
Multidimensional, Multiprocessor, Out-of-Core FFTs 
with Distributed Memory and Parallel Disks 

(Extended Abstract) 

Lauren M. Baptist 
Thomas H. Cormen* 

{lmb, thc}@cs.dartmouth.edu 

Dartmouth College 
Department of Computer Science 

Abstract 

We show how to compute multidimensional Fast Fourier Trans- 
forms (FITS) on a multiprocessor system with distributed memory 
when problem sizes are so large that the data do not fit in the mem- 
ory of the entire system. Instead, data reside on a parallel disk sys- 
tem and are brought into memory in sections. We use the Parallel 
Disk Model for implementation and analysis. 

Our method is a straightforward out-of-core variant of a well- 
known method for in-core, multidimensional FFTs. It performs 
l-dimensional FIT computations on each dimension in turn. This 
method is easy to generalize to any number of dimensions, and it 
also readily permits the individual dimensions to be of any sizes 
that are integer powers of 2. The key step is an out-of-core trans- 
pose operation that places the data along each dimension into con- 
tiguous positions on the parallel disk system so that the data for the 
l-dimensional FFTs are contiguous. 

We present an I/O complexity analysis for ‘this method as well 
as empirical results for a DEC 2100 server, an SGI Origin 2000, 
and a Beowulf cluster, each of which has a parallel disk system. 

1 Introduction 

Although the data requirements of many FFT computations are 
small enough that the data fit in main memory, there are some situ- 
ations in which the data requirements exceed the memory capacity 
of even very large systems. The typical way of dealing with such 
“out-of-core” situations is to have the data reside on a disk system 
(preferably parallel) and transfer sections of the data to and from 
memory. Previous work [CN97, CN98, Cor99, CWN97, VS94] has 
shown how to perform out-of-core, l-dimensional FFTs on both 

*Contact author. Supported in part by the National Science Foundation under grant 
CCR-9625894 and in part by funds from Dartmouth College. 

Permission to make digital or hard copies ol‘all or part of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. TO copy 

otherwise, to republish, to post on servers or to redistribute to lists. 
requires prior specific permission and/or a fee. 
SPAA ‘99 Saint Malo, France 
Copyright ACM 1999 l-58113-124-0/99/06...$5.00 

uniprocessors and multiprocessors when the data reside on a par- 
allel disk system. The Parallel Disk Model, or PDM, originally 
defined by Vitter and Shriver [VS94], provided both a theoretical 
and implementation model in the previous work. 

This paper extends the previous work to multidimensional FFI3 
in which all dimensions are integer powers of 2. In a lc-dimensional 
FFT on N points, we view the data as a k-dimensional array with 
dimension sizes 2n1, 2”a, . . . , 2nk, where all nj are positive inte- 
gersandnl+nz+...nk=n=lgN. 

Most multidimensional Fl;T problems fit in memory, but the 
few that do not have traditionally been extremely time-consuming 
to compute, due to high disk-access latencies and the blocked na- 
ture of data layout. One specific out-of-core, multidimensional FFT 
application is authentication of digital audio recordings and pho- 
tographs. According to H. Farid [Far99], “When a signal is passed 
through a non-linearity it tends to create ‘un-natural’ higher-order 
correlations between the harmonics. The power spectrum (second- 
order statistics) is blind to such correlations, so we employ the bis- 
pectrum to detect the presence of these correlations.” Multidimen- 
sional FFTs are used in bispectral analysis. Farid also reports, “We 
hope to eventually look at even higher-order statistics.” Crystallog- 
raphy is believed to be another source of very large, multidimen- 
sional FFT problems. 

Although there are several known methods for computing mul- 
tidimensional FFTs for “in-core” settings (i.e., the data do fit in 
memory), we take the simplest approach in this work. In partic- 
ular, we take advantage of a basic property of multidimensional 
FITS: they may be computed by computing l-dimensional FFTs 
within each dimension in turn. In other words, we first compute 
l-dimensional FFTs within the first dimension. Starting with the 
results of these FFTs in the first dimension, we next compute l- 
dimensional FITS within the second dimension, and so on. 

Assuming that the data are stored contiguously in the first di- 
mension (e.g., a 2-dimensional array stored in row-major order with 
the first l-dimensional FFKs being within each row), data accesses 
in the second and subsequent dimensions are not to consecutive 
memory locations. In an in-core setting, such an access pattern may 
slow the computation due to cache behavior. The penalty in an out- 
of-core setting may be more severe, however, as it could easily be 
the case that reading or writing each point entails a separate disk ac- 
cess. The resulting performance would be unacceptably poor. The 
obvious solution, which we adopt, is to reorder the data after oper- 
ating in a given dimension to make the next dimension contiguous 
in the disk-resident ordering of the data. When all dimensions are 
powers of 2, this reordering is a BMMC permutation, which we can 
perform optimally in terms of I/O costs [CH97, CSW99]. 

242 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F305619.305647&domain=pdf&date_stamp=1999-06-01


This paper analyzes the I/O costs of our out-of-core method for 
the PDM. The analyses are complicated by additional permuta- 
tions that we perform between processing the separate dimensions. 
These additional permutations perform the bit-reversal permutation 
at the start of computing each set of l-dimensional FlTs. They 
also remap the data in such a way as to permit communication-free 
butterfly computations, in the same manner as in [CWN97]. Ail 
of these permutations are BMMC permutations, and the class of 
BMMC permutations is closed under composition. Hence, the anal- 
ysis requires us to determine the I/O compIexity under the PDM of 
some complicated permutations. 

We also present empirical results for an implementation of our 
method. The implementation of the PDM we use is ViC* [CH97], 
which has been ported to several platforms. This paper presents re- 
sults for three systems that have parallel disks: a DEC 2100 server, 
a Silicon Graphics Origin 2000, and a Beowulf cluster. 

Outline 

The remainder of this paper is organized as follows. Section 2 
briefly describes the PDM and the implementation of it used here. 
Section 3 presents BMMC permutations, which we use in our de- 
scription of the FF’f method in Section 4. Sections 5 and 6 present 
our analytical and empirical results, respectively. Finally, Section 7 
presents some concluding remarks. 

2 The Parallel Disk Model 

This section describes the Parallel Disk Model [vS94], which un- 
derlies our out-of-core algorithms. 

In the Parallel Disk Model, or PDM, N records are stored on D 
di&-sD~,D~,..., 2)&l, with N/D records stored on each disk. 
For our purposes, a record is a complex number comprised of two 
8-byte double-precision floats. The records on each disk are par- 
titioned into blocks of B records each. Any disk access transfers 
an entire block of records. Disk I/O transfers records between the 
disks and an M-record memory. 

We assess an algorithm by the number of parallel I/O operations 
it requires. Each parallel II0 operation transfers up to D blocks 
between the disks and memory, with at most one block transferred 
per disk, for a total of up to BD records transferred. The blocks 
transferred in a given parallel I/O operation may or may not be at 
the same relative locations on their respective disks. 

For a multiprocessor, we assume that there are P processors 
%,Pl , . . . , Pp-1 connected by a network. Network speeds vary 
greatly, but for the multiprocessors that we consider, interprocessor 
communication times are far less than I/O latencies. The M-record 
memory is distributed among the P processors so that each proces- 
sor holds M/P records. In ViC*, our implementation of the PDM, 
we assume that D > P, and each processor Pi communicates 
Only with the D/P diskSZ)iD,p, DiD/,=+l,. . . , D[i+l)D/p-l. (If 
D < P in a given physical configuration, the ViC* implementation 
provides the illusion that D = P by sharing each physical disk 
among P/D processors.) 

We place some restrictions on the PDM parameters. We assume 
that P, B, D, M, and N are exact powers of 2. For convenience, 
wedefinep=lgP,b=lgB,d=lgD,m=lgM,andn= 
lg N. We assume that BD 5 M so that the memory can hold the 
contents of one block from each disk, and we assume that B _< 
M/P so that each processor’s memory can hold the contents of 
one block Finally, we assume that M < N so that the problem is 
out-of-core. 

The PDM lays out data on a parallel disk system as shown in 
Figure 1. A stripe consists of the D blocks at the same location 

stripe 0 
stripe 1 
stripe 2 
stripe 3 

Figure 1: The layout of N = 64 records in a parallel disk system with 
P = 4, B = 2, and D = 8. Each box represents one block. The number 
of stripes is N/BD = 4. Numbers indicate record indices. 

on all D disks. A record’s index is an n-bit vector. Later on, we 
will take advantage of interpreting a record index as a sequence of 
bit fields that give the record’s location in the parallel disk system; 
from most significant bits to least significant bits, the bit fields are 

l lg( N/ BD) = n - (b + d) bits containing the number of the 
stripe (since each stripe has BD records, there are N/BD 
stripes), 

l lg D = d bits containing the disk number; of these, the most 
signhicant lg P = p contain the processor number, 

l lg B = b bits containing the record’s offset within its block. 

Since each parallel I/O operation accesses at most BD records, 
any algorithm that must access all N records requires n(N/BD) 
parallel I/OS, and so O(N/BD) parallel I/OS is the analogue of 
linear time in sequential computing. A pass consists of reading 
each record once, doing some computation, and writing it back out, 
with a cost of SN,JBD parallel I/O operations. Vitter and Shriver 

showed an asymptotically tight bound of 0 @bm\) Par- 
allel I/OS for the FIT, which appears to be the analogue of the 
0(N lg N) bound seen for so many sequential algorithms on the 
standard RAM model. 

Practical considerations 

Although there is no theoretical restriction on the parameters N 
and M beyond the out-of-core requirement of M < N, in practice 
we expect that N 5 M2 or, equivalently, M 2 fl. We show W~J 
by an example. Consider a 1-terapoint problem, so that N = 2 . 
(We know of no current application that requires FFTs that large.) 
At 16 bytes per point, we would need 16 terabytes of disk storage 
just to hold the data. (In fact with our FFT algorithms, we would 
need an additional 8 terabytes to hold temporary data, but we will 
ignore this extra amount.) Now suppose that M < a, in which 
case we would have M < 2”. In other words, the memory cannot 
hold 1 megapoint, or 16 megabytes. It is safe to say that any com- 
puter installation that can afford to buy 16 terabytes of disk capacity 
would have computers easily capable of holding 16 megabytes of 
data. (As of this writing, in early 1999, it is virtually impossible 
to buy even a PC with under 16 megabytes of RAM.) Even if we 
allow for additional uses of memory beyond holding the FIT data 
(code, stack, communication buffers, I/O buffers, etc.), the aggre- 
gate memory of a system with 16 terabytes of on-line disk storage 
will always be large enough that M > m. 

3 BMMC permutations 

This section defines the class of BMMC permutations, gives their 
I/O complexity on the PDM, and describes the specific types of 
BMMC permutations we will use in our multidimensional, multi- 
processor FlT algorithm. 

243 



A Bh4MC (bit-matrix-multiply/complement) permutation on 
N = 2” elements is specified by an n x n characteristic matrix 
H = (hij) whose entries are drawn from (0, 1) and that is nonsin- 
gular (i.e., invertible) over GF(2).’ Treating each source index z 
as an n-bit vector, we perform matrix-vector multiplication over 
GF(2) to form the corresponding n-bit target index z: z = Hz. 
As long as the characteristic matrix H is nonsingular, the mapping 
of source indices to target indices is one-to-one. 

A useful property of BMMC permutations is that they are 
closed under composition. In particular, if we were to ap- 
ply, in order, BMMC permutations with characteristic matrices 
AI, AZ,. . . , &, the composite permutation could be achieved by 
performing a single BMMC permutation whose characteristic ma- 
trix is the product &A&i.. . AzA1. 

An efficient algorithm for BMMC permutations on the 
PDM appears in [CSW99]. This algorithm requires at most 

%((riz%] ) + 1 parallel I/OS, where 4 is the lower left 

lg(N/M) x lg M submatrix of the characteristic matrix, and the 
rank is computed over GF(2). (Note that because of the dimen- 
sions of 4, its rank is at most lg min(M, N/M).) This number of 
factors is asymptotically optimal and is very close to the best known 
exact lower bound. 

We shall use several types of BMMC permutations to perform 
multidimensional, multiprocessor FFTs. Each is from the even 
more restricted class of bit permutations, in which the character- 
istic matrix is a permutation matrix (exactly one 1 in each row and 
in each column). In other words, each target index is formed by 
permuting the bits of its corresponding source index. 

nj -partial bit-reversal permutation: In a full bit-reversal per- 
mutation, the characteristic matrix has 1s on the antidiagonal 
and OS elsewhere. In our multidimensional FFI algorithm, 
we will reverse only the least significant nj bits at a time, 
where nj is the logarithm of the size of the current dimen- 
sion, j. Letting I denote an identity submatrix and IA denote 
a submatrix with 1s on the antidiagonal, and indicating sub- 
matrix dimensions along the top and sides, the characteristic 
matrix for an nj-partial bit-reversal permutation looks like 

Ii 71 - Tlj 

F-l-1 0 9 
0 I TZ - nj 

nj-bit right-rotation: We rotate the bits of each index nj bits to 
the right, wrapping around at the rightmost position. The 
characteristic matrix is formed by taking the identity matrix 
and rotating its columns nj positions to the right, SO that it 
looks like 

Stripe-major to processor-mqjor and vice-versa: FIT codes are 
much simpler when each processor can work on a contigu- 
ous subset of the array. In the usual PDM ordering of Fig- 
ure 1, which we call stripe-major layout, each processor has 
only a small contiguous subset of the data, consisting of only 
BD/P points. Processor-major layout is the ordering in 

‘Matrix multiplication over GF(2) is like standard matrix multiplication over the 
reals but with all arithmetic performed module 2. Equivalently, multiplication is re- 
placed by logical-and, and addition is replaced by exclusive-or. Technically, the spec- 
ification of a BMMC permutation also includes a “complement vector” of length TZ, 
but we will not need complement vectors in this paper. 

which processor pk has the N/P consecutive points with 
indices kN/P to (Ic + l)N/P - 1. Reordering from stripe- 
major to processor-major and back is given by the following 
characteristic matrices, where s = b + d: 

s--P n-s 

[#+-I i:: 

stripe-major to processor-major 

S-P P n-s 

[y-y-q “,T”, 
processor-major to stripe-Zajor 

In Section 5, we shall determine the I/O complexities of the 
various products of these matrix forms that characterize the actual 
BMMC permutations performed in the algorithm. 

4 FFTs 

This section defines the multidimensional FFT and presents our 
method for computing it out of core on multiple processors with 
distributed memory. Van Loan [Van921 is an excellent reference 
for how to perform FFTs. 

Multidimensional FFls 

The FIT is a particular method of computing the the Discrete 
Fourier Transform (DFT) of an array with a total of N ele- 
ments. We assume in this paper that the array has Ic dimensions 
Nl,AL..., Nk, where N = Nr Ns . +. Nk, and each dimension 
is an integer power of 2. We are given a k dimensional array 
AIO: Nl- 1,0: Ns-l,..., 0 : Nk - l], and we wish to compute 
the Ic dimensional array Y [0 : Nr - 1,0 : Ns - 1, . . . , 0 : Nk - l] 
for which 

y[h/32,..-,Pk] = 
NI-lNZ-1 Nk-1 

c c *** c W$;1Wf,$--*~~kA[(Y1,~2 ,..., ~yk], 

Cal=0 q=O CSk=O 

where WNj = exp(2xi/Nj) and i = fl. In FIT computations, 
powers of wNj are often referred to as twiddle factors. If WC need 
to, for any real number ZL, we can directly compute exp(iu) = 
cos(u) + i sin(u). 

One way to compute a multidimensional FFT is to compute l- 
dimensional FFTs on each dimension in turn. That is, we compute 

Nl-1 

Y93l,P2,. . * ,Pk] = c ~$7~ A[w, a2,. . . , ak] , 

q=o 
N2-1 

YC2) p1, P2 ,... ,,&I = c W$-y(1)[(I@2,. . . ,CXk] , 

a2=0 
. . . 

Nk-1 

YhP2,..., flkl = c Wyky(k-l)[rY1, C-Q,. . . , (yk] . 

ak=o 

244 



There are other ways to compute multidimensional FFTs, such as 
the “vector-radix method,” which we shall discuss briefly in Sec- 
tion 7. 

Out-of-core implementation on a multiprocessor 

Our present implementation uses the first method above, in which 
we computed l-dimensional FFTs on each dimension in turn. We 
call this the dimensional method. We base our l-dimensional 
FFT computations on the well-known Cooley-Tukey method, in 
which we perform a bit-reversal permutation followed by a se- 
quence of “butterfly operations.” We refer the reader to any of 
[CLR90, CN98, CT65, Van921 for details. 

A key subroutine used by our implementation performs a 
BMMC permutation on the full N-point data set. This subrou- 
tine, based on techniques described in [CC97, CSW99], takes an 
n x n characteristic matrix (bit-packed into n words) as an input, 
and performs optimally the BMMC permutation so characterized. 

An important issue in performing the l-dimensional FFTs is 
whether or not each such FFT fits in the memory of a single pro- 
cessor. In other words, when performing FPTs in dimension j, 
is Nj < M/P? If so, then we have the possibility of per- 
forming the dimension-j FITS in-core. Otherwise, we perform 
the dimension-j FFTs out-of-core. In either case, we start the 
dimension-j FFTs by performing an nj-partial bit-reversal permu- 
tation, where nj = lg Nj. We next rearrange the data to put it into 
processor-major order by performing the stripe-major to processor- 
major BMMC permutation. 

If the dimension-j FITS fit in the memory of a single processor, 
we perform them in the obvious way. We repeatedly read in paral- 
lel into each processor’s memory the data for the (M/P)/Nj FFh 
that the memory can hold, perform the necessary butterfly com- 
putations, and write the results back out to disk in parallel. This 
read-compute-write loop entails exactly one pass over the data. 

Conversely, if the dimension-j FITS do not fit in the mem- 
ory of a single processor (i.e., Nj > M/P), then we perform the 
dimension-j FFTs out-of-core. As shown in [CWN97], we do so 
in a series of [j/(m - p)] “superlevels,” each of which entails 
one pass over the data followed by a BMMC permutation. In the 
remainder of this extended abstract, we do not consider the possi- 
bility that Nj > M/P, except to note that our implementation does 
handle it correctly. The full paper will cover this situation in more 
detail. 

After processing dimension j, we need to rearrange the data to 
get dimension j + 1 into contiguous addresses in the PDM ordering. 
(After processing the last dimension, k, we must get dimension 1 
into contiguous addresses so that our tinal result is in the correct 
order.) We do so by performing an nj-bit right-rotation permuta- 
tion. However, before we do so, we must rearrange the data into 
the canonical ordering-stripe-major-that the BMMC permuta- 
tion code assumes. So we perform the processor-major to stripe- 
major BMMC permutation and follow it by the nj-bit right-rotation 
permutation. 

To recap, prior to computing the dimension-j butterfly oper- 
ations, we first perform an nj-bit partial bit-reveral permutation, 
followed by the stripe-major to processor-major BMMC permuta- 
tion. After computing the dimension-j butterfly operations, we first 
perform the processor-major to stripe-major BMMC permutation, 
followed by an nj-bit right-rotation permutation. 

Now we show how to take advantage of closure of BMMC per- 
mutations under composition. Let us denote the characteristic ma- 
trices of the individual BMMC permutations as follows: 

l S characterizes the stripe-major to processor-major permuta- 
tion. 

. s-l characterizes the processor-major to stripe-major per- 
mutation. 

l Vj characterizes an nj-bit partial bit-reversal permutation. 

l Rj characterizes an nj-bit right-rotation permutation. 

The BMMC closure properties result in our performing the follow- 
ing permutations: 

Prior to computing the dimension-l butterfly operations, we 
perform the BMMC permutation characterized by the matrix 
product S Vr. 

Between computing the dimension-j and dimension-j + 1 
butterfly operations, where 1 5 j < Ic, we compose the per- 
mutations that follow dimension j with those that precede 
dimension j + 1, performing the BMMC permutation char- 
acterized by the matrix product S Vj+l Rj S-l. 

After computing the dimension-h butterfly operations, we 
perform the BMMC permutation characterized by the matrix 
product Rk S- ‘. 

It is easy to multiply these characteristic matrices together before 
presenting the product to the BMMC-permutation subroutine. 

Implementation notes 

Our implementation of the dimensional method for computing the 
multidimensional FFT is a fairly straightforward extension of previ- 
ous work on l-dimensional FFTs [CN98, CWN97]. We continue to 
call asynchronous (i.e., non-blocking) I/O functions, when the un- 
derlying system supports it, by allocating three buffers: for reading 
into, writing from, and computing in. We did make some modiflca- 
tions, however. The twiddle factor computation is improved. When 
each dimension-j FFT fits in-core, all the dimension-j FFI com- 
putations can share a common set of twiddle factors. Hence, we 
allocate a buffer to hold all the twiddle factors, compute these val- 
ues once, and reuse them in each FIT computation within dimen- 
sion j. Also, we use a very accurate method to generate the twiddle 
factors. Our previous work employed repeated multiplication to 
compute the twiddle factors quickly, but with a high accumulation 
of error. Instead, we implemented a method that uses recursive bi- 
section [Van921 to compute the twiddle factors more accurately, yet 
efficiently. 

5 Analytical results 

In this section, we analyze the I/O complexity of our multidimen- 
sional FPT algorithm on the PDM. Our analysis is exact: it counts 
parallel I/O operations without using asymptotic notation. 

We remind the reader of a key assumption that was stated in 
Section 4: Nj 5 M/P for all j = 1,2,. . . , Ic. In other words, we 
can perform each dimension-j FFT m-core. Although it is possible 
to analyze the algorithm without this assumption, the resulting I/O- 
complexity formulas are so unwieldy as to have little value. 

Recall that the I/O complexity of a BMMC permutation is 

parallel I/OS, where 4 is the lower left 

lg(Njb) x lg k s&matrix of the characteristic matrix, and the 
rank is computed over GF(2). We shall simplify our calculations 
in two ways. Fit, we will simply count passes, where each pass is 
2N/BD parallel I/OS. Second, we will use the lowercase letters, 
which denote logarithms of uppercase letters. With these conven- 
tions, we can restate the I/O complexity of a BMMC permutation 

245 



as [sl + 1 passes, where 4 is the lower left (n - m) x m 
submatrix. 

The following lemmas are central to the analysis. 

Lemma 1 For the matrix product S VI, we have rank4 = 
min(n - m, p). w 

Lemma 2 For the matrixproduct S Vj+l Rj S’, we have 

rank4 = n-m ifn-p I nj +nj+i, 
min(n - m, nj) otherwise. n 

Lemma 3 For the matrix product Rk S-l, we have rank4 = 
min(n - m, nk + p). w 

The proofs of these lemmas will be in the full paper. We sketch 
here how we proved them. To find the rank of the lower let? (n - 
m) x m submatrix of a characteristic matrix A, it suffices to find 
the rank of the (n - m) x m matrix product X A Y II, where the 
matrices X and Y have the forms 

Xx [ 0 1 1 ] n-m and Y= 

and II is any m x m permutation matrix. Because matrix multi- 
plication is associative, one may group these factors, including the 
factors that comprise the matrix A, in any convenient fashion. Case 
analyses and reliance on the assumption that nj 5 m - p for all 
j = 1,2,. . . ) k helped prove the lemmas. 

From Lemmas l-3, recognizing that computing the butterfly 
operations entails one pass for each of the Ic dimensions, and ob- 
serving that [p/(m - b)] 5 1 under the PDM’s assumption that 
each processor has enough memory to contain one disk block; we 
have the following theorem: 

Theorem 4 Assuming that the k dimensions Nl , N2, . . , , Nh are 
integerpowers of 2 and that Nj 5 M/P for all j = 1,2, . . . , k, we 
can compute a multidimensional, multiprocessor out-of-core FFT 
in 

n,m,P,nj,nj+l> 

m-b 
min(n-m,nk +P) +2k+2 

m-b 1 
passes, where 

f(n, md-5 nj, nj+l) = 

{ 

n-m ifn-pSnj+nj+l, 
min(n - m, nj) otherwise 

and lowercase letters denote logarithms of corresponding upper- 
case letters. W 

The following corollary restates this theorem in terms of paral- 
lel I/O operations and the actual PDM parameters: 

Corollary 5 Assuming that the k dimensions NI , N2, . . . , Nk are 
integerpowers of 2 and that Nj 5 M/P for all j = 1,2, . . . , k, we 

can compute a multidimensional, multiprocessor out-of-core FFT 
in 

2N - 
BD 

F(N, MT Py Nj, Nj+l) 
kW/B) 1 + 

k min(N/M, NkP) 
kW/B) 1 > + 2k + 2 

parallel IJO operations, where 

F(N, M, P, Nj, Nj+l) = 
kW/W if NIP 5 NjNj+l , 
lg min(N/M, Nj) otherwise. w 

There is no known lower bound for the I/O complexity of mul- 
tidimensional FFTs on the PDM. 

Practical considerations 

Let us put the results of Theorem 4 and Corollary 5 into realistic 
contexts. 

For example, one of the systems on which we report empirical 
results in Section 6 is a Silicon Graphics Origin 2000. Machine 
parameters were M = 227 points, P = D = 8, and B = 213 
points. Consider problems with N = 230 points, divided as evenly 
as possible among the k dimensions. Applying Theorem 4 to this 
situation, the number of passes turns out to be a linear function of 
the number of dimensions, in particular, 3k + 2 for k 1 2. (We 
require k > 2 because of the assumption that Nj 5 M/P for each 
dimension j. When k = 1, we have that Nr = N > M, and the 
assumption does not hold.) 

In fact, it is reasonable to expect there to be 3k + 2 passes for 
k 1 2 in any realistic setting. Why? For systems of reasonable size, 
we expect n - m to be no larger than m - b, in which case every 
ceiling-expression in the statements of Theorem 4 and Corollary 5 
has the value 1 and the number of passes reduces to the expression 
3k + 2. We expect n - m 5 m - b for the following reasons. 
Assuming, as we did at the end of Section 2, that M > fl, we 
must also have that n - m 5 m. Although this inequality does not 
imply that n - m 5 m - b, it is indeed the case in most practical 
settings. It would be unusual to have n - m > 10, for in such a 
setting, the amount of disk storage would be over 1000 times the 
amount of memory. Given the cost differential between memory 
and disks, per megabyte (about a factor of 40 as of this writing), 
a system with 1000 times more disk capacity than memory is un- 
balanced and needs more memory. On the other hand, block sizes 
are rarely above 213 records and memory sixes are rarely below 223 
records for reasonably large machines (certainly for machines with 
very high disk capacity), and so we expect m - b 2 10. Hence, 
n - m 5 m - b is a reasonable assumption, and we conclude that 
3k + 2 passes is common. 

6 Empirical results 

We have implemented the dimensional method for multiprocessors 
with parallel disks. The interface to the PDM is provided by the 
ViC* software [CH97], which allows any number of disks and any 
number of processors, as long as each is some integer power of 2. 
Here, we report timings for the dimensional method on three plat- 
forms: 

246 



lg N Total time (sets) Normalized time @ecs) 
22 139.00 3.01272 
24 621.67 3.08787 
26 2983.35 3.41964 
28 12346.20 3.28523 

Figure 2: Total times and normalized times for the DEC 2100 server. 

A DEC 2100 server with two 175MHz Alpha processors and 
eight 2-gigabyte disks. We use this system as a uniprocessor, 
in as much as the main thread of control is running on at 
most one processor at any time, and the other processor may 
be acting as a server for I/O requests to the eight disks. The 
ViC* implementation on this system performs all disk VO 
through direct UNIX File System calls. 

A Silicon Graphics Origin 2000 SMP with eight 180~MHz 
RlOOOO processors and eight 4gigabyte disks. Although this 
machine provides a shared-memory abstraction, we use MPI 
[GLS94, SOHL+96] for interprocessor communication for 
three reasons: 

l The memory is actually physically distributed. 
l The MPI implementation is produced by Silicon Graph- 

ics and is optimized for the Origin 2000. 
l We can use the same source code on distributed- 

memory machines. 

On this system, the ViC* implementation performs all 
disk I/O via the ROM10 implementation of MPI-IO 
(http://www.mcs.anl.gov/romio/). 

A Beowulf cluster at Caltech with 114 PCs, each with a 200- 
MHz Pentium Pro processor and a 3.1-gigabyte EIDE disk. 
We used either 8 or 16 of the processors for each run. The 
interconnect is 100 Mb/set Ethernet. As for the Origin 2000, 
we use MPI for interprocessor communication and ROMIO 
for parallel disk I/O. 

The underlying software on both the Origin 2000 and the Be- 
owulf cluster does not always perform asynchronous I/O reliably. 
On the Beowulf cluster, all parallel-I/O calls are implemented syn- 
chronously. On the Origin 2000, parallel-I/O calls within the 
BMMC-permutation subroutine are asynchronous, but parallel-I/O 
calls within the rest of the computation are synchronous. 

DEC 2100 results 

We performed two sets of runs on the DEC 2100 server. In the first 
set, we varied the input size and kept all other parameters fixed. In 
particular, the input sizes were N = 222, 224, 226, and 22s points, 
interpreted as 2-dimensional square matrices (211 x 211, 212 x 212, 
213 x 213, and 2r4 x 214, respectively). Each run used a memory 
size of 22s bytes (or M = 2 ’ records when we compensate for 
the data size of 16 bytes per point and for carving memory into 
four buffers for I/O and in-memory permutations), a block size of 
B = 213 records, and D = 8 disks. Figure 2 shows the total 
times and the normalized times (time per butterfly operation, of 
which there are (N/2) lg N) for the three problem sizes. On the 
DEC 2100, it takes just under 3.5 hours to compute a 214 x 214- 
point FFI’. Normalized times vary only by about 13.5% among the 
four runs. 

In the second set of runs on the DEC 2100, we varied the num- 
ber of dimensions from 1 to 6, keeping all other parameters lixed. 

dimensions Total time (sets) Normalized time (psecs) 
1 756.38 3.75698 
2 609.22 3.02604 
3 768.80 3.81867 
4 945.84 4.69803 
5 1174.51 5.83385 
6 1410.93 7.00817 

1400 

1200 

1000 

800 

600 

400 

200 

01 I I I I 1 
1 2 3 4 5 6 

dimensions 

Figure 3: Total times for the DEC 2100 as the number of dimensions in- 
creases. 

In particular, the input size was N = 224 points, interpreted as a l- 
dimensional vector of length 224, a 212 x 212 matrix, a 2’ x 2’ x 2’ 
array, a 26 x 26 x 2’ x 2’ arrat a 2’ x 26 x 25 x 2’ x 24 array, 
and a 24 x 24 x 24 x 24 x 2 x 24 array. All other parameters 
are the same as in the first set of runs. Figure 3 shows the total and 
normalized times in both tabular and graphical form. (The number 
of butterfly operations remains (N/2) lg N regardless of the num- 
ber of dimensions.) With the exception of the l-dimensional case, 
the times increase roughly linearly with the number of dimensions, 
which corresponds welI to the discussion of I/O complexity in Sec- 
tion 5. 

Silicon Graphics Origin 2000 results 

We performed three sets of runs for the Origin 2000. The first two 
sets are similar to the sets on the DEC 2100. 

In the first set, we varied only the problem size and kegi all other 
parameters fixed. Here, the problem sizes were N = 2 and 230 
points, interpreted as 214 x 2 4 and 2” x 2” matrices, respective1 
Each run used a memory size of 228 bytes per processor, or 2 2 

bytes over all eight processors, corresponding to M = 227 records 
over the entire system. The block size was B = 213 records, and 
P = D = 8. Figure 4 shows the total times and the normalized 
times for the two problem sizes. On the Origin 2000, it takes only 
about 1.7 hours to compute a 215 x 215-point FFT. Normalized 
times vary only by about 7.5% between the two runs. 

lg N Total time (sets) Normalized time (psecs) 
28 1332.00 0.354435 
30 6137.91 0.381092 

Figure 4: Total times and normalized times for the Origin 2000. 

247 



lg iV Total time (sets) Normalized time (psecs) 
28 2629.88 0.69979 
30 11367.90 0.70581 dimensions Total time (sets) Normalized time @sets) 

1 50.45 0.250608 
2 42.81 0.212641 
3 54.13 0.268886 
4 68.41 0.339798 
5 88.22 0.438169 
6 88.77 0.440948 

ZO- 
10 - 
0 I I I I 

1 2 3 4 5 6 

Figure 5: Total and normalized times for the Origin 2000 as the number of 
dimensions increases. 

P, D Total time (sets) Work (processor-sees) 
1 1316.32 1316.32 
2 952.55 1905.09 
4 495.16 1980.62 
8 212.94 1703.54 

800 - 800 - 

600 - 600 - 

400 - 400 - 

200 - 200 - 

2 4 8 

P, D 

Figure 6: Total times and work for the Origin 2000 as the number of pro- 
cessors and disks increases. 

We performed three sets of runs on the BeowuIf cluster, similar to 
the runs on the Origin 2000. 

Figure 7: Total times and normalized times for the Beowulf cluster. 

dimensions Total time (sets) Normalized time @sets) 
1 207.52 1.03075 
2 200.18 0.99432 
3 251.18 1.24760 
4 334.37 1.66082 
5 399.45 1.98407 
6 471.52 2.34204 

1 2 3 4 5 6 

dimensions 

Figure 8: Total and normalized times for the Beowulf cluster as the number 
of dimensions increases. 

In the second set, we varied the number of dimensions from 
1 to 6, keeping ah other parameters fixed at N = 224 points, 
M = 223 records, B = 2 3 records, and P = D = 8. Figure 5 
shows the total and normalized times in both tabular and graphical 
form. Although the total time appears to flatten between 5 and 6 di- 
mensions, our detailed measurements (data not given in this paper) 
show that the I/O times increase linearly with the number of dimen- 
sions, as our earlier analysis predicts. The flattening in the total 
time is due to computation within the BMMC-permutation subrou- 
tine taking less time for 6 dimensions than for 5. 

In the third set of runs on the Origin 2000, we kept the problem 
size and memory per processor fixed, and we varied the number of 
processors and disks, maintaining the relationship P = D. Here, 
the problem size was iV = 226 
matrix. The memory size was 22 

pints, interpreted as a 213 x 213 
bytes per processor. The number 

of processors varied among 1, 2, 4, and 8. Figure 6 shows the 
results. If the speedup were linear, the work (processors x total 
time) would be constant across aII configurations. Instead, the work 
increases sharply between 1 and 2 processors because of additional 
computation and communication arising in the transition from 1 
to 2 processors in the BMMC-permutation subroutine. 

Beowulf cluster results 

In the first set, we varied only the problem size and kept ah 
other parameters fixed. Here, the problem sizes were N = 228 

248 



P, D Total time (sets) Work (processor-sets) 
1 10685.70 10685.70 
2 4509.73 9019.46 
4 1982.01 7928.04 
8 1317.77 10542.20 

1 2 4 8 

P, D 

Figure 9: Total times and work for the Beowulf cluster as the number of 
processors and disks increases. 

and 230 points, interpreted as square matrices. Each run used a 
memory size of 226 bytes per processor over P = 16 processors, 
for a total of 230 FJtes altogether, or M = 226 records. The block 
size was B = 2 records, and P = D = 16. Figure 7 shows 
the total times and the normalized times for the two problem sizes. 
Normalized times vary by under 1% between the two runs. 

In the second set, we varied the number of dimensions from 
1 to 6, keeping all other parameters fixed at N = 224 points, 
M = 223 records, B = 213 records, and P = D = 8. Fig- 
ure 8 shows the total and normalized times, which increase roughly 
linearly between 2 and 6 dimensions, as predicted by our analysis. 

In the third set of runs on the Beowulf cluster, we kept the prob- 
lem size and memory per processor fixed, and we varied the number 
of processors and disks, maintaining the relationship P = D. Here, 
the problem size was N = 22s 
matrix. The memory size was 22 iI? 

ints, interpreted as a 213 x 213 
bytes per processor. The number 

of processors varied among 1, 2, 4, and 8. Figure 9 shows the re- 
sults. The work amounts show that the speedup is neither linear nor 
even monotonic, due to nonlinear speedup within the I/O and com- 
munication components of the BMMC-permutation subroutine. We 
do not know the root causes of these nonlinearities. 

7 Conclusion 

We have seen one method for performing multidimensional, multi- 
processor out-of-core FFTs with parallel disks. This method is the 
most apparent extension of previous work in the area, and it takes 
advantage of characteristics of multidimensional FFTs and BMMC 
permutations. We have also presented an exact I/O-complexity 
analysis of our FFT method, along with performance results on 
three platforms. Amon 
can perform a 2r5 x K5 

our performance results, we see that we 
2 out-of-core FIT on an eight-processor 

Silicon Graphics Origin 2000 in under two hours. 
The dimensional method described in this paper is neither 

the only, nor necessarily the fastest, way to compute multidi- 
mensional FFIs in this environment. The vector-radix method 

[DM84, HMCS77, Lim90, Riv77] is a promising contender. We 
recently adapted this algorithm to our environment in an imple- 
mention for 2-dimensional square matrices, and preliminary results 
show that the vector-radix method rivals our implementation of 
the dimensional method in performance. On some runs, primarily 
those on a uniprocessor, the dimensional method is faster, whereas 
on others, including most of our runs on a multiprocessor, vector- 
radix is faster. On average, when the dimensional method is faster, 
it is faster by only about 5%. On the other hand, when the vector- 
radix method is faster, it is faster by about 15%. 

Performance of the two algorithms is comparable in two dimen- 
sions, according to our preliminary results. However, we suspect 
that the vector-radix method may prove to be the more efficient 
algorithm for higher-dimensional problems. Our ongoing work 
will determine whether our suspicion is correct. Our reasoning 
is that the dimensional method computes multiple l-dimensional 
FFIs in each dimension, but the vector-radix method processes 
all dimensions simultaneously. At each stage of the computation, 
the problem is divided into submatrices, within which we perform 
butterfly operations. In the Cooley-‘IStkey algorithm to compute 
l-dimensional FFTs, each butterfly has only 2 elements. Cor- 
respondingly, when using the vector-radix method to compute a 
k-dimensional FFT, each butterfly consists of 2” elements. We 
wonder whether, by working on more data at once, the vector- 
radix method enjoys computational efficiencies and performs fewer 
passes over the data. 

Compared to the vector-radix method, the dimensional method 
has certain advantages. It is relatively simple to implement given 
the existing unidimensional FFT and BMMC permutation codes. It 
works for any number of dimensions and for arbitrary dimension 
sizes, as long as they are integer powers of 2. The vector-radix 
method, on the other hand, is much more difficult to implement 
correctly. In particular, handling arbitrary numbers of dimensions 
and unequal dimension sizes is tricky, and computing the twiddle 
factors correctly and efficiently is very difficult. 

Acknowledgments 

Many thanks to James Clippinger for his heroic efforts in port- 
ing our implementation to the Origin 2000 and the Beowulf clus- 
ter. Additional thanks to Stuart Anderson, Jan Lindheim, and Tom 
Prince of Caltech with their help in using the Beowulf cluster. 
Michael Shin and Neal Young suggested the proof technique used 
in Section 5. Dan Rockmore, Matte0 Frigo, Steven Johnson, and 
Hany Farid provided valuable background information on multidi- 
mensional FFTS. We appreciate the constructive suggestions made 
by anonymous reviewers on an earlier version of this paper. 

References 

[CC971 

Pw 

[ CLR90] 

Thomas H. Cormen and James C. Clippinger. 
Performing BMMC permutations efficiently on 
distributed-memory multiprocessors with MPI. Tech- 
nical Report PCS-TR97-317, Dartmouth College De- 
partment of Computer Science, May 1997. Accepted 
to Algorithmica. 

Thomas H. Cormen and Melissa Hirschl. Early ex- 
periences in evaluating the Parallel Disk Model with 
the ViC* implementation. Parallel Computing, 23(4- 
5):571-600, June 1997. 

Thomas H. Cormen, Charles E. Leiserson, and 
Ronald L. Rivest. Introduction to Algorithms. The 
MIT Press, Cambridge, Massachusetts, 1990. 

249 



[CN97] 

[ CN98] 

[ Cor99] 

[CSW99] 

[=W 

]CWN971 

PMW 

[Far991 

[GLS94] 

Thomas H. Cormen and David M. Nicol. Out-of-core 
FFTs with parallel disks. ACM SIGMETRICS Per- 
formance Evaluation Review, 25(3):3-12, December 
1997. 

Thomas H. Cormen and David M. Nicol. Performing 
out-of-core FFTs on parallel disk systems. Parallel 
Computing, 24(l)%20, January 1998. 

Thomas H. Cormen. Determining an out-of-core 
FFT decomposition strategy for parallel disks by dy- 
namic programming. In Michael T. Heath, Abhiram 
Ranade, and Robert S. Schreiber, editors, Algorithms 
for Parallel Processing, volume 105 of ZMA Volumes 
in Mathematics and its Applications, pages 307-320. 
Springer-Verlag, 1999. 

Thomas H. Cormen, Thomas Sundquist, and 
Leonard F. Wisniewski. Asymptotically tight bounds 
for performing BMMC permutations on parallel disk 
systems. SZAM Journal on Computing, 28(1):105- 
136,1999. 

J. W. Cooley and J. W. Tukey. An algorithm for the 
machine calculation of complex Fourier series. Math- 
ematics of Computation, 19:297-301, 1965. 

Thomas H. Cormen, Jake Wegmarm, and David M. 
Nicol. Multiprocessor out-of-core FFTs with dis- 
tributed memory and parallel disks. In Proceed- 
ings of the Fifth Workshop on I/O in Parallel and 
Distributed Systems (IOPADS ‘93, pages 68-78, 
November 1997. Also Dartmouth College Computer 
Science Technical Report PCS-TR97-303. 

Dan E. Dudgeon and Russell M. Mersereau. Multidi- 
mensional Digital Signal Processing. Prentice-Hall, 
1984. 

Hany Farid. Private communication, March 1999. 

William Gropp, Ewing Lusk, and Anthony Skjellum. 
Using MPI: Portable Parallel Programming with the 
Message-Passing Znterface. The MIT Press, 1994. 

[HMCS77] D. B. Harris, J. H. McClellan, D. S. K. Chan, and 
H. W. Schuessler. Vector radix fast Fourier transform. 
In 1977 IEEE International Conference on Acoustics, 
Speech, Signal Process Rec., pages 548-551,1977. 

[Lim90] Jae S. Lim. Two-Dimensional Signal and Image Pro- 
cessing. Prentice-Hall, 1990. 

[Riv77] Glenn E. Rivard. Direct fast Fourier transform of bi- 
variate functions. IEEE Transactions on Acoustics, 
Speech, and Signal Processing, ASSP-25(3):250- 
252, June 1977. 

[SOHL+96] Marc Snir, Steve W. Otto, Steven Huss-Lederman, 
David W. Walker, and Jack Dongarra. MPI: The Com- 
plete Reference. The MIT Press, 1996. 

[Van921 Charles Van Loan. Computational Frameworks for 
the Fast Fourier Transform. SIAM Press, Philadel- 
phia, 1992. 

[VS94] Jeffrey Scott Vitter and Elizabeth A. M. Shriver. Al- 
gorithms for parallel memory I: Two-level memories. 
Algorithmica, 12(2/3):110-147, August and Septem- 
ber 1994. 

250 


