
A Combined Unifrontal/Multifrontal
Method for Unsymmetric Sparse Matrices

TIMOTHY A. DAVIS
University of Florida
and
IAIN S. DUFF
Rutherford Appleton Laboratory

We discuss the organization of frontal matrices in multifrontal methods for the solution of
large sparse sets of unsymmetric linear equations. In the multifrontal method, work on a
frontal matrix can be suspended, the frontal matrix can be stored for later reuse, and a new
frontal matrix can be generated. There are thus several frontal matrices stored during the
factorization, and one or more of these are assembled (summed) when creating a new frontal
matrix. Although this means that arbitrary sparsity patterns can be handled efficiently, extra
work is required to sum the frontal matrices together and can be costly because indirect
addressing is required. The (uni)frontal method avoids this extra work by factorizing the
matrix with a single frontal matrix. Rows and columns are added to the frontal matrix, and
pivot rows and columns are removed. Data movement is simpler, but higher fill-in can result if
the matrix cannot be permuted into a variable-band form with small profile. We consider a
combined unifrontal/multifrontal algorithm to enable general fill-in reduction orderings to be
applied without the data movement of previous multifrontal approaches. We discuss this
technique in the context of a code designed for the solution of sparse systems with unsymmet-
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1. INTRODUCTION

We consider the direct solution of sets of linear equations Ax 5 b, where
the coefficient matrix A is sparse, unsymmetric, and has a general nonzero
pattern. A permutation of the matrix A is factorized into its LU factors,
PAQ 5 LU, where P and Q are permutation matrices chosen to preserve
sparsity and maintain numerical accuracy. Many recent algorithms and
software packages for the direct solution of sparse systems are based on a
multifrontal approach [Amestoy and Duff 1989; Davis and Duff 1997; Duff
and Reid 1983; Liu 1992]. In this article, we will examine a new frontal
matrix strategy to be used within a multifrontal approach. We use the term
“unifrontal” for what is usually called the “frontal” method so that the term
“frontal” can be used generically for both unifrontal and multifrontal
methods.

Unifrontal and multifrontal methods compute the LU factors of A by
using data structures that permit regular access of memory and the use of
dense matrix kernels (such as the BLAS) in their innermost loops. On
supercomputers and high-performance workstations, this can lead to a
significant increase in performance over methods that have irregular
memory access and that do not use dense matrix kernels.

We discuss unifrontal methods in Section 2. We summarize the multi-
frontal method in Section 3, and in particular our earlier work on an
unsymmetric-pattern multifrontal method. We refer to this prior method as
UMFPACK V1.1[Davis 1995; Davis and Duff 1991; 1997]. The combination
of unifrontal and multifrontal methods is discussed in Section 4. The
combined algorithm is based on UMFPACK V1.1and the new frontal matrix
strategy discussed here. This combined algorithm is available in Release 12
of the Harwell Subroutine Library [HSL 1996] as the package MA38. In the
remainder of this article, we refer to the combined unifrontal/multifrontal
algorithm as MA38. We describe our sparse matrix test set, and how we
selected it, in Section 5. In Section 6, we consider the influence of a key
parameter that is present in both the UMFPACK V1.1and the MA38versions
of our unsymmetric-pattern multifrontal method. The performance of MA38
is discussed in Section 7, before a few concluding remarks and information
on the availability of our codes are given in Section 8.

2. UNFRONTAL METHODS

In a unifrontal scheme [Duff 1984a; Irons 1970; Zitney and Stadtherr 1993;
Zitney et al. 1996] the factorization proceeds as a sequence of partial
factorizations and eliminations on dense submatrices, called frontal matri-
ces. Although unifrontal methods were originally designed for the solution
of finite-element problems [Irons 1970], they can be used on assembled
systems [Duff 1984a], and it is this version that we study in this article.
For assembled systems, the frontal matrices can be written as

S F11 F12

F21 F22
D (1)
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where all rows are fully summed (that is, there are no further contributions
to come to the rows in (1)) and where the first block column is fully
summed. This means that pivots can be chosen from anywhere in the first
block column, and within these columns, numerical pivoting with arbitrary
row interchanges can be accommodated, since all rows in the frontal matrix
are fully summed. We assume, without loss of generality, that the pivots
that have been chosen are in the square matrix F11 of (1). F11 is factorized;
the Gaussian elimination multipliers overwrite F21; and the Schur comple-
ment

F22 2 F21F11
21F12 (2)

is formed using dense matrix kernels. The submatrix consisting of the rows
and columns of the frontal matrix from which pivots have not yet been
selected is called the contribution block. In the case above, this is the same
as the Schur complement matrix (2).

At the next stage, further rows from the original matrix are assembled
with the Schur complement to form another frontal matrix. The frontal
matrix is extended in size, if necessary, to accommodate the incoming rows.
The overhead is low (compared to a multifrontal method), since each row is
assembled only once and there is never any assembly of two (or more)
frontal matrices. The entire sequence of frontal matrices is held in the
same working array. Data movement is limited to assembling rows of the
original matrix into the frontal matrix, and storing rows and columns as
they become pivotal. There is never any need to move or assemble the
Schur complement into another working array. One important advantage of
the method is that only this single working array need reside in memory.
Rows of A can be read sequentially from disk into the frontal matrix.
Entries in L and U can be written sequentially to disk in the order they are
computed. Zitney [1992] gives a detailed description of frontal methods for
assembled problems.

An example is shown in Figure 1, where two pivot steps have already
been performed on a 5-by-7 frontal matrix (computing the first two rows of
U and columns of L, respectively). The columns are in pivotal order.
Entries in L and U are shown in lower case. Row 6 has just been assembled
into the current 4-by-7 frontal matrix (shown as a solid box). Columns 3
and 4 are now fully summed and can be eliminated. After this step, rows 7
and 8 must both be assembled before columns 5 and 6 can be eliminated
(the dashed box, a 4-by-6 frontal matrix containing rows 5 through 8, and
columns 5, 6, 7, 8, 9, and 12). The frontal matrix is, of course, stored
without the zero columns, columns 6 and 7 in the dashed box. The dotted
box shows the state of the frontal matrix when the next four pivots can be
eliminated. To factorize the 12-by-12 sparse matrix in Figure 1, a (dense)
working array of size 5-by-7 is sufficient to hold all frontal matrices.
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The unifrontal method works well for matrices with small profile, where
the profile of a matrix is a measure of how close the nonzero entries are to
the diagonal and is given by the expression

O
i51

n

$max
aijÞ0

~i 2 j! 1 max
ajiÞ0

~i 2 j!%,

where it is assumed the diagonal is nonzero, so all terms in the summation
are nonnegative. For matrices that are symmetric or nearly so, the unifron-
tal method is typically preceded by an ordering method to reduce the profile
such as reverse Cuthill-McKee (RCM) [Chan and George 1980; Cuthill and
McKee 1969; Liu and Sherman 1976]. This is typically faster than the
sparsity-preserving orderings commonly used by a multifrontal method
(such as nested dissection [George and Liu 1981] and minimum degree
[Amestoy et al. 1996; George and Liu 1989]). However, for matrices with
large profile, the frontal matrix can be large, and an unacceptable amount
of fill-in can occur. In particular, we lack effective profile reduction strate-
gies for matrices whose pattern is very unsymmetric.

The unifrontal scheme can easily accommodate numerical pivoting. Be-
cause all rows in (1) are fully summed and regular partial pivoting can be
performed, it is always possible to choose pivots from all the fully summed
columns (unless the matrix is structurally singular).

3. MULTIFRONTAL METHODS

In a multifrontal method [Amestoy and Duff 1989; Duff and Reid 1983;
1984; Liu 1992] for a matrix with a symmetric sparsity pattern, it is
common to use an ordering such as minimum degree to reduce the fill-in.
An example of a code that is primarily designed for matrices with a
symmetric pattern is the Harwell Subroutine Library (HSL) code MA41
[Amestoy and Duff 1989] that will also solve general unsymmetric systems
by holding explicit zeros so that the unsymmetric matrix is embedded in

Fig. 1. Frontal method example.

4 • T. A. Davis and I. S. Duff

ACM Transactions on Mathematical Software, Vol. 25, No. 1, March 1999.



one of symmetric structure. Orderings like minimum degree tend to reduce
fill-in much more than profile reduction orderings. The ordering is com-
bined with a symbolic analysis to generate an assembly tree, where each
node represents the elimination operations on a frontal matrix and where
each edge represents an assembly operation. When using the tree to drive
the numerical factorization, the only requirement is that eliminations at
any node cannot complete until those at the child nodes have been com-
pleted, giving added flexibility for issues such as exploitation of parallel-
ism. As in the unifrontal scheme, the complete frontal matrix (1) cannot
normally be factorized, but only a few steps of Gaussian elimination are
possible, after which the Schur complement F22 2 F21F11

21F12 (contribution
block) needs to be summed (assembled) with other data at the parent node.

In the unsymmetric-pattern multifrontal method [Davis 1995; Davis and
Duff 1991; 1997], the ordering, symbolic analysis, and numerical factoriza-
tion are performed at the same time. The tree is replaced by a directed
acyclic graph (DAG). A contribution block may be assembled into more than
one subsequent frontal matrix. For example, consider the LU factors

L 1 U 2 I 5 3
u11 0 0 u14 u15 0 0
l21 u22 u23 u24 u25 0 u27

l31 l32 u33 u34 u35 0 u37

l41 0 0 u44 u45 u46 u47

0 l52 l53 l54 u55 u56 u57

0 0 0 0 0 u66 u67

l71 l72 l73 l74 l75 l76 u77

4 (3)

of a matrix from Davis and Duff [1997]. The unsymmetric-pattern multi-
frontal factorization of this matrix is depicted in Figure 2. The heavily
shaded regions are the rows and columns of the factors, and the lightly
shaded regions are the contribution blocks. The arrows represent the
assembly operations from the contribution blocks into solid-lined regions of
the same shape in the frontal matrices of the parents. Note that the
contribution that the frontal matrix in the lower left of the figure (with the
u11 pivot) makes to rows 2 and 3 must be assembled into the frontal matrix
at the lower right of Figure 3, whereas its contribution to row 4 cannot be
assembled into the same frontal matrix.

The first pivot within a frontal matrix (called the “seed” pivot in Davis
and Duff [1997]) defines its size. This new frontal matrix is held in a larger
working array, to allow room for the assembly of subsequent pivot rows and
columns. The next pivots can reside either in the fully summed part or the
nonfully summed part. If a potential pivot lies in the nonfully summed part
of the frontal matrix, then it is necessary to sum its row and column before
it can be used as a pivot. This is possible as long as its fully summed row
and column can be accommodated within the larger working array, along
with the contribution block and all previous pivot rows and columns of the
frontal matrix. This is similar to the node amalgamation [Duff and Reid
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1983] used in the symmetric-pattern multifrontal method, except that here
we determine the amalgamation during numerical factorization, rather
than during the symbolic analysis.

We use the term normal multifrontal method to denote a multifrontal
method where each frontal matrix is first assembled, then all eliminations
are performed, and the contribution block is held (stacked) for assembly at
the parent node. Data movement is required both for stacking the contribu-
tion block and later assembling it into the parent frontal matrix. Both MA41
and UMFPACK V1.1 are examples of a normal multifrontal method. This
terminology is used primarily to distinguish this earlier approach from the
new multifrontal approach introduced in this article.

4. COMBINING THE TWO METHODS

Let us now consider an approach that combines some of the best features of
the two methods: namely, the lower data movement of unifrontal methods,
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Fig. 2. Assembly DAG for the unsymmetric-pattern multifrontal method.
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Fig. 3. First two frontal matrices for a pentadiagonal matrix.
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and the lower fill-in of normal multifrontal methods. We give an outline of
the approach, followed by some implementation details.

4.1 Outline

Assume we have chosen a pivot and determined a frontal matrix as in a
normal multifrontal method. At this stage, a normal multifrontal method
will select as many pivots as it can from the fully summed part of the
frontal matrix, perform the eliminations corresponding to these pivots,
store the pivotal rows and columns, and store the contribution block for
later assembly at the parent node of the assembly tree.

In UMFPACK V1.1, a potential pivot can be selected from the nonfully
summed part. If there is sufficient room in the working array, the row and
column of the pivot can be assembled and moved to the fully summed part.
Suppose that the rows and columns of such a potential pivot can fit in the
working array, but not at the same time as the previous pivotal rows and
columns of this frontal matrix. UMFPACK V1.1would stop the factorization
at this point, store the contribution block for later assembly, and continue
with a new frontal matrix. In our combined strategy (MA38), we instead
perform any arithmetic operations corresponding to the earlier pivots, store
their rows and columns (removing them from the frontal matrix), and then
assemble the new pivot row and column into the current working array.
The contribution block thus need not be stored for later assembly. In this
way, we avoid some of the data movement and assemblies of the multifron-
tal method.

In Figure 3, we show the first two frontal matrices for an n-by-n
pentadiagonal matrix. Suppose that UMFPACK V1.1uses a 4-by-4 working
array to hold each frontal matrix and that the pivots are on the diagonal in
order. The first two pivot rows and columns fit in the first frontal matrix;
this amalgamation causes a14 and a41 to be treated as “nonzero” entries in
the matrix (shown as a zero in the heavily shaded regions). The third pivot
row and column do not fit. Once the factorization operations have been
completed for the first frontal matrix (using a rank-2 update to the
contribution block, a Level 3 BLAS operation) its 2-by-2 contribution block
must then be added into the second frontal matrix, in a different working
array. A total of 2n floating-point values are copied between working
arrays, for the n/2 contribution blocks.

In MA38, the rank-2 update for the first two pivots is applied, and their
pivot rows and columns are stored and are removed from the frontal matrix
(just as in the unifrontal method). The 2-by-2 contribution block remains in
place, and the third and fourth pivot rows and columns can then be
assembled into the working array. The working array now holds what
UMFPACK V1.1would have for its second frontal matrix, but no data has
been moved for the 2-by-2 contribution block from the first frontal matrix.
As a result, the entire matrix is factorized in a single 4-by-4 working array,
and the contribution blocks are held within the working array and are
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never stacked, in contrast with the normal multifrontal method discussed
in the previous paragraph.

The combined strategy (MA38) allows the use of a general fill-reducing
ordering (as does the normal multifrontal method), rather than a profile-
reducing ordering. When it encounters submatrices with good profile (as in
the pentadiagonal case just considered), it takes advantage of them with a
unifrontal strategy and thus has less data movement than the normal
multifrontal method.

Although the motivation is different, the idea of continuing with a frontal
matrix for some steps before moving to another frontal matrix is similar to
recent work in implementing frontal schemes within a domain decomposi-
tion environment, for example Duff and Scott [1994], where several fronts
are used within a unifrontal context. However, in the case of Duff and Scott
[1994], the ordering is done a priori, and no attempt is made to use a
minimum-degree ordering.

4.2 Implementation

We now describe how this new frontal matrix strategy is implemented in
MA38, which uses a modified version of the minimum-degree algorithm,
called the approximate minimum-degree algorithm [Amestoy et al. 1996;
Davis and Duff 1997] that uses an upper bound on the degree counts.

MA38 consists of several major steps, each of which comprises several
pivot selection and elimination operations. To start a major step, MA38
selects a few (by default 4) columns from those of minimum upper bound
degree [Amestoy et al. 1996; Davis and Duff 1997] and computes their
patterns, true degrees, and numerical values. A pivot row is selected on the
basis of the upper bound on the row degree from those rows with nonzero
entries in the selected columns. The pivot must also satisfy a numerical
threshold test (it must be at least as large as u times the largest entry in
the pivot column, where u is 0.1 by default). Suppose the pivot row and
column degrees are r and c, respectively. A k-by-l working array is
allocated (k and l are gc and gr, respectively, where by default g 5 2). The
pivot row and column are fully assembled into the working array and
define the active frontal matrix. This active frontal matrix is c-by-r but is
stored in the k-by-l working array. The approximate-degree update and
assembly phase computes the bounds on the degrees of all the rows and
columns in this active frontal matrix and assembles previous contribution
blocks into the active frontal matrix. A row i in a previous contribution
block is assembled into the active frontal matrix if

(1) the row index i is in the nonzero pattern of the current pivot column,
and

(2) the column indices of the remaining entries in the row are all present in
the nonzero pattern of the current pivot row.

Columns of previous contribution blocks are assembled in an analogous
manner.
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The major step then continues with a sequence of minor steps at each of
which another pivot is sought from within the current frontal matrix.
These minor steps are repeated until the factorization can no longer
continue within the current working array, at which point a new major step
is started. When a pivot is chosen in a minor step, its rows and columns are
fully assembled into the working array and redefine the active frontal
matrix. If there are new rows or columns in the frontal matrix, then the
approximate degree update and assembly phase is repeated, as described
above. Otherwise, the update and assembly phase can be skipped (analo-
gous to mass elimination in a minimum-degree ordering algorithm [George
and Liu 1989]).

After a pivot is selected (at the start of a major step or in a minor step)
the corresponding row and column of U and L are computed, but the
updates from this pivot are not necessarily performed immediately. For
efficient use of the Level 3 BLAS, it is better to accumulate a few updates
(typically up to 16, if possible) and perform them at the same time.

MA38 and UMFPACK V1.1 differ in how the minor step is performed,
although both use the same amalgamation parameter, g. To find a pivot in
this minor step, a single candidate column from the current frontal matrix
is first selected, choosing one with least value for the upper bound of the
column degree, and any pending updates are applied to this column. The
column is assembled into a separate work vector, and a pivot row is
selected on the basis of the upper bound on the row degrees and a
numerical threshold test. Suppose the candidate pivot row and column
have degrees r9 and c9, respectively. Three conditions apply (where p is the
number of pivots currently stored in the active frontal matrix):

(1) If r9 . l or c9 . k, then factorization can no longer continue within the
active frontal matrix. Any pending updates are applied. The LU factors
are stored. The active contribution block is saved for later assembly
into a subsequent frontal matrix. The major step is now complete.

(2) If r9 # l 2 p and c9 # k 2 p, then the candidate pivot can fit into the
active frontal matrix without removing the p pivots already stored
there. Set p 4 p 1 1. Factorization continues within the active frontal
matrix by starting another minor step.

(3) Otherwise, if l 2 p , r9 # l or k 2 p , c9 # k, then the candidate
pivot can fit, but only if some of the previous p pivots are shifted out of
the current frontal matrix. Any pending updates are applied. The LU
factors corresponding to the pivot rows and columns are removed from
the front and stored. The active contribution block is left in place. Set
p 4 1. Factorization continues within the active frontal matrix by
commencing another minor step.

UMFPACK V1.1uses the same strategy as MA38, described above, except for
Case (3). In Case (3), UMFPACK V1.1saves the contribution block for later
assembly and terminates the major step. We know of no other multifrontal
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method that allows the factorization to proceed within the current frontal
matrix, as in Case (3). Case (1) does not occur in unifrontal methods, which
are given a working array large enough to hold the largest frontal matrix.
Cases (2) and (3) do occur in unifrontal methods. Taking simultaneous
advantage of all three cases can significantly reduce the memory require-
ments, data movement, and assembly operations, while still allowing the
use of orderings that reduce fill-in.

Figure 4 illustrates how the working array can be organized. The
matrices L1, L2, U1, and U2 in the figure are the columns and rows of the
LU factors corresponding to the pivots eliminated within this frontal
matrix. The matrix D is the contribution block. The arrows denote how
these matrices grow as new pivots are added. When pivots are removed
from the working array in Figure 4(b), for Case (3) above, the contribution
block does not need to be moved, thus accommodating the more dynamic
situation without further data movement. For coding reasons, the working
array in MA38 is held in reverse order, but the data movement is similar to
that shown in the figure.1

5. TEST MATRICES AND COMPUTING PLATFORM

In the next two sections, we discuss some experiments on the selection of
the amalgamation parameter g for MA38 and UMFPACK V1.1and compare
the performance of MA38 with other sparse matrix codes. In both sections,
we use the same set of sparse test matrices.

The sparse matrix collection at the University of Florida [Davis 1997]
contains 264 unsymmetric sparse matrices in assembled equation form (as
opposed to unassembled finite-element form). This set includes the Har-
well-Boeing Sparse Matrix Collection [Duff et al. 1989], Saad’s collection
[Saad 1994], Bai’s collection [Bai et al. 1996], and matrices from other
sources [Feldmann et al. 1996; Vavasis 1996; Zitney 1992; Zitney et al.
1996].

1A similar data organization is employed by the unifrontal HSL code MA42 [Duff and Scott
1993; 1996b].

Fig. 4. Data structures for the active frontal matrix.
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The 10 matrices that we will use in the next two sections are listed in
Table I. The table lists the name, order, number of entries, structural
symmetry, the discipline from which the matrix comes, and additional
comments. The structural symmetry is the ratio of the number of matched
off-diagonal entries to the total number of off-diagonal entries. An entry, aij

(j Þ i), is matched if aji is also an entry. This means that a symmetric
matrix has a structural symmetry value of 1.0. This measure is one minus
the index of asymmetry, originally defined in Duff [1984b].

We chose the test matrices using the following strategy. Since we are
considering a method for unsymmetric-patterned matrices, we selected all
nonsingular matrices from our collection with structural symmetry less
than or equal to 0.5 (89 matrices). We ran all six codes discussed in Section
7 for each of the 89 matrices and selected a matrix for our comparisons in
this article if the fastest factorization time of these six codes was greater
than 0.5 seconds. This leaves 29 matrices from which we discarded one
matrix too large for most methods on the workstation used for these
experiments (from the same application as TWOTONE) and 18 matrices
from sets already represented (two similar to PSMIGR 1, and all but two of
the LHR series2).

2Due to a modeling error, some of the original LHR matrices [Zitney et al. 1996] were
extremely ill conditioned. We used the following procedure to correct the matrices. If A is the
original matrix, the corrected matrix is A 1 PTFQT, where P and Q are permutation matrices
such that PAQ is in block upper triangular form. The matrix F is diagonal, with Fii 5
0.001 if @PAQ# ii $ 0 and –0.001 otherwise. The corrected matrix has the same nonzero

Table I. Test Matrices

Name n
Number of

Entries Sym. Discipline, Comments, and Source

AV41092 41,092 1,683,902 0.001 partial diff. eqn.: 2D, wild coefficients
[Vavasis 1996]

TWOTONE 120,750 1,224,224 0.245 circuit simulation: harmonic balance method
[Feldman et al. 1996]

PSMIGR 1 3,140 543,162 0.479 demography: US county-to-county migration
[Duff et al. 1989]

LHR71C 70,304 1,528,092 0.002 chemical eng.: light hydrocarbon recovery
[Zitney et al. 1996]

ONETONE1 36,057 341,088 0.074 circuit simulation: harmonic balance method
[Feldman et al. 1996]

ONETONE2 36,057 227,628 0.113 circuit simulation: harmonic balance method
[Feldman et al. 1996]

LHR14C 14,270 307,858 0.007 chemical eng.: light hydrocarbon recovery
[Zitney et al. 1996]

RW5151 5,151 20,199 0.490 probability: random walk Markov chain
[Bai et al. 1996]

ORANI678 2,529 90,158 0.071 economics: Australia
[Duff et al. 1989]

RDIST1 4,134 94,408 0.059 chemical eng.: reactive distillation
[Zitney 1992]
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All experiments reported in this article are on a SUN UltraSparc Model
170, with 256MB of main memory and a single 167MHz processor. Version
4.0 of the SUN Fortran and C compilers were used, with identical optimi-
zation parameters (SuperLU is written in C, the other codes in Fortran 77).
The BLAS that we use are from Daydé and Duff [1996]. The double-
precision matrix-matrix multiply routine, DGEMM, which most of the meth-
ods use, runs at about 80Mflops on this workstation. (Note that the
single-precision version, SGEMM, runs at about 145Mflops.) The theoretical
peak performance is 333Mflops for both double and single precision.

6. AMALGAMATION PARAMETER

We ran MA38and UMFPACK V1.1on all matrices in Table I, with g ranging
from 1.0 to 4.0 in increments of 0.1. For each matrix, we found the median,
with respect to g, of the MA38 run times. The MA38and UMFPACK V1.1run
times for this matrix were divided by this median to obtain normalized
MA38and UMFPACK V1.1run times. Then, for each value of g, we found the
median (and quartiles) of the normalized MA38 and UMFPACK V1.1 run
times for all 10 matrices. Figure 5 shows the median and quartiles for MA38

pattern as the original matrix. We selected the value 0.001 by trial and error. We used the
smallest value we found for which Matlab could compute at least two digits of accuracy in the
solution.

Fig. 5. Normalized run times for 10 matrices, as a function of the amalgamation parameter, g.
The median and quartiles for MA38 are given by the solid lines and the median for UMFPACK
V1.1 by the crosses.

12 • T. A. Davis and I. S. Duff

ACM Transactions on Mathematical Software, Vol. 25, No. 1, March 1999.



and the median for UMFPACK V1.1 of the normalized times for the 10
matrices, plotted as a function of g. The MA38 normalized factorization
times are plotted as solid lines, with the median time data points circled.
The mean normalized factorization time for UMFPACK V1.1is given by x’s.
A similar comparison of the normalized memory requirements (excluding
fragmentation of the work arrays) of both methods is shown in Figure 6.

Although the fill-in and operation count (not shown) are typically lowest
when the minimum amount of memory is allocated for each frontal matrix
~g 5 1!, the factorization time is often high because of the additional data
movement required to assemble the contribution blocks and the fact that
the dense matrix kernels are more efficient for the larger frontal matrices
that are produced when g . 1.

From the results in Figures 5 and 6, we examine the effect and sensitiv-
ity of execution time and memory requirements to changes in the value of
g. There are some rapid fluctuations in the graphs, particularly for UMF-
PACK V1.1. This is caused by changes in pivot order with different values
of g. A small change in the working array size can affect whether or not a
candidate pivot is selected in a minor step. If it is not selected, we start a
new frontal matrix, and a new pivot candidate is found in a major step
which considers all columns. This is a very different pivot selection strategy
from that used in the minor steps. This high sensitivity is not so noticeable
with MA38 because it can continue for longer with the minor step strategy
after removing pivot rows and columns from the active frontal matrix.

Fig. 6. Normalized memory requirements for 10 matrices, as a function of the amalgamation
parameter, g. The median and quartiles for MA38are given by the solid lines and the median
for UMFPACK V1.1by the crosses.
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Although the frontal matrices become larger with larger values of g, there
are fewer of them, and thus the median memory requirements increase
only slightly as g increases. For these 10 matrices, the median factorization
time is lowest when g is 2.1. From experiments with a wider range of
matrices, we have found that a default value of g 5 2 is a reasonable
trade-off between memory usage and factorization time.

We also notice, from the results in this section, that exploiting a unifron-
tal strategy within a multifrontal code (MA38) can reduce both factorization
time and memory requirements. Comparing MA38 with its predecessor,
UMFPACK V1.1, Figures 5 and 6 show a median improvement of 18% in the
run time and 14% in the memory requirements for these 10 matrices.
Although not shown in the plots, MA38 is almost four times faster than
UMFPACK V1.1for one matrix (LHR71C).

7. PERFORMANCE

In this section, we compare the performance of the combined unsymmetric-
pattern unifrontal/multifrontal code (MA38) with the unsymmetric-pattern
multifrontal code UMFPACK V1.1[Davis 1995; Davis and Duff 1991; 1997],
the symmetric-pattern multifrontal code MA41 [Amestoy et al. 1989], the
unifrontal code MA42, [Duff 1984a; Duff and Scott 1993; 1996b], and two
sparse matrix factorization codes based on partial pivoting: MA48 [Duff and
Reid 1993; 1996] and SuperLU Version 1.0 [Demmel et al. 1995; 1997].

Each code can factorize general unsymmetric matrices, and all use dense
matrix kernels [Dongarra et al. 1990] to some extent. Each code was given
1.8GB of (virtual) memory to factorize the matrices listed in Table I. Each
code has a set of input parameters that control its behavior. We used the
recommended defaults for most of these, with a few exceptions that we now
indicate.

The default numerical threshold u varies with each code. For MA41, it is
0.01, and the test is by rows, not columns. SuperLU and MA42 select the
largest entry in each column (effectively, u 5 1.0). The rest use u 5 0.1.
We used the default value in each case.

Although MA41 has an option for exploiting shared-memory parallelism,
we did not use this option in the runs for this article. Using a nondefault
option, MA41 can preorder a matrix, using a maximum transversal algo-
rithm, to ensure the diagonal of the permuted matrix is zero-free. We
selected this option because it is recommended for matrices with highly
unsymmetric nonzero patterns. This is followed by a default approximate
minimum-degree ordering (using the HSL code MC47[Amestoy et al. 1996])
on the nonzero pattern of A 1 AT. The supernodal partial pivoting code
SuperLU preorders the columns via its default method, a multiple mini-
mum-degree ordering (MMD[George and Liu 1989]) on the nonzero pattern
of ATA.

We used a revised version of the unifrontal code MA42 that takes
advantage of explicit zeros in the frontal matrix. MA42 is able to operate
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both in-core and out-of-core, using direct-access files. It was primarily
designed for a finite-element entry, but we used a simplified driver (MA43),
that does not use out-of-core storage and assumes the matrix is held in
equation form (although one matrix, AV41092, is obtained from finite-
element calculations). In columns “Mem. Used” and “Min. Mem.,” we show
the storage required for the factorization if the factors are held in-core and
an estimate of the memory required for the out-of-core factorization,
respectively. In one case (TWOTONE), there was insufficient storage to
hold the factors, but we compute an estimate which we display.

The results, shown in Table II, include the following statistics for each
code (all times are CPU times):

(1) Factorization time, which includes preordering and symbolic factoriza-
tion, if any.

(2) Refactorization time, which is the numerical factorization of a matrix
whose pivot ordering and symbolic factors are known. It excludes
preordering and symbolic factorization.

(3) Solve time, excluding iterative refinement.

(4) Solve time, including iterative refinement. MA41, MA38, MA48, and
SuperLU all use the same method [Arioli et al. 1989]. MA42 and
UMFPACK V1.1do not provide this option.

(5) Entries in the LU factors, in millions.

(6) Memory used to obtain the timings listed in the tables, in millions of
eight-byte double-precision words. For MA38, UMFPACK V1.1, and MA48,
this includes fragmentation within the work arrays.3 Recall that the
workstation used for the experiments has 33.6 million words of main
memory (256MB), and about 242 million words of virtual address space
were given to each code (1.8GB).

(7) Minimum memory requirements, in millions of words. For the unifron-
tal code MA42, this is the in-core memory required for out-of-core
factorization (it also includes the memory required to hold the matrix
A). For MA38, UMFPACK V1.1, and MA48, this is the minimum amount
required to guarantee a successful factorization and is the statistic used
in Figure 6. This excludes fragmentation in the work arrays, which is
removed via garbage collection whenever necessary. The partial pivot-
ing code SuperLU and the sequential option of the symmetric-pattern
multifrontal code MA41do not have fragmentation in their work arrays,
and thus do not require garbage collection. For these two methods the
minimum required memory and actual memory used are the same,
although we needed to add another counter to the HSL version of MA41
to compute this statistic.

3MA48does not compute this statistic.
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(8) Floating-point operation count in the factorization phase, in millions.
The values given are obtained from the codes. Operations for the
assembly phase are not included.

Results within 10% of the best for each statistic and matrix are underlined.
We compared the solutions obtained from each code and found that all
codes that provide iterative refinement compute the solutions with compa-
rable accuracy, in terms of the scaled residual and the relative error. When

Table II. Results

Factor Refac. Solve Solve, Entries Mem. Min. flop
Matrix/ Time Time Time w/Iter. in LU Used Mem. Count

Code (sec.) (sec.) (sec.) (sec.) (106) (106) (106) (106)

AV41092
MA38 1307.9 1618.3 9.88 55.18 39.38 89.58 59.60 57110
UMFPACK

V1.1
1502.9 1689.0 10.64 — 41.33 102.53 58.49 70290

MA41 296.6 254.0 1.39 7.72 16.53 22.65 22.65 11380
MA42 4236.3 4232.6 32.74 — 135.35 148.66 10.10 235079
MA48 3335.7 1296.1 5.57 50.73 27.31 — 58.46 59040
SuperLU 3799.0 2962.8 14.04 136.43 39.95 52.56 52.56 64970
TWOTONE
MA38 220.7 171.4 1.46 6.24 9.75 26.46 17.94 6988
UMFPACK

V1.1
228.5 174.9 1.52 — 9.59 35.04 19.31 6493

MA41 817.2 741.1 2.85 13.56 26.44 42.97 42.97 38230
MA42 — — — — — 333.60 4.64 —
MA48 725.0 306.9 1.29 11.70 10.86 — 24.65 14680
SuperLU 758.0 697.6 8.23 147.22 24.73 37.77 37.77 12420
PSMIGR 1
MA38 219.0 197.5 0.53 3.01 6.37 46.34 22.86 9412
UMFPACK

V1.1
207.4 195.6 0.71 — 6.36 26.28 22.02 9428

MA41 191.7 188.3 0.53 2.14 6.28 20.36 20.36 9214
MA42 256.0 255.0 0.66 — 8.27 17.07 8.75 13856
MA48 206.1 178.7 0.51 5.25 6.44 — 14.01 10580
SuperLU 938.7 774.5 1.80 20.21 8.71 11.10 11.10 16630
LHR71C
MA38 114.5 92.9 1.01 22.25 6.93 11.72 10.87 496
UMFPACK

V1.1
444.3 422.3 1.96 — 8.35 13.26 12.55 732

MA41 1012.8 995.7 3.63 82.27 18.84 23.75 23.75 4683
MA42 340.6 337.4 1.41 — 12.83 16.15 2.97 1202
MA48 492.3 286.5 1.11 30.51 6.51 — 16.54 695
SuperLU 479.3 451.4 2.26 64.79 7.15 11.57 11.57 487
ONETONE1
MA38 60.8 57.3 0.54 2.16 4.69 15.92 7.92 2148
UMFPACK

V1.1
73.7 69.2 0.58 — 5.05 17.34 9.19 2855

MA41 194.7 189.1 0.82 3.88 9.50 12.97 12.97 8169
MA42 164.9 164.2 1.64 — 16.58 18.52 1.49 6012
MA48 323.4 109.7 0.56 4.87 5.11 — 11.29 4564
SuperLU 109.3 97.9 1.16 9.49 4.68 7.10 7.10 2540
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iterative refinement is not in use, MA38 and UMFPACK V1.1 produce
relative errors with a loss of about two digits of accuracy for six of the
matrices when compared with the other methods, and the same accuracy
for the other four.

Over all the codes, MA38has the fastest factorization time for four out of
the 10 matrices and is within 10% of the fastest time for two more matrices.
Except for one matrix (AV41092) it never takes more than about twice the
time of the fastest code. It also has the fastest refactorization time for five

Table II. Continued

Factor Refac. Solve Solve, Entries Mem. Min. flop
Matrix/ Time Time Time w/Iter. in LU Used Mem. Count

Code (sec.) (sec.) (sec.) (sec.) (106) (106) (106) (106)

ONETONE2
MA38 10.7 5.0 0.29 1.25 1.27 4.09 2.54 159
UMFPACK

V1.1
12.6 6.8 0.22 — 1.46 4.82 3.33 217

MA41 19.1 14.9 0.29 1.61 2.68 3.90 3.90 601
MA42 35.2 34.8 0.64 — 7.10 8.04 0.73 684
MA48 36.6 8.0 0.21 2.02 1.26 — 3.36 223
SuperLU 9.2 6.6 0.44 3.77 1.31 2.70 2.70 132
LHR14C
MA38 8.9 4.8 0.17 1.19 1.23 2.21 2.01 64
UMFPACK

V1.1
11.4 5.7 0.20 — 1.62 3.40 2.70 122

MA41 28.9 27.1 0.32 1.58 3.14 4.54 4.54 518
MA42 19.2 18.6 0.28 — 2.57 3.43 0.81 235
MA48 21.1 4.7 0.17 1.81 1.22 — 3.15 95
SuperLU 12.0 6.7 0.35 3.81 1.37 2.26 2.26 83
RW5151
MA38 2.4 1.4 0.06 0.14 0.41 1.24 0.65 47
UMFPACK

V1.1
3.1 2.2 0.06 — 0.48 1.39 0.89 69

MA41 2.2 2.1 0.07 0.15 0.67 0.89 0.89 91
MA42 1.6 1.6 0.07 — 0.79 0.89 0.08 63
MA48 6.5 2.5 0.05 0.71 0.47 — 1.04 126
SuperLU 1.8 1.6 0.10 0.73 0.39 0.65 0.65 33
ORANI678
MA38 1.2 0.4 0.02 0.21 0.11 0.74 0.46 4
UMFPACK

V1.1
1.2 0.4 0.02 — 0.11 0.67 0.48 4

MA41 5.3 3.6 0.04 0.21 0.36 2.79 2.79 70
MA42 8.6 8.5 0.08 — 1.00 2.78 1.82 267
MA48 1.1 0.2 0.02 0.20 0.13 — 0.39 10
SuperLU 39.7 1.6 0.16 1.70 0.80 1.00 1.00 31
RDIST1
MA38 1.6 0.8 0.04 0.24 0.44 0.97 0.74 22
UMFPACK

V1.1
2.0 1.1 0.06 — 0.54 1.39 0.97 31

MA41 0.7 0.4 0.03 0.20 0.28 0.49 0.49 10
MA42 2.3 2.2 0.08 — 1.02 1.22 0.20 90
MA48 7.4 1.3 0.06 0.53 0.41 — 1.04 25
SuperLU 1.6 0.8 0.08 0.94 0.39 0.60 0.60 17
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matrices and is within 10% of the fastest time for one more matrix. The
solve phase of MA38 is the fastest for four matrices and within 10% of the
fastest for two more. Although the time for MA38 solution with iterative
refinement seems to rank even better, both the MA48and SuperLU iterative
refinement times include also the calculation of the matrix condition
number and an estimate of the forward error. Typically this requires twice
as much time as only computing the backward error (as in the iterative
refinement runs for MA38and MA41). The memory requirements of MA38are
rarely the lowest but are usually comparable to the other in-core codes for
most matrices. The floating-point operation count for MA38 is often much
less than its predecessor, UMFPACK V1.1.

8. SUMMARY

We have demonstrated how the advantages of the unifrontal and multifron-
tal approaches can be combined. The resulting algorithm (MA38) performs
well for unsymmetric matrices from a wide range of disciplines and is an
improvement over the previous unsymmetric-pattern multifrontal code
(UMFPACK V1.1). Other differences between UMFPACK V1.1 and MA38
include an option of overwriting the matrix A with its LU factors, printing
of input and output parameters, iterative refinement with sparse backward
error analysis [Arioli et al. 1989], avoidance of an extra copy of the
numerical values of A when iterative refinement is not in use, more use of
Level 3 BLAS within the numerical refactorization routine, and a simpler
calling interface. These features improve the robustness of the code and
result in a modest decrease in memory use.

Since the codes being compared all offer quite different capabilities and
are designed for different environments and different classes of matrices,
the results should not be interpreted as a direct comparison between them.
For example, MA38 is designed for structurally unsymmetric matrices. A
code like MA41 would normally be expected to perform much better on
matrices that are symmetrically structured or nearly so. We also note that
our current discussion compares performance on only one machine, and as
shown in Duff and Scott [1996a], comparative behavior can be strongly
influenced by the computing platform being used. However, what we would
like to highlight is the improvement that our new technique used in MA38
brings to the unsymmetric-pattern multifrontal method and that MA38is at
least comparable in performance with other sparse matrix codes on our
unsymmetric test set.

The combined unifrontal/multifrontal method is available as the Fortran
77 codes, UMFPACK Version 2.2 in Netlib [Dongarra and Grosse 1987],4

and MA38 in Release 12 of the Harwell Subroutine Library [HSL 1996].5

4Versions 1.0 through 2.2 of UMFPACKmay only be used for research, education, or benchmark-
ing by academic users and by the U.S. Government. For a copy, send email to
netlib@ornl.gov with the message send index from linalg . Other users may use
UMFPACKonly for benchmarking purposes. Version 2.2 includes complex and complex*16
codes.
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