
Finding Even Cycles Faster via Capped k-Walks

Søren Dahlgaard∗, Mathias Bæk Tejs Knudsen†, and Morten Stöckel‡

University of Copenhagen
[soerend,knudsen,most]@di.ku.dk

Abstract

Finding cycles in graphs is a fundamental problem in algorithmic graph theory. In
this paper, we consider the problem of finding and reporting a cycle of length 2k in an
undirected graph G with n nodes and m edges for constant k ě 2. A classic result by
Bondy and Simonovits [J. Combinatorial Theory, 1974] implies that if m ě 100kn1`1{k,
then G contains a 2k-cycle, further implying that one needs to consider only graphs with
m “ Opn1`1{kq.

Previously the best known algorithms were an Opn2q algorithm due to Yuster and Zwick
[J. Discrete Math 1997] as well as a Opm2´p1`rk{2s

´1
q{pk`1qq algorithm by Alon et. al.

[Algorithmica 1997].
We present an algorithm that uses O

`

m2k{pk`1q
˘

time and finds a 2k-cycle if one exists.
This bound is Opn2q exactly when m “ Θpn1`1{kq. When finding 4-cycles our new bound
coincides with Alon et. al., while for every k ą 2 our new bound yields a polynomial
improvement in m.

Yuster and Zwick noted that it is “plausible to conjecture that Opn2q is the best possible
bound in terms of n”. We show “conditional optimality”: if this hypothesis holds then our
Opm2k{pk`1qq algorithm is tight as well. Furthermore, a folklore reduction implies that no
combinatorial algorithm can determine if a graph contains a 6-cycle in time Opm3{2´εq

for any ε ą 0 unless boolean matrix multiplication can be solved combinatorially in time
Opn3´ε1q for some ε1 ą 0, which is widely believed to be false. Coupled with our main
result, this gives tight bounds for finding 6-cycles combinatorially and also separates the
complexity of finding 4- and 6-cycles giving evidence that the exponent of m in the running
time should indeed increase with k.

The key ingredient in our algorithm is a new notion of capped k-walks, which are walks of
length k that visit only nodes according to a fixed ordering. Our main technical contribution
is an involved analysis proving several properties of such walks which may be of independent
interest.

1 Introduction

We study a basic problem in algorithmic graph theory. Namely, given an undirected and un-
weighted graph G “ pV,Eq and an integer `, does G contain a cycle of length exactly ` (denoted
C`)? If a C` exists, we would also like the algorithm to return such a cycle. As a special case,
when ` “ n is the number of nodes in the graph, we are faced with the well-known problem of
∗Research partly supported by Advanced Grant DFF-0602-02499B from the Danish Council for Independent

Research
†Research partly supported by Advanced Grant DFF-0602-02499B from the Danish Council for Independent

and the FNU project AlgoDisc – Discrete Mathematics, Algorithms, and Data Structures.
‡Research partly supported by Villum Fonden and the DABAI project.

1

ar
X

iv
:1

70
3.

10
38

0v
1

 [
cs

.D
S]

 3
0

M
ar

 2
01

7

finding a hamiltonian cycle, which was one of Karp’s original 21 NP-complete problems [7]. In
fact, the problem is NP-complete when ` “ nΩp1q.

On the other end of the spectrum, when ` “ Op1q is a constant, the problem is in FPT1as
first shown by Monien in 1985 [9], by giving an Opfp`q ¨ mq algorithm to determine if any
given node u is contained in a C`. For ` “ 3, this is the classical problem of triangle-finding,
which can be done in Opnωq time using matrix multiplication, where ω ă 2.373 is the matrix
multiplication exponent [8]. This can be extended to finding a C` for any constant ` “ Op1q in
time Opnωq expected and Opnω log nq deterministically [2]. When ` is odd, this is the fastest
known algorithm, however for even ` “ 2k “ Op1q one can do better. To appreciate the
difference, we must first understand the following basic graph theoretic result about even cycles:
Bondy and Simonovits [4] showed that if a graph with n nodes has more than 100kn1`1{k edges,
then the graph contains a C2k. In contrast, a graph on n nodes can have Θpn2q edges without
containing any odd cycle, e.g. Ktn{2u,rn{2s. Using this lemma of Bondy and Simonovits, it
was shown by Yuster and Zwick [14] how to find a C2k for constant k in time Opn2q. They
note that “it seems plausible to conjecture that Opn2q is the best possible bound in terms of n”.
Furthermore, when m ě 100k ¨n1`1{k we can use the algorithm of Yuster Zwick [14] to find a C2k

in Opnq expected time. Given this situation, we seek an algorithm with a running time Opmckq,
which utilizes the sparseness of the graph, when m is less than 100k ¨ n1`1{k. By the above
discussion, such an algorithm can be turned into a Opnckp1`1{kqq time algorithm for finding a
C2k. Therefore, if we believe that Opn2q indeed is the correct running time in terms of n, we
must also believe that the best possible value for ck is 2´ 2{pk` 1q. This is further discussed in
Section 1.1 below. Our main result is to present an algorithm which obtains exactly this running
time in terms of m and k for finding a C2k. We show the following.

Theorem 1. Let G be an unweighted and undirected graph with n nodes and m edges, and let
k ě 2 be a positive integer. A C2k in G, if one exists, can be found in OpkOpkqm

2k
k`1 q.

Theorem 1 presents the first improvement in more than 20 years over a result of Alon, et
al. [3], who gave an algorithm with ck “ 2´ p1` 1

rk{2s
q{pk ` 1q, i.e., a running time of Opm4{3q

for 4-cycles and Opm13{8q for 6-cycles. For 4-cycles we obtain the same bound with Theorem 1,
but for any k ą 2 our new bound presents a polynomial improvement. In fact our algorithm for
finding a C8 is faster than the algorithm of Alon, et al. for finding a C6. A comparison with
known algorithms is shown below in Figure 1.

We present our algorithm as a black box reduction: Let A be any algorithm which can
determine for a given node u if u is contained in a C2k in Opfpkq ¨mq time. Then our algorithm
can transform A into an algorithm which finds a C2k in Opgpkq ¨ m2k{pk`1qq time. Thus, one
may pick any such algorithm A such as the original algorithm of Monien [9] or the seminal
color-coding algorithm of Alon et al. [2]. Our algorithm is conceptually simple, but the analysis
is technically involved and relies on a new understanding of the relationship between the number
of k-walks and the existence of a C2k. By introducing the notion of capped k-walks, we show that
an algorithm enumerating all such capped k-walks starting in nodes with low degree will either
find a 2k-cycle or spend at most Opm2k{pk`1qq time. In some sense this is a stronger version of
the combinatorial lemma by Bondy and Simonovits, as any graph with many edges must also
have many capped k-walks.

1Informally, a problem of size n parameterized by k is in FPT if it can be solved in time fpkq ¨ nOp1q, where
f is a function independent of n.

2

n n^(5/4) n^(3/2) n^(7/4) n^2
Number of edges

n

n^(5/4)

n^(3/2)

n^(7/4)

n^2

R
un

ni
ng

 ti
m

e

Yuster and Zwick [15]
Thm. 1 and Alon et. al, 4-cycles [3]
Thm. 1, 6-cycles
Thm. 1, 8-cycles
Alon et. al., 6-cycles [3]
Alon et. al., 8-cycles [3]
BS threshold, 4-cycles [5]
BS threshold, 6-cycles [5]
BS threshold, 8-cycles [5]

Figure 1: Comparisons of running times in terms of graph density. The illustration shows our
algorithm from Theorem 1 compared to [14] and [3], and shows that it uses quadratic time
exactly when the threshold from Bondy and Simonovits ensures the existence of a 2k-cycle.

1.1 Hardness of finding cycles

The literature on finding `-cycles is generally split into two kinds of algorithms: combinatorial
and non-combinatorial algorithms. Where combinatorial algorithms (informally) are algorithms,
which do not use the structure of the underlying field and perform Strassen-like cancellation
tricks [11]. Interestingly, all known algorithms for finding cycles of even length efficiently are
combinatorial. There are several possible explanations for this. One is that the hard instance for
even cycles are graphs, which are relatively sparse (i.e. Opn1`1{kq edges), and in this case it is
difficult to utilize the power of fast matrix-multiplication. Another is that matrix-multiplication
based methods allows one to solve the harder problem of directed graphs. Directed graphs are
harder because we can no longer make the guarantee that a C2k can always be found if the
graph is dense. Furthermore, a simple argument shows that the problem of finding a C3 can be
reduced to the problem of finding a directed C` for any ` ą 3. Especially this problem of finding
a C3 combinatorially has been studied thoroughly in the line of work colloquially referred to as
Hardness in P. This line of work is concerned with basing hardness results on widely believed
conjectures about problems in P such as 3-SUM and APSP. One such popular conjecture (see
e.g. [1, 12]) is the combinatorial boolean matrix multiplication (BMM) conjecture stated below.

Conjecture 1. There exists no combinatorial algorithm for multiplying two nˆ n boolean ma-
trices in time Opn3´εq for any ε ą 0.

It is known from [12] that Conjecture 1 above is equivalent to the statement that there exists
no truly subcubic2 combinatorial algorithm for finding a C3 in graphs with n nodes and Θpn2q

edges, and a simple reduction shows that this holds for any odd ` ě 3. For even cycles, we show
that a simple extension to this folklore reduction gives the following result.

Proposition 1. Let k ě 3 be a fixed integer with k ‰ 4. Then there exists no combinatorial
algorithm that can find a 2k-cycle in graphs with n nodes and m edges in time Opm3{2´εq unless
Conjecture 1 is false.

2An algorithm running polynomially faster than cubic time, i.e. Opn3´ε
q for ε ą 0.

3

As noted, the proof of Proposition 1 is a rather simple extension of the reduction for odd
cycles, but for completeness, we include the proof in Section 4. In particular, Proposition 1
implies that our Opm3{2q time algorithm for finding 6-cycles is optimal among combinatorial
algorithms. Interestingly, Proposition 1 also creates a separation between finding 4-cycles and
finding larger even cycles, as both Alon, et al. [3] and Theorem 1 provide an algorithm for finding
4-cycles in time Opm4{3q., which is polynomially smaller than Opm3{2q. This gives evidence that
a trade-off dependent on k like the one obtained in Theorem 1 is indeed necessary.

An important point of Theorem 1, as mentioned earlier, is that it is optimal if we believe
that Θpn2q is the correct running time in terms of n. This is formalized in the theorem below.
Furthermore, we show that Theorem 1 implies that any hardness result of n2´op1q would provide
a link between the time complexity of an algorithm and the existence of dense graphs without
2k-cycles. A statement, which is reminiscent of the Erdős Girth Conjecture.

Theorem 2. Let k ě 2 be some fixed integer. For all ε ą 0 there exists δ ą 0 such that if no
algorithm exists which can find a C2k-cycle in graphs with n nodes and m edges in time Opn2´δq,
then the following two statements hold.

1. There is no algorithm which can detect if a graph contains a C2k in time Opm2k{pk`1q´εq.
2. There exists an infinite family of graphs G, such that each G P G has |EpGq| ě |V pGq|1`1{k´ε

and contains no C2k.

1.2 Other results

A problem related to that of finding a given C` is to determine the girth (length of shortest cycle)
of a graph G. In undirected graphs, finding the shortest cycle in general can be done in time
Opnωq time due to a seminal paper by Itai and Rodeh [6], and the shortest directed cycle can be
found using an extra factor of Oplog nq. In undirected graphs they also show that a cycle that
exceeds the shortest by at most one can be found in Opn2q time. It was shown by Vassilevska
Williams and Williams [12] that computing the girth exactly is essentially as hard as boolean
matrix multiplication, that is, finding a combinatorial, truly subcubic algorithm for computing
the girth of a graph would break Conjecture 1. Thus, an interesting question is whether one
can approximate the girth faster, and in particular a main open question as noted by Roditty
and Vassilevska Williams [10] is whether one can find a p2 ´ εq-approximation in Opn2´ε1q for
any constants ε, ε1 ą 0. They answered this question affirmatively for triangle-free graphs giving
a 8{5-approximation in Opn1.968q time [10]. By plugging Theorem 1 into their framework we
obtain the following result.

Theorem 3. There exists an algorithm for computing a 8{5-approximation of the girth in a
triangle-free graph G in time Opn1.942q.

1.3 Capped k-walks

The main ingredient in our analysis is a notion of capped k-walks defined below.

Definition 1. Let G “ pV,Eq be a graph and let ĺ be a total ordering of V . For a positive inte-
ger, k, we say that a pk`1q-tuple px0, . . . , xkq P V

k`1 is called a ĺ-capped k-walk if px0, . . . , xkq
is a walk in G and x0 ľ xi for each i “ 1, 2, . . . , k.

When clear from the context we will refer to a ĺ-capped k-walk simply by a capped k-walk.
Our algorithm for finding 2k-cycles essentially works by enumerating all ĺ-capped k-walks (with
some pruning applied), where ĺ is given by ordering nodes according to their degree. We will
show that by bounding the number of such ĺ-capped k-walks in graphs with a not too large

4

maximum degree, we obtain a bound on the running time of our algorithm. Specifically, we
show the following lemma.

Lemma 1. Let G “ pV,Eq be a graph, let k be a positive integer, and assume that G has
maximum degree at most m2{pk`1q. Let ĺ be any ordering of the nodes in G such that u ĺ v for
all pairs of nodes u, v such that degpuq ă degpvq. If G contains no 2k-cycle, then the number of
ĺ-capped k-walks is at most fpkqm2k{pk`1q, where fpkq “

`

Opk2q
˘k´1

“ kOpkq.

We also present a lower bound on the number of ĺ-capped k-walk, which implies that graphs
with a large number of edges contains a large number of ĺ-capped k-walks.

Lemma 2. Let G “ pV,Eq be a graph with n nodes and m edges. Let ĺ be any ordering of V .
The number of ĺ-capped k-walks is at least n ¨

`

m
2n

˘k

Lemmas 1 and 2 imply that graphs with more than Ck2n1`1{k edges and maximum degree
at most m2{pk`1q have a 2k-cycle, for a sufficiently large constant C ą 0. Except from the extra
factor of k and the bound on the maximum degree, this shows that Lemma 1 is stronger than the
lemma of Bondy and Simonovits, which states that graphs with at least than 100kn1`1{k edges
contain a 2k-cycle. Indeed, a graph with few edges may still contain many capped k-walks.

1.4 Techniques and overview

Our main technical contribution is the analysis of capped k-walks, outlined in Section 1.3 above.
A standard way of reasoning about the number of k-walks in a graph G “ pV,Eq is to consider
the adjacency matrix, XG, of G, where XGri, js “ 1 if pi, jq P E and 0 otherwise. Here we denote
the nodes of G by 1, . . . , n. Then the number of k-walks in G from i to j is exactly Xk

Gri, js
and the total number of k-walks is }Xk

G1}1, where 1 “ p1, 1, . . . , 1qn. Furthermore the number
of k-walks starting in a specific node i is pXk

G1qi. We will be interested in bounding the number
of k-walks starting in a specific subset S Ď V . This number can be calculated as xXk

G1,1Sy,
where 1S is the vector with 1s in each index, i, such that i P S and 0s elsewhere. Our goal will
be to bound the norm of XG and use this to bound the number of k-walks. However, bounding
the 1-norm leads to a too large bound and cannot be used in proving Lemma 1. We note that
the 1-norm of a vector v, can be written as

‖v‖1 “

ż 8

0
|ti | |vi| ě xu| dx .

We will instead consider the following related quantity, that we will call the ‖¨‖φ-norm.

Definition 2. For a vector v P Rn we define the norm ‖v‖φ by

‖v‖φ “
ż 8

0

a

|ti | |vi| ě xu|dx .

We extend the definition to matrices as

Definition 3. For a real nˆ n matrix A we define ‖A‖φ by:

‖A‖φ “ sup
u‰0

#

‖Au‖φ
‖u‖φ

+

.

We analyze this norm in section 3 showing several properties. We use this norm to reason
about the number of k-walks starting in a specific set of nodes S Ď V , by showing that this
number is at most

a

|S|
∥∥Xk

G1
∥∥
φ
. The main technical lemma of the paper is to show that if G is

a graph with no 2k-cycle and maximum degree at mostm2{pk`1q, then ‖XG‖φ “ Opk2m1{pk`1qq.

5

1.5 Related work

All stated bounds are in the RAM model unless otherwise specified and k is assumed to be fixed.
We will review related work of both given even and odd cycles.

Combinatorial upper bounds. We briefly discuss known combinatorial bounds other than
the previously mentioned [14, 3, 9]. Alon, et al. [3] also showed several results for directed graphs.
In particular, an upper bound of Opm2´1{kq to find a C2k, as well as Opm

2´ 2
``1 q to find C` for

odd `. In the same paper, Alon, et al. [3] also present bounds parameterized on the degeneracy
of the graph: the degeneracy dpGq of a graph G is the largest minimal degree taken over all the
subgraphs of G, and for any G it can be bounded from above by dpGq ď 1{2m1{2. They present
bounds of the form OpmαdpGqβq. These bounds also apply to directed graphs. We note, that
for undirected graphs the result of Theorem 1 is still asymptotically better for dpGq “ ωp1q.
The problem of combinatorially finding a C3 has also been studied thoroughly in the literature.
The current fastest bound is due to Yu [13] and uses Opn3 polyplog lognqq{ log4 nq time in the
word-RAM model with word-size Ωplog nq. For sparse graphs a folklore Opm3{2q algorithm exists

Non-combinatorial upper bounds. As mentioned, the best algorithm to find general cycles
is due to the seminal paper introducing color-coding, Alon et al. [2] who gave an Opnωq expected
time upper bound, and an Opnω log nq worst case upper bound, for finding a C` in a directed or
undirected graph. Other algorithms improve on [2] for finding specific C`. Alon et al. [3] showed
that a C3 can be found in time Opm

2ω
ω´1 q “ opm1.41q in both directed and undirected graphs.

Extending this, Eisenbrand and Grandoni [5] showed a Opn1{ωm2´2{ωq time upper bound for C4

in directed graphs. Both the former and the latter bounds are asymptotically faster than Opnωq
for sufficiently sparse input. Improving asymptotically on Eisenbrand and Grandoni for sparse
graphs, Yuster and Zwick [15] showed a Opmp4ω´1q{p2ω`1qq “ opm1.48q upper bound for directed
graphs. For finding a C6 in graphs with low degeneracy dpGq, Alon et al. [3] showed a bound of
OppmdpGqq2ω{pω`1qq “ OppmdpGqq1.41q.

1.6 Notation

Let G “ pV,Eq be a graph. For (not necessarily disjoint) sets of nodes A,B Ď V we let EpA,Bq
denote the set of edges between A and B in G, i.e. E X pA ˆ Bq. We use Epv,Aq to denote
Eptvu, Aq.

2 Finding even cycles

In this section we describe our algorithm for finding a C2k in an undirected graph G “ pV,Eq
with n nodes and m edges. In our analysis we will assume Lemma 1, but we defer the actual
proof of the lemma to Section 3.

Our algorithm works by creating a series of graphs Gkď1, . . . , G
k
ďn guaranteed to contain any

2k-cycle that may exist. Furthermore, the total size of these graphs can (essentially) be bounded
by the total number of ĺ-capped k-walks which is used to bound the running time.

Proof of Theorem 1. Let A be any algorithm that takes a graph H and a node u in H as input
and determines if u is contained in a 2k-cycle in time Opgpkq ¨ |EpHq|q.

Order the nodes of G as v1, . . . , vn non-decreasingly by degree and define Gďi to be the
subgraph of G induced by v1, . . . , vi. Let Gkďi denote the subgraph of Gďi containing all edges
(and their endpoints) incident to nodes at distance ă k from vi in Gďi. Now for each i P

6

t1, . . . , nu in increasing order we create the graph Gkďi, run algorithm A on Gkďi and vi, and
return any 2k-cycle found (stopping the algorithm). If no such cycle is found for any i the
algorithm returns that no 2k-cycle exists in G.

For correctness let C be any 2k-cycle in G and let vi be the node in C that is last in the
ordering. It then follows from the definition that C is fully contained in Gkďi and thus either the
algorithm returns a 2k-cycle when A is run on Gkďi or some other 2k-cycle when A is run on Gkďj
for j ă i. For the running time observe first that creating the graphs Gkďi and running algorithm
A on these graphs takes time proportional to the total number of edges in these graphs. Thus
what is left is to bound this number of edges. The number of edges in Gkďi is bounded by the
number of capped k-walks starting in vi in G. Let i be the largest value such that Gkďi does
not contain a 2k-cycle and degpviq ď m2{pk`1q. It then follows by Lemma 1 that the graphs
Gkď1, . . . , G

k
ďi contain at most a total number of Opfpkq ¨m2k{pk`1qq edges. Furthermore, there

are at most m1´2{pk`1q nodes of degree ą m2{pk`1q, and thus the total number of edges over all
the graphs Gkď1, . . . , G

k
ďn is at most Opfpkq ¨m2k{pk`1qq giving the desired running time.

As an example, the algorithm A in the above proof could be the algorithm of Monien [9] or
Alon et al. [2].

3 Bounding the number of capped k-walks

In this section we will prove Lemma 1. Let G “ pV,Eq be a given graph. We will denote the
nodes of G by u1, . . . , un or simply 1, . . . , n if it is clear from the context.

Recall the definition of ‖¨‖φ from the introduction. We note that the following basic proper-
ties hold.

Lemma 3. For all vectors u, v P Rn and c P R we have:

‖u` v‖φ ď ‖u‖φ ` ‖v‖φ ,
‖cu‖φ “ |c| ¨ ‖u‖φ ,

‖u‖φ “ 0 ðñ u “ 0 .

As mentioned in the introduction, we would like to use the ‖¨‖φ-norm of XG to bound the
number of k-walks starting in a given subset S Ď V . We can do this using the following lemma.

Lemma 4. Let G “ pV,Eq be a graph with n nodes and adjacency matrix XG. Let S Ď V be a
set of nodes. For any integer k the number of k-walks starting in S is bounded by

a

|S|
∥∥Xk

G1
∥∥
φ
.

Proof. Let v “ Xk
G1 and let w be the vector such that wi “ vi when i P S and wi “ 0 when

i R S. Then the number of k-walks starting in S is exactly the sum of entries in w, i.e. it is
‖w‖1. So the number of k-walks starting in S is bounded by

‖w‖1 “

ż 8

0
|ti | wi ě xu| dx

ď
a

|S|

ż 8

0

a

|ti | wi ě xu|dx

“
a

|S| ‖w‖φ
ď

a

|S| ‖v‖φ ,

as desired. Here the first inequality follows because w has at most |S| non-zero entries.

7

To prove Lemma 1 we want to bound the quantity
∥∥Xk

G

∥∥
φ
for graphs, G, which do not

contain a 2k-cycle and have maximum degree at most m
2

k`1 . To do this we will need the
following lemmas, which are proved in Section 5.

Lemma 5. Let A be a real nˆn matrix. If, for all vectors v P t0, 1un we have ‖Av‖φ ď C ‖v‖φ
for some value C, then ‖A‖φ ď 16C.

Lemma 6. Let G be a graph with and let A and B be subsets of nodes in G. Let k ě 2 be an
integer and assume that G contains no 2k-cycle. Then

|EpA,Bq| ď 100k ¨
´

a

|A| ¨ |B|
1`1{k

` |A| ` |B|
¯

. (1)

We are now ready to prove the main technical lemma stated below.

Lemma 7. Let G “ pV,Eq be a graph with m edges and let k be a positive integer. Assume
that G has maximum degree at most m2{pk`1q and does not contain a 2k-cycle. Let XG be the
adjacency matrix for G, then

‖XG‖φ “ O
´

k2m1{pk`1q
¯

.

Proof. We denote the vertices of G by 1, 2, . . . , n for convenience. By Lemma 5 we only need to
show that ‖XGv‖φ “ O

´

k2m1{pk`1q ‖v‖φ
¯

for every vector v where each entry is either 0 or 1.
Each such vector, v, can be viewed as a set of nodes A Ď V , where vi is 1 whenever i P A and
0 otherwise. We will adopt this view and denote v by 1A. In this case we have ‖1A‖φ “

a

|A|.
Thus it suffices to show that for all A Ď V we have

‖XG1A‖φ “ O
´

k2m1{pk`1q
?
A
¯

. (2)

Now fix an arbitrary A Ď V . We are going to show that (2) holds. For every non-negative
integer i we let Bi denote the set of nodes in G which have more than 2i´1 but at most 2i

neighbours in A. That is

Bi “

v P V | |Epv,Aq| P
`

2i´1, 2i
‰(

.

We note that by the definition of ‖¨‖φ we have that

‖XG1A‖φ ď
ÿ

iě0

2i
d

ÿ

jěi

|Bj |

ď
ÿ

iě0

2i
ÿ

jěi

b

|Bj |

ă 2 ¨
ÿ

iě0

2i
a

|Bi| .

So in order to show (2) it suffices to show (3) below
ÿ

iě0

2i
a

|Bi| “ O
´

k2m1{pk`1q
a

|A|
¯

. (3)

or alternatively to show

ÿ

iě0

2i
a

|Bi|
a

|A|
“ O

´

k2m1{pk`1q
¯

. (4)

8

For an integer i ě 0 let ti be defined by

ti “ 2i ¨

a

|Bi|
a

|A|
.

We will bound the value ti by looking at the number of edges between the sets Bi and A. Our
plan is to bound the value ti in several ways, and then taking a geometric mean will yield the
result. Observe first, that by the definition of Bi we have at least 2i´1 |Bi| edges from Bi to A,
and hence 2i |Bi| ď 2 |EpBi, Aq| ď 2m. It follows that ti is bounded by

ti “
2i
a

|Bi|
a

|A|
“

2i{2
a

2i |Bi|
a

|A|
ď

2i{2
?

2m
a

|A|
.

Let Ai be the subset of nodes of A that are adjacent to a node in Bi, then EpBi, Aq “ EpBi, Aiq.
By Lemma 6 it also follows that

ti ď
2 |EpBi, Aiq|
a

|Bi| ¨ |A|

ď 200k
a

|Bi| ¨ |Ai|
1{k
` 200k

d

|Bi|

|A|
` 200k

d

|Ai|

|Bi|
.

We also note that ti “ 0 whenever i ą d where d is the smallest integer such that 2d´1 ą

m2{pk`1q, since the maximum degree of the graph is m2{pk`1q. It follows that the sum
ř

iě1 ti
can be bounded by:

O

˜

d
ÿ

i“1

min

#

2i
a

|Bi|
a

|A|
, k
a

|Bi| |Ai|
1
k ` k

d

|Bi|

|A|
` k

d

|Ai|

|Bi|

+¸

“ O

˜

Σ1 `

d
ÿ

i“1

min

#

2i
a

|Bi|
a

|A|
, k

d

|Bi|

|A|
` k

d

|Ai|

|Bi|

+¸

“ O

˜

Σ1 `

d
ÿ

i“1

˜

k

d

|Bi|

|A|
` k ¨ 2i{2

¸¸

(5)

where

Σ1 “

d
ÿ

i“1

min

#

2i{2
?

2m
a

|A|
, k
a

|Bi| ¨ |A|
1{k

+

Here, we have
b

|Ai|

|Bi|
ď 2i{2 because each node of Bi has at most 2i neighbours in A.

Let Σ1 and Σ2 denote the two sums of (5) above respectively. We will start by bounding
Σ2. Since, by definition, every node in Bi has at least 2i´1 neighbours in Ai and every node in
Ai has degree at most m2{pk`1q we see that |Bi| 2i´1 ď |Ai|m

2{pk`1q. Hence we get that:

Σ2 ď

d
ÿ

i“1

´

km1{pk`1q2p1´iq{2 ` k2i{2
¯

“ O
´

km1{pk`1q
¯

.

Now we will bound Σ1. First we note that |Bi| 2i´1 ď m and therefore |Bi| ď 2m
2i
. Inserting this

gives us:

Σ1 ď

d
ÿ

i“1

min

#

2i{2
?

2m
a

|A|
, k

c

2m

2i
¨ |A|

1{k
+

.

9

Let d0 be the largest integer such that 2d0 ď |A|

p2mqpk´1q{pk`1q . Then:

2d0{2
?

2m
a

|A|
“ Θ

´

m1{pk`1q
¯

c

2m

2d0
¨ |A|

1{k

“ Θ
´

m1{pk`1q
¯

.

Inserting this gives us:

Σ1 ď k
d
ÿ

i“1

min

#

2i{2
?

2m
a

|A|
,

c

2m

2i
¨ |A|

1{k
+

ď k
8
ÿ

i“´8

min

#

2i{2
?

2m
a

|A|
,

c

2m

2i
¨ |A|

1{k
+

(6)

ď k
d0
ÿ

i“´8

2i{2
?

2m
a

|A|
` k

8
ÿ

i“d0

c

2m

2i
¨ |A|

1{k

(7)

“ O
´

km1{pk`1q
¯

¨

˜

8
ÿ

i“0

2´i{2 `
8
ÿ

i“0

2´i{k

¸

(8)

“ O
´

k2m1{pk`1q
¯

. (9)

Summarizing, we thus have that
ÿ

iě0

ti “ O
´

k2 ¨m
1

k`1

¯

,

and combining this with (4), (3) and (2) now gives us the lemma.

Using Lemma 7 above we are now ready to prove Lemma 1 which we used to bound the
number of ĺ-capped k-walks in Section 2. The main idea in the proof of Lemma 1 is to split the
nodes V into different sets based on their degrees and then use Lemma 7 to bound the ‖¨‖φ-norm
of the graphs induced by these sets individually.

Proof of Lemma 1. Let Vi be the set of nodes u with degpuq P
`

2i´1, 2i
‰

, and let Vďi “ YjďiVj
be the set of nodes with degpuq P p0, 2is. Let Gďi “ pV,E X V 2

ďiq be the subgraph of G induced
by Vďi. Note that Gďi here is defined slightly differently than we did in Section 2 as we consider
entire sets of nodes Vi. Any ĺ-capped k-walk starting in from a node u P Vi is contained in
XGďi . It follows by Lemma 4 that the total number of ĺ-capped k-walks in G is bounded by

ÿ

iě0

a

|Vi|
∥∥∥Xk

Gi
1
∥∥∥
φ
ď

ÿ

iě0

‖XGi‖
k´1
φ

a

|Vi| ‖XGi1‖φ

ď ‖XG‖k´1
φ

ÿ

iě0

a

|Vi| ‖XGi1‖φ . (10)

We note that XGi1 ď
ř

jďi 2j1Vj , and hence
ÿ

iě0

a

|Vi| ‖XGi1‖φ ď
ÿ

iě0

a

|Vi|
ÿ

jďi

∥∥2j1Vj
∥∥
φ

“
ÿ

iějě0

a

|Vi| ¨
b

|Vj | ¨ 2
j .

10

We now note that
a

|Vi| ¨
b

|Vj | ¨ 2
j “

b

2i |Vi| ¨
b

2j |Vj | ¨ 2
´pi´jq{2

ď
2i |Vi| ` 2j |Vj |

2
¨ 2´pi´jq{2 ,

which implies that

ÿ

iějě0

a

|Vi| ¨
b

|Vj | ¨ 2
j ď

ÿ

iějě0

2i |Vi| ` 2j |Vj |

2
¨ 2´pi´jq{2

“
ÿ

iě0

2i |Vi|
ÿ

`ě0

2´`{2

“

?
2

?
2´ 1

ÿ

iě0

2i |Vi| .

Since
ř

iě0 2i |Vi| is at most twice as large as the sum of degrees of the nodes in G it is bounded
by 4m, and therefore

ÿ

iějě0

a

|Vi| ¨
b

|Vj | ¨ 2
j ď 4 ¨

?
2

?
2´ 1

m ă 14m. (11)

Combining this with (10) and Lemma 7 we get that the number of ĺ-capped k-walks is at most

14 ‖XG‖k´1
φ m “ O

´

pk2qk´1m
2k
k`1

¯

,

which is what we wanted to show.

Below we prove Lemma 2, which gives a lower bound on the number of capped k-walks.

Proof of Lemma 2. Let ∆ “ m
2n . For a subgraph F of G we let fpF q denote the subgraph F 1 of

F obtained in the following way. Initially we let F 1 “ F . As long as there exists a node v P F 1

such that degF 1pvq ă ∆ we remove v from F 1. We continue this process until no node in F 1 has
fewer than ∆ neighbours and let fpF q “ F 1.

We now construct the sequences pHiqiě0, pH
1
iqiě0 of subgraphs of G in the following manner.

We let H 10 “ G, and H0 “ fpH 10q. If Hi is non-empty, let vi be the largest element in Hi, i.e.
vi ľ v for all v P Hi, and define H 1i`1 “ Hiz tviu. If Hi is empty we let H 1i`1 “ Hi. In either
case we let Hi`1 “ fpH 1i`1q.

For all i such that Hi is non-empty, there exists at least
degHi

pviq∆
k´1 capped k-walks px1, . . . , xkq with x1 “ vi. By the definition of H 1i`1 we have

that degHi
pviq “ |EpHiq| ´

ˇ

ˇEpH 1i`1q
ˇ

ˇ. The total number of capped k-walks in G is therefore at
least:

ÿ

iě0

`

|EpHiq| ´
ˇ

ˇEpH 1i`1q
ˇ

ˇ

˘

∆k´1 . (12)

Now note that:
ÿ

iě0

`

|EpHiq| ´
ˇ

ˇEpH 1i`1q
ˇ

ˇ

˘

“

˜

ÿ

iě0

ˇ

ˇEpH 1iq
ˇ

ˇ´
ˇ

ˇEpH 1i`1q
ˇ

ˇ

¸

´

˜

ÿ

iě0

ˇ

ˇEpH 1iq
ˇ

ˇ´ |EpHiq|

¸

. (13)

11

The first sum on the right hand side of (13) is a telescoping sum that is equal to m. The second
sum on the right hand side of (13) can be bounded by noting that |EpH 1iq| ´ |EpHiq| is at most
∆ ¨ |V pH 1izfpH

1
iqq|, since applying f to H 1i removes |V pH 1izfpH

1
iqq| nodes, and each node removed

had degree at most ∆. Since at most n nodes are removed in total the sum is bounded by n∆.
Hence (13) is at least m ´ n∆ “ m

2 . Inserting this into (12) gives that the number of capped
k-walks is at least

m

2
¨∆k´1 “ n ¨

´m

2n

¯k
,

as desired.

4 Hardness of finding cycles

Theorem 1 presents an algorithm with a seemingly natural running time in terms of m and k. A
natural question to ask is whether the exponent of m has to increase with k and, perhaps more
interestingly, what the correct exponent is. In this section we address the possibility of faster
algorithms, by proving Theorem 2 and proposition 1 discussed in the introduction.

Proof of Proposition 1. Let G “ pV,Eq be the graph in which we wish to find a triangle with
|V | “ n and |E| “ Θpn2q. By Conjecture 1 it takes n3´op1q to find a triangle in G. Now create
the graph G1 consisting of three copies, A, B, and C, of V . Denote each copy of u P V in
A,B,C by uA, uB, uC , respectively. For each edge pu, vq P E add the edges puA, vBq, puB, vCq,
and puC , vAq to G1. It now follows that G contains a triangle u, v, w if and only if G1 contains a
triangle uA, vB, wC .

Now Fix x “ rp2k ` 1q{4s and note that 2k ě 3x by the restrictions to k. Create the graph
Gek by taking a copy of G1 and performing the following changes: Replace each edge by a path
of length x. If 2k ą 3x replace each node uA in Gek by a path u1

A, . . . , u
2k´3x`1
A . Otherwise if

2k “ 3x do nothing. We now claim that Gek contains a C2k if and only if G contains a triangle.
Observe first, that if G contains a triangle u, v, w, then u1

A vV wC u2k´3x`1
A u1

A is
a cycle in Gek and has length 3x ` 2k ´ 3x “ 2k. Now assume that Gek has a cycle of length
2k. If this cycle contains two nodes u1

A and v1
A it must have length at least 4x ą 2k and

similar for B and C and u2k´3x`1
A and v2k´3x`1

A . Thus, the cycle must exactly be of the form
u1
A vV wC u2k´3x`1

A u1
A and such a cycle can only have length 2k if all edges puA, vBq,

pvB, wCq, and pwC , uAq are present in G1. Now observe that for constant k the graph Gek has
N “ Θpn2q nodes and M “ Θpn2q edges. It now follows from Conjecture 1 that no algorithm
can detect a C2k in Gek in time OpM3{2´εq “ Opn3´εq for any ε ą 0.

The reduction for Proposition 1 is shown in Figure 2 below.
Finally, We show the “conditional optimality” stated in Theorem 2. The theorem states that

if Opn2q time is optimal, then our bound is the best that can be achieved.

Proof of Theorem 2. Let ε ą 0 be given and let δ “ ε.
Assume there exists an algorithm which finds a 2k-cycle in time Opm2k{pk`1q´εq. Now con-

sider the following algorithm: If m ě 100k ¨ n1`1{k answer yes, and otherwise run the given
algorithm. This algorithm has running time Opnp1`1{kq¨p2k{pk`1q´εqq “ opn2´δq. Hence part (1)
holds.

Now assume there are finitely many graphs G such that |EpGq| ě |V pGq|1`1{k´ε. Then
there must exist some constant n0 such that no graph with n ě n0 nodes and m ě n1`1{k´ε

edges contains a 2k-cycle. Now consider the following algorithm: Let G “ pV,Eq be the graph
we wish to detect a C2k in. If |V | ă n0 we can answer in constant time. If |V | ě n0 and

12

B C

A1 A2k-3x+1...

length x

uA
1

length x

length x

uA
2k-3x+1

vB wC

Figure 2: The construction ofGek from the proof of Lemma 1 and an example 2k-cycle highlighted
in red.

|E| ě |V |1`1{k´ε answer no, and otherwise run the algorithm of Theorem 1 to detect a C2k in
time Op|V |p1`1{k´εq¨2k{pk`1qq “ op|V |2´δq. Hence part (2) holds.

5 Omitted proofs

This section contains missing proofs from Section 3.

Proof of Lemma 5. Let v P Rn be a vector such that each entry either is contained in
“

2´1, 1
‰

or is 0. Let r “ |supppvq| and write v as v “
řr
i“1 λiei for vectors ei such that for each ei there

is a single entry peiqj “ 1 and all other entries are 0. Let X1, . . . , Xr be independent random
variables P t0, 1u such that EpXiq “ λi. By the concavity of ‖¨‖φ we then have

‖Av‖φ “

∥∥∥∥∥E
˜

A
r
ÿ

i“1

Xiei

¸∥∥∥∥∥
φ

ď E

¨

˝

∥∥∥∥∥A r
ÿ

i“1

Xiei

∥∥∥∥∥
φ

˛

‚

ď E

¨

˝C

∥∥∥∥∥ r
ÿ

i“1

Xiei

∥∥∥∥∥
φ

˛

‚ď C
?
r

ď 2C ‖v‖φ . (14)

Since v was arbitrarily chosen (14) holds for all vector v with entries in t0u Y r2´1, 1s.
Let v P Rn be a vector where each entry is non-negative. We will show that ‖Av‖φ ď 8C ‖v‖φ.

For each integer k let vpkq P Rn be the vector containing the i’th entry of vi if vi P p2k´1, 2ks
and 0 otherwise, i.e.

v
pkq
i “

”

vi P p2
k´1, 2ks

ı

vi .

13

Using the triangle inequality and (14) on the vectors 2´kvpkq now gives us

‖Av‖φ “

∥∥∥∥∥ÿ
k

Avpkq

∥∥∥∥∥
φ

ď
ÿ

k

2k
∥∥∥A2´kvpkq

∥∥∥
φ

ď
ÿ

k

2k ¨ 2C
∥∥∥2´kvpkq

∥∥∥
φ

“ 2C
ÿ

k

∥∥∥vpkq∥∥∥
φ
. (15)

Now we have that

ÿ

k

∥∥∥vpkq∥∥∥
φ
“

ÿ

k

ż 2k

0

c

ˇ

ˇ

ˇ

!

i | v
pkq
i ě x

)
ˇ

ˇ

ˇ
dx

ď
ÿ

k

2k
c

ˇ

ˇ

ˇ

!

i | v
pkq
i ě 2k´1

)
ˇ

ˇ

ˇ

“ 4
ÿ

k

ż 2k´1

2k´2

c

ˇ

ˇ

ˇ

!

i | v
pkq
i ě x

)ˇ

ˇ

ˇ
dx

ď 4
ÿ

k

ż 2k´1

2k´2

a

|ti | vi ě xu|dx “ 4 ‖v‖φ . (16)

Combining (15) and (16) gives that ‖Av‖φ ď 8C ‖v‖φ for every non-negative vector v P Rn as
desired.

Let v P Rn be any real vector. Let v` and v´ be defined by

pv`qi “ max tvi, 0u , pv
´qi “ max t´vi, 0u .

Then v` and v´ have non-negative coordinates and v “ v` ´ v´. It is easy to see that
‖v‖φ ě max

!

‖v`‖φ , ‖v´‖φ
)

, and therefore: ‖v`‖φ ` ‖v´‖φ ď 2 ‖v‖φ. Now we get the result
by the using the triangle inequality:

‖Av‖φ “
∥∥Av` ´Av´∥∥

φ

ď
∥∥Av`∥∥

φ
`
∥∥Av´∥∥

φ

ď 8C
´∥∥v`∥∥

φ
`
∥∥v´∥∥

φ

¯

ď 16C ‖v‖φ .

It follows that ‖A‖φ ď 16C.

Below we show Lemma 6, which can be seen as a modified version of the classic Bondy and
Simonovits lemma, as we here argue about edges between any two subsets of the graph, instead
of edges in the entire graph as in the original lemma [4].

Proof of Lemma 6. Let m “ |EpA,Bq| and let E “ EpA,Bq. We will assume that m ě 100k ¨
p|A| ` |B|q as the statement is otherwise trivially true. We will assume that the graph contains
no 2k-cycle and show that then m ď 100k ¨

a

|A| ` |B|
1`1{k.

Let 2α “ m
|A| and let 2β “ m

|B| be the average degrees of nodes in A and B respectively when
restricted to E. Recursively remove any node from A respectively B which does not have at

14

least α respectively β edges in E. Then we remove strictly less than α ¨ |A| ` β ¨ |B| ă m edges
and thus have a non-empty graph left.

Now fix some node u P A and let L0 “ tuu. Now define Li`1 to be the neighbours of the
nodes in Li using the edges of E for i “ 0, . . . , k ´ 1. This gives us the sets L0, . . . , Lk. Note
that if AXB “ H we have Li XLi`1 “ H for each i “ 0, . . . , k´ 1. We will show by induction
that |Li| ď |Li`1| for each i “ 0, . . . , k ´ 1. This is clearly true for i “ 0 since u has degree at
least α ě 50k by assumption. Now fix some i ě 1 and assume that the statement is true for all
j ă i. We will assume that i is even (the other case is symmetric). We know from [4, 14] that

|EpLi, Li`1q| ď 4k ¨ p|Li| ` |Li`1|q ,

as otherwise we can find a 2k-cycle. By the induction hypothesis this gives us

|EpLi´1, Liq| ď 8k ¨ |Li| .

Since i is even we also know that

α ¨ |Li| ď |EpLi´1, Liq| ` |EpLi, Li`1q| ,

and thus
pα´ 8kq ¨ |Li| ď |EpLi, Li`1q| ď 4k ¨ p|Li| ` |Li`1|q .

This gives us that pα´ 12kq ď 4k ¨ |Li`1|, and it follows that

|Li`1| ě
α´ 12k

4k
¨ |Li| .

By our assumption on α this proves that |Li`1| ě Li. When i is odd the same argument gives
us that |Li`1| ě

β´12k
4k ¨ |Li|.

By the above discussion it follows that

|Lk| ě

ˆ

α´ 12k

4k

˙rk{2s

¨

ˆ

β ´ 12k

4k

˙tk{2u

ě
αrk{2sβtk{2u

p8kqk
,

where the last inequality follows by our assumption the α, β ě 50k. Assume now that k is odd
(as the even case is handled similar). It then follows that

|B| ě |Lk| ě
αrk{2sβtk{2u

p8kqk
,

and a symmetric argument gives us

|A| ě
αtk{2uβrk{2s

p8kqk
,

implying that

a

|A| ¨ |B| ě

?
αβ

k

p8kqk
“

b

m2

4|A||B|

k

p8kqk
.

Now taking the kth root and isolating m yields exactly the bound we wanted to show

m ď 16k ¨
a

|A||B|
1`1{k

.

In the above proof we assumed that A and B were disjoint in order to apply the lemma
of [4, 14]. Now observe that if this is not the case we can pick subsets A1 Ď A and B1 Ď B with
A1 XB1 “ H and EpA1, B1q ě m{2 and the argument now follows through.

15

References

[1] Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower
bounds for dynamic problems. In Proc. 55th IEEE Symposium on Foundations of Computer
Science (FOCS), pages 434–443, 2014.

[2] Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. Journal of the ACM, 42(4):844–
856, 1995. See also STOC’94.

[3] Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length cycles.
Algorithmica, 17(3):209–223, 1997. See also ESA’94.

[4] John A. Bondy and Miklós Simonovits. Cycles of even length in graphs. Journal of Com-
binatorial Theory, Series B, 16(2):97 – 105, 1974.

[5] Friedrich Eisenbrand and Fabrizio Grandoni. Detecting directed 4-cycles still faster. Infor-
mation Processing Letters, 87(1):13 – 15, 2003.

[6] Alon Itai and Michael Rodeh. Finding a minimum circuit in a graph. SIAM Journal on
Computing, 7(4):413–423, 1978.

[7] Richard M. Karp. Reducibility among combinatorial problems. In Proceedings of a sympo-
sium on the Complexity of Computer Computations, pages 85–103, 1972.

[8] François Le Gall. Powers of tensors and fast matrix multiplication. In Proc. 39th Inter-
national Symposium on Symbolic and Algebraic Computation, ISSAC ’14, pages 296–303,
2014.

[9] Burkhard Monien. How to find long paths efficiently. Annals of Discrete Mathematics,
25:239–254, 1985.

[10] Liam Roditty and Virginia Vassilevska Williams. Subquadratic time approximation algo-
rithms for the girth. In Proc. 23rd ACM/SIAM Symposium on Discrete Algorithms (SODA),
pages 833–845, 2012.

[11] Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13(4):354–
356, August 1969.

[12] Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between path,
matrix and triangle problems. In Proc. 51st IEEE Symposium on Foundations of Computer
Science (FOCS), pages 645–654, 2010.

[13] Huacheng Yu. An improved combinatorial algorithm for boolean matrix multiplication. In
Proc. 42nd International Colloquium on Automata, Languages and Programming (ICALP),
pages 1094–1105, 2015.

[14] Raphael Yuster and Uri Zwick. Finding even cycles even faster. SIAM Journal on Discrete
Mathematics, 10(2):209–222, 1997. See also ICALP’94.

[15] Raphael Yuster and Uri Zwick. Detecting short directed cycles using rectangular matrix
multiplication and dynamic programming. In Proc. 15th ACM/SIAM Symposium on Dis-
crete Algorithms (SODA), SODA ’04, pages 254–260, 2004.

16

	1 Introduction
	1.1 Hardness of finding cycles
	1.2 Other results
	1.3 Capped k-walks
	1.4 Techniques and overview
	1.5 Related work
	1.6 Notation

	2 Finding even cycles
	3 Bounding the number of capped k-walks
	4 Hardness of finding cycles
	5 Omitted proofs

