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Abstract

The main goal of this study is analyzing whether muscle synergies based on surface 

electromyography (EMG) measurements could be used for hand posture classification in the 

context of robotic prosthetic control. Target grasps were selected according to usefulness in daily 

activities. Additionally, due to the feasibility constraints of robotic prosthetics, only 14 gestures 

(13 feasible grasps and 1 resting state) were analyzed. EMG signals of intact-limb subjects were 

decomposed into base and activation components for muscle activity evaluation. The results 

demonstrate that features based on muscle synergies derived from non-negative matrix 

factorization (NMF) outperform the ones derived from principal component analysis (PCA). 

Moreover, we also examine the robustness of these methods in the absence of electrodes (muscle 

importance) and show that NMF is able to provide sufficiently accurate results.
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1. INTRODUCTION

Human-machine interface (HMI) can be defined as utilization of biological signals to control 

robotic devices and provide another channel for communication. Understanding of 

biological signals such as electromyogram (EMG), electroencephalogram (EEG) and 

increasing availability of signal acquisition devices give hope for many patients who suffer 

from partial or entire limb loss [15]. In this context, biological signal-based prosthetic limb 

control studies is of special interest.

EMG has shown promise as a powerful physiological signal for hand gesture classification 

both in research applications [6, 10] and commercially available prosthetics [1]. In addition, 

novel techniques and studies are available for more efficient utilization of these devices. For 

instance, [3] reveals that performance of both intact-limb and amputee people are quite 

satisfactory when their EMG signals collected only from six channels while they were 

performing individual finger movements.
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There is no voluntary movement that can produced by only one muscle and all motor actions 

are controlled by a bunch of muscle groups which are activated simultaneously at different 

levels. Thus, one of the hypothesis on behavior of central nervous system (CNS) is that 

muscle synergies are instruments of CNS for controlling large number of muscles through 

small number of control signals [4]. In other words, it is possible to find another basis to 

represent EMG data of which elements are activated distinctively for performing different 

voluntary movements. Most of the synergy based approaches employ linearity assumption 

which means representation of EMG data by multiplication of base and activation matrices 

and decompose EMG data into its components by well-known techniques such as principal 

component analysis (PCA), independent component analysis (ICA) and probabilistic ICA 

(pICA) [11, 13].

The idea of matrix factorization under non-negativity constraints has been initially proposed 

in [9] to represent faces as additive combinations of different parts for face recognition 

studies. Non-negative matrix factorization (NMF) provides a low-rank representation of the 

data similarly for PCA and ICA; whereas, NMF inherently does not let subtractive 

components. Since all recorded muscular activations are positive-valued and NMF does not 

restrict the orthogonal representation of the data, it fits better to physiological structure of 

muscle than other decomposition techniques [2]. Lately, many muscle synergy-based EMG 

analysis studies are presented which mostly factorize the data by NMF. For example, in [2] it 

is shown that only 11 of 33 American Sign Language alphabet postures are enough to 

provide a synergy framework in order to predict the all postures with 90% accuracy. 

Moreover, 10 finger movements (5 simple and 5 complex) are classified by artificial neural 

network (ANN) where the NMF features extracted from 2 channel EMG data are utilized in 

[12].

In this study, we first investigate the effect of two primary myoelectric activity 

decomposition techniques on classification performances to discriminate 13 grasp types and 

a resting state: NMF and PCA. Only six bipolar channels are used in this study for 

classification and quite satisfactory accuracies are presented for the 14-class classification 

problem. Moreover, instead of focusing on individual finger movements, we aim to classify 

grasp types which can be more applicable in real world scenarios. Secondly, we provide an 

analysis about the behavior of these methods under missing channel/muscle scenarios. We 

demonstrate that muscle synergies extracted by NMF are better for representing the 

activation of different muscles even with less channels. Additionally, the results of this study 

claims that NMF provide better results for understanding the intention of patients with 

amputation because they are unable to provide EMG from most of the beneficial muscles.

The rest of the paper is organized as follows. In Sec. 2, subject properties, data collection, 

experimental setup, signal processing and classification techniques which are applied to the 

recorded data are presented in detail; whereas, the results are reported in Sec 3. The paper is 

concluded with aimed future work in Sec. 4.
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2. METHODOLOGY

2.1 Data Acquisition and Experimental Setup

Experimental data were collected from 7 healthy (6 male, 1 female; mean age: 25.38 ± 1.92 

years) and each subject participate in the experiment two times. Only 1 male subject was 

left-handed and only dominant hands were used for data collection. None of the subjects had 

any known motor or psychological disorders. Before the experiments, experimental 

procedure was explained to all participants and their informed consent were taken.

EMG data were collected using a g.USBamp biosignal amplifier from 6 bipolar electrodes 

and electrodes were located on extensor digitorum, flexor carpi ulnaris, flexor digitorum 

superficialis, extensor carpi ulnaris, brachioradialis and pronator teres muscle groups. The 

muscle locations were found by palpation when the subject contract the related muscle while 

performing a basic arm movements [cite book]. A schematic representation of electrodes are 

given in Figure 1. Electrodes were attached using double-sided disk shaped duct tapes and 

conductive gel is applied for decreasing skin resistance. The sampling rate of the EMG 

signals was 1200 Hz. A butterworth bandpass filter [10 – 500 Hz] of order 9 and a 60 Hz 

notch filter was applied during acquisition.

Subjects were seated a chair and the electrodes were connected to right arm while left arm is 

at rest. The dominant arm was supported from the elbow and the orientation of the arm was 

not restricted. Subjects were instructed to perform 13 different grasp gestures (i.e., large 

diameter, small diameter, medium wrap, ring, distal, tip pinch, precision disk, precision 

sphere, fixed hook, palmar, lateral, lateral tripod and writing tripod) and open palm position 

as the rest class. The human grasp is analyzed in [8] and grouped to 33 classes. Although a 

human hand can perform all these grasp types thanks to the high articulation of human body, 

the degrees of freedom of current robotic hands is not enough to perform all these 

movements. We have constrained the classification task to 14 classes by choosing grasps that 

can be useful to perform day to day tasks and that are feasible for our robotic hand 

prototype. Subjects performed and held each gesture for 6 times with each trial lasting for 8 

seconds. Before a trial, an image illustrating the gesture was shown to subject. The subject 

was allowed to rest between trials. The order of gestures was randomized so that fatigue 

effect does not affect the classification results. Each subject performed two consecutive 

sessions.

2.2 Feature Extraction and Classification

The underlying assumption behind muscle synergies is that of co-activation of muscles (i.e. 

when performing a motor task), muscles are active jointly; moreover, motor tasks can be 

represented by a set of weights that modulate these muscle synergies. Let wk(n) be the k-th 

time varying control signal that corresponds to a particular hand posture.
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w(n) =

w1(n)
w2(n)

⋮
wK(n)

(1)

where K is the number of synergies that will be used. We define the muscle activation 

signals as a(n) for 1 ≤ m ≤ M muscles being targeted. Then, we can express a(n) as a linear 

combination of wk(n)’s with the coefficients set by the “synergy” matrix S:

a(n) = Sw(n) (2)

with columns of S denoting the contribution of the corresponding synergy to all muscles. 

Notice that if we assume these matrices to be non-negative, then the synergy basis 

corresponds to a parts-based representation (no muscle inhibition possible) [14]. Given some 

measurements 0 ≤ n ≤ N − 1, we would like to find and S and W such that:

A=SW (3)

= s1 s2 ⋯ sK

— w1(n) —
— w2(n) —

⋮
— wK(n) —

(4)

assuming we can measure this muscle signal directly in a noiseless fashion. We can use 

EMG signals to measure muscle activations. Under constant-force, constant-angle, non-

fatiguing contractions, EMG signals can be modelled with Gaussian distributions [7] and 

maximum likelihood estimates of the EMG amplitude (corresponding to muscle activation) 

is accomplished by root-mean-square (RMS). Moreover, mean-absolute-variation (MAV) is 

also very common processing technique due to its simpler analog hardware implementations 

and low computational requirements. Additionally, it is shown that MAV has slightly higher 

signal-to-noise-ratio than RMS. Then, we would like to find W and S that solve:

 minimize 
W , S

1
2 Ã − SW

F

2

 subject to  W ≥ 0 and S ≥ 0
(5)

where the columns of Ã correspond to a(n), the channel-wise muscle activation estimated 

from EMG. The non-negative contraints are needed to enforce the parts-based 
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representation. This optimization problem can be solved using the multiplicative update 

algorithm from [9]. Since RMS isa better representation and MAV has better signal power 

than noise, this study investigates the both features and provides an comparison of two 

processors for the given problem on NMF. Additionally, we use PCA as a baseline for 

synergy extraction, relaxing the composition by parts assumption. Even though PCA does 

not enforce non-negativity constraints, it restricts the base functions to be orthogonal. In 

particular, synergy and activation matrices attained by PCA involve negative components 

that can model inhibitory behavior.

The recorded EMG data was transformed to bipolar measurements along the targeted 

muscles. Since the gestures were held during a trial, theoretically, contractions of all muscles 

were constant. In other words, the muscle synergy weights are assumed to be relatively 

clustered with small blocks of data tending to demonstrate similar characteristics. For this 

reason, MAV and RMS statistics were computed in 250 ms blocks with 100 ms spacing 

between blocks. The NMF algorithm inherently starts from a random initialization and 

provides the factorization minimizing the error function at each iteration. However, this may 

cause different factorizations due to the initialization and the optimization problem may 

stack at local minimum points. Thus, we first initialized the factorization matrices for 100 

times, found the best initialization, and factorized the data based on this starting point. The 

columns of W, that correspond to hand postures in the synergy basis were used to train a 

SVM classifier with Gaussian kernel. We used 10 fold cross validation to assess the 

performance of the classifier. Since NMF is only applied on the training set, the 

corresponding synergy weight vector W for test data was found through non-negative least 

squares [5]:

 minimize 
w

1
2 ã − Sw

2

2

 subject to  w ≥ 0
(6)

where ã is the estimate muscle activation amplitude from EMG in the test set and S is the 

learned synergy matrix. We compared classification results when 6, 5, and 4 synergies are 

used. Additionally, we explored the effect of removing individual muscles from 

classification and evaluated the robustness of the feature extraction methodologies.

3. RESULTS

Since selecting the number of synergies (K) as equal or less than the number of channels in 

NMF studies is very common, the NMF results are evaluated for 3 different sized synergy 

matrices by selecting the size of S as 6×6, 6×5 and 6×4. Because of the monotonically 

increasing structure of the performance values, smaller number of synergies are not included 

in this study. Two session performances of all subjects are evaluated separately and the 

averaged classification results of all subjects for different sized S matrices are given in 

Figure 2.
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Despite the fact that classification results for all subjects are much higher than chance level 

for this 14-class problem, one can state that RMS features outperforms the MAV features for 

almost all of the subjects. Moreover, the results in Figure 2 demonstrates that if synergy size 

equals to the channel size, classification performances are quite satisfactory. However, the 

number of channels would be one of the most important reason for worse accuracies of low-

rank synergy representations. Since our recordings do not target all the muscles in the 

forearm, the number of synergies must equal the number of channels. Sudden drop of 

classification performances with lower number of synergies supports this conclusion. 

Although the implementation of NMF with more channels would provide more concrete 

evidence, one can expect that even with more channels 6 synergies may represent the data 

well. Additionally, all subjects are able to perform the experiment with more than 90% 

accuracies for RMS feature with the exception of subject 3.

For PCA performance analysis, all possible number of components are evaluated. Maximum 

number of component size is 6 because of the number of channels and minimum is 2 

(reducing data to a single dimension severely hurts performance). Similar to NMF, two 

different features are assessed as different classification problems and accuracies of all 

subjects are given in Figure 3.

Unlike NMF, the number of components in PCA does not affect the accuracies significantly. 

For most of the subjects, there is not considerable difference between 6 and 5 number of 

components. RMS features are able to provide better classification performances than MAV. 

Since the same pattern is also observed in NMF results, we can state that RMS features are 

more distinctive for our problem for almost all subjects. Although all subjects provide much 

higher classification accuracies than chance level, PCA results are not as high as NMF for 

any number of components.

This study also claims that NMF is a better approach for deficient electrode case. Because 

amputees may not provide all channels depending on their amputation level, we also 

examine the best decomposition technique under this circumstance. At each step, one 

bipolar electrode is eliminated and performances of all subjects are averaged for both MAV 

and RMS features in order to demonstrate missing electrode results. Figure 4 demonstrates 

the robustness of two algorithms to electrode extraction when maximum performance 

criteria is applied for synergy size selection.

From Figure 4, we claim that NMF is perceptibly more robust to the electrode elimination 

problem for both features without considering the electrode selection. Additionally, MAV 

and RMS features provide almost the same classification accuracies for PCA technique, 

whereas, RMS results with NMF are considerable better than MAV’s. Both algorithms are 

more sensitive to flexor digitorum superficialis and pronator teres muscle removal than the 

other channels. Since both muscles are located more proximally in the forearm, results of 

this study are beneficial and implementable for real world robotic prosthesis applications.
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4. CONCLUSIONS

This study demonstrated that muscle synergy representation with NMF outperforms PCA in 

the task of classifying hand postures (14 grasps). The experimental data set was collected 

from 7 intact-limb subjects with 6 bipolar channels. We also showed that RMS is a more 

discriminative feature than MAV for our problem which implies that Gaussian distribution 

fits better to our model than Laplacian distribution [7]. Additionally, we investigate the 

problem of missing electrodes and evaluated the classification performance. Even though the 

contribution of two muscles (flexor digitorum superficialis and pronator teres) which are 

close to elbow are slightly higher to the classification accuracies, the experimental results 

indicate that NMF is more robust to missing electrodes. For future research, we plan to 

analyze the relationship between intersubject muscle synergies and extending the synergy 

decomposition to account for temporal dependencies.
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CCS Concepts

•Human-centered computing → HCI theory, concepts and models; Human computer 
interaction (HCI); Empirical studies in HCI;
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Figure 1: 
Diagram of muscles targeted during experiment.
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Figure 2: 
NMF Results.
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Figure 3: 
PCA Results.
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Figure 4: 
Comparison of NMF and PCA Performances with Extracted Electrodes for MAV and RMS 

Features.
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