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Abstract

Hill and Kertz studied the prophet inequality on iid distributions [The Annals of Probability 1982].
They proved a theoretical bound of 1 − 1

e
on the approximation factor of their algorithm. They con-

jectured that the best approximation factor for arbitrarily large n is 1
1+1/e

' 0.731. This conjecture
remained open prior to this paper for over 30 years.

In this paper we present a threshold-based algorithm for the prophet inequality with n iid distri-
butions. Using a nontrivial and novel approach we show that our algorithm is a 0.738-approximation
algorithm. By beating the bound of 1

1+1/e
, this refutes the conjecture of Hill and Kertz.

Moreover, we generalize our results to non-iid distributions and discuss its applications in mechanism
design.

1 Introduction
Online auctions play a major role in modern markets. In online markets, information about customers
and goods is revealed over time. Irrevocable decisions are made at certain discrete times, such as when a
customer arrives to the market. One of the fundamental and basic tools to model this scenario is the prophet
inequality and its variants.

In a prophet inequality instance we are given a sequence of distributions. Iteratively, we draw a value
from one of the distributions, based on a predefined order. In each step we face two choices, either we accept
the value and stop, or we reject the value and move to the next distribution. The goal in this problem is to
maximize the expected value of the item selected. We say an algorithm for a prophet inequality instance is
an α-approximation, for α ≤ 1, if the expectation of the value picked by the algorithm is at least α times
that of an optimum solution which knows all of the values in advance.

Prophet inequalities were first studied in the 1970’s by Krengel and Sucheston [23, 27, 28]. Hajiaghayi,
Kleinberg and Sandholm [20] studied the relation between online auctions and prophet inequalities. In
particular they showed that algorithms used in the derivation of prophet inequalities can be reinterpreted
as truthful mechanisms for online auctions. Later Chawla, Hartline, Malec, and Sivan [7] used prophet
inequalities to design sequential posted price mechanisms whose revenue approximates that of the Bayesian
optimal mechanism.
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In the classical definition of the prophet inequality, the values can be drawn from their distributions
in an arbitrary (a.k.a. adversarial or worst) order. Assuming an adversarial order, the problem has a 0.5
approximation algorithm which is tight. Recently, Yan [34] considered a relaxed version of this problem in
which the algorithm designer is allowed to pick the order of distributions (a.k.a. best order), and provided a
1 − 1

e approximation algorithm for this problem. Later, Esfandiari, Hajiaghayi, Liaghat and Monemizadeh
[13] showed that there exists a 1− 1

e approximation algorithm even when the distributions arrive in a random
order. Both results provided by Yan and Esfandiari et al. are not tight.

In this work we consider prophet inequalities in both best order and random order settings and take
steps towards providing tight approximation algorithms for these problems. Particularly, we consider this
problem assuming a large market assumption (i.e. we have several copies of each distribution). Indeed, the
large market assumption is well-motivated in this context [6, 11, 14, 29, 30].

1.1 Our Contribution

First we consider the prophet inequality on a set of identical and independent distributions (iid). The prophet
inequality on iid distributions has been previously studied by Hill and Kertz [21] in the 1980’s. Hill and Kertz
provided an algorithm based on complicated recursive functions. They proved a theoretical bound of 1 − 1

e

on the approximation factor of their algorithm, and used a computer program to show that their algorithm
is a 0.745-approximation when the number of distributions is n = 10000. They conjectured that the best
approximation factor for arbitrarily large n is 1

1+1/e ' 0.731. This conjecture remained open for more than
three decades.

In this paper we present a simple threshold-based algorithm for the prophet inequality with n iid dis-
tributions. Using a nontrivial and novel approach we show that our algorithm is a 0.738-approximation
algorithm for large enough n, beating the bound of 1

1+1/e conjectured by Hill and Kertz. This is the first

algorithm which is theoretically proved to have an approximation factor better than 1 − 1
e for this problem.

Indeed, beating the 1− 1
e barrier is a substantial work in this area [15, 16]. The following theorem states our

claim formally.

Theorem 1 There exists a constant numbern0 such that for everyn ≥ n0, there exists a 0.738-approximation
algorithm for any prophet inequality instance with n iid distributions.

Next, we extend our results to support different distributions. However, we assume that we have several
copies of each distribution. This can be reinterpreted as a large market assumption. We say a multiset of
independent distributions {F1, . . . , Fn} is m-frequent if for each distribution Fi in this multiset there are at
least m copies of this distribution in the multiset. We show that by allowing the algorithm to pick the order
of the distributions, there exists a 0.738-approximation algorithm for any prophet inequality instance on a
set ofm-frequent distributions, for large enoughm. The following theorem states this fact formally.

Theorem 2 There exists a constant number m0 such that there exits a 0.738-approximation best order
algorithm for any prophet inequality instance on a set ofm0-frequent distributions.

Our next theorem shows that even in the random order setting one can achieve a 0.738-approximation
algorithm onm-frequent distributions, for large enoughm.

Theorem 3 There exists a constant number c0 such that there exits a 0.738-approximation random order
algorithm for any prophet inequality instance on a set of (c0 log(n))-frequent distributions.
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To conclude the presentation of our results we show that it is not possible to extend our results to the
worst order setting. The following theorem states this fact formally.

Theorem 4 For any arbitrarym, there is a prophet inequality instance on a set ofm-frequent distributions
such that the instance does not admit any 0.5+ ε-approximation worst order algorithm.

1.2 Applications in Mechanism Design

The prophet inequality has numerous applications in mechanism design and optimal search theory, so our
improved prophet inequality for m-frequent distributions has applications in those areas as well. By way
of illustration, we present here an application to optimal search theory. In Weitzman’s [33] “box problem”,
there are n boxes containing indepedent random prizes, v1, . . . , vn, whose distributions are not necessarily
identical. The cost of opening box i is ci ≥ 0. A decision maker is allowed to open any number of boxes,
after which she is allowed to claim the largest prize among the open boxes. The costs of the boxes, and
the distributions of the prizes inside, are initially known to the decision maker, but the value vi itself is only
revealed when box i is opened. A search policy is a (potentially adaptive) rule for deciding which box to open
next—or whether to stop—given the set of boxes that have already been opened and the values of the prizes
inside. Weitzman [33] derived the structure of the optimal search policy, which turns out to be wonderfully
simple: one computes an “option value” σi for each box i, satisfying the equation E[max{0, vi − σi}] = ci.
Boxes are opened in order of decreasing σi until there is some open box i such that vi > σj for every
remaining closed box j, then the policy stops. Kleinberg, Waggoner, and Weyl [25] presented an alternative
proof of this result which works by relating any instance of the box problem to a modified instance in which
opening boxes is cost-free, but the prize in box i is min{vi, σi} rather than vi. The proof shows that when
we run any policy on the modified instance, its net value (prize minus combined cost) weakly improves,
and that the net value is preserved if the policy is non-exposed, meaning that whenever it opens a box with
vi > σi, it always claims the prize inside.

An interesting variant of the box problem arises if one constrains the decision maker, upon stopping, to
choose the prize in the most recently opened box, rather than the maximum prize observed thus far. In other
words, upon opening box i the decision maker must irrevocably decide whether to end the search and claim
prize vi, or continue the search and relinquish vi. Let us call this variant the impatient box problem. It could
be interpreted as modeling, for example, the decision problem that an employer faces when scheduling a
sequence of costly job interviews in a labor market where hiring decisions must be made immediately after
the interview. The factor 1 − 1

e prophet inequality of Yan and Esfandiari et al. implies that if the decision
maker is allowed to choose the order in which to inspect boxes (or even if a random order is used), the net
value of the optimal impatient box problem policy is at least 1− 1

e times the net value of the optimal policy
for the corresponding instance of the original (non-impatient) box problem; for the proof of this implication,
see Corollary 3 and Remark 1 in [25]. A consequence of Theorem 2 above is that this ratio improves to
0.738 if the instance of the impatient box problem contains sufficiently many copies of each type of box.

Our results also have applications to a recent line of work that employs prophet inequalities to design
posted-price mechanisms. In the standard posted-price setup, a seller has a collection of resources to dis-
tribute among n buyers. The buyers’ values are drawn independently from distributions that are known in
advance to the seller. The seller can use this distributional knowledge to set a (possibly adaptive) price on
the goods for sale. Buyers then arrive sequentially and make utility-maximizing purchases. Hajiaghayi et
al. [20] noted the close connection between this problem and the prophet inequality, with the price corre-
sponding to a choice of threshold. This has immediate implications for designing prices for welfare maxi-
mization, and one can additionally obtain bounds for revenue by applying the prophet inequality to virtual
welfare [8, 7]. There has subsequently been a significant line of work extending this connection to derive
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posted-price mechanisms for broader classes of allocation problems, such as matroid constraints [26], multi-
item auctions [1, 7] and combinatorial auctions [17]. The result of Yan and Esfandiari et al. [13] implies
that for the original case of a single item for sale, if the seller is allowed to choose the order in which the
buyers arrive (or if they can be assumed to arrive in random order), then a posted-price mechanism can ob-
tain expected welfare that is at least 1− 1

e times the expected welfare of the optimal assignment. Theorem 2
implies that this ratio improves to 0.738 if the pool of buyers contains sufficiently many individuals whose
values are drawn from the same distribution.

1.3 Other Related Work

The first generalization of the prophet inequality is the multiple-choice prophet inequality [23, 22, 24]. In
the multiple-choice prophet inequality we are allowed to pick k values, and the goal is to maximize the total
sum of picked values. Alaei [1] gives an almost tight (1− 1√

k+3
)-approximation algorithm for the k-choice

prophet inequality (the lower bound is proved in Hajiaghayi, Kleinberg, and Sandholm [20]).
Prophet inequalities have been studied under complicated combinatorial structures such as matroid,

polymatroid, and matching. Kleinberg and Weinberg [26] consider matroid prophet inequalities, in which
the set of selected values should be an independent set of a predefined matroid. They give a tight 0.5-
approximation worst order algorithm for this problem. Later, Dütting and Kleinberg extended this result to
polymatroids [12].

Alaei, Hajiaghayi, and Liaghat study matching prophet inequalities [4, 3, 2]. They extend the multiple-
choice prophet inequality and give an almost tight (1− 1√

k+3
)-approximation worst order algorithm for any

matching prophet inequality instance, where k is the minimum capacity of a vertex.
Rubinstein considers the prophet inequalities restricted to an arbitrary downward-closed set system [32].

He provides an O(logn log r)-approximation algorithm for this problem, where n is the number of distri-
butions and r is the size of the largest feasible set. Babaioff, Immorlica and Kleinberg show a lower bound
of Ω( logn

log logn)) for this problem [5]. Prophet inequalities has also been studied on many classic problems in
graphs [19, 18, 9, 10].

2 IID Distributions
In this section we give a 0.738-approximation algorithm for prophet inequality with iid items. Let us begin
with some definitions. Assume that X1, . . . , Xn are iid random variables with common distribution function
F. For simplicity, assume that F is continuous and strictly increasing on a subinterval ofR≥0. An algorithm
based on a sequence of thresholds θ1, . . . , θn is the one that selects the first item k such that Xk ≥ θk.

Let τ denote the stopping time of this algorithm, where τ is n + 1 when the algorithm selects no item.
For simplicity suppose Xn+1 is a zero random variable. The approximation factor of an algorithm based on
θ1 . . . , θn is defined as E[Xτ]/E[maxXi]. This factor captures the ratio between what a player achieves in
expectation by acting based on these thresholds and what a prophet achieves in expectation by knowing all
Xi’s in advance and taking the maximum of them.

In Algorithm 1 we presents a simple oblivious algorithm for every n and distribution function F. Theo-
rem 5 proves that this algorithm is at least 0.738-approximation for large enough number of items.

Algorithm 1
Input: n iid items with distribution function F.

1: Set a to 1.306 (root of cos(a) − sin(a)/a− 1).
2: Set θi = F−1(cos(ai/n)/ cos(a(i− 1)/n)).
3: Pick the first item i for which Xi ≥ θi.
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Theorem 5 For every ε > 0 there exists a number nε (a function of ε and independent of n) such that for
every n ≥ nε Algorithm 1 for n items is at least (1− ε)α-approximation where α = 1− cos(a) ≈ 0.7388.

In the following we walk you through the steps of the design of Algorithm 1 and provide a proof for
Theorem 5. For a given sequence of thresholds let q0, q1, . . . , qn denote the probability of the algorithm
not choosing any of the first items. More specifically, let qi = Pr[τ > i] for every 0 ≤ i ≤ n. Knowing
the thresholds θ1, . . . , θn one can find this sequence by starting from q0 = 1 and computing the rest using
qi = qi−1F(θi). Inversely, one can simply find the thresholds from q1, . . . , qn using θi = F−1(qi/qi−1).
Hence, we focus the design of our algorithm on finding the sequence q1, . . . , qn. To this end, we aim to find
a continuous function h : [0, 1]→ [0, 1] with h(0) = 1 such that by setting qi = h(i/n) we can achieve our
desired set of thresholds.

Note that such a function h has to meet certain requirements. For instance, it has to be strictly decreasing,
because at every step the algorithm picks an item with some positive probability, therefore h(i/n) = qi =
Pr[τ > i] is smaller for larger i. In the following we define a class of functions which has two additional
properties. We prove that these properties can be useful in designing a useful threshold algorithm.

Definition 6 A continuous and strictly decreasing function h : [0, 1] → [0, 1] with h(0) = 1 is a threshold
function if it has the following two properties:

i. h is a strictly concave function.

ii. For every ε > 0 there exists some δ0 ≤ ε such that for every δ ≤ δ0 and ε+ δ ≤ s ≤ 1:

h ′(s− δ)

h(s− δ)
≤ (1− ε)

h ′(s)

h(s)
.

As shown in the following lemma, the first property leads to a decreasing sequence of thresholds. Also,
we exploit the second property to show that the approximation factor of h improves by increasing the number
of items.

Lemma 7 If h is a threshold function, then the sequence of thresholds θ1, . . . , θn achieved from h is de-
creasing.

Proof : For every 1 ≤ i ≤ n we have θi = F−1(qi/qi−1). Since every qi = h(i/n), we have θi =
F−1( h(i/n)

h((i−1)/n)). Note that F is a strictly increasing function, therefore having θi > θi+1 requires h(i/n)
h((i−1)/n) >

h((i+1)/n)
h(i/n) . For simplicity let x = i/n and δ = 1/n. From the first property of threshold functions we have:

h(x) >
h(x+ δ) + h(x− δ)

2
.

By raising both sides to the power of 2, and subtracting (h(x+δ)/2−h(x−δ)/2)2 from each side we have:

h(x)2 −

(
h(x+ δ) − h(x− δ)

2

)2
>

(
h(x+ δ) + h(x− δ)

2

)2
−

(
h(x+ δ) − h(x− δ)

2

)2
= h(x+ δ)h(x− δ) .
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Therefore h(x)2 > h(x + δ)h(x − δ), which means h(x)/h(x − δ) > h(x + δ)/h(x) and the proof is
complete. 2

Next, we define a class of functions and prove for every function of this class that its approximation
factor approaches α for a large enough n. This enables us to narrow down our search for a efficient function
h.

Definition 8 A threshold function h is α-strong if it has the following properties:

i. h(1) ≤ 1− α.

ii.
∫1
0 h(r)dr ≥ α.

iii. ∀ 0 ≤ s ≤ 1 : 1− h(s) − h ′(s)
h(s)

∫1
s h(r)dr ≥ α(1− exp(h

′(s)
h(s) )) .

The following theorem formally states our claim for α-strong functions.

Theorem 9 If h is an α-strong function, then for every ε > 0 there exists an nε such that for every n ≥ nε
the threshold algorithm that acts based on h is at least (1− ε)α-approximation on n iid items.

Proof : Let OPT be a random variable that denotes the optimum solution and ALG be a random variable
that denotes the value picked by the algorithm. We can write the expectation of OPT as

E[OPT ] =
∫∞
0

Pr[maxXi ≥ x]dx . (1)

Similarly the expectation of ALG is

E[ALG] =
∫∞
0

Pr[Xτ ≥ x]dx . (2)

The main idea behind the proof is to show for α-strong functions that the integrand in (2) is an approximation
of the integrand in (1) for every non-negative value of x. In particular, for every ε there exists some nε such
that for every n ≥ nε the second integrand is at least (1 − ε)α times the first integrand and this proves the
theorem.

Let us begin with finding an upper bound for the integrand in (1). Let G(x) = 1 − F(x) for every
x ∈ R≥0. The following lemma gives an upper bound for Pr[maxXi ≥ x] based on G(x) and n.

Lemma 10 For every ε > 0 there exists an nε such that for every n ≥ nε the following inequality holds :

Pr[maxXi ≥ x] ≤
1− exp(−nG(x))

1− ε
.

Lemma 10 gives us an upper bound on Pr[maxXi ≥ x]. Now we aim to find a lower bound for Pr[Xτ ≥
x]. Through these two bounds we are able to find a lower bound on the approximation factor of the algorithm.

In Lemma 7 we showed that the thresholds are decreasing. Hence for an x ∈ R≥0, if x < θn then
Pr[Xτ ≥ x] is equal to Pr[Xτ ≥ θn] because the algorithm never selects an item below that value. Moreover,
Pr[Xτ ≥ θn] is equal to Pr[τ ≤ n] which is equal to 1 − Pr[τ > n] = 1 − qn = 1 − h(1). The first
property of α-strong functions ensures that this number is at least α. Since Pr[maxXi ≥ x] is no more than
1, therefore, for every x < θn we have Pr[Xτ ≥ x] ≥ αPr[maxXi ≥ x].

6



Now suppose x ∈ R≥0 and x ≥ θn. For Pr[Xτ ≥ x] we have,

Pr[Xτ ≥ x] =
n∑
i=1

Pr[Xτ ≥ x|τ = i]Pr[τ = i]

=

n∑
i=1

qi−1(1− F(max{θi, x})) . (3)

Since the thresholds are decreasing, there exists a unique index j(x) for which θj(x) > x ≥ θj(x)+1. For
the sake of simplicity we assume there is an imaginary item X0 for which θ0 = ∞. In this way j(x) is an
integer number from 0 to n− 1. By expanding (3) we have:

Pr[Xτ ≥ x] =
n∑
i=1

qi−1(1− F(max{θi, x}))

=

n∑
i=1

qi−1G(max{θi, x})

=

j(x)∑
i=1

qi−1G(θi) +

n∑
i=j(x)+1

qi−1G(x) . (4)

The first sum in (4) is indeed the probability of selecting one of the first j(x) items, therefore we can
rewrite it as 1− qj(x). Hence,

Pr[Xτ ≥ x] = 1− qj(x) +
n∑

i=j(x)+1

qi−1G(x)

= 1− qj(x) + nG(x)

n∑
i=j(x)+1

qi−1
1

n

= 1− qj(x) + nG(x)

n∑
i=j(x)+1

h((i− 1)/n)
1

n

≥ 1− qj(x) + nG(x)
∫ 1
j(x)/n

h(r)dr . (5)

The integral in (5) comes from the fact that h is a decreasing function and for such functions the Riemann
sum of an interval is an upper bound of the integral of the function in that interval. For simplicity let
s(x) = j(x)/n. Inequality (5) can be written as follows:

Pr[Xτ ≥ x] ≥ 1− h(s(x)) + nG(x)
∫ 1
s(x)
h(r)dr . (6)

In order to complete the proof of the theorem, we need to show that the right hand side of Inequality (6)
is an approximation of Pr[maxXi ≥ x]. To this end, we use the following lemma.

Lemma 11 For every ε > 0 there exists an nε such that for every integer n ≥ nε the following inequality
holds for every x ≥ θn:

1− h(s(x)) + nG(x)

∫ 1
s(x)
h(r)dr ≥ (1− ε)α(1− exp(−nG(x))) .
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To wrap up the proof of the theorem we combine the results of the previous lemmas. Suppose n1 and n2 are
the lower bounds of Lemma 10 and Lemma 11 for n, respectively, such that their inequalities hold for ε/2.
For every n ≥ nε = max{n1, n2} we have:

Pr[Xτ ≥ x] ≥ 1− h(s(x)) + nG(x)
∫ 1
s(x)
h(r)dr Inequality (6) (7)

≥ (1−
ε

2
)α(1− exp(−nG(x))) Lemma 11 (8)

≥ (1−
ε

2
)2α Pr[maxXi ≥ x] Lemma 10 (9)

≥ (1− ε)α Pr[maxXi ≥ x] .

This shows that for every non-negative value of x the chance of the algorithm in selecting an item with value
at least x is an approximation of the corresponding probability for the optimum solution. More specifically,
we showed that for every n ≥ nε and for every x ≥ 0 the integrand of (2) is a (1 − ε)α-approximation of
the integrand of (1), hence the theorem is proved. 2

Now we have all the materials needed to prove Theorem 5. In order to prove the theorem, we show that
the function h(s) = cos(as) is an α-strong function, where a ≈ 1.306 is a root of cos(a) + sin(a)/a − 1
and α = 1− cos(a) ≈ 0.7388. To this end, we first need to show that this function is a threshold function:

i. To show the concavity of h it suffices to show that its second derivative is negative for every 0 < s ≤ 1.
Note that h ′(s) = −a sin(as) and h"(s) = −a2 cos(as).

ii. The ratio of h ′(s)/h(s) for every s is equal to −a tan(as). For every ε we need to show that there
exists some δ0 ≤ ε such that for every δ ≤ δ0 and ε+ δ ≤ s ≤ 1 the following holds:

−a tan(a(s− δ)) ≤ −(1− ε)a tan(as)

or equivalently, by dividing both sides to −a and changing the direction of the inequality we want to
have:

tan(as− aδ)) ≥ (1− ε) tan(as) .

Note that tan(as) is a convex function because tan "(as) = 2 tan(as) sec2(as) ≥ 0 for 0 ≤ s ≤ 1. For
every 0 ≤ δ ≤ s in such functions we have:

tan(as) − tan(as− aδ)
aδ

≤ tan ′(as) = sec2(as) ≤ sec2(a) .

Therefore,
tan(as) ≤ tan(as− aδ) + aδ sec2(a) .

By multiplying both sides by (1− ε) and assuming that δ ≤ δ0 = ε tan(aε)
a(1−ε) sec2(a) we have:

(1− ε) tan(as) ≤ (1− ε)(tan(as− aδ) + aδ sec2(a))

≤ tan(as− aδ) − ε tan(as− aδ) + (1− ε)aδ sec2(a)

≤ tan(as− aδ) − ε tan(as− aδ) + ε tan(aε)

= tan(as− aδ) − ε(tan(a(s− δ)) − tan(aε)) (10)

Note that tan(x) is an increasing function, therefore for every s ≥ ε + δ Inequality (10) is less than or
equal to tan(as− aδ), thus the second property holds as well.
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We showed that h(s) = cos(as) is a threshold function. Now we prove that this threshold function is
also an α-strong function. Due to definition α = 1 − cos(a) = 1 − h(1), thus the first property holds.
Moreover,

∫1
0 h(r)dr = sin(a)/a. Again, due to definition a is a root of cos(a) + sin(a)/a− 1, and thus

sin(a)/a = 1 − cos(a) = α. Now we only need to show that the third property of α-strong functions
holds. To do so, we need to show that:

1− cos(as) + tan(as)(sin(a) − sin(as)) ≥ α(1− exp(−a tan(as))) . (11)

By subtracting α(1− exp(−a tan(as))) from both sides and multiplying them by cos(as) we have:

cos(as) − cos(as)2 + sin(a)sin(as) − sin(as)2

− α cos(as) + α cos(as) exp(−a tan(as)) ≥ 0 .

Note that cos2(as) + sin2(as) = 1, therefore the above inequality is equivalent to:

(1− α) cos(as) + sin(a) sin(as) + α cos(as) exp(−a tan(as)) ≥ 1 .

Since sin(a)/a = 1− cos(a) = α we can replace sin(a) with αa. Also, from the relation between trigono-
metric functions we have cos(x) = 1/

√
1+ tan2(x) and sin(x) = tan(x)/

√
1+ tan2(x). By considering

these equalities and assuming that w = tan(as) the above inequality becomes simplified as follows:

1− α√
1+w2

+
αaw√
1+w2

+
α exp(−aw)√

1+w2
≥ 1 .

By multiplying both sides by
√
1+w2 and raising them to the power of two, and subtracting 1 +w2 from

both sides we have:

(1− α+ αaw+ α exp(−aw))2 − 1−w2 ≥ 0 .

Now we use the following lemma to finish the proof.

Lemma 12 Suppose A(w) = (1 − α + αaw + α exp(−aw))2 − 1 − w2 where a ≈ 1.306 is a root of
cos(a) + sin(a)/a− 1 and α = 1− cos(a) ≈ 0.7388. Then for every 0 ≤ w ≤ tan(a) we have A(w) ≥ 0.

Lemma 12 shows that this inequality holds for every 0 ≤ w ≤ tan(a). Consequently, Inequality (11)
holds for every 0 ≤ s ≤ 1. This completes the proof that h(s) = cos(as) is an α-strong function for
α ≈ 0.7388, since it has all the three properties.

3 Non IID Distributions
In this section we study more generalized cases of the prophet inequalities problem. Suppose X1, . . . , Xn
are random variables from distribution functions F1, . . . , Fn. Similar to Section 2 we assume, for the sake
of simplicity, that all distribution functions are continuous and strictly increasing on a subinterval of R+.
The goal of this section is to show improving results for the best order and a random order of large market
instances. We use the term large market as a general term to refer to instances with repeated distributions.
The following definition formally captures this concept.

Definition 13 A set of n items is calledm-frequent if for every item i with distribution function Fi there are
at leastm− 1 other items in the set with the same distribution function as Fi.

9



In the remainder of this section we show for the best order and a random order of a large market instance
that one can find a sequence of thresholds which in expectation performs as good as our algorithm for
iid items. Roughly speaking, we design algorithms that are α-approximation for large enough m-frequent
instances, where α ≈ 0.7388. The following two theorems formally state our results for the best order and
a random order, respectively.

Theorem 14 For every ε > 0 and set X of n items, there exists a number mε (a function of ε and inde-
pendent of n) such that if X is m-frequent for m ≥ mε then there exits an algorithm which is (1 − ε)α-
approximation on a permutation of X.

Theorem 15 For every ε > 0 and set X of n items there exists a number cε (a function of ε and independent
of n) such that if X is m-frequent for m ≥ cε log(n) then there exists an algorithm which in expectation is
(1− ε)α-approximation on a random permutation of X.

To prove the theorems we first provide an algorithm for a specific class of large market instances, namely
partitioned sequences. Lemma 17 states that this algorithm is α-approximation when the number of parti-
tions is large. We later show how to apply this algorithm on the best order and a random order of large
market instances to achieve a similar approximation factor. Following is a formal definition of partitioned
sequences.

Definition 16 A sequence of items with distribution functions F1, . . . , Fn is m-partitioned if n = mk and
the sequence of functions Fik+1, . . . , Fik+k is a permutation of F1, . . . , Fk for every 0 ≤ i < m.

The following algorithm exploits Algorithm 1 for iid items in order to find thresholds for a partitioned
large market instance.

Algorithm 2
Input: Anm-partitioned sequence of items with distribution functions F1, . . . , Fn.

1: Let k = n/m.
2: Let F(x) =

∏k
i=1 Fi(x).

3: Let θ1 . . . , θm be the thresholds by Algorithm 1 form iid items with distribution function F.
4: Pick the first item i if Xi ≥ θdi/ke.

Lemma 17 For every ε > 0 there exists a number mε (a function of ε and independent of the number of
items) such that for everym ≥ mε Algorithm 2 is (1− ε)α-approximation on anm-partitioned input.

Now we are ready to prove Theorem 14 and Theorem 15.

Proof of Theorem 14: Let s be the lower bound on the number of partitions in Lemma 17 for ε/2, and let
mε = 2(s− 1)/ε. The outline of the proof is as follows. Let X be anm-frequent set of items form ≥ mε.
We uniformly group the items into s parts with bm/sc items of each type in every group. Let Y denote
the set of partitioned items. In order to make all parts similar, we may need to discard some of the items,
however, we show this does not hurt the approximation factor significantly. Finally, by applying Algorithm
2 to Y we achieve the desired approximation factor.

The following lemma shows that discarding a fraction of items influences the approximation factor
proportionally.

10



Lemma 18 Let {X1, . . . , Xn} be a k-frequent set of items. Suppose for some S ⊆ {1, . . . , n} that the set
{XS1 , . . . , XSr} is p-frequent and contains every Xi for 1 ≤ i ≤ n. Then we have

E[max
i∈S

Xi] ≥
p

k
E[ max
1≤i≤n

Xi] .

Note that in partitioning X to s groups there might be at most s − 1 items of each type being discarded
in Y, therefore Y is (m− s+ 1)-frequent. Let ALG be a random variable that denotes the value of the item
picked by our algorithm. We have:

E[ALG] ≥ (1−
ε

2
)αE[max

Y∈Y
Y] Lemma 17

≥ (1−
ε

2
)α
m− s+ 1

m
E[max
X∈X

X] Lemma 18

≥ (1−
ε

2
)2αE[max

X∈X
X]

≥ (1− ε)αE[max
X∈X

X] .

Therefore, for everym-frequent set X there exists an ordering of its items on which our algorithm is (1−ε)α-
approximation. 2

Proof of Theorem 15: Let π be a random permutation of the items. Consider s different partitions for
the items, i.e. one from Xπ1 to Xπn/s

, one from Xπn/s+1
to Xπ2n/s

, so on so forth. We show that when the
number of similar items is large enough then a random permutation is very likely to uniformly distribute
similar items into these parts. Therefore, by discarding a small fraction of the items Xπ1 , . . . , Xπn can be
assumed as an s-partitioned sequence, hence Algorithm 2 can be applied to it.

Note that X is m-frequent, which means that for every item i there are at least m − 1 other items with
the same distribution functions as Fi. We refer to a set of similar items as a type. Therefore, there are at least
m items of every type in X. We use the following lemma to show for every type that with a high probability
the number of items of that type in every partition is almostm/s.

Lemma 19 ([31]) Let x1, . . . , xm be a sequence of negatively correlated boolean (i.e. 0 or 1) random
variables, and let X =

∑m
i=1 xi. We have:

Pr[|X− E[X]| ≥ δE[X]] ≤ 3 exp(−
δ2E[X]
3

) .

Since π is a random permutation, the expected number of these items in a fixed partition is m/s. Using
Lemma 19, with probability at most 3 exp(−δ

2m
3s ) there are less than (1 − δ)m/s of these items in a fixed

partition. Using Union Bound on all the s partitions and all types of items (note that there at at most n/m
types), with probability at most 3s nm exp(−δ

2m
3s ) there is a type of item which has less than (1−δ)m/s items

in a partitions. If we choose δ = ε/3 then for everym ≥ 3s
δ2
(log(n)+ log( 9ε)) this probability becomes less

than ε/3.
Now we are ready to wrap up the proof. If we choose s = mε/3 using Lemma 17, δ = ε/3, and cε =

3s log(9/ε)
δ2

then for every m ≥ cε log(n) with probability at least (1 − ε/3) there are at least (1 − ε/3)m/s
items of each type in every partitions. In such cases by discarding at most ε/3 fraction of the items of each
type we have exactly (1− ε/3)m/s of them in each partition. Lemma 18 states that removing this fraction
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of items changes the approximation factor by at most (1− ε/3). This means that for a random permutation
of the items, with probability at least (1− ε/3) we can loose on the approximation factor by no worse than
(1−ε/3) and have an s-partitioned sequence. Due to Lemma 17, Algorithm 2 is (1−ε/3)α-approximation
on this number of partitions. Therefore, the approximation factor of our method is (1 − ε/3)3α which is
more than (1− ε)α. 2

4 Conclusions and Open Problems
In this paper we demonstrate a simple algorithm for the iid prophet inequality problem. We analyze our
algorithm through a class of functions called α-strong, and show that the set of thresholds based on such
functions guarantee for every x that the probability of the algorithm picking at least x is no less that α times
the probability of the maximum being at least x. This simply yields the approximation factor of α for the
expectations. Finally by proposing a 0.738-strong function we complete the proof.

One question that arises here is whether this is the best achievable approximation factor for iid prophet
inequality. We can approach this problem from two directions, i.e. the lower bound and the upper bound.
We believe that our cos(as) function is not the strongest due to the gap that exists in meeting property
iii of strong functions. Although such a gap suggests the existence of a stronger threshold function, it is
interesting to find one that has a closed form representation.

It is also worth noting that the gap does not seem to be large. In other words, Hill an Kertz [21] showed
using a computer program that the best approximation one can get is 0.748 for n = 100 and 0.745 for
n = 1000. They conjecture the bound of 1

1+1/e = 0.731 for infinitely large n, which is refuted by our
results. However, another interesting question is whether for every n there is a distribution function that
bounds the performance of any online algorithm for iid prophet inequality.

The main question that we leave open in this paper is whether one can beat the 1−1/e barrier for general
distributions, namely the prophet secretary problem introduced in [13]. A direction to solve this problem
could be similar to our approach for large market inputs. In other words, does there exist a black-box reduc-
tion from general distributions to iid instances which preserves the approximation factor? Finally, we would
like to note that our approach for iid instances seems to become more complicated for different distributions,
hence finding a simpler solution for iid prophet inequality that beats 1− 1/e would be interesting as well.
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A Appendix: Omitted Proofs
A.1 Proof of Lemma 10

Proof : For every x ∈ R≥0 we have:

Pr[maxXi ≥ x] = 1− F(x)n

= 1− (1−G(x))n

= 1−

(
1

1−G(x)

)−n

= 1−

(
1+

G(x)

1−G(x)

)−n

≤ 1− exp
(
−nG(x)

1−G(x)

)
. (12)

We complete the proof by proving for every ε > 0 that there exists an nε such that for every n ≥ nε and
0 ≤ z ≤ 1, the ratio between A(n, z) = 1 − exp(−nz/(1 − z)) and B(n, z) = 1 − exp(−nz) is no more
than 1/(1− ε).

For every n and z there are two cases:

• If ln(n)/n ≤ z ≤ 1 then we have:

A(n, z)

B(n, z)
≤ 1

B(n, z)
≤ 1

1− exp(−ln(n))
=

1

1− 1/n
. (13)

• If 0 ≤ z ≤ ln(n)/n, we use partial derivatives of the functions to find an upper bound of their ratio.
In the following the derivative of a function is with respect to variable z.

A(n, z)

B(n, z)
=

∫z
0A
′(n,w)dw∫z

0 B
′(n,w)dw

=

∫z
0 B
′(n,w)A

′(n,w)
B ′(n,w)dw∫z

0 B
′(n,w)dw

≤
∫z
0 B
′(n,w)dw∫z

0 B
′(n,w)dw

. max
0≤w≤z

{
A ′(n,w)

B ′(n,w)

}
= max
0≤w≤z

{
A ′(n,w)

B ′(n,w)

}
= max
0≤w≤z

{
n exp(−nz/(1− z))/(1− z)2

n exp(−nz)

}
= max
0≤w≤z

{
exp(−nz2/(1− z))

(1− z)2

}
≤ 1

(1− z)2

≤ 1

1− 2 ln(n)/n+ ln2(n)/n2
. (14)

Note that the denominators of both (13) and (14) become greater than 1−ε as n becomes greater than some
nε, thus the proof of the lemma follows. 2
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A.2 Proof of Lemma 11

Proof : Recall that s(x) = j(x)/n is a number from 0 to 1. We prove the correctness of the lemma by
analyzing it for two different ranges of s(x). For simplicity we may refer to s(x) as s in different parts of
the proof. Suppose s0 = min(0.5, α)ε. For 0 ≤ s ≤ s0 we have:

1− h(s) + nG(x)

∫ 1
s

h(r)dr ≥ nG(x)
∫ 1
s

h(r)dr

≥ nG(x)
∫ 1
s0

h(r)dr

= nG(x)(

∫ 1
0

h(r)dr−

∫ s0
0

h(r)dr)

≥ nG(x)(
∫ 1
0

h(r)dr− s0) . (15)

From the second property of α-strong functions we have
∫1
0 h(r)dr ≥ α. Also, for every z ∈ R≥0 it holds

that z ≥ 1− exp(−z). By using these two inequalities in Inequality (15) the lemma is proved for this case:

1− h(s) + nG(x)

∫ 1
s

h(r)dr ≥ nG(x)(
∫ 1
0

h(r)dr− s0)

≥ (1− exp(−nG(x)))(α− s0)

≥ (1− exp(−nG(x)))α(1−
s0
α
)

≥ (1− exp(−nG(x)))α(1− ε) s0 ≤ αε

Now what remains is the case that s0 < s ≤ 1. Again, for this case we want the following inequality to
hold:

1− h(s) + nG(x)
∫1
s h(r)dr

1− exp(−nG(x))
≥ (1− ε)α . (16)

Recall that for every x ≥ θn, s(x) = j(x)/nwhere j(x) is the greatest index for which θj > x ≥ θj+1. Since
G is a strictly decreasing function, we have G(θj) < G(x) ≤ G(θj+1). Recall that for every 1 ≤ i ≤ n
we have qi = qi−1(1 − G(θi)), or equivalently G(θi) = 1 − qi/qi−1. Therefore we can bound G(x) as
follows:

1−
qj

qj−1
< G(x) ≤ 1−

qj+1

qj
. (17)

Now, finding a lower bound for 1− qj/qj−1 and an upper bound for 1− qj+1/qj in Inequality (17) gives us
a lower bound and an upper bound for G(x). For the lower bound we have

G(θj) = 1−
qj

qj−1

=
qj−1 − qj
qj−1

=
−(qj − qj−1)

qj−1

=
−(h(s) − h(s− 1/n))

h(s− 1/n)
.
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By multiplying this fraction by n/n we get:

G(θj) =
−(h(s)−h(s−1/n)

1/n
)

n h(s− 1/n)
≥ −h ′(s− 1/n)

n h(s− 1/n)
, (18)

where the last inequality in (18) comes from the concavity of h. From the second property of threshold
functions there exists some δ0 ≤ s0 such that for every n ≥ 1/δ0, s0 + 1/n ≤ s ≤ 1 the following
inequality holds:

−h ′(s− 1/n)

h(s− 1/n)
≥ (1− s0)

−h ′(s)

h(s)
. (19)

By using Inequality (19) in Inequality (18), and by using that inequality in Inequality (17), we get:

G(x) > (1− s0)
−h ′(s)

n h(s)
. (20)

Similarly one can show the following upper bound on G(x):

G(x) ≤ G(θj+1)

= 1−
qj+1

qj

=
−(h(s+ 1/n) − h(s))

h(s)

=
−h(s+1/n)−h(s)

1/n

n h(s)
multiplying by

n

n

≤
−h(s+1/n)−h(s)

1/n

n h(s+ 1/n)
since h is decreasing

≤ −h ′(s+ 1/n)

n h(s+ 1/n)
concavity of h (21)

≤ 1

1− s0
.
−h ′(s)

n h(s)
. threshold functions (ii) (22)

Using these bounds and the following auxiliary lemma we prove the correctness of Inequality (16).

Lemma 20 For every z < 0 and t ≥ 1 we have: (1− exp(zt))/(1− exp(z)) ≤ t.
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Proof : Let A(z) = 1 − exp(zt) and B(z) = 1 − exp(z). In the following the derivatives are with respect
to z. For the ratio of these functions we have:

A(z)

B(z)
=

∫z
0A
′(w)dw∫z

0 B
′(w)dw

=

∫z
0 B
′(w)A

′(w)
B ′(w)dw∫z

0 B
′(w)dw

≤ max
z≤w≤0

{
A ′(w)

B ′(w)

}∫z
0 B
′(w)dw∫z

0 B
′(w)dw

≤ max
z≤w≤0

{
−t exp(tw)
− exp(w)

}
= max
z≤w≤0

{
t exp(w(t− 1))

}
.

Since w ≤ 0 and t ≥ 1 the exp(w(t− 1)) ≤ 1, and the proof follows. 2

Using the bound of Inequality (20) in the left hand side of Inequality (16) and because 1 − h(s) ≥ 0 we
achieve

1− h(s) + nG(x)
∫1
s h(r)dr

1− exp(−nG(x))
≥
1− h(s) − (1− s0)

h ′(s)
h(s)

∫1
s h(r)dr

1− exp(−nG(x))

≥
(1− s0)(1− h(s) −

h ′(s)
h(s)

∫1
s h(r)dr)

1− exp(−nG(x))

By applying Inequality (22) we get

1− h(s) + nG(x)
∫1
s h(r)dr

1− exp(−nG(x))
≥

(1− s0)(1− h(s) −
h ′(s)
h(s)

∫1
s h(r)dr)

1− exp( h ′(s)
h(s)(1−s0)

))
.

By applying Lemma 20 to the denominator we have:

1− h(s) + nG(x)
∫1
s h(r)dr

1− exp(−nG(x))
≥ (1− s0)

2.
1− h(s) − h ′(s)

h(s)

∫1
s h(r)dr

1− exp(h ′(s)/h(s)))
.

From the third property of α-strong functions, the fraction at the right hand side of the above inequality is
at least α. Moreover, since s0 ≤ 0.5ε it holds that (1 − s0)2 ≥ (1 − ε), and thus Inequality (16) holds and
the proof of the lemma is complete. 2

A.3 Proof of Lemma 12

Proof : Let us first take a look at the first three derivatives of A(w) which are all continuous and bounded
in range [0, tan(a)]:

A ′(w) = 2αa(1− exp(−aw))(1− α+ αaw+ α exp(−aw)) − 2w,

A ′′(w) = 2αa2 exp(−aw)(1− 3α+ αaw+ 2α exp(−aw)) + 2(α2a2 − 1),

A ′′′(w) = −2αa3 exp(−aw)(1− 4α+ αaw+ 4α exp(−aw)) .
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In this part of the proof we frequently use one of the implications of intermediate value theorem: if f(x)
and f ′(x) are two continuous and bounded functions, then there exists a root of f ′(x) between every two
roots of f(x). This also implies that the number of the roots of f(x) is at most one plus the number of the
roots of f ′(x).

Figure 1: The plot shows function A(w) for values of w from 0 to tan(a) ≈ 3.7.

We claim that A ′′′(w) has at most two roots. The reason for this is because −2αa3 exp(−aw) is
always non-zero, and 1− 4α+αaw+ 4α exp(−aw) has at most two roots, because its derivative, αa(1−
4 exp(−aw)) has exactly one root, which is ln(4)/a.

The fact that A ′′′(w) has at most two roots implies that A ′′(w) has at most three roots, which are
w1 ≈ 0.28157, w2 ≈ 1.24251, and w3 ≈ 2.27082. We note that A ′(w) is positive at all these points.
Therefore A ′(w) has at most two roots, because otherwise there would be a point in which A ′(w) ≤ 0 and
A ′′(w) = 0 which is impossible.

Note thatA ′(0) = 0, thereforeA ′(w) has at most one root inR+. Now we note thatA(0+) > 0 because
A ′(0) = 0 and A ′′(0) = 2(αa2(1 − α) + α2a2 − 1) > 0. Also A(tan(a)) > 0. Now if A(w) < 0 for
some 0 < w < tan(a), thenA(w) would have at least two roots in range (0, tan(a)) which results inA ′(w)
having two roots inR+. Since this is not true, we have A(w) ≥ 0 for every 0 ≤ w ≤ tan(a). 2

A.4 Proof of Lemma 17

Proof : Let X1, . . . , Xn be random variables representing the items, and let Y1, . . . , Ym be iid random
variables with distribution function F(x) =

∏k
i=1 Fi(x). For the expectation of the maximum of these
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variables we have:

E[ k
max
i=1

Yi] =

∫∞
0

Pr[
k

max
i=1

Yi ≥ x]dx

=

∫∞
0

(
1−

m∏
i=1

F(x)

)
dx

=

∫∞
0

(
1−

m∏
i=1

k∏
j=1

Fj(x)

)
dx

=

∫∞
0

(
1−

n∏
i=1

Fi(x)

)
dx

=

∫∞
0

Pr[
n

max
i=1

Xi ≥ x]dx

= E[ n
max
i=1

Xi] . (23)

This shows that the optimum solution is the same for both sets of items. Let τY and τX be random variables
that denotes the index of the picked items in Y1, . . . , Ym and X1 . . . , Xn respectively. Theorem 5 states that
there exists some s such for every m ≥ s, we have E[YτY ] ≥ (1 − ε/2)αE[maxmi=1 Yi]. In the following we
show that there exist some m2 such that for every m ≥ m2, E[XτX ] ≥ (1 − ε/2)E[YτY ]. This proves the
lemma for everym ≥ mε = max{s,m2}. In other words,

E[XτX ] ≥ (1− ε/2)E[YτY ]

≥ (1− ε/2)2αE[ mmax
i=1

Yi]

≥ (1− ε)αE[ mmax
i=1

Yi]

= (1− ε)αE[ n
max
i=1

Xi] .

Since E[Z] =
∫∞
0 Pr[Z ≥ z]dz for every non-negative random variable Z, we show Pr[XτX ≥ x] ≥

(1− ε/2)Pr[YτY ≥ x] for every x ≥ 0 in order to prove E[XτX ] ≥ (1− ε/2)E[YτY ].
In the following, we use Gi(x) to denote 1− Fi(x). For every non-negative x we have:

Pr[XτX ≥ x] =
n∑
i=1

Pr[XτX ≥ x|τX = i]Pr[τX = i]

=

n∑
i=1

i−1∏
j=1

Fj(θdj/ke)Gi(max{x, θdi/ke}) .
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By rewriting the above sum with respect to them partitions we have:

Pr[XτX ≥ x] =
m−1∑
i=0

k∑
j=1

ik+j−1∏
l=1

Fl(θdl/ke)Gik+j(max{x, θi+1})

=

m−1∑
i=0

k∑
j=1

ik∏
l=1

Fl(θdl/ke)

j−1∏
p=1

Fik+p(θi+1)Gik+j(max{x, θi+1})

=

m−1∑
i=0

ik∏
l=1

Fl(θdl/ke)

k∑
j=1

j−1∏
p=1

Fik+p(θi+1)Gik+j(max{x, θi+1}) . (24)

Note that X1, . . . , Xn are m-partitioned, hence for every partition 0 ≤ i < m and x ≥ 0 we have∏ik+k
l=ik+1 Fl(x) = F(x). Therefore

∏ik
l=1 Fl(θdl/ke) =

∏i
l=1 F(θl). By this replacement, Inequality (24) can

be written as follows:

Pr[XτX ≥ x] =
m−1∑
i=0

i∏
l=1

F(θl)

k∑
j=1

j−1∏
p=1

Fik+p(θi+1)Gik+j(max{x, θi+1}) . (25)

Moreover, for every 0 ≤ i < m and 1 ≤ j ≤ k we have:

j−1∏
p=1

Fik+p(θi+1) ≥
k∏
p=1

Fik+p(θi+1) every Ft(x) is a most 1

= F(θi+1)

= 1−G(θi+1)

≥ 1− a tan(a)
m

Inequality 21 for h(s) = cos(as)

≥ 1− ε

2
for everym ≥ m2 =

2a tan(a)
ε

. (26)

Inequality (26) shows that for a large enough m, the left hand side of the inequality becomes close
enough to 1. By using this inequality in Inequality (25) we have:

Pr[XτX ≥ x] ≥
m−1∑
i=0

i∏
l=1

F(θl)

k∑
j=1

(1−
ε

2
)Gik+j(max{x, θi+1})

= (1−
ε

2
)

m−1∑
i=0

i∏
l=1

F(θl)

k∑
j=1

Gik+j(max{x, θi+1}) . (27)

Let r = max{x, θj+1}. By multiplying every term in Inequality (27) by
∏j−1
p=1 Fik+p(r), which is less
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than or equal to 1, we have:

Pr[XτX ≥ x] ≥ (1−
ε

2
)

m−1∑
i=0

i∏
l=1

F(θl)

k∑
j=1

Gik+j(r)

≥ (1−
ε

2
)

m−1∑
i=0

i∏
l=1

F(θl)

k∑
j=1

j−1∏
p=1

Fik+p(r)Gik+j(r)

= (1−
ε

2
)

m−1∑
i=0

i∏
l=1

F(θl)

k∑
j=1

j−1∏
p=1

Fik+p(r)(1− Fik+j(r))

= (1−
ε

2
)

m−1∑
i=0

i∏
l=1

F(θl)

k∑
j=1

( j−1∏
p=1

Fik+p(r) −

j∏
p=1

Fik+p(r)

)
Note that the inner sum forms a telescoping series, hence we can simplify it as follows:

Pr[XτX ≥ x] ≥ (1−
ε

2
)

m−1∑
i=0

i∏
l=1

F(θl)

(
1−

k∏
p=1

Fik+p(r)

)

= (1−
ε

2
)

m−1∑
i=0

i∏
l=1

F(θl)

(
1− F(r)

)

= (1−
ε

2
)

m−1∑
i=0

i∏
l=1

F(θl)G(r) . (28)

Note that Pr[YτY ≥ x] =
∑m−1
i=0

∏i
l=1 F(θl)G(max{x, θi+1}). Using this in Inequality (28) results that

Pr[XτX ≥ x] ≥ (1− ε/2)Pr[YτY ≥ x], hence the proof is complete. 2

A.5 Proof of Lemma 18

Proof : Let ρ and ρ ′ be random variables that denote the index of the maximum with the smallest index
amongst X1, . . . , Xn and XS1 , . . . , XSr , respectively. Then we have

E[max
i∈S

Xi] =
∑
i∈S

E[Xi|i = ρ ′]Pr[i = ρ ′]

≥
∑
i∈S

E[Xi|i = ρ]Pr[i = ρ]

≥ p
k

n∑
i=1

E[Xi|i = ρ]Pr[i = ρ]

=
p

k
E[ max
1≤i≤n

Xi]

which completes the proof. 2
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A.6 Proof of Theorem 4

Proof : Pick arbitrary numbersm and ε. Suppose we have 2m distribution. Each of the firstm distributions
gives 1 with probability 1. Each of the last m distributions gives 0 with probability (1 − ε)1/m and 1

ε

otherwise. Notice that with probability
(
(1 − ε)1/m

)m
= 1 − ε all of the last m items are 0 and with

probability ε at least one of the lastm items is 1
ε . Hence in expectation the optimum takes

1× (1− ε) + ε× 1
ε
= 2− ε.

While any online algorithm takes at most max(1, ε × 1
ε) = 1. Therefore, the approximation factor of

any online algorithm is upper-bounded by

1

2− ε
=
2+ ε

4− ε2
≤ 2+ ε

4
≤ 0.5+ ε.

2

23


	1 Introduction
	1.1 Our Contribution
	1.2 Applications in Mechanism Design
	1.3 Other Related Work

	2 IID Distributions
	3 Non IID Distributions
	4 Conclusions and Open Problems
	A Appendix: Omitted Proofs
	A.1 Proof of Lemma ??
	A.2 Proof of Lemma ??
	A.3 Proof of Lemma ??
	A.4 Proof of Lemma ??
	A.5 Proof of Lemma ??
	A.6 Proof of Theorem ??


