
Game Development for Computer Science Education

Chris Johnson
University of Wisconsin, Eau

Claire
johnch@uwec.edu

Monica McGill
Bradley University

mmcgill@bradley.edu

Durell Bouchard
Roanoke College

bouchard@roanoke.edu

Michael K. Bradshaw
Centre College

michael.bradshaw@
centre.edu

Víctor A. Bucheli
Universidad del Valle
victor.bucheli@

correounivalle.edu.co

Laurence D. Merkle
Air Force Institute of

Technology
laurence.merkle@afit.edu

Michael James Scott
Falmouth University

michael.scott@falmouth.ac.uk

Z Sweedyk
Harvey Mudd College

z@cs.hmc.edu

J. Ángel
Velázquez-Iturbide

Universidad Rey Juan Carlos
angel.velazquez@urjc.es

Zhiping Xiao
University of California at

Berkeley
patricia.xiao@berkeley.edu

Ming Zhang
Peking University

mzhang_cs@pku.edu.cn

ABSTRACT
Games can be a valuable tool for enriching computer science
education, since they can facilitate a number of conditions
that promote learning: student motivation, active learning,
adaptivity, collaboration, and simulation. Additionally, they
provide the instructor the ability to collect learning metrics
with relative ease. As part of 21st Annual Conference on
Innovation and Technology in Computer Science Education
(ITiCSE 2016), the Game Development for Computer Sci-
ence Education working group convened to examine the cur-
rent role games play in computer science (CS) education, in-
cluding where and how they fit into CS education. Based on
reviews of literature, academic research, professional prac-
tice, and a comprehensive list of games for computing educa-
tion, we present this working group report. This report pro-
vides a summary of existing digital games designed to enrich
computing education, an index of where these games may fit
into a teaching paradigm using the ACM/IEEE Computer
Science Curricula 2013 [13], and a guide to developing digi-
tal games designed to teach knowledge, skills, and attitudes
related to computer science.

1. INTRODUCTION
As part of ITiCSE 2016, the Game Development for Com-

puter Science Education working group convened to examine
the current role games play in computer science (CS) edu-

c©2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in Proceedings of the
21st Annual ACM Conference on Innovation and Technology in Computer Science
Education, July 11-13, 2016, Arequipa, Peru.

ITiCSE ’16 July 11–13, 2016, Arequipa, Peru
c© 2017 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: https://doi.org/10.1145/3024906.3024908

cation, including where and how they fit into CS education.
To guide our discussions and analysis, we began with the
following question: in what ways can games be a valuable
tool for enriching computer science education?

In our work performed prior to our first face-to-face meet-
ing, we reviewed over 120 games designed to teach comput-
ing concepts (which is available for separate download [5])
and reviewed several dozen papers related to game-based
learning (GBL) for computing. Hainey [57] found that there
is “a dearth of empirical evidence in the fields of computer
science, software engineering and information systems to
support the use of GBL.” This is not unique to CS, how-
ever. A review by Papastergiou [95] found limited evidence
to support games for learning, and a systematic review by
Graafland et al. [54] also found no empirically validated
games to support education in the medical field.

Though our reviews were not designed to be comprehen-
sive, our findings support these claims. This lack of evidence
prevented us from identifying which of these games are most
effective in meeting educational outcomes, because little ev-
idence exists to make such claims, and it further prevented
us from stating which game design frameworks for CS edu-
cation might be most effective across various demographics.
This required us to rethink our approach and to consider
how we would analyze the games and the relevant research
in a way that would provide significant value for the broader
computer science educational research community.

The purpose of this working group report, therefore, is:

1. to provide a summary of existing digital games de-
signed to enrich computing education and an index of
where these games may fit into a teaching paradigm us-
ing the ACM/IEEE Computer Science Curricula 2013
(CS2013), and

2. to provide a guide to developing digital games designed
to teach knowledge, skills, and/or attitudes related to
computer science.

To narrow the broad scope of games, we have chosen to
focus on digital games; however, we note that analog games
(board games, card games, etc.) can also be an important
tool in enriching student learning. Games like those pre-
sented in CS Unplugged [22] provide a meaningful way of
implementing active learning within a curriculum [23].

Though an initial goal for this report was to also include
a guide for evaluating the effectiveness of games for CS edu-
cation, given the expansiveness of such a task, we will focus
on evaluation and assessment in follow-up work.

Game developers, educational theorists, and others may
find value within this report. However, the primary tar-
get audience is academic researchers interested in develop-
ing games for enriching CS education. This perspective is
reflected throughout this report.

This working group is unconventional in that its work will
span two ITiCSE conferences. This first report is divided
into several sections, starting with a background that intro-
duces important vocabulary related to game design theory,
provides a summary of previous related computer science
education research, and provides a summary of relevant ed-
ucational psychology. It also provides a brief review of games
created for computer science education and how these map
to CS2013.

This is followed with case studies of four games designed
to teach CS concepts. The games are analyzed in two ways:
1) for their design elements using the Mechanics, Dynam-
ics, and Aesthetics (MDA) framework and 2) for how one
might evaluate their effectiveness. Using information from
this analysis, our background research, and our previous ex-
perience creating games, we provide a set of best practices
for creating meaningful games for CS education.

2. BACKGROUND
There is a unique relationship between digital games and

computer science, since computer science is the foundation
of such games. But more than that, the programming pro-
cess itself contains many of the same elements found in
games. In 1980, Thomas W. Malone [84] stated:

“In some senses, computer programming itself is
one of the best computer games of all. In the
‘computer programming game,’ there are obvi-
ous goals and it is easy to generate more. The
’player’ gets frequent performance feedback (that
is, in fact, often tantalizingly misleading about
the nearness of the goal). The game can be
played at many different difficulty levels, and there
are many levels of goals available, both in terms
of the finished product (whether it works, how
fast it works, how much space it requires, etc.)
and in terms of the process of reaching it (how
long it takes to program, etc.). Self-esteem is
crucially involved in the game, and there is prob-
ably the occasional emotional or fantasy aspects
involved in controlling so completely, yet often
so ineffectively, the behaviour of this responsive
entity. Finally the process of debugging a pro-
gram is perhaps unmatched in its ability to raise
expectations about how the program will work,
only to have the expectations surprisingly disap-
pointed in ways that reveal the true underlying
structure of the program.”

Though other areas of study may also contain elements of
this process, programming offers a unique parallel. Malone’s
insight into how self-esteem is intertwined into the process
is worth noting, as CS educational research supports the no-
tion that learner and instructor self-esteem and self-efficacy
are important to the learning process. We mention this here,
as it is important to note that although games for CS edu-
cation may be designed to teach disciplinary concepts, such
as programming constructs or computational thinking, they
may have positive or negative unintended outcomes that
could affect behaviors and beliefs about computing.

This section is designed to provide a contextual back-
ground to readers and describe the important elements of
research relevant to the remainder of this report. We define
the value of using games to teach computer science educa-
tion. We also provide a summary of vocabulary for game
design, as well as CS educational research and the broader
educational psychology that is relevant to game design.

2.1 The Case for Educational Games
Games can facilitate learning across a variety of disci-

plines in multiple ways. Even games designed specifically for
entertainment have been shown to have educational value.
Though much has been written previously over the last cou-
ple of decades about games in education, we provide a brief
synopsis for the case of using educational games for teaching
computing.

Educational outcomes and competencies of modern ed-
ucation are changing, and the quickly changing nature of
computing makes it important for educators to keep pace.
Learners are growing up with laptops, tablets and cellphones.
Today, people continuously learn and interact daily with in-
formation and communications technologies [27]. The mod-
ern workforce needs relevant education focused more on solv-
ing problems individually and in groups. Jobs are changing
and are often characterized by increased technology use, ex-
tensive problem solving, networking and complex communi-
cation [79].

A recent ESA Essential Facts Report [45] finds that 65%
of US households own a device used to play video games.
Games are culturally relevant to today’s learners, and pre-
vious research shows that learners may feel more engaged
when culturally relevant tools are be harnessed for educa-
tion [72]. Previous research demonstrates that digital games
sustain engagement and motivation across time [52, 104],
and that this engagement is strongly associated with student
achievement [119]. In addition, students are more intrinsi-
cally motivated [53] and their work can focus on complex
thinking and problem solving through games [19].

Traditional instruction can be improved by games given
that they can foster collaboration, decision-making, problem-
solving, communication, innovation, production, and proce-
dural thinking [66, 115]. The game World of Warcraft, for
instance, is an example of a game that drives individual
specialization within cross-functional teams working collab-
oratively to meet goals [53]. Games have broad appeal and
the evidence does not support many of the stereotypes per-
petuated in popular media that only young males play dig-
ital games [129]. Approximately 41% of players are female,
suggesting that technology acceptance is not a significant
challenge for a wide demographic.

Like other media, they do not automatically do this just
by virtue of being games. Freeman et al. [50] make a strong

case for why new active-learning approaches, such as games,
are needed in STEM fields. Games can be a valuable tool for
enriching computer science education, since they encompass
a combination of motivation techniques, student engage-
ment, adaptivity, simulation, collaboration and collection
of performance metrics [55]. While traditional instruction is
primarily focused on concepts and procedures, game-based
learning in computer science can improve the ability for stu-
dents to apply learning outside of the context in which it
is learned, or transversal competence. Additionally, educa-
tional games are designed based on learning outcomes and
can provide immediate feedback to the learner [40].

2.2 Establishing Vocabulary
What do we mean when we talk about game development

for computer science education? As computer scientists, we
tend to desire operational definitions capable of making clear
distinctions and clear classifications. However, defining the
term game is philosophically problematic and has a long
history of contention and variation. Given the lack of agree-
ment, Ellis [44] concludes:

“The perplexing problem of how to define play
will only be resolved by continually regenerating
new definitions that fit current concepts of play
behavior.”

Arjoranta [15] similarly writes:

“Games are a sociocultural phenomenon and, there-
fore, they should be defined and redefined in a
hermeneutic circle that enhances our understand-
ing of them.”

There is even an online generator that proposes new def-
initions [8, 47]. Since the 1930s, philosophers and game
scholars have proposed more than 60 definitions across mul-
tiple contexts [123]. However, the Wittgensteinian approach
endorsed by Arjoranta [15] deviates from more essentialist
positions to a position that is more pragmatic, framing defi-
nitions to deliberately focus on purpose, exclusion, and jus-
tification for a particular context and allowing them to be
modified as practical needs and contexts change. In this
section we further examine how games have been defined.

2.2.1 Games
Strenos [123] observes ten key “points of interest” in the

way that game definitions vary. These are: rules, purpose
and function, artifact or activity, separate or connected, the
role of the player, productivity, competition and conflict,
goals and end conditions, construction of category, and co-
herence. Using these dimensions, we constructed our own
conceptual framework and identified several definitions that
resembled and delimited, to a small extent, the notion of
an artifact that would provide a game-like experience for an
educational purpose. Specifically, we adapted and refined
those proposed by Juul [67], Deterding [38], and Suites [125]
to fit our desired practical context. Thus, we arrive at the
following proposed definition for a game for computing ed-
ucation:

A digital tool expressly designed to directly facil-
itate the development of computing knowledge,
skills, and dispositions within a lusory context by
leveraging the principles and elements of gameful
design.

We use the term digital in order to exclude non-digital
games, such as board games like c-Jump and activities like
CS Unplugged. Scope is a major consideration of this report,
and though we recognize the value that non-digital games
have in education, we leave the evaluation of non-digital
games for computing education to future research.

The term tool is used deliberately to emphasize that the
artifacts we are studying are merely educational tools, sim-
ilar to a book or an in-class exercise. Games are not a
panacea that will replace educators, nor are they currently
self-contained intelligent tutoring systems. As such, these
tools potentially have many modes of deployment which
need to be considered in design, including in-class activi-
ties, alternatives to homework tasks, and general out-of-class
practice.

The clause expressly designed...leveraging the principles
and key elements of gameful design refers to the use of game
elements being explicit and complete. There are many e-
learning tools and gamified applications that may include
some elements of gameful design, while excluding many oth-
ers [39]. As such, we focus on those key elements that com-
prise a full game: “rules, goals, and variable quantifiable
[positive and negative] outcomes” [67].

Callois [28] makes the distinction between paidea, which is
play characterised by no immediate structure or well-defined
objective, and ludus, which is play characterised by struc-
tured rules where players strive to achieve a fixed goal. To
this end, we use the term directly facilitate to emphasise
that our aim is to study ludus. In our context, this means
that we exclude tools like Scratch—which facilitate free and
open learning based on paidea. The games we examine em-
bed specific learning objectives and incorporate some form
of scaffolding that aids learners to achieve the objectives.

We borrow the term lusory context from Suites [125] who
uses the term “lusory attitude” to describe players engaged
in gameplay. Specifically, we mean the construction of some
imagination framework and its adoption during play. This
is related to Huizinga’s [62] notion of the magic circle, which
he defines as, “a shield of sorts, protecting the fantasy world
from the outside world” [29]. However, we emphasise the
word context because this membrane is permeable, blurring
boundaries between entertainment and learning [132].

The definition is proposed to frame the goal of the cur-
rent working group and to encapsulate its activities. We
anticipate that this definition will become more refined as
discourse on game development in computer science edu-
cation matures. Furthermore, as new evidence emerges to
reveal the properties of games that are useful to educators,
the very notion of our object of study could shift away from
games. Instead, it could focus on artifacts that adopt useful
properties from a wide range of immersive and interactive
media.

2.2.2 Formal Elements and the MDA Model
Beyond defining games, a further complication is estab-

lishing the vocabulary of game design brought about through
the formal study of games. Game studies has yet to ma-
ture, which is to be expected, as 2001 marked the year
when game scholars declared game studies a self-contained
field of study [12]. However, as Costikyan [33] notes in his
seminal paper, “I have no words, but I must design,” this
youth brings complications. The lingua franca of games is
not firmly established. That is, designers’ understanding of

Player The system requires players which it in-
teracts with. There are usually mul-
tiple operators, who can be people or
computers.

State The system has different conditions.
Rules Rules are operational, constitutive,

and implied methods of state transi-
tion [106]. They control the setup of
the game, the progression of play, and
the resolution.

Sequence The flow of state transition. Some sys-
tems are turn-based, while others are
real-time, or some combination.

Representation The system has a means to represent
its state using tokens.

Goal The end-state of the system, which the
players strive towards.

Decisions The system must present players with
“a series of interesting choices” [87]. Of-
ten this by presenting obstacles or pro-
viding some form of challenge.

Interface The system requires an interface which
facilitates feedback (output) and re-
sponse (input).

Table 1: Adapted from Salen and Zimmerman [106] and
Schreiber and Braithwaite [109].

key terms varies and this complicates the communication of
design knowledge and how we describe game experiences.
For example, terms such as gameplay are used in ambiguous
ways and, in the absence of a shared understanding, lack
practical utility.

This problematizes what we refer to when we discuss the
“principles” and “key elements” of gameful design. A game
overall can be characterised by a system of interaction which
possesses abstract qualities like player intention, perceivable
consequence, and narrative [31]. Even such a simple notion,
however, has weaknesses. The term narrative could refer to
the story embedded in the game by the designer, but it is
also commonly used in a way that includes the emergent
story created by players. So, to clarify what these principles
and key elements are, we extend Church’s [31] notions and
summarise them in Table 1.

These elements define the aspects of a game that designers
need to consider. However, it is not clear how they work
together to form a game. To aid in this endeavour, several
models exist (e.g., [107, 65]). One such model, which has
seen widespread adoption by both game scholars and games
industry professionals, is the MDA Model [65]. This is the
notion that a game experience can be understood in terms of
three interconnected and interrelated concepts: mechanics;
dynamics; and aesthetics.

The mechanics are the specific parts of a game design,
comprised of elements such as the rules of the game. These
could be the game’s possible states, transitions from one
state to another, ways in which players trigger these tran-
sitions, representation of state, and so on. In other words,
they are the parts of the game that limit or restrict the
player’s actions, control the flow of the game, and encode
some kind of meaning. The dynamics refer to the behaviors
of the player-game system as a game is being played. In

Figure 1: The interplay of mechanics, dynamics, aesthetics,
and culture that is used to inform a game’s design.

other words, the actual flow of the game. This flow emerges
from the interaction of the mechanics with each other in re-
sponse to player action. The aesthetics, then, refer to the
resulting experience of playing the game. This is conceived
from the perspective of a player as they play. This is distinct
from the theme of the game and the “look and feel” of the
user interface. It instead refers to the player’s experience
itself. It is sometimes framed as the set of emotions that a
game may evoke.

The mechanics drive the dynamics because they constrain
the actions the player may take. However, the player also
has a highly influential role in the formation of the game dy-
namics, since games typically provide players with a choice
of possible actions. Further, the skills of some players may
be insufficient to sustain certain dynamics, while other play-
ers discover subversive ways to exploit the available mechan-
ics in ways that designers may not have anticipated. These
different dynamics can have a profound effect on the result-
ing aesthetic of the game. Again, there is variance. For
example, solving a puzzle may evoke satisfaction and pride.
However, if the puzzles are too repetitive, they may evoke
boredom and annoyance. Players can also differ in the way
they perceive an experience. Figure 1 illustrates an adapta-
tion of MDA, where Scott [110] proposes culture as a mod-
erating factor alongside dynamics. On the one hand, culture
may shape a player’s behaviour, while on the other, culture
may shape a player’s values and thereby influence how they
interpret signs and symbols to construct meaning. Hunicke
et al. [65] state:

“From the designer’s perspective, the mechan-
ics give rise to dynamic system behavior, which
in turn leads to particular aesthetic experiences.
From the player’s perspective, aesthetics set the
tone, which is born out in observable dynamics
and eventually, operable mechanics.”

It is also important to highlight a game designers’ focus
on aesthetics. As computer science students and educators,
it may be tempting to focus primarily on the mechanics,
since art, sound, and user interface design are typically not
components of computer science education. However, the
aesthetics are often what makes a game fun and more en-
gaging, and considering aesthetics can be pivotal to a game’s
success.

2.2.3 Players
As with teaching, the target audience of a game is of pri-

mary consideration. Players moderate the aesthetics of the
games they play, as their value systems will shape their inter-
pretations, and different dynamics may be accessed by dif-
ferent demographics [133, 110]. Several player models have

been considered and used in designing games for different
target demographics. Each of the following player models
with various levels of complexity have been used to identify
player preferences, providing information to the designers
who can then integrate those preferences within their game.
Though not a comprehensive list, this provides some insight
into how to consider player preferences within gameplay.
When designing a game, designers can link gameplay fea-
tures to specific player preferences to achieve specific goals.
For example, a game designer’s target demographic may be
achievers, who are known to enjoy competition and the abil-
ity to achieve high scores and earn rewards.

Bartle’s Taxonomy. The Bartle’s Test was developed by
Andreasen and Downey, who based it on Richard Bartle’s
player type analysis [21]. This test is a questionnaire that
was originally designed for players of virtual worlds to take
to provide insight into their preferred play style. Four play
styles are provided: Killers, Achievers, Socializers, Explor-
ers [20]. Also referred to as Hearts, Diamonds, Clubs, and
Spades, Bartle attempted to classify player preferences in an
effort to predict players who may enjoy dungeon crawlers.
Socializers (hearts) enjoy forming relationships with other
players within a game. Achievers (diamonds) enjoy meeting
goals in games and being rewarded for their efforts. Killers
(clubs) enjoy dominating others in gameplay using in-game
means. Explorers (spades) enjoy games that provide them
with an opportunity to explore and enjoy free-play. These
styles are not mutually-exclusive, and in fact, players often
enjoy combinations of these styles.

BrainHex. The BrainHex [1] is a broader model that de-
fines seven player archetypes based in part on neurobiologi-
cal research: Seeker, Survivor, Daredevil, Mastermind, Con-
queror, Socialiser, and Achiever [90]. More closely aligned
with genres than Bartle’s Taxonomy, it can still be used as a
tool within a target demographic (e.g. girls aged 10–13 in a
particular middle school setting) to help in determining the
types of games they may prefer, thereby creating a game to
meet the preferred player styles of that demographic.

Unified Model. The Bartle’s Test has been further adapted
to include the Keirsey Temperaments and the Bateman DG1
Model in a Unified Model, as well as the alignment of these
models with 7 others [124]. This also maps to the MDA
framework of game design, which defines a game based on
Mechanics, Dynamics, and Aesthetics. Motivation between
the different types of players as well as their preferred method
of solving problems to achieve goals differs. Their overall
goals (Do, Have, Know, or Become) provide a single action
word summary into their play styles.

Five Factor Personality Traits. More recently, the Five
Factor Personality Traits survey, a validated instrument used
in psychology, has been used to predict game play prefer-
ences and in designing games. Game designers at Ubisoft
employ the Five Factor Personality Inventory (also called
OCEAN or the Big Five) to measure five opposing dimen-
sions in an individual’s personality, Openness (versus Closed-
ness) to Experience, Conscientiousness versus Lack of Con-
scientiousness, Extraversion versus Introversion, Agreeable-
ness versus Hostility, and Neuroticism versus Emotional Sta-
bility [126]. The Inventory has been used in one study to
show to that “conscientiousness was negatively correlated
with perceived use of first-person shooter games and ex-
traversion was positively correlated with both liking and
perceived ease of dancing games. Agreeableness was pos-

itively correlated with liking of dancing games” [37]. An
alternative to OCEAN is HEXACO, which assigns personal
characteristics through Humility (H), Emotionality (E), Ex-
traversion (X), Agreeableness (A), Conscientiousness (C),
and Openness to Experience (O) [75].

Other psychosocial models. Though there are several ways
to define player styles, other psychosocial models can be
used. For example, Hofstede’s cultural model has four di-
mensions: power distance (weak or strong), uncertainty avoid-
ance (weak or strong), individualism (versus collectivism),
and masculinity (versus feminism) [60]. One could form the
basis for analyzing player styles and preferences using such
models.

These models encourage examining player preferences of-
ten based on personality, in a very similar way that cul-
turally relevant pedagogy theory is used to develop curricu-
lum [72]. These models move beyond personal biological
identities, with gender, race, and ethnicity, for example, not
given consideration. In a classroom with learners, however,
additional considerations may need to be made: environ-
ment, socioeconomic influences, instructor abilities and mo-
tivation, and more [57]. If seen as a tool or only one form of
several medium used in the classroom, games should also be
contextualized by the instructors. That is, the instructor is
still in control of the the learning process and interpreting
the in-game learning externally provides a method of in-
structors integrating this knowledge—which is also referred
to as pedagogical content knowledge [118].

2.3 Effect on students
Educational games may produce a number of learning and

psychological effects. These effects may be intended or un-
intended. We list the most relevant effects of educational
games, as well as representative measures of these effects:

• Cognitive development. This effect can be summarized
by saying that games may present an opportunity for
students to learn more deeply. For example, accord-
ing to Bloom’s taxonomy [14], there are six levels of
increasing cognitive development, or according to the
SOLO taxonomy [24], a student may give responses
to a task in five levels. Cognitive development can be
measured by means of different variables, such as:

– Assessment performance.

– Time necessary to accomplish a task.

– Accuracy in performing a task.

• Affective and motivational effects. This category clus-
ters a number of subjective phenomena:

– Acceptance. Technology acceptance is a relevant
issue in the area of work and training [36]. Some
students (especially adult learners) may refuse the
use of games in education.

– Emotions experienced. There is no universally ac-
cepted classification of emotions. Some authors
have proposed a set of basic emotions, other be-
ing composed of the basic ones. Thus, Zinck and
Newen argue that the four basic emotions are joy,
anger, fear and sadness [134].

– Motivation. According to the theory of self-de-
termination, there are four classes of motivation

towards a subject matter or activity: intrinsic, ex-
trinsic via identified regulation, extrinsic via ex-
ternal regulation, and amotivation.

• Transversal skills or competences. In recent years, con-
cern about these general skills has increased. Some ex-
amples are self-efficacy, communication or leadership
skills.

• Behavior change. Computing students may develop
undesirable behaviors, such as cheating or hacking.
Educational games can guide students to consider their
behaviors in their academic and professional develop-
ment.

Other effects can also be achieved with games but are not
directly relevant to CSE: motor skills (e.g. motor coordi-
nation), perceptual and cognitive effects (e.g. attention, or
visual or spatial skills), and physiological effects (e.g. heart
rate).

3. SURVEY
We examined over 100 unique games that have been or are

currently available for use in teaching computing concepts.
Each review consisted of inspecting available documentation
and commentary and, when possible, playing the game. Us-
ing this information, we categorized each game with respect
to numerous pedagogical and game characteristics [5]. These
games were published over the last several decades, ranging
from 1982 to 2016. Of the games reviewed, 34 are avail-
able commercially, 51 are freely available, and 15 no longer
appear to be available. In this section, we provide a gen-
eral summary of the games and a classification of the games
in context of the ACM/IEEE Computer Science Curricula
2013 [13].

3.1 Summary of Games for CS Education
With respect to the general computing topics addressed by

the games, just over half (64) focus explicitly on some aspect
of programming. Not surprisingly, within this group, topics
typical of introductory programming classes are addressed
by numerous games: arrays, assignment, data types, debug-
ging, encapsulation, event handling, expressions, I/O, itera-
tion, modularization, object orientation, parameters, recur-
sion, selection, sequence, testing, and variables. There are
also more specialized programming-related games that ad-
dress artificial intelligence, algorithms, bottlenecks, ciphers,
concurrency, critical thinking, fault tolerance, instruction
sets, interprocessor communication, messaging, memory ac-
cess, multiagent systems, problem recognition, registers, sort-
ing, synchronization, tree traversal, and other topics.

We found that 17 of the games focus primarily on com-
putational thinking, in the sense defined by Wing [130]. Of
the games that focus on neither programming nor computa-
tional thinking, the topics addressed include artificial intel-
ligence, architecture, circuits, data types, security, sensors,
and systems. As part of the review process, we attempted to
identify specific learning outcomes addressed by each game
through either literature or by playing the game. Though
these details are provided in the online appendix [5], they
could not be summarized in a meaningful way.

We characterized the games in terms of the e-Learning
Goals they claimed or that we inferred based on our exper-
imentation. Using Clark and Mayer’s cognitive task analy-

sis [32], we identified “Inform” level goals for almost half of
the games (55), “Perform Procedure Tasks” for more than
half (73), and“Perform Strategic Tasks” for almost half (55).

A majority of the games reviewed specify their targeted
demographics in terms of either age group or educational
level. All age levels from 3 to adult and grade levels from pre-
K to post-graduate are covered. Classifying the games using
the five stages of experience levels, novice, advanced begin-
ner, competent, proficient, expert, a fair number of games
state that the target specific levels of prior aptitude, edu-
cation, familiarity, or interest in either computing or gam-
ing [42]. 61 (59.8%) targeted novices, 59 (57.8%) targeted
advanced beginners, 23 (22.5%) targeted those competent in
computing concepts, and 2 (2.0%) targeted those proficient
in computing concepts. We found documentation indicating
that two of the games (1.9%) were created to specifically
target females.

The games reviewed include representatives of a wide va-
riety of genres, including action, adventure, arcade, board,
dance, MMO (massively multiplayer online), puzzle, RPG
(role playing game), (turn-based/real-time) strategy. Like-
wise, the user interface styles employed vary widely, includ-
ing command line, drag-and-drop, first/third person graph-
ical (key-based, mouse-based, controller-based), and point-
and-click. Finally, there is substantial variety in the game
mechanics. For example, many games are either single player
or competitive multiplayer, but some are cooperative mul-
tiplayer. Also, within those games that use drag-and-drop
interfaces, in some cases the objects being manipulated rep-
resent machine instructions, while in others they are game-
specific actions.

Many of the games reviewed are based on established
game engines, such as Bioware Aurora, Codea, LibGDX,
Moai, OpenFL, Pygame, RPGMaker, Spring engine, XP,
Unity, and XNA. Others are built using identified languages
and libraries such as .NET, C, C++, C#, CSS, Flash, Git
SCM, HTML, iOS, Java, Javascript, Logo, Lua, Ruby, Scratch.

3.2 Games mapped to CS 2013 Categories
We analyzed the games in context of the ACM/IEEE

Computer Science Curricula 2013 to identify which of the
18 computing knowledge areas that each game targeted [13].
For the games that we were able to classify, the majority
(75.5%) could be used in teaching Software Development
Fundamentals (SDF). Nearly one-third (28.4%) taught Al-
gorithms and Complexity (AL) concepts. Table 2 shows the
breakdown of the categories. Note that some games could be
used to teach concepts in two or even three categories. Addi-
tionally, it is worth noting that none of the games reviewed
target the following areas: IM (Information Management),
NC (Networking and Communications), OS (Operating Sys-
tems), and PD (Parallel and Distributed Computing).

We analyzed this further and drilled down to the concept
areas. The vast majority of the games target concepts in the
SDF category. Within the three concept areas targeted in
SDF, the concept areas of Fundamental Programming Con-
cepts (46 or 45.1% of all games reviewed), Algorithms and
Design (25 or 24.5% of all games reviewed), and Algorithmic
Strategies (19 or 18.6% of all games reviewed) have the most
games suitable for teaching these concepts (Table 3).

Based on prior evidence that games are useful for inspir-
ing student interest, it is natural that most of the games
are designed for beginners, and thus SDF and AL, which

Knowledge Area Concepts #
AR (Architecture and Organization) Digital Logic and Digital Systems 1

AL (Algorithms and Complexity)
Algorithmic Strategies 19
Fundamental Data Structures and Algorithms 10
Advanced Data Structures, Algorithms, and 1

AR (Architecture and Organization)
Machine Level Representation of Data 2
Assembly Level Machine Organization 1

CN (Computational Science) Data, Information, and Knowledge 11
DS (Discrete Structures) Basic Logic 3
GV (Graphics and Visualization) Fundamental Concepts 10

HCI (Human-Computer Interaction)
Programming Interactive Systems 3
Foundations 1

IAS (Information Assurance and Security)

Security Policy and Governance 1
Network Security 2
Threats and Attacks 1
Cryptography 2

IS (Intelligent Systems)
Basic Search Strategies 2
Fundamental Issues 1

PBD (Platform-Based Development)
Game Platforms 1
Web Platforms 1

PL (Programming Languages) Object-Oriented Programming 1

SDF (Software Development Fundamentals)
Fundamental Programming Concepts 46
Algorithms and Design 25
Fundamental Data Structures 3

SE (Software Engineering)

Tools and Environments 1
Software Project Management 2
Software Verification and Validation 1
Software Reliability 1

SF (Systems Fundamentals) Computational Paradigms 3
SP (Social Issues and Professional Practice) Security Policies, Laws and Computer Crimes 1

Table 3: Games by Category and Area.

Knowledge Areas Count
SDF (Software Development Fundamentals) 77
AL (Algorithms and Complexity) 29
CN (Computational Science) 11
GV (Graphics and Visualization) 10
AR (Architecture and Organization) 9
IAS (Information Assurance and Security) 6
SE (Software Engineering) 5
HCI (Human-Computer Interaction) 4
IS (Intelligent Systems) 4
SF (Systems Fundamentals) 3
DS (Discrete Structures) 3
PBD (Platform-Based Development) 2
SP (Social Issues and Professional Practice) 1
PL (Programming Languages) 1

Table 2: Number of Games classified in CS knowledge areas.

include many basic and introductory topics to computer sci-
ence, would include the vast majority of the CS educational
games. However, we note that there are considerable ar-
eas with few or no games that teach these concepts, leaving
a wide variety of subjects that researchers could target in
future games.

4. CASE STUDIES
Of the games that were evaluated by the group, we se-

lected and performed a more rigorous analysis on four: The
Foos, Human Resource Machine, Lightbot, and PicoBot.
These games were chosen to represent well-designed games
across a range of demographics, their quality, and their use-
fulness in appearing to meet their stated learning outcomes.
We use these games as lenses into the array of games for
computer science education, first describing each game us-
ing the MDA model and then comparing and contrasting
the four in an effort to gauge how design elements affect the
player’s experience. This review serves as a backdrop for the
next section in which we provide suggested best practices for
designing games for use in computing education.

4.1 The Foos
The Foos, a commercial game developed by codeSpark [3],

teaches basic programming concepts to students 5-10 years
old. The game is available for iOS and Android. A simplified
version can be played online. This game is endorsed by
Code.org as an activity for the Hour of Code [2].

The Foos presents the player with a series of scenes fea-
turing an avatar, some obstacles, some bonus rewards, and
a final prize. The player constructs a series of moves her
avatar can make in order to capture the prize. For example,
in Figure 2, the avatar must jump on and off the wooden
boxes in order to get the donut. The green collectibles are
bonus rewards the player can collect along the way to the
goal. For this level, the available instructions are move and
jump. After constructing an appropriate sequence of steps,
the player runs her program, which steps through the pro-

Figure 2: The tile-based programming editor that a player
uses to guide the avatar to the donut in early level in the
The Foos.

Figure 3: The heads-up display that reports the player’s
achievements in The Foos.

grammed movements with playful sound effects and music.
If the avatar reaches the prize, the avatar dances a victory

jig, while points accumulate in the heads-up display shown
in Figure 3. If the player constructs an erroneous sequence,
the avatar still follows the instructions but does not reach the
final prize. The player is allowed to modify the instruction
sequence without penalty until she meets the goal.

Since the game is aimed at young children, it does not
require reading skills. It provides visual hints to help the
player understand the drag and drop interface and how the
available instructions work. This also makes the game easily
played by students whose first language may not be English.

As levels progress different types of instructions are in-
troduced that allow the player to solve increasingly difficult
puzzles. The game incorporates 10 different scenarios, each
with specific learning objectives: sequences, commands, pa-
rameters, events, loops, efficiency, endless loops, conditional
statements, and debugging.

4.2 Human Resource Machine
Human Resource Machine is a commercial game published

in 2015 by Tomorrow Corporation [10], which is available
for Windows, Mac, Linux, iOS and Android platforms. It is
targeted for players age 9 and above.

The game opens outside the drab-colored office building,

Figure 4: The avatar executing an assembly program that
outputs the maximum of each input pair.

whereupon the player chooses an employee avatar with large
blinking eyes, dressed in a desaturated suit. Instead of
choosing a name, the player chooses an impersonal employee
number.

Work begins at once for this employee, who appears in
a room with two conveyor belts. One belt is marked “In”
and the other “Out.” A manager sitting at a desk gives
the employee her first task: move all the boxes from In to
Out. While the look and feel of Human Resource Machine is
very different than The Foos, the game mechanics are quite
similar. The player must construct a sequence of moves the
employee can follow to accomplish the objective.

In the first level the available commands are ->inbox and
outbox->. The former causes the employee to pick up a
tile from the input conveyor belt and the latter causes the
employee to place the tile she is holding on the output belt.
The player drags and drops instructions to create a sequence
in the program editor panel on the right. When the com-
mand sequence is executed, the employee runs between the
two belts, picking up and dropping off tiles as directed. The
interface is shown in Figure 4.

If the player fails to compose a sequence that outputs
the expected tiles, the manager reprimands the employee.
The player modifies the sequence without penalty until the
expected and actual results match, at which point, a year
passes and the employee is promoted to a more complex task.
The player’s progress is marked on the “corporate ladder,”
a game screen shown in Figure 5 that shows a vertically-
oriented map of the game’s levels.

In subsequent levels, new commands are gradually intro-
duced that allow the employee to accomplish increasingly
difficult operations on the input. Additional commands in-
clude jump, conditional jump, store or retrieve tiles, add
or subtract tile values, increment and decrement tile values,
and so on. The final “boss” is a sort routine.

When a player beats a level, a report is generated by man-
agement. The player’s program is scored using two metrics:
the number of instructions used in the program and the num-
ber of runtime steps required to execute it. This dual scoring
reflects a tension commonly found in software development,
in which one often chooses between minimizing code size
and minimizing execution time. If the scores are below a
certain threshold, the player’s achievement is noted. The
game informs the player that optimizing one metric may
produce a suboptimal score for the other metric. Multiple

Figure 5: The corporate ladder that marks the player’s
progress in Human Resource Machine.

solutions will sometimes need to be written to earn both
achievements, and the player may accordingly save multiple
solutions.

By the time the employee has reached the top of the
corporate ladder, the player has gained fluency in an 11-
instruction assembly language.

The players of Human Resource Machine are not expected
to have prior programming experience, as the developers
state on the game’s website: “Don’t worry if you’ve never
programmed before - programming is just puzzle solving. If
you strip away all the 1’s and 0’s and scary squiggly brack-
ets, programming is actually simple, logical, beautiful, and
something that anyone can understand and have fun with!”
They also identify the intended audience as “expert nerds.”

The developers do not discuss particular learning out-
comes or assessment. However, the comments from the
game’s reviews on Steam provide some informal but insight-
ful responses from players:

• “Due to the fact that there is ’optimization challenges,’
I do get the feeling I would return to some of the earlier
puzzles to beat/match the best possible.”

• “Everyone will probably enjoy this game for a little
while, if you like solving abstract problems and basic
programming you’ll enjoy it more.”

• “After I finished this, I realised that I’d accidentally
learned how to write efficient assembly-code. Hooray!”

• “If you’re a CS student that hasn’t yet taken an assem-
bly course, this is a great intro. The assembly language
is very conventional (unlike TIS-100), so many of the
skills and strategies you learn will be directly applica-
ble to, say, MIPS or x86.”

4.3 Lightbot
Lightbot is a game developed by Danny Yaroslavski [4],

based on a game he first built in high school. It is available
as an online flash game or for iOS and Android. The game
comes in two versions, one targeted for players aged 4–8
and one for players age 8 and above. Lightbot is endorsed
by Code.org as an Hour of Code [2] exercise.

The mechanics of this game are very similar to both The
Foos and Human Resource Machine. In this game the player
is presented with a grid of tiles and a robot, as shown in
Figure 6. The player constructs a sequence of moves to

Figure 6: The interface of Lightbot. The player uses a tile-
based program editor to navigate a robot across a world of
blocks, some of which need to be illuminated.

direct the robot to traverse the grid. Available instructions
include move, turn, light, and jump. As in the previous
games, the player runs the program to step through the
programmed sequence. The objective of the game is to have
the robot light up every dark blue tile in the grid.

The space provided for the tile sequences is limited, forc-
ing the player to consider code size. As the game progresses,
the size constraint adds substantial complexity to the puz-
zles. Similar to The Foos, if the player constructs an erro-
neous sequence of moves, the robot will follow its directions
but will not light up all the dark blue tiles. The player can
revise and rerun a sequence without penalty. Later levels
incorporate subroutines and recursive calls.

4.4 Picobot
Picobot [9] is a Karel-like [96] JavaScript game created

by Zach Dodds and Wynn Vonnegut for their introductory
computer science course at Harvey Mudd College. In the
game, players write rules that instruct the green Picobot to
navigate a two-dimensional grid world. The world consists
of white, open cells that Picobot can traverse and blue wall
cells that are impenetrable, as shown in Figure 7. When
Picobot visits a cell, it turns gray. The goal of the game is
to have the Picobot visit all of the white cells, turning them
all gray.

The game models a finite state machine. The user de-
fines rules that dictate the Picobot’s next move and new
state based on the current state and which cells are in the
immediate neighborhood. For example, the rule “0: Nxxx

-> W 1” specifies that if Picobot is in state 0 and only its
northern neighbor is barred (blue) and its other neighbors
are free (white), Picobot should move west and go to state
1. An asterisk can be used as a wildcard. For example, the
rule “1: *S** -> S 1” specifies that if Picobot is in state
1 and the southern neighbor is open, Picobot should move
there and remain in state 1. This rule effectively moves the
Picobot south as long as south is open.

Like the previous games, Picobotintroduces the player to
basic programming concepts, but using a declarative pro-
gramming language. It also provides visual analogy for pro-
gramming problems that provides immediate, clear feedback
of both success and failure. The interface also has a textual

Figure 7: The interface for Picobot, whose 2D game world is
navigated much like a Turing Machine with a 2D tape. The
goal of each level is to visit all cells using only state machine
rules based on neighborhood information.

display of the current state of the program including buttons
to step through the execution that is helpful for debugging.
Picobot has multiple maps with various levels of difficulty
that encourage players to seek and solve additional chal-
lenges.

Picobot is not polished to the same degree as the previous
games. Players enter rules using the keyboard. Its error
messages can often be inscrutable to novice programmers.
Picobotdoes not provide hints or have a builtin tutorial. It
is intended to be introduced in class by the instructor.

4.5 Compare and contrast
The four games we reviewed are similar in many ways,

but provide substantially different user experiences. These
examples help illustrate the relationship between mechanics,
dynamics, and aesthetics and how they work together to
make a game unique.

4.5.1 Aesthetics
From the player’s perspective, a game is an aesthetic ex-

perience. Hunicke, LeBlanc, and Zubek [65] suggest the fol-
lowing taxonomy for categorizing the user experience:

1. Sensation: Game as sense-pleasure

2. Fantasy: Game as make-believe

3. Narrative: Game as drama

4. Challenge: Game as obstacle course

5. Fellowship: Game as social framework

6. Discovery: Game as uncharted territory

7. Expression: Game as self-discovery

8. Submission: Game as pastime

This list is not meant to be exhaustive and for the pur-
poses of educational games we can add a ninth experience:

9. Learning: Game as learning tool

These experiences are not mutually exclusive, in fact, games
typically aim to deliver on many of these objectives.

All four of the games we reviewed provide challenge. In
each case the difficulty of the challenge is targeted to a spe-
cific age group/audience.

The Foos and Human Resource Machine both have a nar-
rative structure. It is strongest in Human Resource Machine
where the player is likely to empathize with the hapless em-
ployee trapped in the dreary corporate world. In contrast
the narrative structure of The Foos is simple and fun and
clearly more appropriate for a younger audience.

All games provide some sort of sensation. The Foos and
Human Resource Machine use high quality graphics and
sound to create a rich sensation in the player. One can
hardly resist being drawn into the joyous world of The Foos
with its fun characters, bright graphics, fanciful animations,
and cheerful sounds. In contrast Human Resource Machine
uses desaturated colors, repetitive and mechanistic sounds,
and mournful characters to convey the dreariness of the cor-
porate world (and the advantages of automation). While
graphics and sound are often considered superfluous in learn-
ing games, they can greatly enhance the user’s experience [6].

Based on admittedly anecdotal evidence, all of our games
we reviewed are effective learning tools for their specific
learning objectives and the audiences they target. The Foos
and Human Resource Machine provide a richer user expe-
rience than Lightbot and Picobot. But that is somewhat
essential since they are teaching children programming con-
cepts. The fun of Lightbot and Picobot is derived largely
from solving difficult puzzles, which is perfectly fine for an
older and possibly captive classroom audience. Who would
play if the games weren’t fun? But that richness is not al-
ways easy or inexpensive to achieve.

4.5.2 Dynamics
Game dynamics work to create the user experience. In

these games, challenge is created by the difficulty of the
puzzles the player must solve. The sense-pleasure of these
games is tied to how effectively the game helps players nav-
igate its challenges.

Each of the games has a progression of difficulty. The
Foos, Human Resource Machine, and Lightbot introduce
new mechanics across levels. Picobot has a fixed set of tools
that are available from the start but the maps become more
difficult to navigate over time.

Each of the games is effective in revealing state informa-
tion to the player the game interface. The Foos, Human
Resource Machine, and Lightbot provide a visible action as-
sociated with each command the player enters; a player can
typically determine what went wrong and debug their code
appropriately. Picobot’s state machine simulation is more
complicated but the game provides excellent debugging tools
that let the player step through the state machine they have
created.

The Foos has the most sophisticated in-game help sys-
tems with visual hints that help the player proceed. Human
Resource Machine and Lightbot have non-player characters
that provide directions. Picobot does not have in-game in-
struction. While some players may be able to figure out the
gameplay on their own, many will require an instructor’s
guidance.

All of the games tolerate some variation in the successful
solutions. The Foos is particularly forgiving about missteps;

an incorrect sequence played twice (without reset) will of-
ten have enough correct moves to achieve success. Because
Human Resource Machine has two scoring metrics, it ac-
tually encourages players to consider alternative solutions;
this contributes to aesthetic goals of Discover and Expres-
sion. Similarly, Lightbot grids often have numerous solu-
tions though the constraint on sequence length can limit
possibilities. Picobot provides the least constraints on the
solution space; for some players this may be liberating but
it also allows for complicated solutions that are difficult to
debug. But once again, Picobot is intended for classroom
use where an instructor can help get students past difficult
hurdles.

Each of the games encourage computational thinking by
initially focusing on simple problems the player must solve
through a series of simple steps. Later levels provide more
difficult problems and, in the case of the first three games,
provide advanced techniques like recursion to help solve them.

4.5.3 Mechanics
Mechanics are the rules of the game and the actions and

controls available to the player. The first three games have
very similar mechanics; the player drags and drops instruc-
tions to creates a sequence their avatar follows to achieve
some goal. This provides a good introduction to imperative
programming.

Picobot is different than the other three games in that its
rules are defined using a declarative programming language,
which may not be appropriate for classrooms that focus on
imperative programming. But this difference can also be
a strength, particularly an introductory computer science
course that aims to expose students to multiple program-
ming language paradigms.

Human Resource Machine has the most sophisticated scor-
ing system providing two separate metrics by which a solu-
tion can be evaluated: code size and execution time. Light-
bot only focuses on the first of these metrics but does so
with a very hard constraint; limiting the space to describe
a solution effectively limits the player to efficient solutions.
The Foos scoring system is the most forgiving; even wrong
solutions can garner points. This is appropriate given its
young target audience.

4.5.4 Summary
We consider each of these games to be fun learning tools

for their intended audiences, and as such each has the po-
tential to be effective. Games developed by professional de-
signers/developers with access to considerable resources are
going to have greater polish. But simple games that are de-
signed for specific use in a classroom can be highly effective
in their own right and, therefore, should be considered as
another tool for enhancing learning.

5. SUGGESTED PRACTICES FOR DESIGN-
ING GAMES FOR USE IN CS EDUCA-
TION

Based on our review of games, our experience as com-
puter science educators, our understanding of educational
research, and our experience designing and developing games,
we provide considerations for designing games for use in
computer science education. We discuss useful and relevant
aspects of educational frameworks to consider when design-

Figure 8: Hainey’s evaluation framework for games-based
learning evaluation.

ing, basic game production practices to aid a researcher new
to game design, and methods for enhancing the player (stu-
dent) experience. This is followed by techniques for integrat-
ing games into curriculum. Though not an exhaustive list,
we propose that these are useful starting points for creating
games for use in CS education.

5.1 Infusing Educational Frameworks
Hainey’s dissertation [57] considers a set of seven factors

that influence learning in the context of games. These are
shown in Figure 8. Each of these categories of influencing
variables are further defined by Hainey to provide a reference
for evaluation methods, and each is important for instructors
to consider the impact of games as a learning tool. Like
books, videos, and other teaching tools, their impact is often
heavily influenced by many other factors.

However, although striving to evaluate a newer media is
a desirable goal, holding a formal evaluation of games as a
litmus test for whether or not they should be used for learn-
ing contradicts what instructors do in classroom preparation
each day. Shulman [118] refers to this as the “wisdom of
practice,” or the practice of instructors to choose assign-
ments, activities, discussion questions, lecture topics and
more based on their knowledge and wisdom of the content
and how their particular set of students learn. In consid-
ering wisdom of practice, games can be carefully selected
by instructors to incorporate them into their curriculum in
meaningful and influential ways.

Many games for learning may be used as stand-alone games
for independent learning by the learners; however, provid-
ing context for the learner’s in-game experiences is certainly
part of the game-based learning environment [92]. The man-
ner in which the instructor integrates the learning experience
from games into the classroom is very important to its ef-
fectiveness.

Based on this, integrating the learning into the classroom
is an important aspect of the curriculum design process,
and instructors can liken themselves to the Dungeon Mas-
ter (DM) in Dungeon and Dragons. The DM sets up the
context for the dungeon or game. They provide assistance
during the game to clarify any questions and can debrief
after the game.

5.2 Important Caveats
Though this set of guidelines is not comprehensive, it has

the potential of being overwhelming for someone who has not
yet created games for learning. We recommend researchers
new to this field find one or two areas on which to focus,
then expand those areas as more work is considered.

As previously mentioned, though our initial goal was to

provide a guide for assessing games for efficacy, scope and
time prevented us from engaging in that activity. This
should by no means be taken to imply that this goal is not
as worthy. We recognize its importance and intend to pur-
sue that activity in whole or in part during the 2017 ITiCSE
Working Group.

We note here that beyond knowledge and skills, attitudes
and dispositions are valid reasons for providing games as
a learning tool in CS. Motivation, engagement, happiness,
satisfaction, and perceptions of the field among students
across a wide range of demographics are important aspects
of games for CS education. As educators, the “wisdom of
practice” may not be enough for this new medium, and we
may be interested in various levels of proof that games are
effective. A wide range of tools for understanding effective-
ness can and should be used. For example, test scores, stu-
dents surveys, quantitative or qualitative research methods,
and/or rigorous evidence (replicated, longitudinal) are all
forms of data that can be used to determine whether a game
may be effective for a particular group of students.

The next two sections on game development processes and
game design for games for use in CS education are presented
in the context of games for CS education where possible.
These two sections are also enhanced by Section 5.5, which
discusses best practices integrating games into the CS cur-
riculum or a CS classroom.

5.3 Basic Game Development Processes
Game design is the process of designing the game. Game

production is the process of taking the design and imple-
menting it. There are many books and articles on game
production, and in this section we highlight a few important
aspects of development that a researcher newer to creating
game for CS education might find useful.

Agile processes. Agile processes [7] are often used in man-
aging a game project. A project is broken into tasks or
sprints. In a classroom setting, the first sprint, for example,
may last two weeks and during that time students may be
responsible for creating a game proposal. One of the val-
ues of agile development is the reflection at the end of each
sprint of what is going well with the project, what needs to
be improved, and what might be standing in a team mem-
ber’s way.

Moodboards, Storyboards, Ripomatics. Moodboards pro-
vide a visual representation of the art style, typography, and
early visual design and themes of the game to convey its look
and feel. An example is shown in Figure 9. Storyboards pro-
vide a visual representation of gameplay and narrative. An
example is shown in Figure 10. Ripomatics are scenes that
are “ripped from” existing media such as film, TV, or games
to provide a concept of the look and feel of the proposed
game. All of these can be used to create a consistent look
and feel across the game and are particularly useful when
multiple people are working on the game.

Paper prototyping and testing. Paper prototyping is the
process of presenting a game idea through storyboards or
mockups of a game’s scenes (or a combination) to present
your game in a paper format to potential players. This form
of test has been proven to be very effective to gauge how fun
is one’s game, to determine whether the flow of the game
is effective, and to determine if players are learning. This
process enables the developers to get feedback very early
in the design process, before actual production of the game

Figure 9: Sample moodboard for the game Wake Up, Koala!,
a game developed by undergraduate students to raise aware-
ness about Sjögren’s Syndrome.

begins. It is much easier to correct major issues with flow
and game mechanics before starting to program rather than
after time and effort has been spent on programming the
early prototype of the game.

Quality Assurance and User Testing. Testing is a nec-
essary and important process and is critical for enhancing
the user experience. No one likes to have flow broken when
learning due to problems with their learning aides! We have
used two types of testing, one with users to gain critical
feedback on concept builds, early prototypes, alpha, and
beta builds. In this type of test, users are solicited for feed-
back on how to improve any part of the system. The other,
quality assurance, is the development team’s responsibility.
This type of test includes the painstaking process of testing
each element within the game (buttons, scene transitions,
scoring, general functionality, and more) as well as art, ani-
mation, and sound.

5.4 Designing for the User Experience
Within this section we provide a set of design principles

for game development. Though not meant to be compre-
hensive, we carefully selected elements that are important
to consider when designing a game for use in CS education.
The intent is to provide a best practice cheat sheet for cre-
ating games for CS education to those newer to game design
and development. This toolset considers best practices in
each area and is designed to suggest methods for improving
the impactfulness of the games.

Figure 10: Sample storyboard for the game Wake Up, Koala!

5.4.1 Define the Learning Outcomes
Games have been shown to improve learning in some com-

puter science education domains, such as computer mem-
ory [95]. Embedding sound instructional design into games
for learning is needed if we want the games to be effective.
O’Neill, Wainess, and Baker [92] note that many games for
learning have historically missed the mark on this. They
make the case that CRESST and Kirkpatrick’s models for
learning can be evaluated and applied within a game’s de-
sign.

The Understanding by Design model [128] is also relevant
to game design for education. The three major stages of this
backward design model is to 1) identify the desired results, 2)
determine the acceptable evidence, and 3) plan the learning
experiences and instruction. These stages can be tailored
for the development of games for computing education as
follows:

• Stage 1:

– Establishing learning goals for the player

– Defining the set of essential questions for achiev-
ing these goals

– Identify the understandings that are desired

– Specifying what key knowledge and skills students
will acquire as a result of playing the game

• Stage 2:

– Identify the tasks that will be performed in the
game to provide the evidence needed to ascertain
the player’s understanding of the learning mate-
rial

– Identify any other evidence that should be col-
lected to determine if the desired results in Stage
1 have been met. Include time playing, time spent
in each level, incorrect and correct moves, etc.

– Provide a manner for the players to reflect on
their learning experiences

• Stage 3:

– Once Stages 1 and 2 have been drafted, design the
sequence of experiences that the players will need
to engage with in the game, develop by playing
the game, and demonstrate within the game those
desired understandings identified in Stage 1.

Though there are many aspects in instructional design
to consider, for both development and evaluation purposes,
learning outcomes are at the top of the list. Defining the
goals and learning outcomes for a game will not only provide
clear direction when designing, but also provide a set of
metrics for which to evaluate the game for effectiveness.

5.4.2 Research target users
Referring back to Section 2.2.3, knowing the player pref-

erences of your target learners is important when designing
games. As noted by O’Neil et al. [92], games for learning can
be effective for developing learning strategies, but “players
apply those strategies differentially, with some players more
effective than others. These differences come not only from
our knowledge, skills and abilities, they are socially moti-
vated as well.” Learner (and instructor) preferences are im-
portant variables to consider [57].

There has also been much discussion within the game in-
dustry that game designers have historically chosen to cre-
ate games that appeal to them. Anthropy [117], a game
designer, noted that game designers are primarily white and
male, and this has influenced the types of games that they
have created and has, in turn, influenced the types of players
that are attracted to such games. It is important to consider
the preferences of the learners one aims to target, especially
in light of the continued lack of diversity within comput-
ing [48]. The game industry has begun to mature beyond
stereotypes like “girls like pink and boys like blue,” recog-
nizing that the player, regardless of their sex, may prefer an
avatar that is blue or pink or another color altogether.

The tools mentioned in Section 2, such as BrainHex or a
Big 5 Personality Survey, can provide a starting point for
the type of game that might be most engaging for a set
of learners—particularly for high school and adult learners.
Considering age and ability in your design choices can also
make your game more effective. From a pedagogical point
of view, by so doing, researchers can engage in developing
a form of culturally relevant pedagogy that will be more
inclined to motivate and engage learners [72].

There is also value in bringing a representative group of
targeted users into your design process. Whether they be-
come part of the design process by making choices about the
theme or genre, or whether they are asked for their input at
various stages of the game’s development, the process will
help ensure that the game is engaging for the learners that
they represent.

5.4.3 Engagement
In both video games and assignments the notion of over-

coming a challenge is one of the primary motivators for en-
gagement [105]. The presentation of challenge must be care-
fully balanced to be effective. This concept is called flow in
video games and scaffolding in educational delivery [34]. If
the material is too hard, student-players will give up, and if
it is too easy, the student-player becomes bored and will lose
engagement. In both cases, as the skills of the student-player
increase the difficulty of the class/game must also increase.

While there are always exceptions, assignments and video
games have separate avenues for generating additional en-
gagement for the student-player. In crafting assignments
the inclusion of personal meaningfulness can provide dra-
matic increases in engagement. Hulleman et al. [63] asked
students to write essays about how their learning of math
or psychology was relevant to a student’s life. Interestingly,
being told by an instructor that something was good for
them only helped the high ability students. When students
wrote their own reasons, they were more engaged with the
material. A similar technique calls on instructors to utilize
socially relevant causes in order to increase student engage-
ment and learning [26]. Seeing direct applications of their
discipline of study generates excitement in the students.

In video games, the designer can use a multitude of tools in
order to increase engagement. However, not all are equally
powerful. In a survey of gamers the four most reported
game aesthetics (after Challenge) that increased engagement
are, in order, Narrative, Fellowship, Sensory, and Discov-
ery [108]:

1. Narrative was reported as the most common reason
that players would continue playing a game. The story
becomes part of the reward structure. In order to un-
cover the entire story, a players must typically finish
a significant part of the game content. Narrative can
be delivered in the form of traditional dialog elements,
such as characters talking or a background story. How-
ever, the best stories are formed through the combined
use of dialog, art, sound, level design, and mechanics.

2. Fellowship with other players fulfills a psychological
need in people to connect with others. The desire to
meet up with friends or adversaries within the game
can keep players returning long after they have com-
pleted the game content.

3. Sensory aesthetic has traditionally been the use of vi-
sual and audial components to create an immersive
experience. However, new technologies such as Kinect
and Wii controllers have introduced the use motion as
a sense pleasure. New advances in augmented realities,
such as Pokemon Go, will further expand the means
by which we can offer sensory aesthetics.

4. Discovery appeals to curious players who wish to dis-
cover all that their world has to offer. This can be
simple exploration of the environment, but also ex-
perimentation with mechanics or unlocking all of the
secrets within the game. Games which provide player
agency in accomplishing goals are most likely to fuel
the Discovery aesthetic.

5.4.4 Positive/Negative Reinforcement
Games are designed to shape their players. This shaping

occurs at many levels, ranging from the simple cues that
teach a player how to navigate a game world to the promo-
tion of beliefs and skills that the player will carry outside
the game. How exactly the player is shaped is an important
ethical concern of game design.

Skinner introduced the idea of operant conditioning [121],
which he defined as the encouragement of behaviors through
positive and negative reinforcement and their discourage-
ment through punishment. These consequences increase or

decrease the probability of the associated behavior in the
subject to whom they are applied. Within a game, conse-
quences are often delivered through game mechanics that
hold significant value to the player, like scores, wealth, vi-
sual and auditory feedback, character health, and leveling
systems. The feedback delivered through these tools selects
out certain player behaviors while diminishing others.

Games do much of their shaping through positive rein-
forcement, by rewarding a player for performing a desired
task. The schedule and structure of these rewards is a key
component of player engagement. In early gameplay, re-
wards may need to be delivered more or less continuously to
draw in a player [80]. However, rewards dispensed continu-
ously and without merit quickly lose their value.

To avoid this, designers soon alter the reward schedules to
deliver only partial reinforcement, in which rewards are dis-
pensed intermittently. The reward schedule may be a ratio
schedule, in which the player is rewarded only after complet-
ing a certain number of actions. Alternatively, the reward
schedule may be an interval schedule, in which the player
is rewarded only after a certain amount of time has passed.
Further, the schedule may be fixed or variable, indicating
that the gap between rewards is either known or effectively
random, respectively. Each combination of these two qual-
ities leads to different profiles of gameplay. In general, a
variable ratio schedule tends to keep the player most consis-
tently engaged [61], but fixed schedules can produce bursts
of activity just before the anticipated reward.

Reinforcement may be spoiled in a number of ways. Re-
wards not delivered in a timely manner can lead to player
frustration and the extinction of the desired behavior. Re-
wards not valuable to the player do not have the desired
effect on behavior. For this reason, games offer a variety of
different reward types. A player may be content receiving a
reward of small magnitude. But if one of larger magnitude
is introduced, any subsequent smaller rewards are likely to
be treated with disdain.

Nearly all games use some form of operant conditioning to
keep the player playing. Frattesi et al. [49] identify several
means of promoting replay value within a game: its dif-
ficulty should balance challenge and frustration, a player’s
completion status should be clearly communicated, it should
draw on social aspects to facilitate community, its gameplay
should have elements of randomness to produce feelings of
unexpectedness and novelty, and it should provide a unique
experience that cannot be found elsewhere. Educators de-
signing games have different goals than commercial game
designers, and replayability should be considered only in the
context of sustaining learning. If a student has mastered a
game’s learning outcomes, then replayability is undesirable
and the student should move on to new challenges. Game de-
signer Raph Koster says, “In the end, that is both the glory
of learning and its fundamental problem: once you learn
something, it’s over. You don’t get to learn it again” [71].

5.4.5 Reward Systems
Reward systems can shape players towards desirable be-

haviors like longer game play, more effective use of time, or
breadth of coverage. Points, level, badges, or virtual goods
feed the player’s need for status and accomplishment. Even
though these artifacts do not exist in real life, digital arti-
facts symbolize the player’s status among other players and
increase their feelings of self worth. Completion bars and

checklists allow users to see goals and plan out how to com-
plete them. Leaderboards allow a person to compete with
others in a competitive setting. Analytics like heat maps
and histograms allow a player to monitor their performance
and provide course correction for personal goals.

Many reward systems are orthogonal to core gameplay
mechanics. Therefore they can be added and altered without
significantly changing the original game. Because of their
disconnectedness from the actual game but their profound
influence on player behavior, reward systems are the core of
gamification, which is the addition of game-like elements to
non-games to increase engagement [89].

There are three caveats in utilizing reward systems to
change player behavior. First, reward systems are a force
multiplier and not a substitute for the interesting underly-
ing activity. Rewards will not cause players to enjoy the
underlying activity if they did not do so in the absence of
rewards. However, reward systems will increase how players
self-report their overall experience playing the game.

Second, not all reward systems are meaningful for all play-
ers. Hakulinen [58] found that students responded to dif-
ferent rewards based on underlying goals. For instance,
students with a fear of being seen as incompetent favored
heatmaps, which warned how much danger they were in,
compared to badges, which indicated that they had suc-
ceeded in a particular topic.

Third, be mindful that reward systems are subtle ways to
affect and shape player behavior. Sometimes the behavior
that you shape is undesirable. O’Rourke et al. [94] utilized
reward systems in the game Refraction to reward players
that used mindful approaches to problem solving. When stu-
dents in the treatment group displayed mindful approaches
in the game, they were awarded “Brain Points.” O’Rourke
found that students in the treatment group did play longer.
However, the control group displayed more growth mind-
set behaviors during game play. Reward structures can be
difficult to fine tune for alternative behaviors.

5.4.6 Formative and Summative Assessment
According to the Theory of Multimedia Learning, “peo-

ple learn more deeply from words and pictures than from
words alone” [86]. This is a concept accepted by many in
the computer science education community because visual-
izations can be used to not only engage learners but more
powerfully they can make feedback of an abstract problem
more concrete. Consider a middle school introduction to
computer science where students write programs to create
animations using Alice [35]. When a program does not pro-
duce the desired animation, the learner is given immediate
and obvious feedback. Or consider a college-level computer
science course for non-majors using Guzdial’s media com-
putation [56], where students write programs to manipulate
images. Specifying the behavior of an assigned program in
such an environment may be as simple as giving before and
after images.

Work by a previous ITiCSE working group [91] concluded
that visualizations alone are not a sufficient learning tool.
Visualizations must be used to engage students in active
learning. This conclusion is corroborated by later work
showing that visualizations alone do not demonstrably show
learning benefits [102], but a visual metaphor in conjunction
with a gaming context does.

We as educators know that formative assessment, with

frequent, quick, clear feedback of student work, can have
a significant effect on student learning [25]. Games are
an opportunity to provide students with faster, more fre-
quent, and clearer feedback. Formative assessment can also
be used by instructors to customize the classroom experi-
ence to better utilize class time and to maximize learning
opportunities. This is seen in pedagogical techniques like
Just-in-Time Teaching (JiTT) [17], where out of class read-
ings and quizzes are used to help make modifications to class
immediately prior to class. Instructors use of formative as-
sessment is also seen in peer instruction [120], where stu-
dent responses to in-class clicker questions are used by the
instructor to guide classroom discussion to topics that need
more attention.

Games for computer science education can also be used
to adapt content to address student needs. But games are
able to do this on an individual basis by tracking what an
individual player has mastered and what a player is still
learning. This information can be used to modify the game-
play, to repeat lessons, and to give hints [70, 59]. Learning
analytics research has sought to give instructors even more
information about their students by monitoring and analyz-
ing students interactions with online learning management
systems to help instructors optimize learning [103]. The
video game industry has its own game analytics, often called
game telemetry, that allows game developers to continually
fine tune and improve a game after it has been released [81].
Unity Analytics for the Unity game engine [11] provides an
opportunity for computer science education games to an-
alyze player behavior to not only improve the educational
efficacy of the game but to also help instructors better un-
derstand students and how best to help them learn.

One potential problem with in-game computer generated
feedback is that it may not be as clear as instructor feed-
back. However, difficult to understand feedback is an issue
students are already encountering whenever they are pre-
sented with errors from a compiler or interpreter. Games
for computer science education provide an opportunity to
mitigate this. Games have a world or a context in which
the feedback can be contextualized. For example, research
by Lee and Koh [77] show that a more human-like feedback
system can increase player engagement with an educational
game.

5.4.7 Learning Communities
The benefits of learning communities in higher education

are well-established, and include “higher academic achieve-
ment, better retention rates, diminished faculty isolation,
and increased curricular integration” [78]. At the same time,
the emergence of communities around games, and especially
around digital games, is both commonly observed and a
carefully studied phenomenon (e.g., by Pearce and Arteme-
sia [97]). Furthermore, numerous researchers have observed
that the communities that emerge around games often ex-
hibit many of the characteristics of learning communities.
In particular, Gee focuses on the similarity of the experi-
ences afforded to the members of learning communities, even
though they may have little else in common, and as such con-
siders them a particular type of “affinity group” [51]. Viewed
from the perspective of the educator considering the inclu-
sion of games in the curriculum, this means that game design
determines students’ potential shared experiences, which in
turn determine the characteristics exhibited by that partic-

ular learning community. In his doctoral thesis describing
his qualitative study on the use of Civilization III in world
history education, Squire [122] writes:

“Cooperative and competitive social arrangements
frame game play activity. In some cases, the so-
cial context of game play—the kinds of reflection
activities, discussion, collaboration, and compe-
tition that emerge in game play are as important
as the game itself in determining what activity
emerges and what learning occurs.”

The question at hand, then, is how to design and develop
games and how to integrate them into computing curricula
so that the emerging communities exhibit the characteristics
desired for the learning communities. Guidelines for such
design, development, and integration are still an area of open
research. As such, the following recommendations based on
Shaffer’s [115], Squire’s and other user studies are necessarily
tentative and incomplete.

Given that one goal is to stimulate conversation amongst
the students regarding the subject matter, it is worthwhile
to consider the types of desired discussion as a part of the
requirements development phase. For example, Squire [122]
observes that “having students responsible for joint presen-
tations that glean information from multiple games might
be [an effective way] to encourage collaboration and knowl-
edge building.” If such presentations seem desirable, then
the game’s design must provide opportunities for meaning-
ful cooperation between players. This implies, of course,
that the game should support a multiplayer mode, and that
the game rules allow multiple players to be successful.

Similarly, Squire reports that “students took great pride
in their games and saw value in using them as a point of
exploration.” Thus, if the goal is to encourage student par-
ticipation in open discussion, then the game’s design should
provide players with interesting and varied experiences that
they can report and about which they can ask questions.

Squire noted that students essentially ignored the prepara-
tory lectures he offered, but that they were attentive to
his responses to their questions about game play. As such,
games should be designed such that very little is required
in the way of introduction. Regarding the integration of
the game into the curriculum, instructors should allow time
to support and encourage impromptu informal discussions
emerging from game play. Such discussions could be viewed
as instances of “just-in-time teaching.”

Finally, Prensky [100] observes that along with developing
the skills of information absorption, assimilation, decision-
making, and multi-tasking, gamers “increasingly, gamers get
good at collaborating with others, over a range of networks.”
In order to leverage this quality of gamer development, games
used for educational purposes must, of course, be multi-
player and support some form of in-game communication
between players.

There is wide variation in students’ previous gaming back-
ground, including the amount and frequency of their play,
the types of games they have played, and their reasons for
playing. As such, it is unlikely that any one game would
engage all students in the same way. At first glance, this
observation seems to present a significant challenge for the
design of games for education. However, it is also an op-
portunity. Games that are intentionally designed to engage
different players in different ways build in the potential for

classroom conversations around the contrasts between the
various players’ experiences. For example, Squire observes
that “discussions between different player types drove them
to articulate and defend different strategies, even rethinking
their orientation to the game.”

For concreteness, as noted in Section 2.2.3, Bartle [20] of-
fers a classification of players into four types, achievers, ex-
plorers, socializers, and killers. The “socializer” and “killer”
player types require a multiplayer mode for realization, and
the competitive and collaborative aspects of the game hold
significant implications for these player types.

Debriefing is critical to using games in education [74].
Teachers can facilitate the transfer of skills by leading pre-
and post-game discussions which connect the game with
other things students are learning in class [16]. Ke [68] con-
cluded that instructional support features are necessary in
order for the lessons learned in computer games to transfer
to other contexts.

5.4.8 Differentiated Instruction
Differentiated instruction serves two purposes. First, it

seeks to ensure that each student fulfills the learning out-
comes to the greatest extent possible. Second, it seeks to
adapt curricula for students whose background and learning
styles require it.

The guidelines offered by Lawrence-Brown [73] may be of
use:

• Provide “additional supports” for struggling students.
Enable them to access content and demonstrate learn-
ing. All students benefit. Two categories: access gen-
eral curriculum, lend structure to curriculum.

• For access to curriculum, use assistive technologies.
Provide resource materials to support “finding” and
reduce “guessing” (restrict access to those who need
it). Provide personal assistance when absolutely nec-
essary, but avoid creating dependency by offering too
much help.

• To add structure, emphasize key topics and skills. Pro-
vide explicit and precise expectations and examples of
successful work. Provide systematic decompositions
of specific strategies, skills, and concepts. Make spe-
cific connections with prior knowledge and experiences.
Work toward increased independence by fading assis-
tance systematically.

• Adapt goals for differently-abled students, which is at
least as important for advanced students as for those
who struggle. Form cooperative groups with individu-
alized roles.

• To evaluate effectiveness, gather data about students’
learning.

Kickmeier-Rust, et al. [69] describe the ELEKTRA sys-
tem, in which players’ actions are used to continuously up-
date a probabilistic model of the players’ competencies within
an ontological model of the subject domain. The compe-
tency model is then processed by a pedagogical rule-based
system to adjust game play to provide appropriate inter-
ventions to support skill acquisition, skill activation, and
motivation.

5.4.9 Social Cognitive and Psychological Influences
When Malmi et al. [83, 82] reviewed the psychological

theories that appear in the computer science education re-
search literature, one of the most common was the theory
of self-efficacy proposed by Bandura [18]. This is notable,
because it is considered a predictor of programming achieve-
ment (e.g. [101]). Lee and Ko [76] used this theory as the
foundation for their research into play, showing that the per-
sonification of a compiler could be used to improve motiva-
tion when learning computer programming. Further to this,
other games such as RAPUNSEL have been shown to im-
prove learner’s programming self-efficacy [99].

Other related theories also appear in the literature. For
example: achievement emotions [98], mindset [41, 43], and
self-concept [116, 85]. Together, these have been shown to
predict of programming practice [111, 113, 114]. Further-
more, games seem to be able to influence these psycho-
logical constructs. Notably, helping learners to develop a
growth mindset in the mathematics domain [93] and their
self-concept in the programming domain [112].

While, in some cases, these effects are small and further
research is needed to isolate the particular properties that
cause the improvements, the use of games to enrich learners’
psychological constructs is worth exploring. Many theories
align with what we already know about pedagogy. For in-
stance, some games follow a growth mindset incentive struc-
ture which serves to maintain a learner’s effort within their
zone of proximal development [127]. Another example is
Gee’s [52] notion of a psychosocial moratorium where low-
stakes play buffers learners from negative emotions associ-
ated with failure, helping learners feel safe to experiment.

5.4.10 Deliberate Practice
One of our goals as educators is to help our students de-

velop expertise. Implicit in this goal is the belief that ex-
pertise can be attained through deliberate practice, which
Ericsson et al. [46] define as activity explicitly designed to
improve performance. Four key conditions are required for
practice to be considered deliberate and lead to expertise:

“The most cited condition concerns the subjects’
motivation to attend to the task and exert effort
to improve their performance. In addition, the
design of the task should take into account the
preexisting knowledge of the learners so that the
task can be correctly understood after a brief pe-
riod of instruction. The subjects should receive
immediate informative feedback and knowledge
of results of their performance. The subjects
should repeatedly perform the same or similar
tasks.”

These conditions exclude certain activities, including“play-
ful interaction, paid work, and observation of others.”

A well-designed game provides a medium for deliberate
practice by adhering to these conditions. Lightbot, for ex-
ample, demonstrates all four:

• Many game elements appeal to various aesthetics as
defined by the MDA framework: sensation, fantasy,
narrative, and challenge. These aesthetics are designed
to motivate the player, who in turn willingly engages
in a series of increasingly difficult levels that lead to
mastery.

• Compared to Lightbot, Lightbot Jr. takes into account
that its players have less prior knowledge and therefore
provides more opportunities to use a new command
before introducing any further commands.

• When the player runs her program, the robot traces
out the program in an animated way, giving clear feed-
back about the program’s intermediate behavior and
correctness. Each program command is highlighted as
it executes.

• The game is organized into worlds, within which the
various levels require repeated but slightly varied use
of an operation.

A key aspect of deliberate practice is scaffolding, which
according to Wood, Bruner, et al. [131], “refers to the steps
taken to reduce the degrees of freedom in carrying out some
task so that the child can concentrate on the difficult skill
she is in the process of acquiring.” Well-designed games
provide scaffolding for players in many ways: by situating
the player within a simplified model of a complex subject;
by delivering instruction within the game in a just-in-time
fashion; and by providing tutorial levels where concepts are
introduced slowly and in a non-threatening environment.

5.5 Integrating Games into the curriculum
A common finding about the use of different educational

technologies is that educational success depends less on the
technology itself and more on its integration into instruc-
tion [92]. Examples of these evidences can be found in the
fields of program and algorithm visualization [64, 91] as well
as microworlds [88].

Identifying successful educational practices for integrating
games still is an open challenge. However, we identify several
best practices that should be taken into account:

• Model progression. The game model is introduced in-
crementally, so that the learner does not become over-
whelmed.

• Prompting. Prompts may take different forms, such
as a question or passing a challenge. Prompts may
be aimed at non-knowledge factor. For instance, a
prompt may be aimed at increasing the student’s self-
esteem. Within games, prompts can take the form
of trivia questions or answering prompts to further a
character’s progress in a game.

• Assignments. An assignment is a more complex form
of prompt relevant to the subject matter and aligned
with the game goals. Assignments can be incorporated
within a quest, for example, in the same way that word
problems help contextual learning for the field of math-
ematics. This integration focuses on desired outcomes
and enabling students to succeed in solving the given
problem within the game.

• Feedback. Students need to obtain feedback to have
an external judge on their actions and readjust their
activity accordingly. Feedback in games typically de-
scribes the degree of achievement or performance in the
game. In its simplest form, it may be a score. More
elaborate forms include comparing the student’s score
with others’ or reporting about conditions still not met

to achieve a goal. Alternatively, the game provide may
feedback on the student’s process.

• Additional information. Frequently, more information
is necessary for the learner to make a right decision.
Just-in-time information is the most successful way of
assisting the learner.

• Monitoring facilities. In games, especially in complex
situations, it seems to be of great value to have the
opportunity to inspect the history of the interaction.

• Reflection and debriefing. During a game, the learner
often acquires knowledge or adopts a strategy infor-
mally. By introducing a final phase of reflection and
debriefing learners may acquire more explicit knowl-
edge. This can be done orally but also the learner also
may write it (however, it takes more time).

• Explicitation. Here, knowledge must also be made ex-
plicit, but in the context of the game. This feature is
especially useful in cooperative or collaborative situ-
ations, where students have to explain to each other
what they intend to do or they have done.

In case the students are the constructors of their games,
other approaches need to be adopted. Thus, Basawapatna
et al. (2013) propose a project-based approach, where the
students must develop games of increasing difficulty. Stu-
dents who need assistance are given external scaffolding so
that they do not get into a state of anxiety.

6. CONCLUSION
The Operating System 4 Computer Science (OS4CS) [30]

initiative lists five key challenges for computing education.
One of these key challenges identifies the need for more com-
prehensive, quality instructional resources with a call to the
community to create these resources. Games can serve as
an important, engaging instructional resource for many of
the reasons defined throughout this study. However, the
community fails to provide comprehensive and high-quality
games. It has also failed in measuring the effectiveness of
games in achieving their stated educational goals.

This workgroup study provides a resource for the reader
interested in designing and developing games for comput-
ing education. The high-level summary provides a start-
ing point for examining important underlying theories about
digital game-based learning, best practices to consider when
designing and developing a game, and relevant educational
psychology, all in the context of computing education. In
addition, it defines a set of games that can be used in com-
puting education, and it identifies gaps where future games
can be developed to enable the creation of a comprehensive
set of resources for the education community.

The second part of this working group study will focus on
the evaluation of games to identify their efficacy. As part of
that process, several new games are currently being created
using the design guidelines provided in this report. These
games will add to the list of games for teaching computing
education and provide analysis of players’ learning.

We encourage the community to consider games that could
be created to make the available games more comprehensive.

We also encourage the community to keep in mind the need
for contextualizing learning and providing the necessary in-
terpretation of games in the context of computing. Just as
we interpret assignments, required readings, and other sub-
sidiary materials, our active incorporation of games into our
educational environments is key to achieving the learning
that external media can provide.

7. REFERENCES
[1] BrainHex. http://survey.ihobo.com/BrainHex/.

[Online; accessed 29-August-2016].

[2] Code.org. https://code.org/learn. [Online; accessed
29-August-2016].

[3] codeSpark. http://codespark.org. [Online; accessed
29-August-2016].

[4] Developer spotlight: Danny Yaroslavski.
http://www.openfl.org/blog/2014/11/07/
developer-spotlight-danny-yaroslavski. [Online;
accessed 29-August-2016].

[5] Game survey. http://www.twodee.org/forothers/
game survey iticse2016.csv. [Online; accessed
15-September-2016].

[6] Juice it or lose it. https://youtu.be/Fy0aCDmgnxg.
[Online; accessed 29-August-2016].

[7] Manifesto for agile software development.
http://agilemanifesto.org. [Online; accessed
29-August-2016].

[8] Molleindustria. http://www.gamedefinitions.com/.
Accessed: 2016-07-13.

[9] Picobot. https://www.cs.hmc.edu/picobot/. [Online;
accessed 29-August-2016].

[10] Tomorrow corporation.
http://tomorrowcorporation.com/. [Online; accessed
29-August-2016].

[11] Unity3d. https://unity3d.com/. [Online; accessed
29-August-2016].

[12] E. Aarseth. Computer game studies, year one. Game
studies, 1(1):1–15, 2001.

[13] ACM/IEEE. CS Joint Task Force on Computing
Curricula. 2013. Computer Science Curricula ACM
Press and IEEE Computer Society Press, 2013.

[14] L. W. Anderson, D. R. Krathwohl, P. W. Airasian,
K. A. Cruikshank, R. E. Mayer, P. R. Pintrich,
R. Raths, and M. C. Wittrock, M. C Wittrock. A
Taxonomy for Learning, Teaching and Assessing.
Addison Wesley Longman, 2001.

[15] J. Arjoranta. Game definitions: a wittgensteinian
approach. Game Studies, 14(1), 2014.

[16] K. Ash. Digital gaming goes academic. Education
Week, 30(25):24–28, 2011.

[17] T. Bailey and J. Forbes. Just-in-time teaching for
cs0. ACM SIGCSE Bulletin, 37(1):366–370, 2005.

[18] A. Bandura. Self-efficacy: toward a unifying theory
of behavioral change. Psychological review, 84(2):191,
1977.

[19] S. Barab and C. Dede. Games and immersive
participatory simulations for science education: an
emerging type of curricula. Journal of Science
Education and Technology, 16(1):1–3, 2007.

[20] R. Bartle. Hearts, clubs, diamonds, spades: Players
who suit muds. Journal of MUD research, 1(1):19,

1996.

[21] R. Bartle. Designing Virutal Worlds. New Riders,
2003.

[22] T. Bell, J. Alexander, I. Freeman, and M. Grimley.
Computer science unplugged: School students doing
real computing without computers. The New Zealand
Journal of Applied Computing and Information
Technology, 13(1):20–29, 2009.

[23] T. Bell, F. Rosamond, and N. Casey. Computer
science unplugged and related projects in math and
computer science popularization. In H. L.
Bodlaender, R. Downey, F. V. Fomin, and D. Marx,
editors, Essays Dedicated to Michael R. Fellows on
the Occasion of His 60th Birthday (Vol. LNCS 7370,
)., pages 398–456. The Multivariate Algorithmic
Revolution and Beyond, 2012.

[24] J. B. Biggs and K. F. Collis. Evaluating the quality of
learning: The SOLO taxonomy (Structure of the
Observed Learning Outcome). Academic Press, New
York, USA, 1982.

[25] P. Black and D. Wiliam. Assessment and classroom
learning. Assessment in Education: principles, policy
& practice, 5(1):7–74, 1998.

[26] M. Buckley, J. Nordlinger, and D. Subramanian.
Socially relevant computing. In Proceedings of the
39th SIGCSE Technical Symposium on Computer
Science Education, SIGCSE ’08, pages 347–351, New
York, NY, USA, 2008. ACM.

[27] G. Burkhardt, M. Monsour, G. Valdez, C. Gunn,
M. Dawson, C. Lemke, E. Coughlin, V. Thadani, and
C. Martin. engauge 21st century skills: Literacy in
the digital age. Retrieved June, 2:2008, 2003.

[28] R. Caillois and M. Barash. Man, play, and games.
University of Illinois Press, 1961.

[29] E. Castronova. Synthetic worlds: The business and
culture of online games. University of Chicago press,
2008.

[30] J. Century, M. Lach, H. King, S. Rand, C. Heppner,
B. Franke, and J. Westrick. Building an operating
system for computer science. Technical report,
CEMSE, University of Chicago with UEI, University
of Chicago, 2013.

[31] D. Church. Formal abstract design tools. gamastutra,
july 16, 1999. http://www.gamasutra.com/view/
feature/3357/formal abstract design tools.php.
Accessed: 2016-07-13.

[32] R. C. Clark and R. E. Mayer. E-learning and the
science of instruction: Proven guidelines for
consumers and designers of multimedia learning.
Pfeiffer, 2011.

[33] G. Costikyan, I. H. N. Words, and I. M. Design.
Toward a critical vocabulary for games. In Computer
Games and Digital Cultures Conference Proceedings,
pages 9–33, 2002.

[34] M. CsÃ kszentmihÃ ↪alyi. Flow: The Psychology of
Optimal Experience. Harper and Row, New York:
USA, 1990.

[35] W. Dann, S. Cooper, and R. Pausch. Making the
connection: programming with animated small
world. In ACM SIGCSE Bulletin, volume 32, pages
41–44. ACM, 2000.

[36] F. D. Davis. Perceived usefulness, perceived ease of
use, and user acceptance of information technology.
MIS Quarterly, 13:319–339, 1989.

[37] C. Degraft-johnson, Y.-c. Wang, M. B. Sutherland,
and K. L. Norman. Relating five factor personality
traits to video game preference. 2013.

[38] S. Deterding, D. Dixon, R. Khaled, and L. Nacke.
From game design elements to gamefulness: defining
gamification. In Proceedings of the 15th international
academic MindTrek conference: Envisioning future
media environments, pages 9–15. ACM, 2011.

[39] S. Deterding, M. Sicart, L. Nacke, K. O’Hara, and
D. Dixon. Gamification. using game-design elements
in non-gaming contexts. In CHI’11 Extended
Abstracts on Human Factors in Computing Systems,
pages 2425–2428. ACM, 2011.

[40] M. D. Dickey. Engaging by design: How engagement
strategies in popular computer and video games can
inform instructional design. Educational Technology
Research and Development, 53(2):67–83, 2005.

[41] C. Diener and C. Dweck. An analysis of learned
helplessness: Continuous changes in performance,
strategy, and achievement cognitions following
failure. Journal of Personality and Social Psychology,
36(5):451–462, 1978.

[42] H. L. Dreyfus and S. E. Dreyfus. Mind over machine:
The power of human intuition and expertise in the
era of the computer. The Free Press, New York, 1986.

[43] C. Dweck. Mindset: The new psychology of success.
Random House, 2006.

[44] M. Ellis. Why People Play. Prentice-Hall, 1973.

[45] Entertainment Software Association. Essential facts
about the computer and video game industry. 2016.

[46] K. A. Ericsson, R. T. Krampe, and C. Tesch-Römer.
The role of deliberate practice in the acquisition of
expert performance. Psychological review, 100(3):363,
1993.

[47] G. Ferri. Rhetorics, simulations and games: The
ludic and satirical discourse of molleindustria.
International Journal of Gaming and
Computer-Mediated Simulations (IJGCMS),
5(1):32–49, 2013.

[48] N. S. Foundation. Women, minorities, and persons
with disabilities in science and engineering: 2013.
Technical report, National Center for Science and
Engineering Statistics, Directorate for Social,
Behavioral and Economic Sciences, 2013.

[49] T. Frattesi, D. Griesbach, J. Leith, T. Shaffer, and
J. DeWinter. Replayability of video games. IQP,
Worcester Polytechnic Institute, Worcester, 2011.

[50] S. Freeman, S. L. Eddy, M. McDonough, M. K.
Smith, N. Okoroafor, H. Jordt, and M. P.
Wenderoth. Active learning increases student
performance in science, engineering, and
mathematics. Proceedings of the National Academy of
Sciences, 111(23):8410–8415, 2014.

[51] J. P. Gee. Identity as an analytic lens for research in
education. Review of research in education,
25:99–125, 2000.

[52] J. P. Gee. What video games have to teach us about
learning and literacy. Computers in Entertainment

(CIE), 1(1):20–20, 2003.

[53] J. P. Gee. Good video games and good learning. In
Phi Kappa Phi Forum, volume 85, page 33. THE
HONOR SOCIETY OF PHI KAPPA PHI, 2005.

[54] M. Graafland, J. M. Schraagen, and M. P. Schijven.
Systematic review of serious games for medical
education and surgical skills training. British journal
of surgery, 99(10):1322–1330, 2012.

[55] B. Gros. Integration of digital games in learning and
e-learning environments: Connecting experiences and
context. In T. Lowrie and R. Jorgensen, editors,
Digital Games and Mathematics Learning: Potential,
Promises and Pitfalls, pages 35–51. Springer, 2015.

[56] M. Guzdial. A media computation course for
non-majors. In ACM SIGCSE Bulletin, volume 35,
pages 104–108. ACM, 2003.

[57] T. Hainey. Using games-based learning to teach
requirements collection and analysis at tertiary
education level. PhD thesis, University of the West of
Scotland, 2010.

[58] L. Hakulinen et al. Gameful approaches for computer
science education: From gamification to alternate
reality games. 2015.

[59] A. Hicks, B. Peddycord III, and T. Barnes. Building
games to learn from their players: Generating hints
in a serious game. In International Conference on
Intelligent Tutoring Systems, pages 312–317.
Springer, 2014.

[60] G. Hofstede. Dimensionalizing cultures: The hofstede
model in context. Online Readings in Psychology and
Culture, 2(1), July 2011.

[61] J. Hopson. Behavioral game design.
http://www.gamasutra.com/view/feature/131494/
behavioral game design.php. [Online; accessed
29-August-2016].

[62] J. Huizinga. Homo Ludens: A Study of the
Play-element in Culture. Beacon Press, 1955.

[63] O. H. B. L. H. J. M. Hulleman, Chris S.; Godes.
Enhancing interest and performance with a utility
value intervention. Journal of Educational
Psychology, 102(4):880–895, Nov 2010.

[64] C. Hundhausen, S. Douglas, and J. Stasko. A
meta-study of algorithm visualization effectiveness.
Journal of Visual Languages and Computing,
13(3):259–290, 2002.

[65] R. Hunicke, M. LeBlanc, and R. Zubek. Mda: A
formal approach to game design and game research.
In Proceedings of the AAAI Workshop on Challenges
in Game AI, volume 4, page 1, 2004.

[66] L. Johnson, R. Smith, H. Willis, A. Levine, and
K. Haywood. The 2011 horizon report. Technical
report, The New Media Consortium, Austin, Texas,
USA, 2011.

[67] J. Juul. Half-real: Video games between real rules and
fictional worlds. MIT press, 2011.

[68] F. Ke. A qualitative meta-analysis of computer
games as learning tools. Handbook of research on
effective electronic gaming in education, 1:1–32, 2009.

[69] M. D. Kickmeier-Rust, C. Hockemeyer, D. Albert,
and T. Augustin. Micro adaptive, non-invasive
knowledge assessment in educational games. In

Digital Games and Intelligent Toys Based Education,
2008 Second IEEE International Conference on,
pages 135–137. IEEE, 2008.

[70] K. Kiili. Digital game-based learning: Towards an
experiential gaming model. The Internet and higher
education, 8(1):13–24, 2005.

[71] R. Koster. Theory of fun for game design. ”O’Reilly
Media, Inc.”, 2013.

[72] G. Ladson-Billings. Toward a theory of culturally
relevant pedagogy. American educational research
journal, 32(3):465–491, 1995.

[73] D. Lawrence-Brown. Differentiated instruction:
Inclusive strategies for standards-based learning that
benefit the whole class. American secondary
education, pages 34–62, 2004.

[74] L. C. Lederman and K. Fumitoshi. Debriefing the
debriefing process: A new look. Simulation and
gaming across disciplines and cultures. London: Sage
Publications, 1995.

[75] K. Lee and M. C. Ashton. Psychometric properties of
the hexaco personality inventory. Multivariate
Behavioral Research, 39:329–358, 2004.

[76] M. J. Lee and A. J. Ko. Personifying programming
tool feedback improves novice programmers’ learning.
In Proceedings of the seventh international workshop
on Computing education research, pages 109–116.
ACM, 2011.

[77] M. J. Lee and A. J. Ko. Investigating the role of
purposeful goals on novices’ engagement in a
programming game. In 2012 IEEE Symposium on
Visual Languages and Human-Centric Computing
(VL/HCC), pages 163–166. IEEE, 2012.

[78] O. T. Lenning and L. H. Ebbers. The Powerful
Potential of Learning Communities: Improving
Education for the Future. ASHE-ERIC Higher
Education Report, Vol. 26, No. 6. ERIC, 1999.

[79] F. Levy and R. J. Murnane. Education and the
changing job market. Educational leadership,
62(2):80, 2004.

[80] G. R. Loftus and E. F. Loftus. Mind at play; The
psychology of video games. Basic Books, Inc., 1983.

[81] C. S. Loh. Information trails: In-process assessment
of game-based learning. In Assessment in game-based
learning, pages 123–144. Springer, 2012.

[82] L. Malmi, J. Sheard, Simon, R. Bednarik,
J. Helminen, P. Kinnunen, A. Korhonen, N. Myller,
J. Sorva, and A. Taherkhani. Theoretical
underpinnings of computing education research:
What is the evidence? In Proceedings of the Tenth
Annual Conference on International Computing
Education Research, ICER ’14, pages 27–34, New
York, NY, USA, 2014. ACM.

[83] L. Malmi, J. Sheard, Simon, R. Bednarik,
J. Helminen, A. Korhonen, N. Myller, J. Sorva, and
A. Taherkhani. Characterizing research in computing
education: A preliminary analysis of the literature.
In Proceedings of the Sixth International Workshop
on Computing Education Research, ICER ’10, pages
3–12, New York, NY, USA, 2010. ACM.

[84] T. Malone. What makes things fun to learn? a study
of intrinsically motivating computer games. Technical
report, Xerox, Palo Alto, CA, USA, 1980.

[85] H. Marsh and A. Martin. Academic Self-Concept and
Academic Achievement: Relations and Causal
Ordering. British Journal of Educational Psychology,
81(1):59 – 77, 2011.

[86] R. E. Mayer. Cognitive theory of multimedia
learning. The Cambridge handbook of multimedia
learning, 43, 2014.

[87] S. Meier. Sid meier on how to see games as sets of
interesting decisions. gamastutra, march 7, 2012.
http://www.gamasutra.com/view/news/164869/
GDC 2012 Sid Meier on how to see games as sets
of interesting decisions.php. Accessed: 2016-07-13.

[88] C. S. Miller, J. F. Lehman, and K. R. Koedinger.
Goals and learning in microworlds. Cognitive Science,
23(3):305–336, 1999.

[89] C. I. Muntean. Raising engagement in e-learning
through gamification. Proc. 6th International
Conference on Virtual Learning, 2011.

[90] L. E. Nacke, C. Bateman, and R. L. Mandryk.
Brainhex: A neurobiological gamer typology survey.
Entertainment Computing, 5:55–62, 2014.

[91] T. Naps, G. Roessling, V. Almstrum, W. Dann,
R. Fleischer, C. Hundhausen, A. Korhonen,
L. Malmi, M. McNally, S. Rodger, and J. A.
VelÃ ↪azquez-Iturbide. Exploring the role of
visualization and engagement in computer science
education. SIGCSE Bulletin, 35(2):131–152, June
2003.

[92] H. F. O’Neil, R. Wainess, and E. L. Baker.
Classification of learning outcomes: evidence from
the computer games literature. The Curriculum
Journal, 16(4):455–474, December 2005.

[93] E. O’Rourke, K. Haimovitz, C. Ballweber, C. Dweck,
and Z. Popović. Brain points: a growth mindset
incentive structure boosts persistence in an
educational game. In Proceedings of the 32nd annual
ACM conference on Human factors in computing
systems, pages 3339–3348. ACM, 2014.

[94] E. O’Rourke, E. Peach, C. S. Dweck, and Z. Popovic.
Brain points: A deeper look at a growth mindset
incentive structure for an educational game. In
Proceedings of the Third (2016) ACM Conference on
Learning@ Scale, pages 41–50. ACM, 2016.

[95] M. Papastergiou. Digital game-based learning in high
school computer science education: Impact on
educational effectiveness and student motivation.
Computers & Education, 52(1):1–12, 2009.

[96] R. E. Pattis. Karel the robot: a gentle introduction to
the art of programming. John Wiley & Sons, Inc.,
1981.

[97] C. Pearce, T. Boellstorff, and B. A. Nardi.
Communities of play: Emergent cultures in
multiplayer games and virtual worlds. MIT Press,
2011.

[98] R. Pekrun. The control-value theory of achievement
emotions: Assumptions, corollaries, and implications
for educational research and practice. Educational
Psychology Review, 18(4):315 – 341, 2006.

[99] J. L. Plass, R. Goldman, M. Flanagan, and K. Perlin.
Rapunsel: Improving self-efficacy and self-esteem
with an educational computer game. In Proceedings
of the 17th International Conference on Computers

in Education, pages 682–689, 2009.

[100] M. Prensky. Don’t bother me, Mom, I’m learning!:
How computer and video games are preparing your
kids for 21st century success and how you can help!
Paragon house St. Paul, MN, 2006.

[101] V. Ramalingam, D. LaBelle, and S. Wiedenbeck.
Self-efficacy and mental models in learning to
program. In ACM SIGCSE Bulletin, volume 36,
pages 171–175. ACM, 2004.

[102] L. P. Rieber and D. Noah. Games, simulations, and
visual metaphors in education: antagonism between
enjoyment and learning. Educational Media
International, 45(2):77–92, 2008.

[103] C. Romero and S. Ventura. Educational data mining:
A survey from 1995 to 2005. Expert systems with
applications, 33(1):135–146, 2007.

[104] A. A. Rupp, M. Gushta, R. J. Mislevy, and D. W.
Shaffer. Evidence-centered design of epistemic games:
Measurement principles for complex learning
environments. The Journal of Technology, Learning
and Assessment, 8(4), 2010.

[105] R. M. Ryan, C. S. Rigby, and A. Przybylski. The
motivational pull of video games: A
self-determination theory approach. Motivation and
Emotion, 30:347–363, 2006.

[106] K. Salen and E. Zimmerman. Rules of play: Game
design fundamentals. MIT press, 2004.

[107] J. Schell. The Art of Game Design: A book of lenses.
CRC Press, 2014.

[108] H. Schoenau-Fog. The player engagement process -
an exploration of continuation desire in digital
games. Think Design Play: Digital Games Research
Conference, 2011:14–17, Sept 2011a.

[109] I. Schreiber and B. Brathwaite. Challenges for game
designers. 2008.

[110] M. Scott. A monument to the player: Preserving a
landscape of socio-cultural capital in the transitional
mmorpg. New Review of Hypermedia and
Multimedia, 18(4):295–320, December 2012.

[111] M. J. Scott and G. Ghinea. Educating programmers:
A reflection on barriers to deliberate practice. In
Proceedings of the 2nd HEA STEM Conference,
pages 28–33, Birmingham, UK, April 2013.

[112] M. J. Scott and G. Ghinea. Integrating fantasy
role-play into the programming lab: Exploring the
‘projective identity’ hypothesis. In Proceedings of
43rd ACM Technical Symposium on Computer
Science Education, pages 119–122, Denver, CO, USA,
March 2013.

[113] M. J. Scott and G. Ghinea. Measuring enrichment:
the assembly and validation of an instrument to
assess student self-beliefs in cs1. In Proceedings of the
tenth annual conference on International computing
education research, pages 123–130. ACM, 2014.

[114] M. J. Scott and G. Ghinea. On the domain-specificity
of mindsets: The relationship between aptitude
beliefs and programming practice. IEEE
Transactions on Education, 57(3):169–174, Aug 2014.

[115] J. R. Shaffer. Online and offline gaming social
preferences of students. PhD thesis, George Mason
University, 2012.

[116] R. J. Shavelson, J. J. Hubner, and G. C. Stanton.
Self-concept: Validation of construct interpretations.
Review of educational research, 46(3):407–441, 1976.

[117] B. Sheffield. Token video game characters distract
from real stories - anna anthropy. Gamustra, 2012.

[118] L. Shulman. Those who understand: Knowledge
growth in teaching. Educational Researcher,
15(2):4–14, Feb. 1986.

[119] V. J. Shute, M. Ventura, M. Bauer, and
D. Zapata-Rivera. Melding the power of serious
games and embedded assessment to monitor and
foster learning. Serious games: Mechanisms and
effects, 2:295–321, 2009.

[120] B. Simon, M. Kohanfars, J. Lee, K. Tamayo, and
Q. Cutts. Experience report: peer instruction in
introductory computing. In Proceedings of the 41st
ACM technical symposium on Computer science
education, pages 341–345. ACM, 2010.

[121] B. F. Skinner. Operant behavior. American
Psychologist, 18(8):503, 1963.

[122] K. Squire and S. Barab. Replaying history: engaging
urban underserved students in learning world history
through computer simulation games. In Proceedings
of the 6th international conference on Learning
sciences, pages 505–512. International Society of the
Learning Sciences, 2004.

[123] J. Stenros. The game definition game: A review.
Games and Culture, 2016.

[124] B. Stewart. Personality and play styles: A unified
model. Gamasutra, 2011.

[125] B. Suits. The Grasshopper-: Games, Life and Utopia.
Broadview Press, 2014.

[126] J. VandenBerghe. The 5 domains of play: Applying
psychology’s big 5 motivation domains to games.
Game Developers Conference, GDC Vault, 2012.

[127] L. S. Vygotsky. Mind in society: The development of
higher psychological processes. Harvard university
press, 1980.

[128] G. Wiggins and J. McTighe. Understanding by
Design. Association for Supervision and Curriculum
Development, Alexandria, Virgina, USA, 2005.

[129] D. Williams, N. Yee, and S. E. Caplan. Who plays,
how much, and why? debunking the stereotypical
gamer profile. Journal of Computer-Mediated
Communication, 13(4):993–1018, 2008.

[130] J. M. Wing. Computational thinking. Commun.
ACM, 49(3):33–35, March 2006.

[131] D. Wood, J. S. Bruner, and G. Ross. The role of
tutoring in problem solving. Journal of child
psychology and psychiatry, 17(2):89–100, 1976.

[132] N. Yee. The labor of fun how video games blur the
boundaries of work and play. Games and Culture,
1(1):68–71, 2006.

[133] N. Yee. Motivations for play in online games.
CyberPsychology & behavior, 9(6):772–775, 2006.

[134] A. Zinck and A. Newen. Classifying emotion: a
developmental account. Synthese, 161(1):1–25, 2008.

