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ABSTRACT 

Using neural networks as function approximators in temporal 

difference reinforcement problems proved to be very effective in 

dealing with high-dimensionality of input state space, especially 

in more recent developments such as Deep Q-learning. These 

approaches share the use of a mechanism, called experience 

replay, that uniformly samples the previous experiences to a 

memory buffer to exploit them to re-learn, thus improving the 

efficiency of the learning process. In order to increase the learning 

performance, techniques such as prioritized experience and 

prioritized sampling have been introduced to deal with storing and 

replaying, respectively, the transitions with larger TD error. In this 

paper, we present a concept, called Attention-Based Experience 

REplay (ABERE), concerned with selective focusing of the replay 

buffer to specific types of experiences, therefore modeling the 

behavioral characteristics of the learning agent in a single and 

multi-agent environment. We further explore how different 

behavioral characteristics influence the performance of agents 

faced with dynamic environment that is able to become more 

hostile or benevolent by changing the relative probability to get 

positive or negative reinforcement.   

CCS Concepts 
• Computing methodologies ➝ Reinforcement 

learning   • Computing methodologies ➝ Neural 

networks   • Computing methodologies ➝ Markov decision 

processes   • Computing methodologies ➝ Temporal 

difference learning 
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1. INTRODUCTION 
Implementation of approximation techniques widely used in 

supervised and unsupervised learning, namely artificial neural 

network architectures [1], enabled RL to cope with very large 

state spaces. This opened a possibility of applying RL techniques 

to more complex problems and gave rise to successful 

implementations such as playing Atari games [2, 3], which used a 

Deep Convolutional Neural Network to approximate the reward 

function.  

Online agents learn from a stream of experiences: after each 

transition the Temporal Difference (TD) error is back-propagated 

through the neural network so that the previous approximation is 

updated. However, the sequence of experiences in RL can contain 

highly correlated samples that break the Independent and 

Identically Distributed assumption of artificial neural network 

architectures [4]. To reduce the temporal correlation between 

experiences and improve the speed ot learning, a technique called 

Experience Replay [1, 2] is used to allow an agent to reuse past 

experiences, therefore obtaining a more stable training of a neural 

network. The transitions are uniformly sampled and stored in a 

sliding window memory; after each transition a batch of the stored 

experiences are used to train the neural network.  

Previous approaches have dealt with the dynamics of the replay 

memory mechanism in order to improve the speed of learning by 

focusing on the transitions that had a larger TD error in both 

experience sampling [5] and experience replay [4], but none was 

concerned about modifying the characteristics of the learning 

process itself.  

In this paper, we are extending a biologically inspired technique 

of experience-replay memory, introducing the concept of 

attention-based working memory inspired by a cognitive 

mechanism system found in humans called working memory [6].  

Attention-based experience replay has the ability to focus on 

different types of experience during sampling, thus enabling to 

model the behavioral differences in attention focus that can be 

found along the main human personality axis: 

extroversion/introversion. We show how different attitudes can 

face different environments with different performance. We also 

propose to consider cognitively inspired learning strategies to 

improve learning in environments with different characteristics. 

2. THEORETICAL BACKGROUND 

2.1 Reinforcement learning 
A reinforcement learning process involves an agent learning from 

interactions with its environment in discrete time steps in order to 

update its mapping between the perceived state and a probability 

of selecting possible actions (policy). The agent performs a 

sequence of transitions of a Markov decision process represented 

by a tuple (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) and at each step updates its policy 𝜋𝑡 in 

order to maximize the total amount of cumulative reward over the 

long run [7]. For this reason the optimal action-value function 

𝑄∗(𝑠, 𝑎) is defined as the maximum expected return following the 

policy 𝜋: 

𝑄∗(𝑠, 𝑎) = max
𝜋

𝔼[𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎, 𝜋]                    (1) 
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After each transition it is possible to update the estimation of the 

action-value function using Bellman equation as an iterative 

update in order to converge to the optimal action-value function:  

𝑄𝑖+1(𝑠, 𝑎) = 𝔼 [𝑟 + 𝛾max
𝑎′

𝑄𝑖(𝑠′, 𝑎′)|𝑠, 𝑎]                    (2) 

Equation (2) guarantees the convergence as 𝑖 →∝ , but it is 

impractical to use without any generalization and approximation 

when facing high dimensional state spaces. Instead, most practical 

approaches use function approximators to estimate the action-

value function, which range from simple linear perceptrons to 

non-linear approximators such as neural networks. 

2.2 Approximation 
In a function approximation with neural networks, at each 

iteration, the weights Θ  are updated by performing a gradient 

descent on the loss functions 𝐿𝑖(Θ𝑖)  according to Equation (3) 

therefore improving the previous estimate of the optimal action-

value function 𝑄(𝑠, 𝑎; Θ) ≈ 𝑄∗(𝑠, 𝑎).  

∇Θ𝑖
𝐿𝑖(Θ𝑖) = (𝑦𝑖 − 𝑄(𝑠, 𝑎; Θ𝑖))∇Θ𝑖

𝑄(𝑠, 𝑎; Θ𝑖)                (3) 

 where 𝑦𝑖 = 𝑟 + 𝛾max𝑎′𝑄(𝑠′, 𝑎′; Θ𝑖−1) is the target for iteration.  

Temporal difference learning combined with a deep neural 

network for approximation of action-value function is called Deep 

Q-Learning, or DQL [2]. 

3. ATTENTION-BASED REPLAY 

MEMORY 

3.1 Cognitively Inspired Architectures 
Studies have showed that human cognitive processes utilized 

during the interaction with the environment are mediated by a 

memory buffer called working memory [6]. The working memory 

keeps a temporary storage of the perceived information needed to 

perform a complex cognitive task: it acts as a connecting 

mechanism between perception and long term memory.  

Experiments have identified that the differences between 

individuals in the capacity of working memory [8] and the breadth 

of attention generally influence the way they are focusing their 

attention and creative abilities [9]. The term “breadth of 

attention”, in this context, refers to a sort of cognitive bandwidth, 

i.e., the number and scope of stimuli that one is attending at a 

time.  

Extroverted individuals tend to have a broader breadth of attention 

than the introverted ones, which, in turn, tend to focus their 

attention to a narrower subset of stimuli in order to reduce the 

cognitive load of having a higher basal arousal level [10, 11]. 

3.2 Model Architecture and Learning 

Algorithm 
Using only uniform sampling as a way to store experiences in the 

replay memory proved to have limitations such as that some of the 

valuable experiences might never be replayed [5]. Attention-based 

replay memory keeps the uniform sampling and extends it by 

additionally sampling the experiences that emerged from a 

specific type of interaction. For the purpose of mapping the 

transition to a specific, goal-oriented interaction, we extend the 

experience description tuple with a transition type indicator 𝑒𝑡 =
(𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑐𝑡, 𝑠𝑡+1).  

The modification to the uniform sampling replay memory 

algorithm is that, in addition to sampling every 𝑆th sample, we 

sample the experiences that match the subset of transition types, 

called 𝐹 (for focus of attention), as shown in Algorithm 1.  

Modifying the scope of 𝐹 makes it possible to model the agents 

with different behavioral characteristics in both goal and trait 

oriented way, thus making them more adapted to learn in different 

environments. 

Algorithm 1 DQL with attention-based replay memory 

Initialize replay memory D with capacity N and sampling 

frequency 𝑆 

Initialize and set transition types index 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑛} and 

attention focus index 𝐹 ⊂ 𝐶   

Initialize action-value function Q with random weights 

for episode = 1, M do 

Initialize sequence 𝑠1 = {𝑥1}  and pre-processed sequenced  

𝜙1 = 𝜙(𝑠1) 

for t = 1, T do 

With probability 𝜀 select a random action 𝑎𝑡 

otherwise select 𝑎𝑡 = max𝑎𝑄∗(𝜙(𝑠𝑡), 𝑎; Θ)   

Execute action 𝑎𝑡 , observe reward 𝑟𝑡  type of transition 𝑡𝑡 

and image 𝑥𝑡+1   

Set 𝑠𝑡+1 = 𝑠𝑡,𝑎𝑡,𝑥𝑡+1 and pre-process 𝜙𝑡+1 = 𝜙(𝑠𝑡+1)   

if 𝑖 mod 𝑆 = 0 then 

Store transition (𝜙𝑡 , 𝑎𝑡, 𝑟𝑡, 𝑐𝑡, 𝜙𝑡+1) in 𝐷  

end if 

for each f in F do    

if 𝑐𝑡 = 𝑓 then    

Store transition (𝜙𝑡 , 𝑎𝑡, 𝑟𝑡, 𝑐𝑡, 𝜙𝑡+1) in 𝐷    

end if 

end for each 

Sample random batch of transitions (𝜙𝑗 , 𝑎𝑗 , 𝑟𝑗 , 𝜙𝑗+1) from 𝐷   

set𝑦𝑖 = {
𝑟𝑗 , terminal𝜙𝑗+1

𝑟𝑗 + 𝛾max
𝑎′

𝑄(𝜙𝑗+1, 𝑎′; Θ), non terminal  

Perform a gradient descent step on (𝑦𝑗 − 𝑄(𝜙𝑗 , 𝑎𝑗; Θ))2    

according to Equation 3. 

end for 

end for 

4. EXPERIMENTAL SETUP 
To evaluate the proposed model we have adopted a learning 

environment that consists of moving good/bad food pieces and 

multiple agents [12]. Food pieces are generated with a random 

speed and direction, and move in a constrained environment by 

bouncing on the walls. Agents can move in the same environment 

and should learn to touch (eat) good food pieces and to avoid bad 

food pieces.The goal of each agent is to consume as much good 

food pieces as possible, either directly or by interacting with other 

agents that can share food, while, in turn, try to avoid the bad food 

sources. After being consumed, new food pieces of the same type 

of the consumed ones are re-generated with a random speed and 

direction, thus keeping the distribution of food constant. Agents 

receive reinforcement of +1 for consuming good food pieces and -

1 for consuming bad ones.  



The state space is continuous and intentionally high-dimensional 

for the purpose of increasing the entropy and consequently the 

diversity of possible experience transitions. Each agent has 40 

directional sensors and each of them can perceive 6 features: type 

of sensed object (good food, bad food, agent), as well as the 

continuous values for range and the velocity of the object 

detected; this gives a total of 240 state space inputs for each agent.  

As a function approximator we are using a deep neural network to 

approximate 𝑄(𝑠, 𝑎; Θ) ≈ 𝑄∗(𝑠, 𝑎). To reduce the computational 

complexity of having multiple forward passes each time, we want 

to find an action that maximizes the state-action function 

argmax𝑎𝑄(𝑠, 𝑎); the network takes the state vector 𝑠 as an input 

and predicts 𝑄(𝑠, 𝑎) for each possible action.  

We have adopted the original Q-learning update with a learning 

rate 𝛼  set to a low value (0.05) because of the nature of the 

approximator, and discount factor 𝛾 = 0.9. The default capacity 

of the replay memory buffer 𝐷  included 9000 experiences. For 

comparison with our proposed algorithm we performed reference 

experiments where we uniformly sampled experiences every 7th 

transition. With regards to our experimental environment this 

sampling frequency provided a balance between the transitions 

that were sampled uniformly and the ones that were sampled on 

the basis of attention focus.  

We also performed experiments in a multi-agent setting. The 

multi-agent environment differed from the single-agent one in size 

and amount of food generated to accommodate up to 7 agents 

learning simultaneously. Agents in a multi-agent environment had 

a possibility of social interaction by sharing food with other 

agents in proximity, as detected by their sensors. If a single agent 

consumed a positive food piece it shared the full reinforcement 

reward of +1 to each of the agents found within its range.  

5. EXPERIMENTAL RESULTS 
In the experiments, we have compared three types of agents 

implementing different types of focus of ABERE, with the 

baseline uniform sampling already proposed in literature, under 

three different configurations of the environment. The transitions 

were given a focus type only if they resulted in an interaction, i.e., 

either a food piece has been consumed or an agent has been 

perceived. To differentiate between the interactions we have 

defined three focus types in 𝐶 = {𝑐𝑜𝑛𝑠𝑢𝑚𝑒 − 𝑔𝑜𝑜𝑑, 𝑐𝑜𝑛𝑠𝑢𝑚𝑒 −
𝑏𝑎𝑑, 𝑠𝑜𝑐𝑖𝑎𝑙}. If the transition resulted in a consumption of good 

food, it was labeled as consume-good, if bad food was consumed 

it was labeled as consume-bad, and if it resulted in either sharing 

or receiving food through social interaction it was labeled as 

social.  

Table 1 shows which agent personality type is associated with 

which subset of 𝐶 .We call this subset Attention focus 𝐹  as it 

represents the set of type labels on which Algorithm 1 additionally 

focuses while sampling from the stream of experiences. For 

instance, the Introverted – Brave agent focuses on consuming 

good food, i.e., it samples experiences labeled as consume-good. 

Analogously for the others. 

 

Table 1. Personality types and attention focus 

Single Agent Environment 

Agent personality type Attention focus (F) 

Introverted - Brave consume-good 

Introverted - Cautious consume-bad 

Extroverted consume-good, consume-bad 

Baseline - 

Multi Agent Environment 

Agent personality type Attention focus (F) 

Introverted - Social social 

Introverted - Explore consume-good, consume-bad 

Extroverted 
social, consume-good, 

consume-bad 

Baseline - 

 

5.1 Efficiency Comparison 
In this section we evaluate the efficiency of agents with different 

configurations of ABERE with respect to the ability to consume 

good food pieces and avoid the bad ones in the environment with 

an equal distribution of good and bad food pieces. The aim is to 

compare the behavioral differences of the agents and their effect 

on the performance by two different criteria: ability to avoid the 

bad pieces of food and the ability to consume the good ones.  

In Figure 1 we compare these criteria for each type of agent as a 

ratio between generated and consumed food pieces. Figure 1a 

shows the average results of 10 experiments done under the same 

settings for each of the defined agent type, while Figure 1b  

depicts analogous results averaged over 7 agents of the same type 

interacting in a multi-agent environment.  

From Figure 1 we can notice that the efficiency of the agents 

differs depending of the agent type in both single and multi-agent 

environment. Introverted-Cautious agent type showed to be the 

most efficient in avoiding bad food sources followed by 

Extroverted type, while Introverted-Brave outperformed every 

other type in consuming good food sources. From these results, it 

seems that focusing on a given aspect pushes to efficiently 

develop a policy that takes better into account that aspect. We can 

also notice that ABERE agents generally perform better than the 

non-focused ones. 

              



(a) Single agent environment (b) Multi-agent environment with food sharing 

Figure 1: Differences in ratio of generated and consumed food sources amounts between ABERE focus variations over first 

300K learning steps. 
 

     

(a) Normal environment: even number of good and bad food 

sources 

(b) Hostile enviroment: bad food sources 66.66%, good food 

sources 33.33% 

 

(c) Benevolent environment: bad food sources 33.33%, good food sources 66.66% 

Figure  2: Differences in average score/reward between agents with ABERE focus variations learning in a single agent 

enviroment over first 300K learning steps. 
 

5.2 Performance in different environmental 

conditions 
In the second experiment, our intention was to explore how can 

differences in agent personality type impact on the performance 

under different environmental conditions. We wanted to answer 

the question: Can some personality type be more capable than 

others to learn in a specific environment?  

We have modified the equal ratio between the generated good and 

bad food pieces for the purpose of creating more hostile or more 

benevolent environment. Benevolent environment generated 2/3 

of good food pieces and 1/3 of bad, while the hostile environment 

had a distribution of 2/3 bad food pieces and only 1/3 good. 

Results from single agent simulation as depicted in Figure 2 show 

that the Extroverted agent was performing best in both normal and 

hostile environments, while Introverted-Brave type better adapted 

to the environment that contained more good food. It seems that 

the broader attention span of the Extroverted agent gave it an 

advantage in the environments that contained higher amount of 

bad food points. Focusing on both positive and negative 

experiences allowed the Extroverted agent to learn a policy that 

was equally efficient in avoiding the bad food points as it was in 

consuming the positive ones. 

Figure 3 shows the results from a simulation that included 7 

agents interacting by sharing food sources, each of them learning 

separately. For the normal environment configuration Introverted-

Social and Extroverted types were best performing probably 

because their social focus allowed them to make better use of the 

available good food points by sharing. Introverted-Explore type 

outperformed others in a hostile environment mostly because its 

narrow focusing on the food points rather than social interaction 

allowed it to be more efficient in avoiding the bad food points. 

 

(a) Normal environment: even number of good and bad food (b) Hostile enviroment: bad food sources 66.66%, good food 



sources sources 33.33% 

 

(c) Benevolent environment: bad food sources 33.33%, good food sources 66.66% 

Figure  3: Differences in average score/reward between agents with ABERE focus variations learning in a multi-agent 

enviroment over first 300K learning steps. 
 

 

  

(a) Normal environment: even number of good and bad food 

sources 

(b) Hostile enviroment: bad food sources 66.66%, good food 

sources 33.33%  

 

(c) Benevolent environment: bad food sources 33.33%, good food sources 66.66% 

Figure  4: Differences in average score/reward of agents with behaviour modulated by ABERE focus types (I) and behaviours 

induced by implicit modification of the reinforcement function (B). 
 

5.2.1 Implicit vs. Explicit Goal Directed Behavior 
In the next batch of experiments, we wanted to compare the 

difference between goal-oriented behavior that is modulated 

implicitly by ABERE and the behavior that was explicitly 

influenced by different reinforcement values. Two additional 

“baseline” agent types were defined that used only uniform 

sampling replay memory and differed only in their reinforcement 

functions. Baseline social agent was given double value of 

reinforcement for making a social contact relative to the food, 

while the baseline exploratory type had double reinforcement for 

food consumption. From Figure 4 we can see the difference in 

performance between attention-based approaches of modeling 

social and exploratory behaviors (I-SOCIAL,I-EXPLORE) and 

the baseline ones (BASE-SOCIAL,BASE-EXPLORE). It is 

evident that in the hostile environment the ABERE exploring 

agent is better suited to learn faster to avoid bad food, while in the 

other situations the performance of the different agents is 

comparable, which means that, at least for these experiments, 

attention-based replay memory gives the agents the possibility to 

successfully face different environments, without requiring any 

special design of the reinforcement function. In particular, in at 

least one combination, the ABERE agents where even able to 

perform better than the one with modified reinforcement function. 

6. CONCLUSION AND FUTURE WORK 
We presented a novel approach of replay memory sampling 

combined with Deep Q-learning called Attention-Based 

Experience REplay. Experimental results have shown that ABERE 

can outperform state of the art approaches on at least some of the 

environment variations, or have a similar performance. The 



ABERE approach makes thus possible to define the focus of 

attention for an agent and have it performing well in different 

environments, without the need of re-designing the reinforcement 

function.  

Being able to select the focal experiences by different criteria 

opens a lot of possibilities for modeling a stream of replay 

experiences that can potentially give rise to complex behavioral 

patterns. In future work, we will focus on changing the 

classification criteria taking into account properties other than 

interaction type such as other attributes of the agents state space. 

We also plan to work to model the focus of attention on the 

characteristics of the environment, so to be able to define a priori 

the most suitable focus for a given environment. 
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