
x3ogre: connecting X3D to a state of the art rendering engine
Pavel Rojtberg

pavel.rojtberg@igd.fraunhofer.de
Fraunhofer IGD

Benjamin Audenrith
benjamin.audenrith@igd.fraunhofer.de

Fraunhofer IGD

ABSTRACT
We connect X3D to the state of the art OGRE renderer using our
prototypical x3ogre implementation. At this we perform a com-
parison of both on a conceptual level, highlighting similarities and
differences. Our implementation allows swapping X3D concepts
for OGRE concepts and vice versa. We take advantage of this to
analyse current shortcomings in X3D and propose X3D extensions
to overcome those.

CCS CONCEPTS
• Computing methodologies→ Graphics file formats;

KEYWORDS
X3D, webgl, materials, geometry

ACM Reference format:
Pavel Rojtberg and Benjamin Audenrith. 2017. x3ogre: connecting X3D to
a state of the art rendering engine. In Proceedings of Web3D ’17, Brisbane,
QLD, Australia, June 05-07, 2017, 5 pages.
DOI: http://dx.doi.org/10.1145/3055624.3075949

1 INTRODUCTION
X3D (Daly and Brutzman 2007) is an open standard for 3D graphics
with precisely defined semantics. Scenes stored in the X3D format
can be parsed using standard XML parsers and the files are usually
self-contained which makes X3D a good choice for interchange.
However the standardization process causes that new rendering
techniques and concepts appear in X3D with a considerable delay.
The available X3D based rendering engines like X3DOM (Behr
et al. 2009) or InstantReality (Fraunhofer IGD 2016) therefore offer
custom extensions to overcome this. Yet those are only scarcely
used as they impede interchange.

This paper therefore takes a different approach and instead con-
nects X3D to an existing state of the art rendering engine. This
allows using the file formats of the underlying renderer where X3D
falls short. As these formats neither are standardized nor have to
provide legacy compatibility, they can evolve faster and at the same
time are better optimized for rendering. In comparison with cre-
ating an X3D extension this approach is more flexible as it allows
replacing even core X3D concepts. This flexibility in turn gives
better insights on how to improve X3D itself.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Web3D ’17, Brisbane, QLD, Australia
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4955-0/17/06. . . $15.00
DOI: http://dx.doi.org/10.1145/3055624.3075949

(a) Per-pixel lighting (b) Night vision compositor effect

Figure 1: The flipper.x3d example showcasing some of the
OGRE features

Here, we focus on the presentation aspect of X3D as it is arguably
the most important part of a 3D file format. When using the X3D
DOM profile (Behr et al. 2009) most application logic is outside of
the X3D format and recent extensions (e.g. (Schwenk et al. 2012)
and (Sturm et al. 2016)) specifically target material representation.
Therefore, we neglect the Scripting and Sensor parts of X3D and
concentrate the Rendering and Geometry components.

For the underlying renderer we chose the Object-Oriented Graph-
ics Rendering Engine (OGRE) (Streeting 2012) . While other render-
ing engines like Unreal 4 and Unity recently gainedmore popularity,
OGRE is available royalty-free under an permissive open-source
license making it a better fit for research as well as allowing deeper
inspection.

OGRE is not bound to a specific rendering API like OpenGL
or DirectX, but rather provides high level concepts that map to
any of those. It is being developed since 1999 and was used in
AAA games like Torchlight 1/2 as well as in industrial training
applications. Therefore the rendering concepts are mature and
proven — while having been developed independently to X3D. This
makes a comparison especially interesting.

The comparison is performed using our prototypical implemen-
tation called "x3ogre", which allows loading X3D scenes in OGRE as
well as using OGRE concepts inside X3D. Besides the comparison,
one use-case of the prototype is to visually enhance existing X3D
scenes without requiring invasive changes.

By utilizing Emscripten (Zakai 2011) OGRE based applications
can be deployed on the Web1. Internally a GLES3 (Khronos 2016)
based renderer is used, which supports WebGL (Khronos 2017)
while also providing forward compatibility withWebGL2. Therefore
the results are not limited to the C/ C++ ecosystem, but can also be
transferred to the web context.

This paper is structured as follows: in section 2 the mapping of
the X3D concepts to the corresponding OGRE concepts is discussed,
while section 3 takes the reverse way, describing the integration of

1https://ogrecave.github.io/ogre/emscripten/

ar
X

iv
:1

90
4.

02
52

4v
1

 [
cs

.G
R

]
 3

 A
pr

 2
01

9

https://ogrecave.github.io/ogre/emscripten/

Web3D ’17, June 05-07, 2017, Brisbane, QLD, Australia Pavel Rojtberg and Benjamin Audenrith

OGRE concepts in X3D. Based on the preceding discussions we then
propose several X3D extensions in section 4. Finally we conclude
with section 5 giving a summary of our results and discussing the
limitations and future directions.

2 TRANSFERRING X3D CONCEPTS TO OGRE
As the first step we identify the concepts corresponding to X3D in
OGRE. Here we focus on a subset of the X3D interchange profile
(ISO/IEC 19775-1 2012) which roughly corresponds the X3D DOM
profile introduced by (Behr et al. 2009).

We will briefly discuss the high level objects and then focus on
the compound geometry and material objects in more detail.

The correspondences for the core X3D objects are:
• the X3D Scene node corresponds to the SceneManager. In

X3D only one Scene node per file is allowed, while OGRE
supports several active SceneManager instances. With only
one of them being rendered by a specific Camera.

• the X3D Transform node corresponds to two nested Sce-
neNodes. SceneNodes only store a translation vector, an
orientation quaternion and a scaling vector. Therefore two
SceneNodes are needed to support the center property of a
Transform. The X3D scaleOrientation property can only be
implemented for multiples of 90◦ as there is no shearing
component in OGRE.

Note that OGRE does not have a native serialization
format for SceneNodes and thus benefits by using X3D
here.

• the X3D Geometry node corresponds to the Mesh object.
As in X3D this is a compound object. It can be serialized
either as XML or in a binary file format.

• the X3D Appearance node corresponds to the Material
object. Again this is a compound object. It is serialized in a
custom file format resembling the VRML97 encoding.

Additionally we identified the following correspondences needed
to support animations. These are given for completeness as the
concepts mostly map one-to-one:

• the X3D TimeSensor maps to AccumulateControllerFunc-
tion.

• the X3D ScalarInterpolator maps to LinearControllerFunc-
tion.

• the X3D CoordinateInterpolator maps to VertexAnimation-
Track.

• the X3D PositionInterpolator and OrientationInterpolators
correspond to NodeAnimationTrack.

Note that for supporting animations in X3D one does not need
to implement the full X3D event model. Instead it is sufficient
to rewrite specific ROUTE statements in a compositional way as
shown in listing 1.
<TimeSensor DEF= " t ime " / >
< P o s i t i o n I n t e r p o l a t o r DEF= "move " / >
<ROUTE fromNode= " t ime " f r omF i e l d = " f r a c t i o n _ ch ang ed "

toNode= "move " t o F i e l d = " s e t _ f r a c t i o n " / >
< !−− i s t r an s f o rmed i n t o −−>
< P o s i t i o n I n t e r p o l a t o r DEF= "move " >

<TimeSensor USE= " t ime " / >
< / P o s i t i o n I n t e r p o l a t o r >

Listing 1: Compositional ROUTE implementation

This approach requires allowing specific source nodes as children
of the target nodes and is therefore not compatible with general
ROUTE statements. However it enabled the correct loading of the
existing X3D scenes we tried.

2.1 Geometry
OGRE uses the binary .mesh file format which can be transparently
converted from and to XML for inspection and debugging.

Listing 2 shows a typical X3D geometry definition which trans-
lates to the OGRE XML format in listing 3.
<Shape>

<Appearance USE= ' Example ' / >
< I n d e x e dT r i a n g l e S e t coord Index= " 0 1 2 [. . .] " >

<Coord ina t e po i n t = " 0 0 0 [. . .] " / >
<Normal v e c t o r = " 0 0 0 [. . .] " / >

< / I n d e x e dT r i a n g l e S e t >
< / Shape>

Listing 2: Sample X3D Shape definition

The Shape node corresponds to a submesh node and the Indexed-
TriangleSet node corresponds to geometry node. Note that OGRE
allows interleaved storage of the position and normal vertex at-
tributes while X3D does not. This is useful, as OGRE also stores
additional vertex attributes like bone assignments for skeletal ani-
mation (HAnimSegment node in X3D) in the .mesh file.
<submesh ma t e r i a l = " Example "

u s e s h a r e d v e r t i c e s = " f a l s e "
o p e r a t i o n t y p e = " t r i a n g l e _ l i s t " >

< f a c e s count= " 815 " >
< f a c e v1= " 1 " v2= " 2 " v3= " 3 " / >
[. . .]

< / f a c e s >
<geometry v e r t e x c oun t = " 531 " >

< v e r t e x b u f f e r p o s i t i o n s = " t r u e " normals= " t r u e " >
< v e r t e x >

< p o s i t i o n x= " 0 " y= " 0 " z= " 0 " / >
<normal x= " 0 " y= " 0 " z= " 0 " / >

< / v e r t e x >
[. . .]

< / v e r t e x b u f f e r >
< / geometry>

< / submesh>

Listing 3: Sample OGRE XML Mesh definition

Listing 3 shows a single submesh definition, but generally a .mesh
file stores multiple submeshes. This allows the definition multi-
material meshes, where each submesh is rendered with onematerial.
In X3D one has to use multiple Shapes and then use a Group node
for linking them.

Furthermore the submeshes can reference the same vertices to
avoid data duplication. This representation directly maps to the
low-level graphics APIs. (In OpenGL: glDrawRangeElements and
glBufferData).

For X3D this concept can be reproduced by DEF/ USE of the
Coordinate node — yet due to the complexity of the system it is not
obvious whether X3D viewers will share the memory between the
corresponding Shapes.

In OGRE, used material can only be referenced in the .mesh file
while in X3D it is typically defined inline with the geometry data.
This separation is similar to the concept in glTF (Robinet and Cozzi
2013) or the X3D BinaryGeometry node (Behr et al. 2012). Mesh

x3ogre: connecting X3D to a state of the art rendering engine Web3D ’17, June 05-07, 2017, Brisbane, QLD, Australia

files do not specify any compression. However OGRE assets are
usually distributed in zipped packs containing geometry, materials
and textures which offer compression on a higher level.

2.2 Materials
OGRE uses the custom .material script format for material definition
which resembles the classic VRML encoding. For comparability
we will use the VRML encoding for the following X3D material
examples.
DEF Example Appearance {

m a t e r i a l Ma t e r i a l {
amb i e n t I n t e n s i t y 0 . 5 0 8 4 9 7
d i f f u s e C o l o r 0 . 3 3 7 2 5 5 0 . 4 0 . 7 8 8 2 3 5
s p e c u l a rCo l o r 1 1 1

} }

Listing 4: Example X3D Appearance definition

The X3D material in listing 4 translates to the OGRE material given
in listing 5.
ma t e r i a l Example {

t e chn i que {
pa s s {

ambient 0 . 5 0 8 4 9 7 0 . 5 0 8 4 9 7 0 . 5 0 8 4 9 7
d i f f u s e 0 . 3 3 7 2 5 5 0 . 4 0 . 7 8 8 2 3 5
s p e c u l a r 1 . 0 1 . 0 1 . 0 25

} } }

Listing 5: According OGRE Material definition

OGRE materials support multiple techniques which are again com-
posed of several rendering passes. The technique range allows
picking the appropriate one at runtime based on hardware support,
LOD level etc., while defining multiple passes can be useful for
advanced rendering techniques like rendering hair.

Both OGRE and X3Dmaterial definitions reflect the simple Blinn-
Phong shading model (Blinn 1977). However state of the art ren-
dering usually involves more sophisticated lighting models like the
Cook-Torrance microfacet reflection model (Cook and Torrance
1981) — optionally combined with normal mapping and deferred
shading.

This requires a more flexible material definition. (Schwenk et al.
2010) therefore introduced the X3D CommonSurfaceShader node
that used the uber-shader (Hargreaves 2005) approach. While offer-
ing more flexibility then the traditional materials, the monolithic
nature requires the change of existing materials whenever a new
rendering technique must be incorporated; the CommonSurface-
Shader had to be updated to incorporate Physically Based Shading
(PBS) (Schwenk et al. 2012).

In contrast OGRE provides the high level material system (HLMS)
for defining custom materials. This system builds around the idea
of passing opaque properties to a named template shader.
<Appearance DEF= " Example " >

< P h y s i c a lM a t e r i a l a l b e d o F a c t o r = " 0 . 2 2 0 . 3 0 . 5 "
r oughne s s F a c t o r = " 0 . 4 " ,
m e t a l l i c F a c t o r = " 0 . 7 6 " / >

< / Appearance>

Listing 6: Physically based material in X3D

For instance the PhysicalMaterial node of (Sturm et al. 2016) (listing
6) translates to the following HLMS material in OGRE.

hlms Example PBS {
d i f f u s e 1 1 1
s p e c u l a r 1 1 1
roughness 0 . 4
f r e s n e l 1 . 3

}

Listing 7: Physically based material in OGRE

However while (Sturm et al. 2016) rely on a predefined Shader,
OGRE just forwards the given parameters to a shader named "PBS"
(HLSL on DirectX , GLSL on OpenGL). This allows users to define
custom materials with arbitrary parameters. Figure 2a shows a grid
of spheres rendered with custom PBS shading while the ground
plane is being rendered using the classical Blinn-Phong shading.

3 CONNECTING OGRE TO X3D
In Section 2 we identified the X3D concepts inside OGRE which
allowed loading X3D files. This section on the other hand will
focus on bringing the OGRE concepts to X3D. First we describe
the connection for concepts which exist in both X3D and in OGRE,
where the OGRE counterparts usually offer more flexibility. Then
we will describe the mapping of the OGRE compositor system for
which X3D has no counterpart.

3.1 Connection of concepts
The general approach taken here is to redirect existing X3D con-
cepts to their OGRE counterparts as identified in section 2. In con-
trast to creating new X3D nodes, this simplifies the implementation
and allows to first evaluate the benefits before introducing new
concepts in X3D. For instance to use the interleaved vertex attribute
storage in X3D we just redirect the Geometry node to an OGRE
.mesh file and override the material by the X3D appearance. Listing
8 shows the different redirection options we support in x3ogre.

< !−− OGRE de f i n e d mesh , may r e f e r e n c e X3D ma t e r i a l s −−>
<Shape USE= " S inbad . mesh " / >
< !−− OGRE de f i n e d ma t e r i a l i n a X3D Shape −−>
<Shape>

<Appearance USE= ' Ogre / Examp leMate r i a l ' / >
< I n d e x e dT r i a n g l e S e t > [. . .] < / I n d e x e dT r i a n g l e S e t >

< / Shape>
< !−− OGRE de f i n e d geometry in a X3D Shape −−>
<Shape>

<Appearance> [. . .] < / Appearance>
<Geometry USE= " S indbad . mesh " / >

< / Shape>

Listing 8: Using OGRE formats inside X3D

Both, the X3D DEF/ USE system and the OGRE resource system rely
on strings for identifying resources. The implementation therefore
is straightforward and we can maintain compatibility with existing
X3D files by only using OGRE resources if the USE lookup inside
of the current X3D file fails.

Compared to the ExternalGeometry node proposed by (Limper
et al. 2014) this approach is easier to implement and does not re-
quires invasive changes to existing X3D files. However it implicitly
relies on an externally defined resource pool and overriding indi-
vidual mesh properties (e.g. color) is not possible.

Web3D ’17, June 05-07, 2017, Brisbane, QLD, Australia Pavel Rojtberg and Benjamin Audenrith

(a) PBS material system (b) Compositor chaining

Figure 2: Advanced rendering concepts

3.2 Explicit compositing
A compositing system allows specifying full screen effects to be
applied to the image after a scene has been rendered — similar to
layer effects in an image editing software. A simple example would
be desaturation to create a black & white image without having to
change the scene materials. Figure 1b shows a more complex effect
that involves adding noise and vignetting at the image borders.

X3D does not have an explicit compositing concept. Post pro-
cessing is usually implemented by redirecting the rendering to
a RenderedTexture which is then rendered using a custom Ap-
pearance on a full-screen quad. Combining multiple layers is only
possible using the MultiTexture node. However it only offers a
fixed set of blending modes that correspond to an OpenGL 1.2 ex-
tension (Khronos 2006). Chaining post processing effects is not
feasible as there is no mechanism in X3D to specify in which order
RenderedTextures should be processed.

OGRE on the other hand uses the explicit .compositor file format
(see listing 9) that resemble the .material format but instead specifies
the rendering and routing of full-screen render targets.

compos i t o r " Night V i s i on " {
t e chn i que {

/ / Temporary t e x t u r e (s)
t e x t u r e r t 0 t a r g e t _w i d t h t a r g e t _ h e i g h t PF_A8R8G8B8
t a r g e t r t 0 {

/ / Render ou tpu t from p r ev i ou s compos i t o r
/ / or o r i g i n a l s cene
i npu t p r e v i ou s

}
t a r g e t _ o u t p u t {

i npu t none
/ / Draw a f u l l s c r e e n quad . .
pa s s render_quad {

/ / . . u s ing the n i gh t v i s i o n shade r
ma t e r i a l Ogre / Composi tor / N i gh tV i s i on
inpu t 0 r t 0

} } } }

Listing 9: A simple OGRE compositor effect

Using this format it is possible to describe simple effects in a more
concise way compared to X3D, while also allowing complex effects
like pre-pending an invert effect to "Night Vision" (figure 2b) or
even implementing deferred shading.

To enable compositing effects in X3D we added a new MFString
field compositors to the Viewpoint node which allows specifying a
compositor chain for that specific View. (see Listing 10)

4 PROPOSED X3D EXTENSIONS
Based on the discussion in the preceding sections we now propose
two conceptual extensions to X3D that allow implementing the
respective OGRE concepts directly instead of merely referencing
them.

The first extension is the explicit notion of compositing by intro-
ducing a Compositing System inside X3D. The second extension is
the definition of user defined appearances.

4.1 Compositing System
Following the OGRE notion of a compositor, we propose adding
the following X3D nodes to allow the definition of a compositing
effect directly inside a X3D file:

• Compositor for defining a named Compositor and the ac-
cording scope. For defining the intermediate render layers,
we use the RenderTexture extension.

• CompositorPass for explicitly stating the rendering order of
RenderTextures. For specifying the shader and referencing
input textures, we can use the Appearance node without
modifications.

• CompositorOutput for explicitly marking the sink of a com-
positor graph. While one could use a special target on
a CompositorPass, this makes automated error checking
easier.

<Composi tor DEF= " GaussB lur " >
<RenderedTex ture DEF= " r t 0 " / >
<RenderedTex ture DEF= " r t 1 " / >
<Compos i to rPass t a r g e t = " r t 0 " i npu t = " none " r ende r = " SCENE " / >
<Compos i to rPass t a r g e t = " r t 1 " i npu t = " none " r ende r = "QUAD" >

<Appearance>
<ComposedShader USE= " B l u r V e r t i c a l " / >
<RenderedTex ture USE= " r t 0 " / >

< / Appearance>
< / Compos i to rPass >
<Composi torOutput i npu t = " none " r ende r = "QUAD" >

<Appearance>
<ComposedShader USE= " B l u rHo r i z o n t a l " / >
<RenderedTex ture USE= " r t 1 " / >

< / Appearance>
< / Composi torOutput>

< / Composi tor>
<Viewpoint compos i t o r s = " GaussB lur " / >

Listing 10: Sample usage of proposed Compositor node

Listing 10 shows a sample usage of the above nodes. The imple-
mented effect is a separated Gaussian Blur filter which requires
two render passes to be executed in the correct order.

4.2 User defined Appearance
Bringing user defined Appearances to X3D eases using specialized
rendering techniques and allows bringing together the proposed
Material extensions (Schwenk et al. 2012) (Sturm et al. 2016) using
an unified concept.
<ComposedShader DEF= " PBS " >
[. . .]
< / ComposedShader>
<CustomAppearance type= " PBS " >

< !−− ComposedShader ho l d s the type i n f o rma t i on −−>
< f i e l d name= " r oughne s s F a c t o r " v a l u e = " 0 . 4 " / >
< ImageTexture u r l = " a l b edo . png "

x3ogre: connecting X3D to a state of the art rendering engine Web3D ’17, June 05-07, 2017, Brisbane, QLD, Australia

c o n t a i n e r F i e l d = " albedoMap " / >
< / CustomAppearance>

Listing 11: User defined Appearance in X3D

To this end we propose the new CustomApperance node that ref-
erences a named ComposedShader and can be used instead of the
classical Appearance node. The CustomApperance node contains
any number of Texture and field nodes that are forwarded to the
referenced shader.

5 CONCLUSION & FUTUREWORK
We have connected X3D to OGRE in a bidirectional manner al-
lowing X3D scenes to be loaded by OGRE as well as using OGRE
resources in X3D scenes. By comparing both on a conceptual level
we could identify shortcomings in X3D and propose extensions to
overcome those.

However we only extended X3D on a coarse level; one could
improve the existing X3D concepts by comparing the implemen-
tations in detail. For instance one could improve the Geometry
representation in X3D by allowing interleaved storage of vertex
attributes and explicit buffer sharing by a notion of submeshes.

Furthermore our implementation, while already runnable on
the web, only offers a custom C++ API. To allow using x3ogre as
alternative to three.js or X3DOM, a SAI like API must be exported
to JavaScript.

Finally it should be evaluated in how far the identified shortcom-
ings also apply to the glTF format.

The implementation presented in this work is available open
source at https://github.com/paroj/x3ogre.

REFERENCES
Johannes Behr, Peter Eschler, Yvonne Jung, and Michael Zöllner. 2009. X3DOM: a

DOM-based HTML5/X3D integration model. In Proceedings of the 14th International
Conference on 3D Web Technology. ACM, 127–135.

Johannes Behr, Yvonne Jung, Tobias Franke, and Timo Sturm. 2012. Using images and
explicit binary container for efficient and incremental delivery of declarative 3D
scenes on the web. In Proceedings of the 17th international conference on 3D web
technology. ACM, 17–25.

James F. Blinn. 1977. Models of Light Reflection for Computer Synthesized Pictures.
In Proceedings of the 4th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’77). ACM, 192–198.

Robert L. Cook and Kenneth E. Torrance. 1981. A Reflectance Model for Computer
Graphics. In Proceedings of the 8th Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH ’81). ACM, 307–316.

Leonard Daly and Don Brutzman. 2007. X3D: Extensible 3D graphics standard [stan-
dards in a nutshell]. IEEE Signal Processing Magazine 24, 6 (2007), 130–135.

Fraunhofer IGD. 2016. InstantReality — Avalon Rendering Engine. (2016). http:
//www.instantreality.org/story/what-is-it/.

Shawn Hargreaves. 2005. Generating shaders from HLSL fragments. ShaderX3: ad-
vanced rendering with DirectX and OpenGL (2005), 555–568.

ISO/IEC 19775-1. 2012. Extensible 3D (X3D) — Part 1: Architecture and base compo-
nents. (2012).

Khronos. 2006. ARB_texture_env_combine. (2006). https://www.khronos.org/registry/
OpenGL/extensions/ARB/ARB_texture_env_combine.txt.

Khronos. 2016. OpenGL ES 3.0 Specification. (2016). https://www.khronos.org/
registry/OpenGL/index_es.php.

Khronos. 2017. WebGL 2.0 Specification. (2017). https://www.khronos.org/registry/
webgl/specs/latest/.

Max Limper, Maik Thöner, Johannes Behr, andDieterW Fellner. 2014. SRC-a streamable
format for generalized web-based 3D data transmission. In Proceedings of the 19th
International ACM Conference on 3D Web Technologies. ACM, 35–43.

Fabrice Robinet and P Cozzi. 2013. Gltf—The Runtime Asset Format for WebGL,
OpenGL ES, and OpenGL. (2013).

Karsten Schwenk, Yvonne Jung, Johannes Behr, and Dieter W Fellner. 2010. A mod-
ern declarative surface shader for X3D. In Proceedings of the 15th International
Conference on Web 3D Technology. ACM, 7–16.

Karsten Schwenk, Yvonne Jung, Gerrit Voß, Timo Sturm, and Johannes Behr. 2012.
CommonSurfaceShader revisited: improvements and experiences. In Proceedings of
the 17th international conference on 3D web technology. ACM, 93–96.

Steven Streeting. 2012. OGRE3D — Manual. (2012). http://www.ogre3d.org/docs/
manual/.

Timo Sturm, Miguel Sousa, Maik Thöner, and Max Limper. 2016. A unified GLTF/X3D
extension to bring physically-based rendering to the web. In Proceedings of the 21st
International Conference on Web3D Technology. ACM, 117–125.

Alon Zakai. 2011. Emscripten: an LLVM-to-JavaScript compiler. In Proceedings of the
ACM international conference companion on Object oriented programming systems
languages and applications companion. ACM, 301–312.

https://github.com/paroj/x3ogre
http://www.instantreality.org/story/what-is-it/
http://www.instantreality.org/story/what-is-it/
https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB_texture_env_combine.txt
https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB_texture_env_combine.txt
https://www.khronos.org/registry/OpenGL/index_es.php
https://www.khronos.org/registry/OpenGL/index_es.php
https://www.khronos.org/registry/webgl/specs/latest/
https://www.khronos.org/registry/webgl/specs/latest/
http://www.ogre3d.org/docs/manual/
http://www.ogre3d.org/docs/manual/

	Abstract
	1 Introduction
	2 Transferring X3D concepts to OGRE
	2.1 Geometry
	2.2 Materials

	3 Connecting OGRE to X3D
	3.1 Connection of concepts
	3.2 Explicit compositing

	4 Proposed X3D extensions
	4.1 Compositing System
	4.2 User defined Appearance

	5 Conclusion & Future Work
	References

