consider an optimal solution S∗ to (G,k). We have two cases based on the size

of S∗. If |S∗ | > k then CVC(G,k, S) = k + 1; in fact OPT (G,k) = k + 1. Furthermore, any connected vertex cover of G ′ has value at most

k ′ + 1 = k − (D − 1)+ 1 ≤ OPT (G,k) − (D − 1). Now we consider the case when |S∗ | ≤ k . If |S∗ | ≤ k then NG (v) ⊆ S∗, since the degree of all

the vertices in NG (v) is at least k + 1 and S∗ is a vertex cover of size at most k . �en (S∗ \ NG [v]) ∪ {w} is a connected vertex cover of G ′ of

size at most |S∗ | − (D − 1) = OPT (G,k) − (D − 1).

Now we show that CVC(G,k, S) ≤ CVC(G ′,k ′, S ′) + D. If S ′ is a connected vertex cover of G ′ of size strictly more than k ′ then

CVC(G,k, S) ≤ k + 1 = k ′ + D < k ′ + 1 + D = CVC(G ′,k ′, S ′) + D. Suppose now that S ′ is a connected vertex cover of G ′ of size at most

k ′. �en w ∈ S ′ since w has degree at least k in G ′. �us |S | ≤ |S ′ | − 1 + D + 1 ≤ |S ′ | + D. Finally, G[S] is connected because G[NG [v]] is

connected and NG (NG [v]) = NG′(w) \ {v1, . . . ,vk }. Hence S is a connected vertex cover of G. �us CVC(G,k, S) ≤ CVC(G ′,k ′, S ′) + D.

�erefore, we have that

CVC(G,k, S)

OPT (G,k)
≤

CVC(G ′,k ′, S ′) + D

OPT (G ′,k ′) + (D − 1)

By Fact 1, the quantity on the right hand side is upper bounded by max{CVC(G ′,k ′, S ′)/OPT (G ′,k ′),α }. �

�e second rule is easier than the �rst, if any vertex v has at least k + 1 false twins, then remove v . A false twin of a vertex v is a vertex u
such that uv < E(G) and N (u) = N (v).

Reduction Rule 3.2. If a vertex v has at least k + 1 false twins, then remove v , i.e output G ′ = G −v and k ′ = k .

Lemma 3.2. Reduction Rule 3.2 is 1-safe.

Lemma 3.3. Let (G,k) be an instance irreducible by rules 3.1 and 3.2, such that OPT (G,k) ≤ k . �en |V (G)| ≤ O(kd + k2).

Theorem 3.4. Connected Vertex Cover admits a strict time e�cient PSAKS with O(k d
α
α−1
e + k2) vertices.

4 APPROXIMATE KERNELIZATION IN PREVIOUS WORK
In this section we show how some of the existing approximation algorithms and FPT approximation algorithms can be re-interpreted as �rst

computing an α-approximate kernel, and then running a brute force search or an approximation algorithm on the reduced instance.

4.1 Steiner Tree
In the Steiner Tree problem we are given as input a graphG , a subset R ofV (G) called the terminals and a weight functionw : E(G) → N. A

Steiner tree is a subtreeT ofG such that R ⊆ V (T ), and the cost of a treeT is de�ned asw(T ) =
∑
e ∈E(T )w(e). �e task is to �nd a Steiner tree

of minimum cost. We may assume without loss of generality that the input graph G is complete and that w satis�es the triangle inequality:

for all u,v,w ∈ V (G) we have w(uw) ≤ w(uv) +w(vw). �is assumption can be justi�ed by adding for every pair of vertices u,v the edge uv
to G and making the weight of uv equal the shortest path distance between u and v . If multiple edges are created between the same pair of

vertices, only the lightest edge is kept.

Most approximation algorithms for the Steiner Tree problem rely on the notion of a k-restricted Steiner tree, de�ned as follows. A

component is a tree whose leaves coincide with a subset of terminals, and a k-component is a component with at most k leaves. A k-restricted

Steiner tree S is a collection of k-components, such that the union of these components is a Steiner tree T . �e cost of S is the sum of the

costs of all the k-components in S. �us an edge that appears in several di�erent k-components of S will contribute several times to the

cost of S, but only once to the cost of T . �e following result by Borchers and Du [7] shows that for every ϵ > 0 there exists a k such that

the cost of the best k-restricted Steiner tree S is not more than (1 + ϵ) times the cost of the best Steiner tree. �us approximation algorithms

for Steiner Tree only need to focus on the best possible way to “piece together” k-components to connect all the terminals.

Proposition 4.1 ([7]). For every k ≥ 1, graph G, terminal set R, weight function w : E(G) → N and Steiner tree T , there is a k-restricted
Steiner Tree S in G of cost at most (1 + 1

blog
2
k c ) ·w(T ).

Proposition 4.1 can easily be turned into a PSAKS for Steiner Tree parameterized by the number of terminals, de�ned below.

ST ((G,R),k ′,T ) =


−∞ if |R | > k ′

∞ if T is not a Steiner tree

w(T ) otherwise

To get a (1 + ϵ)-approximate kernel it is su�cent to pick k based on ϵ , compute for each k-sized subset R′ ⊆ R of terminals an optimal

Steiner tree for R′, and only keep vertices inG that appear in these Steiner trees. �is reduces the number of vertices ofG to O(|R |k ), but the

edge weights can still be large making the bitsize of the kernel super-polynomial in |R |. However, it is quite easy to show that keeping only

O(log |R |) bits for each weight is more than su�cient for the desired precision.
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Theorem 4.2. Steiner Tree parameterized by the number of terminals admits a PSAKS.

Proof. Start by computing a 2-approximate Steiner tree T2 using the classic factor 2 approximation algorithm [36]. For every vertex

v < R such that minx ∈R w(vx) ≥ w(T2) delete v from G as v may never participate in any optimal solution. By the triangle inequality we

may now assume without loss of generality that for every edge uv ∈ E(G) we have w(uv) ≤ 6OPT (G,R,w).
Working towards a (1+ ϵ)-approximate kernel of polynomial size, set k to be the smallest integer such that

1

blog
2
k c ≤ ϵ/2. For each subset

R′ of R of size at most k , compute an optimal steiner tree TR′ for the instance (G,R′,w) in time O(3k |E(G)| |V (G)|) using the algorithm of

Dreyfus and Wagner[15]. Mark all the vertices in V (TR′). A�er this process is completed, some O(k |R |k ) vertices in G are marked. Obtain

G ′ from G by deleting all the unmarked vertices in V (G) \ R. Clearly every Steiner tree in G ′ is also a Steiner tree in G, we argue that

OPT (G ′,R,w) ≤ (1 + ϵ
2
)OPT (G,R,w).

Consider an optimal Steiner tree T for the instance (G,R,w). By Proposition 4.1 there is a k-restricted Steiner Tree S in G of cost at most

(1 + 1

blog
2
k c ) ·w(T ) ≤ (1 +

ϵ
2
)OPT (G,R,w). Consider a k-component C ∈ S, and let R′ be the set of leaves of C - note that these are exactly

the terminals appearing inC . C is a Steiner tree for R′, and soTR′ is a Steiner tree for R′ with w(TR′) ≤ w(C). �en S′ = (S \ {C}) ∪ {TR′} is

a k-restricted Steiner Tree of cost no more than (1 + ϵ
2
)OPT (G,R,w). Repeating this argument for all k-components of S we conclude that

there exists a k-restricted Steiner Tree S in G of cost at most (1 + ϵ
2
)OPT (G,R,w), such that all k-components in S only use marked vertices.

�e union of all of the k-components in S is then a Steiner tree in G ′ of cost at most (1 + ϵ
2
)OPT (G,R,w).

We now de�ne a new weight function ŵ : E(G ′) → N, by se�ing

ŵ(e) =

⌊
w(e) ·

4|R |

ϵ ·OPT (G,R,w)

⌋
Note that since w(e) ≤ 6 ·OPT (G,R,w) it follows that ŵ(e) ≤ 24 |R |

ϵ . �us it takes only O(log |R | + log
1

ϵ ) bits to store each edge weight. It

follows that the bitsize of the instance (G ′,R, ŵ) is |R |2
O(1/ϵ )

. It can be argued that, for every c ≥ 1, a c-approximate Steiner tree T ′ for the

instance (G ′,R, ŵ) is a c(1 + ϵ)-approximate Steiner tree for the instance (G,R,w), concluding the proof. �

5 LOWER BOUNDS FOR APPROXIMATE KERNELIZATION
In this section we set up a framework for proving lower bounds on the size of α-approximate kernels for a parameterized optimization

problem. For normal kernelization, the most commonly used tool for establishing kernel lower bounds is by using cross compositions [5]. In

particular, Bodlaender et al. [5] de�ned cross composition and showed that if an NP-hard language L admits a cross composition into a

parameterized (decision) problem Π and Π admits a polynomial kernel, then L has an OR-distillation algorithm. Fortnow and Santhanam [19]

proved that if an NP-hard language L has an OR-distillation, then NP ⊆ coNP/Poly.

In order to prove a kernelization lower bound for a parameterized decision problem Π, all we have to do is to �nd an NP-hard langluage L
and give a cross composition from L into Π. �en, if Π has a polynomial kernel, then combining the cross composition and the kernel with

the results of Bodlaender et al. [5] and Fortnow and Santhanam [19] would prove that NP ⊆ coNP/Poly. In other words a cross composition

from L into Π proves that Π does not have a polynomial kernel unless NP ⊆ coNP/Poly.

In order to prove lower bounds on the size of α-approximate kernels, we generalize the notion of cross compositions to α-gap cross

compositions, which are hybrid of cross compositions and gap creating reductions found in hardness of approximation proofs. To give

the formal de�nition of α-gap cross compositions, we �rst need to recall the de�nition of Bodlaender et al. [5] of polynomial equivalence

relations on Σ∗, where Σ is a �nite alphabet.

De�nition 5.1 (polynomial equivalence relation [5]). An equivalence relation R on Σ∗, where Σ is a �nite alphabet, is called a polynomial
equivalence relation if (i) equivalence of any x ,y ∈ Σ∗ can be checked in time polynomial in |x | + |y |, and (ii) any �nite set S ⊆ Σ∗ has at

most (maxx ∈S |x |)
O(1)

equivalence classes.

De�nition 5.2 (α-gap cross composition for maximization problem). Let L ⊆ Σ∗ be a language, where Σ is a �nite alphabet and let Π be

a parameterized maximization problem. We say that L α-gap cross composes into Π (where α ≥ 1), if there is a polynomial equivalence

relation R and an algorithm which, given t strings x1, . . . ,xt belonging to the same equivalence class of R, computes an instance (y,k) of Π
and r ∈ R, in time polynomial in

∑t
i=1
|xi | such that the following holds:

(i) OPT (y,k) ≥ r if and only if xi ∈ L for some 1 ≤ i ≤ t ;
(ii) OPT (y,k) < r

α if and only if xi < L for all 1 ≤ i ≤ t ; and

(iii) k is bounded by a polynomial in log t +max1≤i≤t |xi |.

If such an algorithm exists, then we say that L α-gap cross composes to Π.

One can similarly de�ne α-gap cross compositions for minimization problems.

De�nition 5.3. �e de�nition of α-gap cross composition for minimization problem Π can be obtained by replacing conditions (i) and (ii)
of De�nition 5.2 with the following conditions (a) and (b) respectively: (a) OPT (y,k) ≤ r if and only if xi ∈ L for some 1 ≤ i ≤ t , and (b)
OPT (y,k) > r · α if and only if xi < L for all 1 ≤ i ≤ t .
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Similarly to the de�nition of α-approximate kernels, De�nition 5.3 can be extended to encompass α-gap cross composition where α is

not a constant, but rather a function of the (output) instance (y,k). Such compositions can be used to prove lower bounds on the size of

α-approximate kernels where α is super-constant.

One of the main ingredients required to prove hardness about computations in di�erent algorithmic models is an appropriate notion of a

reduction from a problem to another. Next, we de�ne a notion of a polynomial time reduction appropriate for obtaining lower bounds for

α-approximate kernels. As we will see this is very similar to the de�nition of α-approximate polynomial time pre-processing algorithm

(De�nition �).

De�nition 5.4. Let α ≥ 1 be a real number. Let Π and Π′ be two parameterized optimization problems. An α-approximate polynomial
parameter transformation (α-appt for short)A from Π to Π′ is a pair of polynomial time algorithms, called reduction algorithm RA and

solution li�ing algorithm. Given as input an instance (I ,k) of Π the reduction algorithm outputs an instance (I ′,k ′) of Π′. �e solution

li�ing algorithm takes as input an instance (I ,k) of Π, the output instance (I ′,k ′) = RA (I ,k) of Π′, and a solution s ′ to the instance I ′ and

outputs a solution s to (I ,k). If Π is a minimization problem then

Π(I ,k, s)

OPTΠ(I ,k)
≤ α ·

Π′((I ′,k ′), s ′)

OPTΠ′(I ′,k ′)
.

�e de�nition for maximization problems is analogous.

In the standard kernelization se�ing lower bounds machinery also rules out existence of compression algorithms. Similar to this our lower

bound machinery also rules out existence of compression algorithms. Towards that we need to generalize the de�nition of α-approximate

kernel to α-approximate compression. �e only di�erence is that in the later case the reduced instance can be an instance of any parameterized

optimization problem.

De�nition 5.5. Let α ≥ 1 be a real number. Let Π and Π′ be parameterized optimization problems. An α-approximate compression
from Π to Π′ is an α-apptA from Π to Π′ such that sizeA (k) = sup{|I ′ |+k ′ : (I ′,k ′) = RA (I ,k), I ∈ Σ

∗}, is upper bounded by a computable

function д : N→ N, where RA is the reduction algorithm.

For the sake of proving approximate kernel lower bounds, it is immaterial that Π′ in the De�nition 5.5 is a parameterized optimization

problem and in fact it can also be a unparameterized optimization problem. However, for clarity of presentation we will stick to parameterized

optimization problem in this paper. Whenever we talk about an existence of an α-approximate compression and we do not specify the target

problem Π′, we mean the existence of α-approximate compression into any optimization problem Π′. For more detailed exposition about

lower bound machinery about polynomial compression for decision problems we refer to the textbook [9].

Towards building a framework for lower bounds we would like to prove a theorem analogous to the one by Bodlaender et al. [5]. In

particular, we would like to show that an α-gap cross composition from an NP-hard language L into a parameterized optimization problem

Π, together with an α-approximate compression of polynomial size yield an OR-distillation for the language L. �en the result of Fortnow

and Santhanam [19] would immediately imply that any parameterized optimization problem Π that has an α-gap cross composition from an

NP-hard language L cannot have an α-approximate compression unless NP ⊆ coNP/Poly. Unfortunately, for technical reasons, it seems

di�cult to make such an argument. Luckily, we can complete a very similar argument yielding essentially the same conclusion, but instead

of relying on “OR-distillations” and the result of Fortnow and Santhanam [19], we make use of the more general result of Dell and van

Melkebeek [11] that rules out cheap oracle communication protocols for NP-hard problems. We �rst give necessary de�nitions that allow us

to formulate our statements.

De�nition 5.6 (Oracle Communication Protocol [11]). Let L ⊆ Σ∗ be a language, where Σ is a �nite alphabet. An oracle communication

protocol for the language L is a communication protocol between two players. �e �rst player is given the input x and has to run in time

polynomial in the length of x ; the second player is computationally unbounded but is not given any part of x . At the end of the protocol the

�rst player should be able to decide whether x ∈ L. �e cost of the protocol is the number of bits of communication from the �rst player to

the second player.

Lemma 5.7 (Complementary Witness Lemma [11]). Let L be a language and t : N→ N be polynomial function such that the problem of
deciding whether at least one out of t(s) inputs of length at most s belongs to L has an oracle communication protocol of cost O(t(s) log t(s)),
where the �rst player can be conondeterministic. �en L ∈ coNP/Poly.

Our lower bound technique for α-approximate compression for a parameterized optimization problem Π requires the problem Π to be

polynomial time veri�able. By this we mean that the function Π is computable in polynomial time. We call such problems nice parameterized
optimization problems. We are now in a position to prove the main lemma of this section.

Lemma 5.8. Let L be a language and Π be a nice parameterized optimization problem. If L α -gap cross composes to Π, and Π has a polynomial
sized α-approximate compression, then L ∈ coNP/Poly.

Theorem 5.9. Let L be an NP-hard language and Π be a nice parameterized optimization problem. If L α -gap cross composes to Π, and Π has
a polynomial sized α-approximate compression, then NP ⊆ coNP/Poly.
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We note that Lemma 5.7 applies even if the �rst player works in co-nondeterministic polynomial time. �us, a co-nondeterministic α-gap

cross composition together with an α-approximate compression from an NP-hard language would still allow us to conclude that NP ⊆
coNP/Poly.

Longest Path. We now show that Longest Path does not admit an α-approximate compression of polynomial size for any α ≥ 1

unless NP ⊆ coNP/Poly. �e parameterized optimization version of the Longest Path problem, that we call Path, is de�ned as follows:

Path(G,k, P) = −∞ if P is not a path in G and Path(G,k, P) = min {k + 1, |V (P)| − 1} otherwise. We show that Path does not have a

polynomial sized α-approximate compression for any constant α ≥ 1. We prove this by giving an α-gap cross composition from a α-Gap

Long Path. �e problem α-Gap Long Path is a promise problem which is de�ned as follows.

De�nition 5.10. �e α-Gap Long Path problem is to determine, given a graph G and an integer k whether:

• G has a path of length at least k , in which case we say that (G,k) is a Yes instance of α-Gap Long Path.

• the longest path in G has length strictly less than
k
α , in which case we say that (G,k) is a No instance of α-Gap Long Path.

It is known that α-Gap Long Path is NP-hard [24]. We show that it in fact also α-gap cross composes to Path for any α ≥ 1.

Lemma 5.11. α-Gap Long Path α-gap cross composes to Path for any α ≥ 1.

Proof. First we make the following polynomial equivalence relation: two instances (G1,k1) and (G2,k2) are in the same equivalence

class if k1 = k2. Now given t instances (G1,k), . . . , (Gt ,k) of α-Gap Long Path, the α-gap cross composition algorithm A just outputs an

instance (G,k) of Path, where G is the disjoint union of G1, . . . ,Gt .

Clearly, G contains a path of length k if and only if there exists an i such that Gi contains a path of length k . �us, OPT (G,k) ≥ r if and

only if there is an i such that (Gi ,k) is a yes instance of α-Gap Long Path. For the same reason OPT (G,k) < r
α if and only if (Gi ,k) is a No

instance of α-Gap Long Path for every i . Finally the parameter k of the output instance is upper bounded by the size of the graphs Gi . �is

concludes the proof. �

Theorem 5.12. Path does not have an α-approximate compression of polynomial size for any α ≥ 1, unless NP ⊆ coNP/Poly.

6 CONCLUSION AND DISCUSSIONS
Our framework for studying lossy kernelization, and the methods for showing lower bounds for approximate kernelization point to plenty of

problems that are waiting to be a�acked within this new framework. Indeed, one can systematically go through the list of all parameterized

problems, and investigate their approximate kernelization complexity. For problems that provably do not admit polynomial size kernels but

do admit constant factor approximation algorithms, one should search for PSAKSes. For problems with PSAKSes one should search for

e�cient PSAKSes and so on. We conclude with a list of concrete problems for future research.

• Does Connected Vertex Cover, Disjoint Factors or Disjoint Cycle Packing admit an EPSAKS?

• Does Edge Cliqe Cover admit a constant factor approximate kernel of polynomial size?

• Does Directed Feedback Vertex Set admit a constant factor approximate kernel of polynomial size?

• Do Multiway Cut and Subset Feedback Vertex Set have a PSAKS?

• Does Disjoint Hole Packing admit a PSAKS? Here a hole in a graph G is an induced cycle of length 4 or more.

• Does Optimal Linear Arrangement parameterized by vertex cover admit a constant factor approximate kernel of polynomial size,

or even a PSAKS?

• Does Maximum Disjoint Paths admit a constant factor approximate kernel, or even a PSAKS? Here the input is a graph G together

with a set of vertex pairs (s1, t1), (s2, t2), . . ., (s` , t`). �e goal is to �nd a maximum size subset R ⊆ {1, . . . , `} and, for every i ∈ R a

path Pi from si to ti , such that for every i, j ∈ R with i , j the paths Pi and Pj are vertex disjoint.

• Our lower bound for approximate kernelization of Hitting Set parameterized by universe size n does not apply to compressions.

Can one rule out polynomial size constant factor approximate compressions of Hitting Set parameterized by universe size n
assuming NP * coNP/Poly or another reasonable complexity theoretic assumption?

• One may extend the notion of approximate kernels to approximate Turing kernels [9] in a natural way. Does Independent Set

parameterized by treewidth admit a polynomial size approximate Turing kernel with a constant approximation ratio?

• Does Treewidth admit an constant factor approximate kernel of polynomial size? Here even a Turing kernel (with a constant

factor approximation) would be very interesting.

• What is the complexity of approximate kernelization of Uniqe Label Cover? [3, 25]

• �e notion of α-gap cross compositions can be modi�ed to “AND α-gap cross compositions” in the same way that AND-compositions

relate to OR-compositions [4]. In order to directly use such “AND α-gap cross compositions” to show lower bounds for approximate

kernelization, one needs an analogue of Lemma 5.7 for the problem of deciding whether all of the t(s) inputs belong to L. �is is

essentially a strengthening of the AND-distillation conjecture [4, 16] to oracle communication protocols (see the conclusion section

of Drucker [16], open question number 1). Can this strengthening of the AND-distillation conjecture be related to a well known

complexity theoretic assumption?
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