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ABSTRACT
Current CS1 learning outcomes are relatively general, specifying
tasks such as designing, implementing, testing and debugging pro-
grams that use some fundamental programming constructs. These
outcomes impact what we teach, our expectations, and our assess-
ments. Although prior work has demonstrated the utility of single
concept assessments, most assessments used in formal examina-
tions combine numerous heterogeneous concepts, resulting in com-
plex and difficult tasks. As a consequence, teachers may not be able
to diagnose the actual difficulties faced by students and students are
not providedwith accurate feedback about their achievements. Such
limitations on the nature and quality of feedback to teachers and
students alike may contribute to the perceived difficulty and high
dropout rates commonly observed in introductory programming
courses.

In this paper we review the concepts that CS education re-
searchers have identified as important for novice programming. We
survey learning outcomes for introductory programming courses
that characterize the expectations of CS1 courses, and analyse as-
sessments designed for CS1 to determine the individual components
of syntax and semantics required to complete them. Having recog-
nized the implicit and explicit expectations of novice programming
courses, we look at the relationships between components and
progression between concepts. Finally, we demonstrate how some
complex assessments can be decomposed into atomic elements that
can be assessed independently.

Pre-print of the paper (accepted manuscript) for the institutional repository and not
for redistribution. See terms of the ACM Copyright Transfer Agreement.
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1 INTRODUCTION
A substantial body of research provides evidence that students
struggle to pass the program comprehension and program gener-
ation tasks that we set [38, 47, 89, 91]. The failure of students to
correctly complete these tasks has led many academics to conclude
that learning to program is inherently difficult [6, 62]. However, it
has recently been argued that the difficulty is due to the assessment
tasks that we use, rather than the subject itself [41, 46].

Typical introductory programming courses (which we will, for
convenience, call “CS1 courses” using the northern American de-
scriptor) frequently require students to complete assessment tasks
that are complex and involve many heterogeneous concepts within
a single question. The Computing Curricula 2013 [4] lists a number
of learning outcomes for software development fundamentals, and
they are typically complex. For example:

(1) Design, implement, test, and debug a program that uses each
of the following fundamental programming constructs: basic
computation, simple I/O, standard conditional and iterative
structures, the definition of functions, and parameter passing.
[Usage]

(2) Write a program that uses file I/O to provide persistence
across multiple executions. [Usage]

The study by McCracken et al. [47] is a case in point. In this
study, students were asked to write a simple calculator that neatly
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fits the requirements of Learning Objective (1) above: students were
required to design, implement, and test a program (the calculator)
that involved writing functions, loops, if statements, and input/out-
put. Programs were collected from 216 students in four different
universities. The students scored very poorly – 22.89 out of 110
possible points on average. As a result, the paper has been widely
cited since its publication in 2001 for the proposition that students
cannot write code (see, e.g., [24, 29, 38, 75]).

A 2013 replication of this experiment, however, found room for
partial credit at a more “atomic” level. Only eight students (out
of 40) turned in a complete solution. On the other hand, “many
solutions were incomplete, but generally the features that were
implemented worked” [46, p. 94].

Similar results have been found in a teaching context. A study
of 20 introductory exams found that, overall, more than half the
marks (54%) were allocated to questions involving between six
and 24 lines of code [70]. Another study of nine exams from three
universities found that the exam questions required an average
of 10.85 different syntax elements [42]. Students who struggled
with any of the syntax elements in a given question would have
difficulty correctly answering that question. Furthermore, although
teachers have a great deal of experience setting exam questions,
they regularly underestimated the number of concepts required to
complete exam questions [57]. This dense intertwining of concepts
is thought to be one of the main reasons that students struggle to
succeed in programming courses [61].

The exclusive use of these traditional assessments results in two
major problems. First, teachers who are administering the assess-
ments find it difficult to quantify what students are struggling with.
A program that fails to compile or fails to pass test cases provides
little information about what a student can successfully achieve.
For example, an analysis of a large set of solutions submitted by
students indicated that both conditionals and loops were problem-
atic for students, with the majority of students failing to submit a
correct solution on their first attempt. However, further analysis
of the code revealed that more than 50% of students attempting to
solve a simple problem using a loop failed to correctly answer the
question because they used integer division rather than floating
point division [15]. Although the problem was designed to assess
the loop construct, students failed due to a misunderstanding of
the type resulting from an arithmetic operation.

Second, the exclusive use of traditional assessments deprives the
students of feedback about what they do know and what they can
achieve. In a meta-study of feedback on student learning, Hattie
and Timperley [30] report that feedback is one of the most sig-
nificant factors that influence student learning. When assessment
tasks are designed to build progressively and involve many inter-
related concepts, fragile knowledge in one area makes it difficult to
demonstrate success in other areas, potentially enhancing feelings
of falling behind. Students drop courses when they feel that they
are starting to fall behind [57], yet we know that students with
fragile knowledge of programming concepts have the potential to
succeed if they persist in their studies [86].

Previous work by Zingaro et al. [94] demonstrated that it was
possible to effectively assess solitary programming concepts. Fur-
ther, they assert that:

. . . questions targeted to each skill are more indicative
of specific abilities than questions testing these skills in
tandem [94, p. 258].

We speculate that focusing on independent components of pro-
gramming may increase opportunities for novices to demonstrate
what they can achieve, and may improve diagnosis of student diffi-
culties. In this report, we identifywhat components of programming
we expect students to learn in CS1 courses, how we currently assess
them, and how we might assess them independently.

1.1 Research Questions
In order to determine what we should be assessing in CS1, we first
need to establish what content is covered by CS1 courses and what
we expect from students.

We determine these expectations by looking at three different
sources of data: the concepts that are reported as being impor-
tant in the CS Education literature; the explicitly stated learning
outcomes for introductory programming courses; and the implicit
expectations that can be determined by analysis of the assessments
designed for use in introductory programming courses. We also
need to know how these specific elements relate to one another so
that we can determine which elements might be assessed indepen-
dently. Finally, we need to demonstrate how we might decompose
traditional assessments into independent parts. This leads to the
following research questions:

RQ 1What are the syntax and semantics involved in introduc-
tory programming courses?

RQ 1.1 What syntax and semantics are considered to be
important by CS researchers?
RQ 1.2What syntax and semantics appear in learning out-
comes?
RQ 1.3 What are the elements of syntax and semantics that
we assess?

RQ 2 How are the elements of syntax and semantics related to
each other?
RQ 3 How might we assess elements independently?

1.2 Organisation of this Paper
The remainder of this paper is organised as follows. Section 2 re-
views related work in five subsections: educational theory, ped-
agogy, and three subsections on work pertaining to each of our
three main research questions. Following this, Sections 3, 4, and
5 focus respectively on research questions 1.1 (concepts from the
literature), 1.2 (learning outcomes), and 1.3 (assessment). Section 6
then explores research question 2, and Section 7 explores research
question 3. Section 8 provides a discussion of these results before
we present our conclusions and future work in Sections 9 and 10.

2 RELATEDWORK
2.1 Educational Theory
Constructivist theory claims that each student builds their own un-
derstanding through their individual interactions with the world [5].
Students typically come to computing with at least partial under-
standing of some computational concepts [77]. However, building
correct mental models is challenging for novices [79]. Breaking
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tasks down into smaller parts may assist them to more easily build
understanding by reducing the cognitive load imposed by more
complex tasks.

Cognitive load is the amount of mental effort required by a
given task [82]. When the cognitive load of a given task exceeds
the capacity of working memory, learning can be impeded. The
cognitive load imposed by a task can be divided into three categories:
intrinsic, extraneous, and germane.

intrinsic: Intrinsic cognitive load is the mental effort required
by the nature of the task. It is a combination of the difficulty
of the task and characteristics of a learner. Different tasks
involve different intrinsic cognitive load, but this load cannot
be reduced for a given task.

extraneous: This mental effort can be affected by the instruc-
tional design of the task. For example, the use of worked
examples has been shown to reduce extraneous cognitive
load [78].

germane: Like extraneous cognitive load, germane cognitive
load is affected by the instructional design of the task, but
differs from extraneous in that the extra mental effort is
effective for learning.

Germane cognitive load might be considered to be effort rather
than load: “one might say that intrinsic and extraneous cognitive
load concern cognitive activities that must unavoidably be per-
formed, so they fall under cognitive load; germane cognitive load is
the space that is left over that the learner can decide how to use, so
this can be labelled as cognitive effort” [21]. With this distinction,
the traditional educational goal of reducing cognitive load makes
more sense.

Cognitive load can be reduced by the use of schemas. A schema
is a framework, or pattern, that can be used to meaningfully under-
stand the world. Schemas are used to organise information so it can
be effectively stored and retrieved. Piaget [59] argued that infor-
mation is stored in long-term memory by processes of assimilation
and accommodation. Assimilation involves activating an existing
schema, whereas accommodation involves adaptation of an existing
schema or creation of a new schema. Having developed schemas
for common tasks, experts can easily assimilate new information
and are not impeded by its cognitive load [83].

Novices, however, use much of their working memory to process
information because the schemas they have developed are unable
to assimilate the information required to complete the task. This
is believed to be particularly true of programming, since it is a
complex domain that involves many different components and
relationships between the components [61, 84].

Although some tasks are too difficult for novices to complete
holistically, it may be possible to divide these tasks into smaller
components (sub-tasks) that are within the novice’s mental capacity
to complete. It is possible that the schema required to perform
a given task may be broken up into sub-schemas to solve sub-
tasks [50, 68]. Once acquired, these schemas may be recombined
to solve a task with high intrinsic cognitive load without unduly
taxing the learner.

2.2 Pedagogy
Two pedagogical approaches that are generally consistent with our
breakdown of basic programming into atomic elements are Mas-
tery Learning, which has been applied in various CS contexts, and
the Keller approach, which has its roots in teaching introductory
psychology.

2.2.1 Mastery Learning. Mastery learning [8, 9], or “learning
for mastery,” divides content to be learned into short units of study
which are assessed at the end of the unit. Students are only permit-
ted to continue when they demonstrate mastery of the content they
have covered in the unit. Students who fail to achieve competency
in the tests are provided with additional help, frequently in the
form of individual or group tutorials, before resitting the test [34].

In traditional models of teaching, content is delivered in a fixed
time period (such as a semester), and students reach varying levels
of competency within the fixed time. Bloom believed that almost all
students could reach an expected level of competency, but the time
it would take them to reach the required level would vary [10].

Several researchers have investigated the use of mastery learning
for introductory programming [14, 17, 27, 36, 45, 49, 87]. In one
study, mastery learning was used effectively with heterogeneous
groups, and demonstrated an increase in student self-perception of
programming ability [14].

A study of mastery learning in a CS1 course provided evidence
that students who had learned using mastery learning were better
prepared for a subsequent course compared with students who
had experienced more traditional learning, and that the effect was
particularly pronounced for weaker students [45].

Researchers investigating the use ofmastery learning in a second-
year software development course reported three major differences
from more traditional delivery [27]: students produced code with
improved design and refactoring; understanding of complex con-
cepts such as concurrency improved; and while students did not
progress as far with projects, their average grade was approximately
the same.

Mastery learning has obvious applications for the design of in-
telligent tutoring systems for teaching programming [17]. Such
systems require a model of what the student knows, and devel-
oping that model requires a detailed list of expected outcomes.
Breaking up CS1 assessments into component elements may have
significant implications for the modelling of student knowledge in
intelligent tutoring systems designed to teach programming.

2.2.2 Keller Plans. Keller [33] introduced what has come to be
known as the “Keller Plan” for course design. Strongly influenced by
his observations of training in the military, he designed a radically
different version of an introductory psychology course.

The material in the course was divided into 30 units. At the start
of the course, each student was given reading material and some
questions to think about in relation to the first unit. When ready,
he or she took a test on the material (at one of a set of possible
times during the week), a teaching assistant (TA) graded it on the
spot, and the student and TA had a conversation about the results.
If successful, the student continued to the next unit; otherwise, he
or she was allowed to be re-tested on the material an unlimited
number of times. TAs, generally students who had received an A
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in the course a year or two earlier, were each assigned ten students
to work with, so all of a student’s tests were given by the same
TA. At the end of the semester, a student’s grade was based on
the number of units completed, plus performance on a final exam
(which included questions from the individual units).

Keller’s course design generated a lot of interest during the
1970s and 1980s. Interest seems to have fallen after that point, but
has revived recently. It has been suggested that some of Keller’s
ideas might be incorporated into distance learning, and specifically,
MOOCs [28].

The approach that we describe here, of breaking complex pro-
gramming tasks up into individual components, may provide the
basis for determining a structure for Mastery Learning or activities
to be used in a Keller Plan. However, it may also inform the struc-
ture of learning in other pedagogies, such as the order in which
standard lecture courses progress, or it may form the basis for
multiple-choice questions in a peer instruction course.

2.3 Syntax and Semantics (RQ1)
2.3.1 Syntactic and Semantic “Elements”. The elements of syntax

are essentially the set of basic atomic symbols and words, as well
as the rules used to assemble them into well-formed constructs. To
a large extent, they are programming language dependent and, in
du Boulay’s terminology [23], relate to the notation area.

The elements that pertain to the semantic sphere can be divided
between operational aspects – how the abstract notional machine
[23] works – and task-oriented features – what is meant to be
achieved by using a given program construct. Students’ under-
standing of operational semantics is usually connected to their
ability to trace a program’s execution, which has been investi-
gated in terms of mental models (e.g., models of assignment and
recursion) [11, 37, 43, 66], and often addressed with the aid of visu-
alisation tools [80].

The purpose of specific program structures, on the other hand,
has been given limited attention at an elementary level. Remarkable
exceptions that can be mentioned in this respect are code analysis
in terms of programming patterns [60], and particularly of the roles
of variables [12, 63], which seem to capture very basic aspects of
the development of simple programs.

2.3.2 Learning Outcomes. To the best of our knowledge, the
range and consistency of expected learning outcomes for CS1 across
a variety of institutions and countries have not yet been investi-
gated systematically. Dale [19], Schulte and Bennedsen [67] and,
more recently, Davies et al. [20] provided some statistics on con-
cepts or techniques covered as well as on programming languages
in use, based on the information gathered from respondents to
surveys. The trend of programming languages adopted in the US
for introductory courses has also been monitored by Siegfried et al.
[72], while de Raadt et al. [22] analysed 49 widespread textbooks
in terms of broad topics, language, and other features.

The 2001 report of the Joint ACM & IEEE-CS Task Force on
Computing Curricula suggested a set of core topics and learning ob-
jectives for the “Programming Fundamentals” (PF) unit [3] (whereas
the most recent report [4] doesn’t address introductory program-
ming at the same level of detail). The core topics were organised into
five areas: fundamental programming constructs (PF1), algorithms

and problem solving (PF2), fundamental data structures (PF3), re-
cursion (PF4), and event-driven programming (PF5). PF1 and PF2,
in particular, include very basic syntactic and semantic concepts
which apply to most programming languages.

2.3.3 Assessment Analysis. A substantial body of work has pre-
viously explored the assessments that are used in novice program-
ming courses [32, 58, 69, 76, 91], and the complexity of those as-
sessments [32, 42, 90]. Assessment tasks were found to be more
complex than academics expected [92]. In previous work, Luxton-
Reilly and Petersen investigated the number and types of syntactic
elements found in programming assessments [42]. They generated
the Abstract Syntax Tree for CS1 exam questions that involved
either reading or writing Python code. The elements of the syntax
tree were categorised and tabulated, revealing that exam questions
contained an average of 10.85 different concept components. They
argued that current assessment practices do not target specific syn-
tactic elements; instead, most assessments they analysed involved
a large number of syntactically derived “concepts.”

2.4 Relationships between Elements (RQ2)
The occurrence and strength of coupling between different concepts
implied by a given task can be connected with the levels of the
SOLO taxonomy [18, 39, 69, 71]. Elements that can be understood in
isolation pertain to the uni-structural level, whereasmulti-structural
tasks involve different components that are only loosely coupled
to each other. More complex tasks still can be described at the
relational or extended abstract levels.

Assessments that novice programmers are expected to complete,
such as those used by the McCracken working group [47] and the
Leeds working group [38], are typically expressed at the relational
level and require an understanding of the relationships between
elements. Yet there is a growing body of evidence that students
typically do not attain these levels at the end of CS1, but instead
tend to be operating at or below the multi-structural level [39].

The relationships between elements may also explain why in-
troductory programming courses have “higher than usual rates of
both failing and high grades, creating a characteristic bimodal grade
distribution” [61] (although the “bimodal” description is not accu-
rate [1, 55]). The Learning Edge Momentum hypothesis proposes
that success in acquiring one concept makes it easier to learn other
closely linked concepts, whereas failure makes it harder [61]. This
interaction between the way that students learn and the tightly inte-
grated nature of the concepts comprising a programming language
creates an inherent structural bias in CS1 that drives students to-
wards the extreme outcomes often observed. If this theory is correct,
then we may be able to promote more positive outcomes for stu-
dents by replacing negative feedback on multi-concept assessments
with more easily achieved positive feedback on smaller atomic
concepts.

2.5 Independent Assessment (RQ3)
Computer science educators have studied the assessment of indi-
vidual core concepts in recent years [85]. Questions in a concept
inventory are intended to measure students’ understanding of key
concepts. Creation of such an inventory involves a complex process
of identifying a set of misconceptions and devising corresponding
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items that test for these misconceptions; in particular, the resulting
items have to be empirically validated in order to ensure that they
are indeed measuring the misconceptions and concept understand-
ings that they are intended to measure. So a concept inventory is
derived from a top-down approach and is based on the structure of
the subject itself (for deriving concepts) and empirical investigations
(for deriving/validating misconceptions). Once a concept inventory
is complete, it can be used to diagnose students’ misconceptions
with regard to the concepts used. While there is some recent work
on concept inventories in CS (see Taylor et al. [85] for an overview),
the existing inventories are proprietary and unavailable [25, 26], at
a pilot stage [13], or avoid syntactic issues [25, 26, 53].

The most developed instruments, the FCS1 and SCS1, are based
on pseudocode. Tew developed and validated the FCS1 to be a
language-independent assessment of CS1 [25, 26]. The assessment
is based on an analysis of typical textbooks, and many of the con-
cepts (e.g., assignment, loop, etc.) are the same as or similar to
those that we have identified at the level of programming language
elements. A second, isomorphic assessment (the SCS1) was devel-
oped to replicate the previous FCS1 and to make it available to the
community [53].

Mühling, Ruf, and Hubwieser developed an instrument based on
a set of Rasch-scaled items [51] that assess learners’ abilities con-
cerning control flow and control structures. It is explicitly designed
to leave out aspects of program state and syntax.

Deriving a set of criteria that can be used for grading is a process
that is usually done manually and often holistically. Berges and
Mühling describe a way of deriving a series of questions that can
be associated with a concept and then used as criteria for check-
ing whether a concept has been understood based on source code
[7]. We use a similar approach in this work to derive the atomic
assessment tasks for a concept.

3 CONCEPTS FROM LITERATURE – RQ 1.1
3.1 Methodology
We began by searching the literature for a hierarchy of concepts
in introductory programming courses. No papers were found that
presented a concept hierarchy for CS1. Návrat [52] proposed a pre-
liminary and partial concept hierarchy for collections, a topic that
is typically covered in CS2. His focus was to distinguish between
design tasks involving abstraction and generalisation using these
hierarchies, and so is not directly relevant to the current project.
Some papers empirically established skills hierarchies based on
an analysis of assessment items [40, 74, 88, 93] while others listed
programming concepts and grouped them under various headings
[2, 19, 48, 65]. In a study of exams, Simon et al. [74] noted that “top-
ics that follow ‘assignment’ tend to subsume data types & variables”
and also in their encoding method that “Having assigned [a broader
topic] to a question, we would not also assign a topic subsumed by
that broader topic,” giving an example of loops subsuming opera-
tors; this suggests that they believe that some of the concepts can
be arranged hierarchically.

A further search of the literature, to establish the core concepts
of CS1 and the key expectations for a CS1 course, identified seven
papers [2, 25, 31, 56, 64, 67, 74]. In each of these papers a concept list
was composed from different sources. Armstrong [2] analysed forty

years of literature in order to establish a list of essential elements
or “quarks” that are key to teaching object-oriented programming.
Eight quarks were identified and grouped according to whether
they were structural or behavioural program elements. Schulte
and Bennedsen [67] surveyed teachers in order to establish what
concepts teachers considered to be most important in a CS1 course.
The concepts in their survey were derived from lists collated by
Dale [19] andMilne [48]. Dale’s list was developed through a survey
which asked teachers of introductory computer programming to
identify the topics which they covered in their courses. Milne on
the other hand surveyed students and built a list of concepts ranked
by student perceived difficulty. Tew and Guzdial [25] surveyed
four introductory programming textbooks to establish their list
of common fundamental CS1 concepts. Pedroni and Meyer [56]
examined the structure of dependencies of topics in OOP and, as
an artefact of this study, identified a set of core OO concepts that
were extracted from course design materials. Hertz [31] constructed
a list from the LACS curriculum [16] by combining, generalising,
splitting, and adding new concepts. Simon et al. [74] examined
20 CS1 exams and for each question in the exams identified up
to three central concepts assessed by those questions. An ITiCSE
2013 Working Group [64] developed a set of 654 multiple-choice
questions, the Canterbury QuestionBank, covering various CS1 and
CS2 programming topics. Each question in the bank was assigned
up to three topic or concept tags from a list that was based on
that of Simon et al. [74] but substantially expanded to include CS2
topics and other topics that arose through the question bank tagging
process.

In order to ensure a comprehensive picture of what are con-
sidered to be core introductory programming concepts, we then
added the LACS concept list [16] and the Fundamental Program-
ming Concepts and Fundamental Data Structures from the Software
Development Fundamentals (SDF) area of the 2013 ACM curriculum
[4].

A master list of concepts was compiled from these nine sources.
Common entries were identified and either merged or split. For ex-
ample, Schulte and Bennedsen’s [67] “Obj&Class – The concept of
objects and classes” was split into two separate categories – objects
and classes – whereas “iteration” and “iterative control constructs”
were merged into a single category. Some concepts were eliminated
from our list: “Object-Oriented Basics” was considered to be so
abstract that it was inherently covered by other lower level con-
cepts in the list, and it also lacked clarity – which OO concepts are
considered to be basic? “Design by contract” was among concepts
that were eliminated because while they are important, they are
not directly related to syntax and semantics and are rarely cov-
ered in an introductory programming course. Other topics such as
“ethics,” while interesting in a CS1 course, are not typically covered
in introductory programming or related to programming syntax
and semantics. Finally any topics considered to be more typically
taught in a CS2 coursewere discarded. The remaining conceptswere
grouped into categories, many of which are the same as broader
concepts already identified from our literature examination.
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Concept Freq Source
Variables 6 4, 25, 31, 65, 67, 74

Scope of variables 6 2, 25, 56, 64, 67, 74
Assignment 4 4, 25, 56, 74
Expressions 4 4, 16, 31, 74
Constants 3 64, 67, 74
Instance variables 2 25, 67
Lifetime 2 64, 74
Static & non-static variables 1 67

Data Types 4 16, 31, 64, 74
Strings 6 16, 25, 31, 64, 67, 74
Primitive data types 3 4, 25, 56
Floating Point 2 25, 64
Integers 2 25, 64
Pointers, references & memory

management 2 64, 67
Booleans 1 25

Data Structures
Arrays 6 16, 25, 31, 56, 67, 74
Linked list 3 56, 64, 67
Collections other than arrays 2 64, 74
Matrices 1 16
Lists 1 31
Sets, relations 1 16
Structs & Records 1 64

Control Constructs 2 16, 31
Conditional Control Structures 5 4, 25, 56, 67, 74
Iterative Control Structures 4 4, 64, 67, 74

Loop (for) 1 25
Loop (while) 1 25
Loop (nested) 1 25

Events 2 64, 74
Exceptions 2 16, 65

Arithmetic 2 25, 64
Relational operators 3 25, 64, 74
Logical operators 3 25, 64, 74

Boolean algebra 1 16
Functions, Methods

& Procedures 6 2, 4, 16, 31, 64, 74
Function Definition 1 25

Parameters & param. passing 2 25, 74
Subroutines 2 31, 74
Accessor Methods 1 25
Mutator Methods 1 25
Return values 1 25
Static & non-static methods 1 67

Calling Functions
Recursion 7 16, 25, 31, 56, 64, 67, 74
Parameter passing 3 25, 67, 74
Dynamic binding 2 2, 56

Concept Freq Source
I/O 2 64, 74

Simple I/O 5 4, 25, 31, 64, 74
File I/O 4 4, 16, 64, 74
Streams 2 4, 16
GUI 2 64, 74

OO Concepts 2 64, 74
Classes 6 2, 16, 25, 31, 67, 74
Encapsulation/information hiding 4 2, 25, 67, 74
Inheritance 5 2, 16, 25, 31, 67
Polymorphism 5 2, 25, 56, 67, 74
Objects/Instances 4 2, 25, 67, 74
Interfaces (Java) 3 16, 31, 64
Constructors 2 25, 74
Generics 2 56, 67
Message passing/object interaction 2 2, 67
Abstract classes 1 31
Instance variable types 1 67
Object identity 1 74

Programming process
Programming styles/standardsa 4 16, 31, 64, 67
Reading code 4 16, 31, 64, 74
Debugging 2 2, 67
Design - classesb 2 64, 67
Design - methodsc 2 64, 74
Design - programs 2 2, 67
Design - algorithms 1 67
Design - single class 1 67
Error handling 1 67
Testing 1 64
Abstract programming thinking
Judgementd 1 16
Notional machinee 1 16
Problem solving strategiesf 3 31, 64, 74
Using language libraries 2 65, 67

aComplying with a set of programming style guidelines or standards
bIdentifying classes from a problem description. Schulte and Bennedsen [67] also
include CRC cards and responsibility design in their list as a separate category.
cGiven the classes needed to solve a problem specify the methods required
dChoosing appropriate data structure, algorithms and being able to justify that choice.
eMental model of the computer.
fIncluding decomposition of a problem (divide and conquer), stepwise refinement and
other problem solving strategies.

Table 1: Frequency of common CS1 concepts
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3.2 Results and Discussion
Table 1 presents the final master list of concepts extracted from
the nine literature sources. It is worth noting that the disparate ap-
proaches used to develop the nine concept lists influences the types
of concepts identified in each list. For example, those developed
from a survey of teachers [67] focus more on classes of syntac-
tic concepts (e.g., variables and data types, data structures, etc.),
processes (e.g., design and testing), whereas those developed from
examining assessment items tend to focus on individual concepts.
When concept lists focus on syntax and semantics, the problem of
language specificity is introduced.

In undertaking this analysis of concepts it is clear that concepts
are unlikely to fall into a strict hierarchy – it is more likely that there
is a myriad of connections (a graph) with horizontal and vertical
relationships. For example, the concept of “scope” arises in several
lists. This might refer to any of several higher-level concepts, such
as variable scope, method or function scope, or scope of any of
those constructs as specific to OO programming.

4 LEARNING OUTCOMES – RQ 1.2
4.1 Methodology
We analysed the CS1 learning outcomes of 103 courses1 from 101
universities in 12 countries: Australia, Austria, Canada, France, Ger-
many, Ireland, Italy, New Zealand, Spain, Switzerland, the United
Kingdom, and the United States. To select these courses we first
used the Times Higher Education ranking (THE)2 to generate a list
of the institutions in each country that offers CS bachelor’s degrees.
For each country we then randomly selected ten institutions that
both offer an introductory programming course and publish the
learning outcomes for that course on the web. If a country had
fewer than ten suitable institutions, we included all that it had. We
found two universities that offered more than one introductory
programming course; in those cases, we included both. A detailed
breakdown of the countries and courses is shown in Table 2.

Two of the researchers analysed all of the learning objectives for
the 103 courses in our dataset. We performed a deductive content
analysis [44], using a set of twelve broader concepts based on the
list of concepts in Section 3: Variables (including constants, expres-
sions, assignment, and scope); Data Types; Data Structures; Con-
trol Structures; Functions/Methods/Procedures; Input/Output; Object-
Oriented Concepts (including classes, encapsulation/information hid-
ing, inheritance, polymorphism, objects/instances, Java interfaces,
constructors, message passing/object interaction, etc.); Recursion;
Memory Management/Pointers/References; Libraries; Programming
Process (specifications, design, coding, testing, debugging, docu-
mentation), and More Abstract Thinking about Programming (for
example, correctness, algorithm analysis, judgement, and problem-
solving strategies).

For training, we independently tagged a sample of 10% of the
data. We agreed on 96% of our ratings, with a Cohen’s Kappa of
0.813. After discussing and resolving our differences, we agreed on
a set of guidelines and each rated the full dataset.

1We use the term “course” to refer to a unit of instruction, typically a semester in
duration, for which a student can earn a final result, and which is known variously as
a course, a module, a unit, a subject, a paper, and perhaps more.
2https://www.timeshighereducation.com/world-university-rankings

Country Institutions Courses
Australia 10 10
Austria 3 3
Canada 9 9
France 8 8
Germany 10 10
Ireland 8 9
Italy 10 10
New Zealand 7 8
Spain 10 10
Switzerland 6 6
United Kingdom 10 10
United States 10 10
TOTAL 101 103

Table 2: Total courses in learning objective sample, by insti-
tution and country

Relative to the whole dataset, we agreed on about 96% (again) of
our ratings, with a Cohen’s Kappa of 0.772. On individual concepts,
the percentage of agreement varied from about 78% (Programming
Process) to almost 100% (Input/Output, Recursion, Memory Man-
agement).

There were 540 learning objectives in total, or an average of
approximately 5.2 per course. The number of objectives varied
widely, however, from a minimum of one to a maximum of 22 for
a single course. In addition, the division of course objectives into
individual objectives seemed somewhat arbitrary.

Accordingly, we computed an aggregate result for each course,
based on the results for all of its individual learning objectives.
Specifically, considering the tags for each learning objective as a
bit vector (with 1’s for the tags that apply to that learning objective
and 0’s otherwise), the course result is the “or” of the bit vectors
for all of its learning objectives. For example, if any of a course’s
learning objectives was tagged as having something to do with
recursion, the course as a whole was assigned a 1 for recursion.

Finally, we reconciled the differences in the individual tags as far
as necessary to reach agreement on the course-level results. When
we reached a point where there were only 86 differences left to
reconcile (about 1.6% of all the tags), none of the remaining tags
would make any difference at the course level. For example, if a
course has three learning objectives, one of which clearly refers to
recursion, that course includes recursion in its overall objectives
regardless of the other two objectives. We stopped at that point.

Besides looking at concepts, we also noted any learning objective
that mentioned a specific programming language. This was very
straightforward.

4.2 Results and Discussion
Based on our stated learning objectives, what dowe expect from our
CS1 students? The concepts addressed in the learning objectives of
our sample courses are shown in Table 3.
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Number (%) of
Concept courses
Variables, etc. 14 (14%)
Data Types 24 (23%)
Data Structures 41 (40%)
Control Structures 34 (33%)
Functions, Methods, Procedures 27 (26%)
Input/Output 18 (17%)
Object-Oriented Concepts 37 (36%)
Recursion 10 (10%)
Memory Management, Pointers, References 5 (5%)
Libraries 15 (15%)
Programming Process 90 (87%)
More Abstract Thinking about Programming 65 (63%)

Table 3: Number of courses whose objectives addressed each
concept (with percentage in parentheses)

The most common concept, Programming Process, is found in
87% of courses, substantially more than the next highest (More Ab-
stract Thinking about Programming, 63%). The prevalence of these
two concepts indicates that, as a community, we overwhelmingly
expect students who have completed CS1 to know how to program
and to be able to reason about programs. By contrast,the concept
“Memory, Memory Management, Pointers, and References” was
referred to in just 5% of the courses.

The stated objectives for CS1 are often fairly abstract. In some
cases, we concluded that they were too vague and generic to tag;
for example CA_09’s only learning objective reads:

Write programs to solve problems in computer science
Learning objectives that address only Programming Process are

clearer, but still quite abstract. Consider the only objective for course
AT_01:

Understand systematic, constructive approaches for cre-
ating, testing, debugging, understanding and modifying
programs

Clearly, this course is focused on Programming Process. But con-
sider what the objective does not do: it does not explicitly address
any of the more specific concepts in our list, such as control struc-
tures, functions, or libraries. From a pragmatic point of view, this
makes sense: the objective might remain valid for decades. But
it is challenging to make a connection between such high-level
objectives and the atomic assessments that are the focus of this
paper.

Objectives related to More Abstract Thinking about Program-
ming are also fairly abstract; see, for example, Learning Objective
AU_06.04 (the fourth objective of course AU_06):

Discuss the rationale for applying particular program-
ming concepts

On the other hand, we did find more concrete learning objectives,
such as AU_04.06:

Write Java code that uses control structures, classes and
arrays.

CA_06.13:

Develop and use boolean expressions comprising rela-
tional and logical operators.

and CH_01.02:
Know a part of Java’s class library.

For an example of how a question related to the second of these
learning objectives (CA_06.13) might be broken down into atomic
elements, see Section 7.2.

We have defined as “highly abstract” those courses whose aggre-
gate learning objectives

• only address the Programming Process and/or More Abstract
Thinking about Programming concepts, or

• are too vague even to categorise.
Overall, 27% of the courses fall into this highly abstract category.
These courses will be more difficult to connect with atomic assess-
ment items.

Finally, in our examination of learning objectives, we found
references to two additional concepts, one of which is not covered at
all in Section 3’s list of concepts, and one of which is briefly implied.
The first of these is translation (or mapping). Translating from one
representation to another equivalent one is a key skill for computer
scientists: for example, translating from UML to skeleton code, from
logic expressions to circuit diagrams to truth tables, from box-and-
arrow diagrams to linked-list code, from tail recursion to iteration,
from a recursive function to a program that applies memoisation,
or from binary to hexadecimal to decimal number representations.
Although this concept was not found in the literature, it is concrete
enough to be assessed. If it is not atomic, it is considerably closer to
atomic than an objective such as “write programs to solve problems
in computer science” (CA_09, discussed above).

Several courses included examples of translation in their learning
objectives. For example, CA_08.04 features flow charts:

Translate a simple pseudocode or C program into a
flowchart.

UK_04.04 focuses on UML:
Interpret UML class diagrams in order to implement
object-oriented software

Additional examples of translation or mapping found in our
learning objectives include modelling real-world situations in Java,
translating algorithms into code, translating functional require-
ments into code, and being able to express algorithms in pseudocode
and/or flowcharts. Besides being able to do such translations them-
selves, students are also expected to understand that the compiler
translates their programs into an executable form (UK_09.03).

The second concept that should perhaps be added to our list
is composition: the ability to combine atomic constructs. This is
implicit in Section 3’s mention of “nested loops”, but it occurs in
many other contexts as well. As a matter of fact, instances of this
concept are implied by any interesting combination of basic control
structures – as well as the aggregation of data into structured data
types – and it is connected with the approach to task decomposition
discussed in Section 7. Nevertheless, the ability to understand the
effect of such combinations, also in connection with possible syntac-
tic nuances, is seldom recognised as a key topic in itself, although
students often struggle with nesting conditionals and loops ([35]).
Moreover, if the approach that is central to this paper – devising
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Programming language Courses Percentage

Java 38 36.9%
Python 21 20.4%
C 17 16.5%
C++ 10 9.7%
Scheme/Racket 4 3.9%
C# 2 1.9%
Caml 2 1.9%
Javascript 1 1.0%
Pascal 1 1.0%
Processing 1 1.0%
Unknown 13 12.6%

Table 4: Programming languages in the sampled universities;
percentages sum to more than 100% because seven courses
specify two programming languages

atomic assessments for at least some programming concepts – is
to succeed, it is essential that students then be able to combine the
concepts that they have learned.

In addition to looking at concepts mentioned in the learning
objectives, we also retrieved information on the programming lan-
guages adopted in the considered courses. This information was
publicly available for 90 of the 103 courses (87%). Table 4 summa-
rizes the use of different programming languages in the sampled
universities. Percentages sum up to more than 100% because in
7 courses a second programming language is introduced. It may
also be worth noting that 43 courses (42%) make explicit reference
to some specific programming language in the learning outcomes
themselves, and one more course mentions C as a possible (sug-
gested?) option. As mentioned above, the concept “Memory, Mem-
ory Management, Pointers, and References” is referred to in only
5% of the learning objectives; given the frequency of C and C++ in
this picture, this result is even more surprising.

5 ANALYSIS OF ASSESSMENTS – RQ 1.3
In the previous section we explored what topics students are ex-
posed to in CS1 courses. In this section we ask whether the assess-
ments set by instructors actually assess the topics in the learning
outcomes, and whether they successfully assess these outcomes in
isolation.

5.1 Methodology
Luxton-Reilly and Petersen previously analysed the content of CS1
exams in the Python language, with the aim of identifying the
elements of syntax that were assessed and the extent to which those
elementswere assessed in isolation [42]. To determinewhether their
results hold in a different context, and to gathermore evidence of the
range of concepts that computing educators evaluate, we replicated
their analysis using a different data set and incorporating a second
programming language.

Our data set was drawn from the Canterbury QuestionBank3, a
repository of multiple-choice questions developed by a 2013 ITiCSE

3http://web-cat.org/questionbank/

working group [64]. The QuestionBank was intended to contain
questions for both CS1 and CS2, which is a threat to validity: the
questions do, in aggregate, cover more material than is covered in
a typical CS1 course. As a result, we would expect the number of
concepts in an average question to be higher than in the original
work.

The Canterbury QuestionBank contains 656 multiple-choice
questions, and we extracted all of the code from every question that
included syntactically valid code, whether it was an entire program
or a segment. This entailed substantial data cleaning. The questions
are available in multiple forms, including as web pages (html) and
as an xml file of some 115,000 lines. We understand that these were
both scraped from PeerWise4, in which the questions were origi-
nally submitted. As a general rule, code segments within questions
and answers are enclosed between pre and /pre tags, which mark
out the code and indicate the language in which is is written. Un-
fortunately, the scraping did not apply this rule consistently. Some
code segments are not marked at all, while others have some lines
of code marked and others not. Whether marked or not, some code
also has interpolations that render it syntactically incorrect, such
as explicit line numbers or indications of the location of missing
code.

On initial analysis it appeared that only 236 of the 656 ques-
tions included program code. Exactly half of these questions, 118,
required editing to ensure that all of the code was tagged consis-
tently and could be parsed. A further 181 questions were found
that included code that had not been tagged at all. Once these
were edited and tagged appropriately, we had 417 questions in-
corporating tagged code that could be parsed and analysed. The
questions together encompassed five programming languages: Java
(301 questions); C (72), Python (36), Perl (5), and Visual Basic (3).

We confined our analysis to the Java and Python questions,
using a separate script for each. For each question in turn our
scripts analysed all of the code, which might be incorporated in the
question, the answers, or both. The scripts generated the abstract
syntax tree for each piece of code and then traversed the tree,
forming a set of the syntax elements encountered. Some features
of the code, such as whether a variable was being declared or used,
were inferred and included in the set. After all of the questions were
analysed, the total numbers of occurrences of each syntax element
(or inferred feature) were tabulated.

5.2 Results and Discussion
At a high level, our results echo the original analysis [42]. The
mean, minimum, and maximum number of concepts in each set
are presented in Table 5. While there were few Python problems
in the Canterbury set, the average number of concepts in the two
Python datasets was similar (10.91 vs. 10.85). The Java questions in
the Canterbury set involved more concepts on average (12.83).

The slightly higher number of concepts in our set of Java prob-
lems may be a result of the language itself. To gauge how large an
impact language is on the number of concepts found, we removed
syntax related to classes (the keyword class and annotations for
visibility like public) and related to types. The average number of
concepts per question dropped to 9.83, indicating that the language

4https://peerwise.cs.auckland.ac.nz/
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used has a clear effect. However, the difference in average number
of concepts is possibly also influenced by other factors, such as the
inclusion of CS2 questions in the set or a difference in the style
used to ask questions. As an example of the latter, in the original
Python dataset, print was frequently used (in 65% of problems), as
students were asked for the output of a piece of code. However, it
was used less frequently in both our Java (35%) and Python (43%)
sets. As a result, the relative appearance of concept items is likely to
be a more effective means of comparison than the average concept
count.

Number of Concept Components
Dataset problems Mean Min Max
Original (Python) 195 10.85 2 23
Canterbury (Python) 36 10.91 2 23
Canterbury (Java) 301 12.83 1 26

Table 5: Overview of concept component counts

Original (Python) Canterbury (Python) Canterbury (Java)
component % component % component %
Variable 99.6 Variable 94.3 Variable 94.0
= 85.8 Func Call 77.1 = 75.1
Func Call 84.6 Numbers 77.1 Func Call 70.4
Numbers 83.8 = 68.5 Numbers 70.1
Sequences 81.7 Sequences 62.9 . 70.1
print() 64.6 if 57.1 Var Decl 69.4
Func Decl 54.2 + 48.6 int 62.1
+ 45.4 else (if) 45.7 public 53.8
for 38.3 print() 42.9 Func Decl 46.8
if 34.6 < 37.1 if 40.5
return 34.2 Func Decl 34.3 < 36.8
. 30.4 [] 34.3 ++ 33.5
[] 30.0 len() 28.6 print* 34.5
len() 20.8 for 28.6 return 33.2
else (if) 20.0 while 25.7 String Lit 31.9
range() 19.2 return 25.7 + 30.5
< 16.7 input() 22.9 class 28.6
+= 16.7 True 20.0 for 28.2
> 14.2 == 20.0 [] 27.9
== 14.2 - (subtraction) 20.0 new 26.2

Table 6: Top 20 concept components from the original syntax
element study [42] and a replication using the Canterbury
Question Bank

The first two columns of Table 6 compare the most frequently
observed concept items in the Luxton-Reilly and Petersen’s dataset
to those in our Python dataset. Sixteen of the top 20 “concept com-
ponents” in their analysis are also in the top 20 in our dataset,
suggesting that syntax-based analysis of concepts may be stable
across datasets. However, the order of elements does differ, re-
flecting differences in emphasis in the two sets. In the Canterbury

questions, for example, if, else, and < are more common, suggest-
ing that relatively more questions focusing on conditionals were
found in the Canterbury set, while def and return are less common,
indicating a lower emphasis on functions.

The third column of Table 6 lists the most frequently observed
concept items in the Java dataset. Thirteen of the top 20 “concept
components” in the original analysis of Python problems were
found in the top 20 in our analysis of Java problems, indicating
substantial overlap in the structures used in CS1 problems across
these two languages. The items that were not found are missing
because of differences in the language. In Java, we saw elements
related to typed and declared variables (“Variable Declaration” and
int), which do not occur in Python, and to classes (public and class),
which are frequently taught later in Python. We also saw ++ in Java,
while in Python we saw a structure used in a similar manner: +=.
The items in the Python list that were not found in the Java list are
either language specific (“sequences,” which are a builtin type in
Python, and the range function) or were displaced from the top 20
by class and type elements, but are still found in the top 30 Java
concepts.

This reanalysis raises three interesting points. First, the number
of syntactically derived concepts in a typical question asked of
CS1 students is as high as initially reported [42], providing some
validation of previous findings. In Section 7 we will show that
the AST-based analysis identifies elements similar to those that
were manually identified by experts who looked at the individual
concepts required to answer a given problem; as a consequence,
this approach suggests that automated analysis may be an effective
approach for identifying a minimal set of concepts required to solve
programming problems.

Second, the syntactic composition of typical CS1 problems is
relatively stable regardless of language or context. We found sub-
stantial overlap in the components identified in their analysis as
well as their relative ordering. The format or style of questions
asked does influence the content of questions, as we can see by
looking at the relative rate of appearance of print operations and
function-related structures in our three data sets. The programming
language of instruction also has an effect, as seen by the appear-
ance of class-related items in the Java set. However, fundamental
procedural structures are very common across sets.

Third, the high rate of appearance of some syntactic structures
(such as variables and function calls) suggests that there are de-
pendencies between syntactic elements that may not permit the
independent evaluation of some elements. To further explore this
question, we analyse dependencies suggested by the language it-
self in Section 6 and then manually identify relationships between
concepts in example questions in Section 7.

6 WHAT ARE THE RELATIONSHIPS
BETWEEN THE ELEMENTS? – RQ 2

In the preceding section we saw evidence that instructors do not as-
sess syntactic elements independently. It is clear that the languages
we use require certain elements to be used together, which probably
encourages instructors to combine these elements in assessments.
In this section we perform an analysis of a Java grammar to ex-
plore how the restrictions imposed by the language may influence
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the questions that we use to assess students. In this section we
describe an automated effort to identify relationships between syn-
tactic elements; in Section 7 we involve experts to discover similar
relationships; and in Section 8 we compare the results.

6.1 Methodology
We derived a graph of language elements from a version of Java’s
grammar [54]. To produce the graph, the grammar was parsed, and
the nodes below the idea of a “block” were extracted. This generates
a graph that contains the ideas of “statements” and “expressions”,
the procedural elements of the language. Class declarations and
package imports are omitted. We expect that performing a similar
analysis on Python’s grammar would generate a similar graph.

After extracting the subgraph for statements and expressions, we
made a number of changes to the grammar to improve clarity: a few
nodes were renamed (“genericInvocation” to “functionCall”), nodes
that were introduced to remove grammar ambiguities were merged
(since we don’t actually need to use the grammar to parse Java),
and nodes or edges representing items not typically covered in CS1
were removed (advanced annotations and synchronise blocks).

6.2 Results
Figure 1 illustrates the relationships between different grammatical
elements. The structure of the figure suggests a hierarchy of topics
that need to be covered. However, the hierarchy does not require
that all topics lower in the hierarchy be mastered before advancing
to a given node. Instead, in many cases, only a single path up the
graph is required. For example, to be fully exposed to the idea of
a literal, a student would need to learn about six types, but to use
a literal in an expression, the student need only have experience
with one of those types. A single path is not always sufficient: for
example, to use a method call with arguments a student will need
to have been exposed to both identifiers (the method name) and
arguments.

Category Syntactic elements
Arithmetic (...), ++, –, +, -, *, /, %
Arrays [...]
Assignment =, +=, -=, *=, /=, %=, &=, ˆ=, >>=, >>>=, <<=
Bitwise &, |, ˆ
Boolean ∼, !
Casting ( type )
Relational ==, !=, <=, >=, >, <
Logical &&, ||
Objects ., instanceof, new, this, super
Shift <<, >>
Ternary ? :
Table 7: Syntactic elements included in an expression

Two nodes, “statement” and “expression”, encapsulate a large
number of syntactic elements. The former was expanded because
different statements, such as try-catch blocks and return statements,
have different structures. All of the keywords associated with state-
ments (such as for, try, and break) were found in the Canterbury

question bank except for assert. We chose not to expand the ex-
pression node; instead, the syntactic elements encountered in that
node are categorised in Table 7.

Most of the items in the table are likely to be encountered in a
CS1 course and were, in fact, found in the questions extracted from
the Canterbury question bank. The items that were not found are
the bitwise, shift, and ternary operator categories. The instanceof
operator was also not seen, although the other members of the Class
category were. Several of the augmented assignment operators
were also found in the question bank, although they were used in a
different context: assignment expressions are inherited from C and
are unlikely to be taught in most CS1 courses.

The dependencies enforced by the grammar of the language
constrain how we introduce new material, particularly if we want
students to master a concept before reading or writing code that in-
troduces another related concept. Pathways through the graph may
suggest opportunities to introduce material, and develop scaffolded
tasks, while minimising extraneous load.

7 HOWMIGHTWE ASSESS THE ELEMENTS
INDEPENDENTLY? – RQ 3

7.1 Rationale and Methodology
Here we present a contrasting approach to the top-down deriva-
tions of a concept inventory described in Sections 3 and 4. In this
approach our result is derived in a bottom-up way from the pro-
gramming language as a concrete entity that is the object of interest
in teaching programming. For a concept inventory, the “atomic”
elements that one is dealing with are the concepts, and the items
for each concept are the constituent parts of these “atomic” ele-
ments (maintaining the analogy, the sub-atomic particles). For an
approach that is based on the programming language itself, the
atomic parts are tokens (syntactic units) of the language in isolation
or combination.

Just as a concept inventory can help to pinpoint specific miscon-
ceptions that students struggle with, our approach should help in
identifying which parts of the elementary syntactic and semantic
elements of a programming language a student has problems with.
Some of these elements, such as “variable”, may correspond to a typ-
ical concept of an inventory, while others, such as “identifier”, are
more specific but nevertheless integral to learning how to program.

So while the atomic elements are defined rather strictly based on
the grammar of programming languages, it is not quite so straight-
forward to identify the decomposition of these elements into “sub-
atomic particles”. It is this decomposition that we address in the
following case studies. We consider an element to be atomic if it is
something that can be assessed in isolation, at least to a reasonable
degree. To arrive at these elements of assessment in a way that is
reproducible, we looked at the syntactic elements of a program as
well as the concepts derived from the grammar of the language.
The dependencies derived from the grammar (see Figure 1 for Java)
show that some concepts, such as “identifier”, are sinks in the graph.
It therefore seems reasonable to assume that those will form the
very basic elements that can be assessed in isolation, whereas the
more complex categories, such as “block”, may be inherently depen-
dent on the presence of other concepts – in this case “statement” –
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variableInitializer

arrayInitializer

Figure 1: Dependencies enforced by the Java language

as it is hard to imagine how an assessment for a compound state-
ment can be completely isolated from the concept of a statement.
In such cases we aim for a clear indication of the constituent parts
and their interdependencies to guide the process of finding a series
of assessments for the more complex concepts.

By definition, deriving atomic elements based on a grammar and
decomposition makes the elements dependent on the language used.
The case studies will illustrate some elements that appear in Java
but not in Python. Changing the language also has an influence on
the constituent parts of an element. For example, some understand-
ing of types is necessary for a variable declaration in Java, but not
for Python, in which variables are not explicitly declared. The case
studies will also illustrate that the constituent parts of each atomic
element are dependent on the instructional approach and on the
context of their appearance in the code. For example, if the instruc-
tion introduces arrays as something akin to a primitive type, not
touching the aspect of references, the constituent parts of an array
declaration should not include these aspects. Also, if a question is
posed in a way that allows a student to answer it without having to
know some particular detail, then this detail should not be included
in the questions that a concept is decomposed into. However, a
different question on the same concept might require this detail to
be included. To continue with the example of a reference, if a ques-
tion involves call by reference or copying of references, the simple
notion of the variable holding the object instead of the reference
will no longer work, and the idea of references must be included in
a decomposition of the task.

Python Java
Benchmark concept count concept count

Q1 6 6
Q2 4 6
Q3 2 4
Q4 7 9
Q5 5 5
Q6 13 14
Q7 12 12
Q8 8 9
Q9 11 11
Q10 14 18

Average 8.2 9.4
Table 8: Concept component counts for the benchmarking
questions

This section of the work is based upon the ten benchmarking
questions proposed by Simon et al. [76]. We ran the same analysis
as in Section 5 on the Python and Java versions of these questions,
and the resulting counts of concepts are listed in Table 8. Several
of the benchmarking questions have fairly high concept counts,
showing that even simple code segments can contain high numbers
of syntactic items.
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AST-based
Benchmark Python Concepts Java Concepts Expert-based Java Concepts
Q1 variable, numbers, and, or,

<, <=
variable, numbers, and, or,
<, <=

Identifier, Boolean Operator, Relational Operator, Prece-
dence

Q4 variable, if, else, numbers, =,
>, <

variable, var decl, numbers,
int, if, else, =, >, <

Boolean Operator, Identifier, Assignment, Initializa-
tion, Conditional, Type, Variable Declaration, Sequence,
Block Statement, Nesting

Table 9: Concept components for selected benchmarking questions

Three of the authors then acted as a team of experts to analyse
two of the benchmarking questions, one that is rather simple and
one that contains more complex code. A list of tokens was extracted
from the code that was given in the question, the constituent parts
of each token were identified, and questions were proposed that
would assess a student’s knowledge of each constituent part. The
aim of this work is not to present an exhaustive, unique, or best set
of assessment tasks, but to show as a proof of concept that code
can be decomposed along the line of tokens into small – and for
the most part independent – assessable components.

Table 9 summarises the concept elements that were extracted
from the two sample questions both by the automatic analysis and
by the expert analysis, which is described in detail in the following
subsections.

7.2 Case Study 1
As a first case study we analyse in detail the first of the benchmark-
ing questions [76] using Java as the default language. At the outset
it seems to be a very simple question:

If a dependent child is a person under 18 years
of age who does not earn $10,000 or more a year,
which expression would define a dependent
child?

A. age < 18 && salary < 10000
B. age < 18 || salary < 10000
C. age <= 18 && salary <= 10000
D. age <= 18 || salary <= 10000

From a conceptual point of view it is clear that concepts such as
boolean operators are relevant to this question. When analysing
the tokens that appear in the code segment, we find age, <, 18,
&&, salary, 10000, <=, and | |. From a semantic perspective, these
correspond to the categories of identifier, numeric literal, relational
operator, and boolean operator.

The goal is now to define a set of (perhaps trivial) tasks for each
of those atomic categories that can be used to assess whether the
student understands the syntax and semantics of that category. As
described before, these tasks will vary, depending on the program-
ming language used and on the context of token. In this specific
case, the following set of tasks were identified:

Identifier In the context of this question it is not necessary to
understand the complete concept of a variable; it is enough
to understand that an identifier acts as a placeholder for a

value in an expression and that an identifier is distinctly
different from a literal. This leads to these tasks:
I1/L1 Which of the following code elements are identifiers

and which are literals?
gender, 3.0, "giraffe", 5, x

I2 Can a variable hold/represent/refer to different values at
different times during the execution of a program?
Yes or No

Boolean operator For the boolean operator, the students need
to understand how the operator itself works and, as a pre-
requisite, that there are two boolean values:
BO1 List all of the boolean values
BO2 Give the results of the following expressions:

true && true, true && false, false && true, false && false
Relational operator To understand a relational operator a

student must understand both its syntax and its semantics.
It may be plausible to assume that this is not a problem for
the operators ‘<’ and ‘>’ as they have the same denotation
as in mathematics. However looking at the less or equal that
appears in this particular question it becomes obvious that
understanding the syntax of this operator is a prerequisite
for understanding the code segment. It is also important to
understand that comparisons work only for things that are
actually comparable and that the result of a comparison is a
boolean value. This leads to the following task:
RO1 Give the results of the following expressions:

3 < 4, 5 < 7, 3 <= 3
Precedence An issue that follows not directly from a specific

token, but from the fact that multiple operators can appear
without parentheses, is that students must be aware of the
precedence of operators for the evaluation of the result. This
can be tested by the following task:
OP1 In the expression a< 10 && s > 3, which of the operators

(<, >, &&) is evaluated first (or second, or third)?

There are certain dependencies in these tasks. For example, to
test RO1, BO1 has to be used first to establish that the boolean
values themselves are known by the learners. The dependencies
result both from inherent dependencies among the concepts (e.g.,
between identifier and variable) and from the specific assessments
used. Figure 2 illustrates these dependencies.

While some items, such as BO1, are general and can be used in
this particular form in every relevant scenario, others, such as BO2,
can be understood as template questions. There would also be a
BO3, not listed above, which uses the same approach but for the
operator ‘||’ instead of ‘&&’. The template question would therefore
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Figure 2: Hierarchical relationship between tokens and as-
sessment questions for case study 1

be: “Give the result of the following expressions: . . . ” This template
must then be “instantiated” for every specific operator that appears
in a question.

These specific tasks should serve only as examples; there may
be others ways of assessing the elementary aspects and it may
not even be fully established that our proposed tasks are indeed
valid assessments beyond the face validity that we established by
agreement among our team of experts. However, it quickly becomes
obvious that even a very basic code segment can involve a complex
list of assessments together with dependencies among the tasks. In
this case we have arrived at seven distinct things to test, and this
omits aspects that are not apparent as tokens in the code segments
but are clearly a cognitive process of solving this task, such as
understanding the natural language description and the relationship
between “earn” and “salary”.

7.3 Case Study 2
The second case study involves rather more complex code than the
previous question, and is the fourth of the benchmarking questions
[76]:

What will be the value of the variable z after
the following code is executed?

int x = 1; int y = 2; int z = 3;
if (x < y) {

if (y > 4) {
z = 5;

} else {
z = 6;

}
}

The number and complexity of the syntax token combinations
increases substantially with the number of lines of code. The dis-
tinct token categories that appear are: identifier, assignment, block,
variable declaration, variable initialisation, and conditional. The
first line alone touches on the concepts of type, variable, assign-
ment, statement and sequence. Apart from identifier, which was
discussed in the preceding case study, we can identify the following
tokens:

Type As Java is a strictly-typed language, variable declarations
necessarily involve types. Students must understand that
values in Java have types, and that “int” denotes the specific
type representing the syntactic token of an integer number.
This leads to these questions:
T1 Which of the following literals are of type int?

3.2, 7, true, "a", "5"
Variable declaration The variable declaration results in a

unique identifier, of a given type, to which values can be
assigned. In other words, the value denoted by the identifier
is mutable. This is a distinct idea from the actual assignment
of a specific value to this identifier, which is covered below:
VD1 Can the value of a variable change during the execution

of a piece of code?
Can the value of a variable stay the same during the exe-
cution of a piece of code?

VD2 Is the following code valid?
int x;
int x;

Assignment The assignment of a value to a variable includes
the ideas that the operator is not commutative, that the types
of both sides have to match, and that for primitive types the
assignment copies values (i.e., the right side will be evaluated
and the value will be stored in the left side).
A1 What type must the variable x have for the code x = 1;

to work successfully?
A2 What is the value of the variable x after the code segment

x = 1; has been run?
A3 Are the two statements x = 1; and 1 = x; equivalent?
A4 What is the value of a after executing the following code

segments, where a and b are variables of type int?
a = 1;
b = a + 2;
b = 3;

Initialisation Finally, the initialisation is a compound con-
struct of declaring a variable and assigning an initial value
and can be understood as such.
I1 Is the code segment int x = 1; equivalent to:

int x;
x = 1;

Sequence A sequence of operations includes the notion of
single statements being executed in a strict sequence. Also,
syntactically, it must be understood in this context that the
end of a statement is denoted not by the end of a line but by
a semi-colon.
S1 Is the code int x = 1; int y = 2; equivalent to:

int x;
x = 1;
int y;
y = 2;

S2 Will the single statements of the following code always
be executed in the order that the statements are written?

int x = 1;
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int y = 3;
x = y + 4;

Here we have intrinsically related concepts. Understanding that
an assignment copies a value requires an understanding of a se-
quence of operations: evaluating the expression on the right and
then copying its value to the variable on the left. Yet in our suggested
questions the sequence of operations is assessed using assignments.
It is possible to assess a sequence using other operations (e.g., print
statements), but that would require the understanding of those
other operations.

Continuing with this question, relational operators and boolean
values were addressed in the preceding case study, but understand-
ing of several other elements is required: conditional control flow,
the syntax of a block in Java, and the meaning of nested structures.

Conditional As a conditional may or may not have an else,
both aspects should appear in the assessment.
C1 What is the value of x after the execution of the following

program segment?
int x = 1;
if (x > 2)
x = 2;

C2 What is the value of x after the execution of the following
program segment?

int x = 1;
if (x > 2)
x = 2;

else
x = 0;

Block statements What is the value of x after the execution
of each of the following program segments?

B1 int x = 1;
if (x > 2) {

x = 2;
x = x + 5;

}

B2 int x = 1;
if (x > 2)

x = 2;
x = x + 5;

Nesting The nesting of control structures is, again, a template:
it can be used, for example, with loops as well as with condi-
tionals. In this case, we stick to the specific nesting of two
conditionals.
N1 What is the value of x after the execution of the following

program segment?
int x = 1;
if (x < 3) {

if (x < 1) {
x = 2;

}
x = x + 5;

}

In the case of N1, we end up with a task that is almost as complex
as the original question, since it comprises a nesting of two condi-
tionals. Still, the ordering of the assessment items would give the
information that if all items except for N1 are answered correctly,
the student may be failing to understand that control structures
can be nested, or may be failing to perceive how the nesting is
expressed syntactically. Figure 3 illustrates the complexity in the
relationships inherent in this question.
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Partial token dependency

Assessment dependency

Assessment support for 
token
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Figure 3: Hierarchical relationship between tokens and as-
sessment questions for case study 2

7.4 Case Study Summary
The analysis above shows that a seemingly straightforward ques-
tion can involve a relatively large number of tokens, and that misun-
derstanding any of these tokens can prevent students from answer-
ing the original question. However, the reverse is not necessarily
true: a student who understands all of the tokens might not be ready
to answer the original question. This is because factors beyond the
scope of this very strict decomposition process may come into play,
factors such as excessive cognitive load or issues with translating a
problem from natural language to code.

Notwithstanding these limitations, the information that is gained
from assessing the constituent parts in isolation can be valuable
in cases where a student fails the original question and also fails
some of the smaller component assessments. This would give a
clear indication of where the student’s misunderstanding might
lie, thus providing feedback to both the lecturer and the student.
Appendix A lists all of the concepts indicated in Figure 1, together
with indicative assessment tasks.

The decomposition process outlined in the case studies can be
used by educators to provide more targeted feedback to their stu-
dents. They might use the Abstract Syntax Tree (AST) as a starting
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point to examine possible atomic units, but other concepts not
included in the AST might be needed in their final list.

It is clear to us that there is no single correct decomposition
for a given question; indeed, the members of our expert group did
not always agree on how a certain concept should be decomposed.
For example, in question 6 from the benchmarking paper [75], the
statement
i n t [ ] nums1 = { 1 , −5 , 2 , 0 , 4 , 2 , −3 } ;
led to disagreement on whether the concept of references is neces-
sary as a token. A discussion revealed the idea that the granularity
of decomposition is context-dependent, and that the concept of
references is not needed in the decomposition of this particular
code in the context of this particular question. This makes it clear
that the decomposition process is not necessarily unique, and is
likely to be subjective.

8 DISCUSSION
Our analysis of the literature in Section 3 indicated a number of
common concepts, such as variables; scope of variables; assign-
ment; expressions; data types; strings; arrays; conditional control
structures; iterative control structures; functions, methods, and pro-
cedures; recursion; simple input/output; file input/output; classes;
encapsulation/information hiding; objects/instances; programming
style/standards; and reading code.

Although we, the authors, appear to share a common intuition
about the important concepts covered in introductory program-
ming courses, we observed highly varied learning outcomes for
such courses in our sample. The learning outcomes are likely to
depend, at least in part, on institutional reporting requirements and
local cultural expectations. Nevertheless, the lack of consistency
in learning outcomes highlights the lack of shared understanding
about the appropriate expectations of student performance in CS1,
the lack of shared understanding about the best level of detail/ab-
straction in describing these expectations, and the high variability
in the emphasis placed on different expectations within introduc-
tory programming courses.

We note a reasonably high degree of consistency between the
relationships that we discovered mechanically (Section 6) and those
resulting from the analysis by experts (Section 7). This suggests that
the automated approach may be plausibly used as a surrogate for
manual analysis by experts, and confirms that an analysis of syntax
provides an automated (and therefore low-cost, rapid, and objective)
method of identifying the concepts involved in a particular piece
of code.

While in general there was a high level of similarity between the
analysis of Python code and that of Java code, we did observe some
clear differences between the two, and concluded that the outcome
is dependent on the language. This is not in itself a problem, as the
choice of language is known to contribute to intrinsic or extraneous
cognitive load (depending on the viewpoint) for beginners. Studies
concerning intuitiveness of programming languages have shown
that Java performs poorly [81], which may be reflected by the
results of our case studies especially in comparison to the results
for Python.

It may be worth returning to the ability to translate or drawmaps
between different formal representations of the same entity, which

emerged from the learning objectives discussed in Section 4. This
clearly characterises a broad category of concepts, including quite
advanced topics such as translating from source to assembly-like
code, but we can also identify small tasks that can be profitably
approached at an early level. Here we mention just two examples
related to the tasks in the above case studies:
(i) translation between expression trees and program expressions;
(ii) translation between flow charts and nested control structures,

in particular conditionals.
In connection with OP1 of case study 1 (section 6), for instance,

a specific question might be:
TE1 Consider the following expression: a < 10 && s > 3

Which of the following is its corresponding expression tree?

[ drawing of a few expression trees among which to choose ]

Of course, students’ understanding of expression trees could be
assessed by following essentially the same process as in case study
1, but the important point to be addressed here is the relationship
between different ways to represent the same thing. (Incidentally,
the question in case study 1 may itself be seen as an instance of
translation from an everyday-life description to its computational
representation.) Moreover, if we can assume that the student has
already a clear grasp of what expression trees mean, then task TE1
also provides insight about their understanding, e.g., of operator
precedence in textual expressions.

As a second example, in connection with N1 of case study 2, we
may ask:

TN1 Consider the following code segment:
int x = 1;
if (x < 3) {

if (x < 1) {
x = 2;

}
x = x + 5;

}

Which of the following is its corresponding flow chart?

[ drawing of a few flow charts among which to choose ]

Again, if we can assume that the student understands simple flow
charts, task TN1 gives us insight into their understanding of the
control flow in a textual program.

Even though the decomposition of a task into lower-level compo-
nents is feasible and has potential benefits, it is obvious that there
are certain limitations to using the approach as a (sole) form of as-
sessment. First, this decomposition process is very time-consuming
and involves extensive discussions, and may therefore not be feasi-
ble in a normal class. Second, a collection of low-level assessments
is not necessarily equivalent to the original question because it
fails to assess the student’s ability to synthesise the decomposed
concepts.

However, this approach could be used for a selection of questions
in a normal examination, to diagnose student misunderstandings,
as scaffolding for learning tasks during a semester, or as part of
mastery learning assessments.
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9 CONCLUSION
This working group has surveyed the research literature to iden-
tify what concepts researchers and practitioners consider to be
important in introductory programming courses, and examined the
alignment between these concepts, the stated learning objectives
for typical introductory programming courses, and the assessments
used to evaluate student learning in such courses. We found a rea-
sonably high degree of consistency between the concepts that were
identified as important in the literature; we found consistent use of
highly integrated assessments with similar frequency of concept
components; but we also found that learning outcomes appeared
to be highly variable.

An analysis of the grammar of Java allowed us to identify the
language elements used in CS1 assessments and the relationships
between those elements. The graph of the relationships 1 suggests
a hierarchy of concepts, although it may be possible to progress in
programming by understanding the elements present on particular
paths through the graph, rather than needing to master all of the
conceptual elements.

Finally, we demonstrated that it is possible to design assessments
that focus on atomic concepts, rather than the more typical assess-
ments that are highly interdependent. Appendix A provides an
exemplar list of assessments that demonstrate how it might be
possible to create assessments with limited interdependence.

This project is likely to be of particular interest to teachers and
researchers involved in mastery learning, or those who are re-
quired to demonstrate tight coupling between learning outcomes
and assessment tasks. It may also be of relevance to teachers and
researchers interested in promoting a more positive mindset in the
classroom, focusing on what students do know and what they can
achieve during a typical CS1 course. A substantial body of research
has focused on the use of exam questions and assessment items,
but few publications link these assessment items to the intended
learning outcomes of the courses in which they are used. We believe
that this project will be of wide interest and has the potential to
make a significant contribution to the field.

10 FUTUREWORK
Our findings suggest a number of possible avenues for future work.
Following the working group, validation of the assessment items
may present further opportunities for detailed rigorous analysis of
student learning in CS1 courses. Here a Delphi process might be
used to establish consensus among a small group of experts regard-
ing the constituent parts of each concept. If the atomic questions are
indeed valid and useful, it might be possible to tackle the problem
of defining what makes the rainfall problem difficult [68, 73].

The learning outcomes for CS1 courses proved to be an interest-
ing data source that warrants further investigation. In particular,
to achieve a more thorough understanding of what the students
are expected to learn, it may be helpful to examine the course syl-
labus specifications, which are usually published together with the
learning outcomes themselves.

Although we have provided some exemplar questions in Java,
it would be interesting to compare exemplar questions in Python
to determine what differences in understanding are required for
novices learning Python compared with those learning Java.
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APPENDIX A ASSESSMENT TASKS FOR JAVA
The following list contains all the elements appearing in Figure 1
that relate to procedural programming, together with assessment
tasks that show a decomposition of each element into its basic
constituent parts.

A.1 expression
There are many different operators and literals that can be used to
form an expression. The major point that learners need to know in
each case is that an expression results in a value and that this value
is – often – computed by evaluating terms using operators based on
certain precedence rules. This applies to expressions in their most
basic forms. More complex expressions that rely on method calls,
for example, should be tested accordingly by using appropriate
items for the concepts that go beyond the basic expressions. Here
we give only items that belong to boolean literals (BL1) and the
three boolean operators (BO1-BO3) including their precedence rules
(BP1). Additionally, although it is not considered an expression in
Java, we include items for the concept of assignment (A1-A4), which
does not appear as a separate entity in the dependency graph.

BL1 List all of the boolean values
BO1 Give the results of the following expressions:

true && true, true && false, false && true, false && false
BO2 Give the results of the following expressions:

true | | true, true | | false, false | | true, false | | false
BO3 Give the results of the following expressions:

!true, !false
BP1 In the expression !a && b | | c, which of the operators (!, | |

, &&) is evaluated first and which is evaluated second?
A1 What type must variable x have for the code segment x =

1; to work successfully?
A2 What is the value of the variable x after the code segment

x = 1; has been run?
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A3 Are the two segments x = 1; and 1 = x; equivalent?
A4 What is the value of a after executing the following code

segments where a and b are variables of type int?
a = 1;
b = a + 2;
a = 3;

A.2 identifier
I1 Which of the following code elements are identifiers and

which are literals?
gender, 3.0, "giraffe", 5, x

I2 Can a variable hold/represent/refer to different values at
different times during the execution of a program?

I3 If a variable named x contains the value 5, what will x + 7
be?

A.3 literal
L1 Same as I1

A.4 floatingPointLiteral & integerLiteral & ... &
stringLiteral

All literals are included in a broader "typeLiteral" item.
TL1 Which of the following literals is of type [...] ?

’x’, 3.0, "giraffe", 5, true, null

A.5 typeType
T1 Does every value in Java have a type?

A.6 primitiveType
PT1 Which of the following literals is of a primitive type?

’x’, 3.0, "giraffe", 5, true, 1,2,3
PT2 If the following Java code is valid, can x be of a primitive

type?
x.size();

A.7 classOrInterfaceType
CIT1 Which of the following literals is not of a primitive type?

’x’, 3.0, "giraffe", 5, true, 1,2,3
CIT2 If the following Java Code is valid, must x be of a primi-

tive Type?
x.size();

A.8 localVariableDeclaration
LV1 Same as FS2

A.9 variableDeclarator
VD1 Can the value of a variable change during the execution

of a piece of code?
Can the value of a variable stay the same during the execu-
tion of a piece of code?

VD2 Is the following code valid?

int x;
int x;

A.10 variableInitializer
VI1 Is the code segment int x = 1; equivalent to the following?

int x;
x = 1;

A.11 arrayInitializer
AI1 How many elements does x have after the following code

is executed?
int[] x = {2,1,3};

AI2 What element is at the the first position of x after the
following code is executed?

int[] x = {3,2,1};

AI2 Is the code segment int[] x = 1,2,3; equivalent to the fol-
lowing?

int[] x;
x = {1,2,3};

A.12 statement
S1 Which of the following code segments denotes a statement?

x + 1
x + y;

A.13 ifStatement
IS1 What is the value of x after the execution of the following

program segment?
int x = 1;
if (x > 2)
x = 2;

IS2 What is the value of x after the execution of the following
program segment?

int x = 1;
if (x > 2)
x = 2;

else
x = 0;

A.14 forStatement
FS1 What is the value of x after the execution of the following

program segment?
int x = 1;
for (int i = 0; i < 5; i++) {
x = i;

}
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FS2 Is the following code correct?
int x = 1;
for (int i = 0; i < 5; i++) {
x = x + 1;

}
x = i;

A.15 whileStatement
WS1 Assuming that a variable x of type int has been declared,

which of the following would be valid beginnings for a while
loop?
while (x), while (x < 10), while (x + 3), while (x == 4)

WS2 What is the value of x after the execution of the following
program segment?

int x = 1;
while (x < 2) {
x = 10;
x = x - 5;

}

WS3 True or false: it is possible for a while loop never to
terminate.

A.16 switchStatement & switchLabel
SS1 What value must x hold to ensure that the value of y is

100 after the following code segment is executed?
int y = 0;
switch (x) {
case 1: y = 10; break;

case 2: y = 100; break;
case 3: y = 1000;

}

SS2 What is the value of y after the execution of the following
program segment?

int x = 1;
int y = 0;
switch (x) {
case 1: y = 10;

case 2: y = 100;
case 3: y = 1000;

}

A.17 breakStatement
BS1 What is the value of x after the execution of the following

program segment?
int x = 1;
while (x > 0) {

break;
x = 2;

}

A.18 continueStatement
CS1 What is the value of x after the execution of the following

program segment?

int x = 1;
for (int i = 0; i < 10; i++) {

continue;
x = 2;

}

A.19 block
The element “block” encompasses the ideas of sequences (S1, S2),
simple blocks (B1), and nested blocks (N1).

S1 Is the code segment int x = 1; int y = 2; equivalent to the
following code?

int x;
x = 1;
int y;
y = 2;

S2 Will the individual statements in the following code seg-
ment always be executed in the order that they are written?

int x = 1;
int y = 3;
x = y + 4;

B1 What is the value of x after the execution of each of the
following program segments?

(1) int x = 1;
if (x > 2) {

x = 2;
x = x + 5;

}

(2) int x = 1;
if (x > 2) {
x = 2;
}
x = x + 5;

N1 What is the value of x after the execution of the following
program segment?

int x = 1;
if (x < 3) {

if (x < 1) {
x = 2;
}
x = x + 5;

}
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A.20 arguments & typeArguments &
expressionList

A1 What value is used as the argument of the method called
in the code segment below?

String s1 = "Mary";
String s2 = "Marianne";
int x = s1.compareTo(s2);

TA1 What is the type of the argument of the method called in
the code segment below?

String s1 = "Mary";
String s2 = "Marianne";
int x = s1.compareTo(s2);

EL1 How many expressions are there in the statement below?
s.indexOf('a', 2);

A.21 methodCall
MC1 What is the name of the method that is called in the code

segment below?
String s = "Mary";
int x = s.length();
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